Linux 3.17-rc2
[linux/fpc-iii.git] / arch / powerpc / mm / fault.c
blob51ab9e7e6c391b9497a08730a7b5e4c625c96304
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
37 #include <asm/firmware.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <mm/mmu_decl.h>
48 #include "icswx.h"
50 #ifdef CONFIG_KPROBES
51 static inline int notify_page_fault(struct pt_regs *regs)
53 int ret = 0;
55 /* kprobe_running() needs smp_processor_id() */
56 if (!user_mode(regs)) {
57 preempt_disable();
58 if (kprobe_running() && kprobe_fault_handler(regs, 11))
59 ret = 1;
60 preempt_enable();
63 return ret;
65 #else
66 static inline int notify_page_fault(struct pt_regs *regs)
68 return 0;
70 #endif
73 * Check whether the instruction at regs->nip is a store using
74 * an update addressing form which will update r1.
76 static int store_updates_sp(struct pt_regs *regs)
78 unsigned int inst;
80 if (get_user(inst, (unsigned int __user *)regs->nip))
81 return 0;
82 /* check for 1 in the rA field */
83 if (((inst >> 16) & 0x1f) != 1)
84 return 0;
85 /* check major opcode */
86 switch (inst >> 26) {
87 case 37: /* stwu */
88 case 39: /* stbu */
89 case 45: /* sthu */
90 case 53: /* stfsu */
91 case 55: /* stfdu */
92 return 1;
93 case 62: /* std or stdu */
94 return (inst & 3) == 1;
95 case 31:
96 /* check minor opcode */
97 switch ((inst >> 1) & 0x3ff) {
98 case 181: /* stdux */
99 case 183: /* stwux */
100 case 247: /* stbux */
101 case 439: /* sthux */
102 case 695: /* stfsux */
103 case 759: /* stfdux */
104 return 1;
107 return 0;
110 * do_page_fault error handling helpers
113 #define MM_FAULT_RETURN 0
114 #define MM_FAULT_CONTINUE -1
115 #define MM_FAULT_ERR(sig) (sig)
117 static int do_sigbus(struct pt_regs *regs, unsigned long address)
119 siginfo_t info;
121 up_read(&current->mm->mmap_sem);
123 if (user_mode(regs)) {
124 current->thread.trap_nr = BUS_ADRERR;
125 info.si_signo = SIGBUS;
126 info.si_errno = 0;
127 info.si_code = BUS_ADRERR;
128 info.si_addr = (void __user *)address;
129 force_sig_info(SIGBUS, &info, current);
130 return MM_FAULT_RETURN;
132 return MM_FAULT_ERR(SIGBUS);
135 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
138 * Pagefault was interrupted by SIGKILL. We have no reason to
139 * continue the pagefault.
141 if (fatal_signal_pending(current)) {
143 * If we have retry set, the mmap semaphore will have
144 * alrady been released in __lock_page_or_retry(). Else
145 * we release it now.
147 if (!(fault & VM_FAULT_RETRY))
148 up_read(&current->mm->mmap_sem);
149 /* Coming from kernel, we need to deal with uaccess fixups */
150 if (user_mode(regs))
151 return MM_FAULT_RETURN;
152 return MM_FAULT_ERR(SIGKILL);
155 /* No fault: be happy */
156 if (!(fault & VM_FAULT_ERROR))
157 return MM_FAULT_CONTINUE;
159 /* Out of memory */
160 if (fault & VM_FAULT_OOM) {
161 up_read(&current->mm->mmap_sem);
164 * We ran out of memory, or some other thing happened to us that
165 * made us unable to handle the page fault gracefully.
167 if (!user_mode(regs))
168 return MM_FAULT_ERR(SIGKILL);
169 pagefault_out_of_memory();
170 return MM_FAULT_RETURN;
173 /* Bus error. x86 handles HWPOISON here, we'll add this if/when
174 * we support the feature in HW
176 if (fault & VM_FAULT_SIGBUS)
177 return do_sigbus(regs, addr);
179 /* We don't understand the fault code, this is fatal */
180 BUG();
181 return MM_FAULT_CONTINUE;
185 * For 600- and 800-family processors, the error_code parameter is DSISR
186 * for a data fault, SRR1 for an instruction fault. For 400-family processors
187 * the error_code parameter is ESR for a data fault, 0 for an instruction
188 * fault.
189 * For 64-bit processors, the error_code parameter is
190 * - DSISR for a non-SLB data access fault,
191 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
192 * - 0 any SLB fault.
194 * The return value is 0 if the fault was handled, or the signal
195 * number if this is a kernel fault that can't be handled here.
197 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
198 unsigned long error_code)
200 enum ctx_state prev_state = exception_enter();
201 struct vm_area_struct * vma;
202 struct mm_struct *mm = current->mm;
203 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204 int code = SEGV_MAPERR;
205 int is_write = 0;
206 int trap = TRAP(regs);
207 int is_exec = trap == 0x400;
208 int fault;
209 int rc = 0, store_update_sp = 0;
211 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
213 * Fortunately the bit assignments in SRR1 for an instruction
214 * fault and DSISR for a data fault are mostly the same for the
215 * bits we are interested in. But there are some bits which
216 * indicate errors in DSISR but can validly be set in SRR1.
218 if (trap == 0x400)
219 error_code &= 0x48200000;
220 else
221 is_write = error_code & DSISR_ISSTORE;
222 #else
223 is_write = error_code & ESR_DST;
224 #endif /* CONFIG_4xx || CONFIG_BOOKE */
226 #ifdef CONFIG_PPC_ICSWX
228 * we need to do this early because this "data storage
229 * interrupt" does not update the DAR/DEAR so we don't want to
230 * look at it
232 if (error_code & ICSWX_DSI_UCT) {
233 rc = acop_handle_fault(regs, address, error_code);
234 if (rc)
235 goto bail;
237 #endif /* CONFIG_PPC_ICSWX */
239 if (notify_page_fault(regs))
240 goto bail;
242 if (unlikely(debugger_fault_handler(regs)))
243 goto bail;
245 /* On a kernel SLB miss we can only check for a valid exception entry */
246 if (!user_mode(regs) && (address >= TASK_SIZE)) {
247 rc = SIGSEGV;
248 goto bail;
251 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 defined(CONFIG_PPC_BOOK3S_64))
253 if (error_code & DSISR_DABRMATCH) {
254 /* breakpoint match */
255 do_break(regs, address, error_code);
256 goto bail;
258 #endif
260 /* We restore the interrupt state now */
261 if (!arch_irq_disabled_regs(regs))
262 local_irq_enable();
264 if (in_atomic() || mm == NULL) {
265 if (!user_mode(regs)) {
266 rc = SIGSEGV;
267 goto bail;
269 /* in_atomic() in user mode is really bad,
270 as is current->mm == NULL. */
271 printk(KERN_EMERG "Page fault in user mode with "
272 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
273 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
274 regs->nip, regs->msr);
275 die("Weird page fault", regs, SIGSEGV);
278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
281 * We want to do this outside mmap_sem, because reading code around nip
282 * can result in fault, which will cause a deadlock when called with
283 * mmap_sem held
285 if (user_mode(regs))
286 store_update_sp = store_updates_sp(regs);
288 if (user_mode(regs))
289 flags |= FAULT_FLAG_USER;
291 /* When running in the kernel we expect faults to occur only to
292 * addresses in user space. All other faults represent errors in the
293 * kernel and should generate an OOPS. Unfortunately, in the case of an
294 * erroneous fault occurring in a code path which already holds mmap_sem
295 * we will deadlock attempting to validate the fault against the
296 * address space. Luckily the kernel only validly references user
297 * space from well defined areas of code, which are listed in the
298 * exceptions table.
300 * As the vast majority of faults will be valid we will only perform
301 * the source reference check when there is a possibility of a deadlock.
302 * Attempt to lock the address space, if we cannot we then validate the
303 * source. If this is invalid we can skip the address space check,
304 * thus avoiding the deadlock.
306 if (!down_read_trylock(&mm->mmap_sem)) {
307 if (!user_mode(regs) && !search_exception_tables(regs->nip))
308 goto bad_area_nosemaphore;
310 retry:
311 down_read(&mm->mmap_sem);
312 } else {
314 * The above down_read_trylock() might have succeeded in
315 * which case we'll have missed the might_sleep() from
316 * down_read():
318 might_sleep();
321 vma = find_vma(mm, address);
322 if (!vma)
323 goto bad_area;
324 if (vma->vm_start <= address)
325 goto good_area;
326 if (!(vma->vm_flags & VM_GROWSDOWN))
327 goto bad_area;
330 * N.B. The POWER/Open ABI allows programs to access up to
331 * 288 bytes below the stack pointer.
332 * The kernel signal delivery code writes up to about 1.5kB
333 * below the stack pointer (r1) before decrementing it.
334 * The exec code can write slightly over 640kB to the stack
335 * before setting the user r1. Thus we allow the stack to
336 * expand to 1MB without further checks.
338 if (address + 0x100000 < vma->vm_end) {
339 /* get user regs even if this fault is in kernel mode */
340 struct pt_regs *uregs = current->thread.regs;
341 if (uregs == NULL)
342 goto bad_area;
345 * A user-mode access to an address a long way below
346 * the stack pointer is only valid if the instruction
347 * is one which would update the stack pointer to the
348 * address accessed if the instruction completed,
349 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
350 * (or the byte, halfword, float or double forms).
352 * If we don't check this then any write to the area
353 * between the last mapped region and the stack will
354 * expand the stack rather than segfaulting.
356 if (address + 2048 < uregs->gpr[1] && !store_update_sp)
357 goto bad_area;
359 if (expand_stack(vma, address))
360 goto bad_area;
362 good_area:
363 code = SEGV_ACCERR;
364 #if defined(CONFIG_6xx)
365 if (error_code & 0x95700000)
366 /* an error such as lwarx to I/O controller space,
367 address matching DABR, eciwx, etc. */
368 goto bad_area;
369 #endif /* CONFIG_6xx */
370 #if defined(CONFIG_8xx)
371 /* 8xx sometimes need to load a invalid/non-present TLBs.
372 * These must be invalidated separately as linux mm don't.
374 if (error_code & 0x40000000) /* no translation? */
375 _tlbil_va(address, 0, 0, 0);
377 /* The MPC8xx seems to always set 0x80000000, which is
378 * "undefined". Of those that can be set, this is the only
379 * one which seems bad.
381 if (error_code & 0x10000000)
382 /* Guarded storage error. */
383 goto bad_area;
384 #endif /* CONFIG_8xx */
386 if (is_exec) {
387 #ifdef CONFIG_PPC_STD_MMU
388 /* Protection fault on exec go straight to failure on
389 * Hash based MMUs as they either don't support per-page
390 * execute permission, or if they do, it's handled already
391 * at the hash level. This test would probably have to
392 * be removed if we change the way this works to make hash
393 * processors use the same I/D cache coherency mechanism
394 * as embedded.
396 if (error_code & DSISR_PROTFAULT)
397 goto bad_area;
398 #endif /* CONFIG_PPC_STD_MMU */
401 * Allow execution from readable areas if the MMU does not
402 * provide separate controls over reading and executing.
404 * Note: That code used to not be enabled for 4xx/BookE.
405 * It is now as I/D cache coherency for these is done at
406 * set_pte_at() time and I see no reason why the test
407 * below wouldn't be valid on those processors. This -may-
408 * break programs compiled with a really old ABI though.
410 if (!(vma->vm_flags & VM_EXEC) &&
411 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
412 !(vma->vm_flags & (VM_READ | VM_WRITE))))
413 goto bad_area;
414 /* a write */
415 } else if (is_write) {
416 if (!(vma->vm_flags & VM_WRITE))
417 goto bad_area;
418 flags |= FAULT_FLAG_WRITE;
419 /* a read */
420 } else {
421 /* protection fault */
422 if (error_code & 0x08000000)
423 goto bad_area;
424 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
425 goto bad_area;
429 * If for any reason at all we couldn't handle the fault,
430 * make sure we exit gracefully rather than endlessly redo
431 * the fault.
433 fault = handle_mm_fault(mm, vma, address, flags);
434 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
435 rc = mm_fault_error(regs, address, fault);
436 if (rc >= MM_FAULT_RETURN)
437 goto bail;
438 else
439 rc = 0;
443 * Major/minor page fault accounting is only done on the
444 * initial attempt. If we go through a retry, it is extremely
445 * likely that the page will be found in page cache at that point.
447 if (flags & FAULT_FLAG_ALLOW_RETRY) {
448 if (fault & VM_FAULT_MAJOR) {
449 current->maj_flt++;
450 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
451 regs, address);
452 #ifdef CONFIG_PPC_SMLPAR
453 if (firmware_has_feature(FW_FEATURE_CMO)) {
454 u32 page_ins;
456 preempt_disable();
457 page_ins = be32_to_cpu(get_lppaca()->page_ins);
458 page_ins += 1 << PAGE_FACTOR;
459 get_lppaca()->page_ins = cpu_to_be32(page_ins);
460 preempt_enable();
462 #endif /* CONFIG_PPC_SMLPAR */
463 } else {
464 current->min_flt++;
465 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
466 regs, address);
468 if (fault & VM_FAULT_RETRY) {
469 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
470 * of starvation. */
471 flags &= ~FAULT_FLAG_ALLOW_RETRY;
472 flags |= FAULT_FLAG_TRIED;
473 goto retry;
477 up_read(&mm->mmap_sem);
478 goto bail;
480 bad_area:
481 up_read(&mm->mmap_sem);
483 bad_area_nosemaphore:
484 /* User mode accesses cause a SIGSEGV */
485 if (user_mode(regs)) {
486 _exception(SIGSEGV, regs, code, address);
487 goto bail;
490 if (is_exec && (error_code & DSISR_PROTFAULT))
491 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
492 " page (%lx) - exploit attempt? (uid: %d)\n",
493 address, from_kuid(&init_user_ns, current_uid()));
495 rc = SIGSEGV;
497 bail:
498 exception_exit(prev_state);
499 return rc;
504 * bad_page_fault is called when we have a bad access from the kernel.
505 * It is called from the DSI and ISI handlers in head.S and from some
506 * of the procedures in traps.c.
508 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
510 const struct exception_table_entry *entry;
511 unsigned long *stackend;
513 /* Are we prepared to handle this fault? */
514 if ((entry = search_exception_tables(regs->nip)) != NULL) {
515 regs->nip = entry->fixup;
516 return;
519 /* kernel has accessed a bad area */
521 switch (regs->trap) {
522 case 0x300:
523 case 0x380:
524 printk(KERN_ALERT "Unable to handle kernel paging request for "
525 "data at address 0x%08lx\n", regs->dar);
526 break;
527 case 0x400:
528 case 0x480:
529 printk(KERN_ALERT "Unable to handle kernel paging request for "
530 "instruction fetch\n");
531 break;
532 default:
533 printk(KERN_ALERT "Unable to handle kernel paging request for "
534 "unknown fault\n");
535 break;
537 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
538 regs->nip);
540 stackend = end_of_stack(current);
541 if (current != &init_task && *stackend != STACK_END_MAGIC)
542 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
544 die("Kernel access of bad area", regs, sig);