3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
37 #include <asm/firmware.h>
39 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <mm/mmu_decl.h>
51 static inline int notify_page_fault(struct pt_regs
*regs
)
55 /* kprobe_running() needs smp_processor_id() */
56 if (!user_mode(regs
)) {
58 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
66 static inline int notify_page_fault(struct pt_regs
*regs
)
73 * Check whether the instruction at regs->nip is a store using
74 * an update addressing form which will update r1.
76 static int store_updates_sp(struct pt_regs
*regs
)
80 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
82 /* check for 1 in the rA field */
83 if (((inst
>> 16) & 0x1f) != 1)
85 /* check major opcode */
93 case 62: /* std or stdu */
94 return (inst
& 3) == 1;
96 /* check minor opcode */
97 switch ((inst
>> 1) & 0x3ff) {
100 case 247: /* stbux */
101 case 439: /* sthux */
102 case 695: /* stfsux */
103 case 759: /* stfdux */
110 * do_page_fault error handling helpers
113 #define MM_FAULT_RETURN 0
114 #define MM_FAULT_CONTINUE -1
115 #define MM_FAULT_ERR(sig) (sig)
117 static int do_sigbus(struct pt_regs
*regs
, unsigned long address
)
121 up_read(¤t
->mm
->mmap_sem
);
123 if (user_mode(regs
)) {
124 current
->thread
.trap_nr
= BUS_ADRERR
;
125 info
.si_signo
= SIGBUS
;
127 info
.si_code
= BUS_ADRERR
;
128 info
.si_addr
= (void __user
*)address
;
129 force_sig_info(SIGBUS
, &info
, current
);
130 return MM_FAULT_RETURN
;
132 return MM_FAULT_ERR(SIGBUS
);
135 static int mm_fault_error(struct pt_regs
*regs
, unsigned long addr
, int fault
)
138 * Pagefault was interrupted by SIGKILL. We have no reason to
139 * continue the pagefault.
141 if (fatal_signal_pending(current
)) {
143 * If we have retry set, the mmap semaphore will have
144 * alrady been released in __lock_page_or_retry(). Else
147 if (!(fault
& VM_FAULT_RETRY
))
148 up_read(¤t
->mm
->mmap_sem
);
149 /* Coming from kernel, we need to deal with uaccess fixups */
151 return MM_FAULT_RETURN
;
152 return MM_FAULT_ERR(SIGKILL
);
155 /* No fault: be happy */
156 if (!(fault
& VM_FAULT_ERROR
))
157 return MM_FAULT_CONTINUE
;
160 if (fault
& VM_FAULT_OOM
) {
161 up_read(¤t
->mm
->mmap_sem
);
164 * We ran out of memory, or some other thing happened to us that
165 * made us unable to handle the page fault gracefully.
167 if (!user_mode(regs
))
168 return MM_FAULT_ERR(SIGKILL
);
169 pagefault_out_of_memory();
170 return MM_FAULT_RETURN
;
173 /* Bus error. x86 handles HWPOISON here, we'll add this if/when
174 * we support the feature in HW
176 if (fault
& VM_FAULT_SIGBUS
)
177 return do_sigbus(regs
, addr
);
179 /* We don't understand the fault code, this is fatal */
181 return MM_FAULT_CONTINUE
;
185 * For 600- and 800-family processors, the error_code parameter is DSISR
186 * for a data fault, SRR1 for an instruction fault. For 400-family processors
187 * the error_code parameter is ESR for a data fault, 0 for an instruction
189 * For 64-bit processors, the error_code parameter is
190 * - DSISR for a non-SLB data access fault,
191 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
194 * The return value is 0 if the fault was handled, or the signal
195 * number if this is a kernel fault that can't be handled here.
197 int __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long address
,
198 unsigned long error_code
)
200 enum ctx_state prev_state
= exception_enter();
201 struct vm_area_struct
* vma
;
202 struct mm_struct
*mm
= current
->mm
;
203 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
204 int code
= SEGV_MAPERR
;
206 int trap
= TRAP(regs
);
207 int is_exec
= trap
== 0x400;
209 int rc
= 0, store_update_sp
= 0;
211 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
213 * Fortunately the bit assignments in SRR1 for an instruction
214 * fault and DSISR for a data fault are mostly the same for the
215 * bits we are interested in. But there are some bits which
216 * indicate errors in DSISR but can validly be set in SRR1.
219 error_code
&= 0x48200000;
221 is_write
= error_code
& DSISR_ISSTORE
;
223 is_write
= error_code
& ESR_DST
;
224 #endif /* CONFIG_4xx || CONFIG_BOOKE */
226 #ifdef CONFIG_PPC_ICSWX
228 * we need to do this early because this "data storage
229 * interrupt" does not update the DAR/DEAR so we don't want to
232 if (error_code
& ICSWX_DSI_UCT
) {
233 rc
= acop_handle_fault(regs
, address
, error_code
);
237 #endif /* CONFIG_PPC_ICSWX */
239 if (notify_page_fault(regs
))
242 if (unlikely(debugger_fault_handler(regs
)))
245 /* On a kernel SLB miss we can only check for a valid exception entry */
246 if (!user_mode(regs
) && (address
>= TASK_SIZE
)) {
251 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 defined(CONFIG_PPC_BOOK3S_64))
253 if (error_code
& DSISR_DABRMATCH
) {
254 /* breakpoint match */
255 do_break(regs
, address
, error_code
);
260 /* We restore the interrupt state now */
261 if (!arch_irq_disabled_regs(regs
))
264 if (in_atomic() || mm
== NULL
) {
265 if (!user_mode(regs
)) {
269 /* in_atomic() in user mode is really bad,
270 as is current->mm == NULL. */
271 printk(KERN_EMERG
"Page fault in user mode with "
272 "in_atomic() = %d mm = %p\n", in_atomic(), mm
);
273 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
274 regs
->nip
, regs
->msr
);
275 die("Weird page fault", regs
, SIGSEGV
);
278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
281 * We want to do this outside mmap_sem, because reading code around nip
282 * can result in fault, which will cause a deadlock when called with
286 store_update_sp
= store_updates_sp(regs
);
289 flags
|= FAULT_FLAG_USER
;
291 /* When running in the kernel we expect faults to occur only to
292 * addresses in user space. All other faults represent errors in the
293 * kernel and should generate an OOPS. Unfortunately, in the case of an
294 * erroneous fault occurring in a code path which already holds mmap_sem
295 * we will deadlock attempting to validate the fault against the
296 * address space. Luckily the kernel only validly references user
297 * space from well defined areas of code, which are listed in the
300 * As the vast majority of faults will be valid we will only perform
301 * the source reference check when there is a possibility of a deadlock.
302 * Attempt to lock the address space, if we cannot we then validate the
303 * source. If this is invalid we can skip the address space check,
304 * thus avoiding the deadlock.
306 if (!down_read_trylock(&mm
->mmap_sem
)) {
307 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
308 goto bad_area_nosemaphore
;
311 down_read(&mm
->mmap_sem
);
314 * The above down_read_trylock() might have succeeded in
315 * which case we'll have missed the might_sleep() from
321 vma
= find_vma(mm
, address
);
324 if (vma
->vm_start
<= address
)
326 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
330 * N.B. The POWER/Open ABI allows programs to access up to
331 * 288 bytes below the stack pointer.
332 * The kernel signal delivery code writes up to about 1.5kB
333 * below the stack pointer (r1) before decrementing it.
334 * The exec code can write slightly over 640kB to the stack
335 * before setting the user r1. Thus we allow the stack to
336 * expand to 1MB without further checks.
338 if (address
+ 0x100000 < vma
->vm_end
) {
339 /* get user regs even if this fault is in kernel mode */
340 struct pt_regs
*uregs
= current
->thread
.regs
;
345 * A user-mode access to an address a long way below
346 * the stack pointer is only valid if the instruction
347 * is one which would update the stack pointer to the
348 * address accessed if the instruction completed,
349 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
350 * (or the byte, halfword, float or double forms).
352 * If we don't check this then any write to the area
353 * between the last mapped region and the stack will
354 * expand the stack rather than segfaulting.
356 if (address
+ 2048 < uregs
->gpr
[1] && !store_update_sp
)
359 if (expand_stack(vma
, address
))
364 #if defined(CONFIG_6xx)
365 if (error_code
& 0x95700000)
366 /* an error such as lwarx to I/O controller space,
367 address matching DABR, eciwx, etc. */
369 #endif /* CONFIG_6xx */
370 #if defined(CONFIG_8xx)
371 /* 8xx sometimes need to load a invalid/non-present TLBs.
372 * These must be invalidated separately as linux mm don't.
374 if (error_code
& 0x40000000) /* no translation? */
375 _tlbil_va(address
, 0, 0, 0);
377 /* The MPC8xx seems to always set 0x80000000, which is
378 * "undefined". Of those that can be set, this is the only
379 * one which seems bad.
381 if (error_code
& 0x10000000)
382 /* Guarded storage error. */
384 #endif /* CONFIG_8xx */
387 #ifdef CONFIG_PPC_STD_MMU
388 /* Protection fault on exec go straight to failure on
389 * Hash based MMUs as they either don't support per-page
390 * execute permission, or if they do, it's handled already
391 * at the hash level. This test would probably have to
392 * be removed if we change the way this works to make hash
393 * processors use the same I/D cache coherency mechanism
396 if (error_code
& DSISR_PROTFAULT
)
398 #endif /* CONFIG_PPC_STD_MMU */
401 * Allow execution from readable areas if the MMU does not
402 * provide separate controls over reading and executing.
404 * Note: That code used to not be enabled for 4xx/BookE.
405 * It is now as I/D cache coherency for these is done at
406 * set_pte_at() time and I see no reason why the test
407 * below wouldn't be valid on those processors. This -may-
408 * break programs compiled with a really old ABI though.
410 if (!(vma
->vm_flags
& VM_EXEC
) &&
411 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
412 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
))))
415 } else if (is_write
) {
416 if (!(vma
->vm_flags
& VM_WRITE
))
418 flags
|= FAULT_FLAG_WRITE
;
421 /* protection fault */
422 if (error_code
& 0x08000000)
424 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
429 * If for any reason at all we couldn't handle the fault,
430 * make sure we exit gracefully rather than endlessly redo
433 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
434 if (unlikely(fault
& (VM_FAULT_RETRY
|VM_FAULT_ERROR
))) {
435 rc
= mm_fault_error(regs
, address
, fault
);
436 if (rc
>= MM_FAULT_RETURN
)
443 * Major/minor page fault accounting is only done on the
444 * initial attempt. If we go through a retry, it is extremely
445 * likely that the page will be found in page cache at that point.
447 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
448 if (fault
& VM_FAULT_MAJOR
) {
450 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
452 #ifdef CONFIG_PPC_SMLPAR
453 if (firmware_has_feature(FW_FEATURE_CMO
)) {
457 page_ins
= be32_to_cpu(get_lppaca()->page_ins
);
458 page_ins
+= 1 << PAGE_FACTOR
;
459 get_lppaca()->page_ins
= cpu_to_be32(page_ins
);
462 #endif /* CONFIG_PPC_SMLPAR */
465 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
468 if (fault
& VM_FAULT_RETRY
) {
469 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
471 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
472 flags
|= FAULT_FLAG_TRIED
;
477 up_read(&mm
->mmap_sem
);
481 up_read(&mm
->mmap_sem
);
483 bad_area_nosemaphore
:
484 /* User mode accesses cause a SIGSEGV */
485 if (user_mode(regs
)) {
486 _exception(SIGSEGV
, regs
, code
, address
);
490 if (is_exec
&& (error_code
& DSISR_PROTFAULT
))
491 printk_ratelimited(KERN_CRIT
"kernel tried to execute NX-protected"
492 " page (%lx) - exploit attempt? (uid: %d)\n",
493 address
, from_kuid(&init_user_ns
, current_uid()));
498 exception_exit(prev_state
);
504 * bad_page_fault is called when we have a bad access from the kernel.
505 * It is called from the DSI and ISI handlers in head.S and from some
506 * of the procedures in traps.c.
508 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
510 const struct exception_table_entry
*entry
;
511 unsigned long *stackend
;
513 /* Are we prepared to handle this fault? */
514 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
515 regs
->nip
= entry
->fixup
;
519 /* kernel has accessed a bad area */
521 switch (regs
->trap
) {
524 printk(KERN_ALERT
"Unable to handle kernel paging request for "
525 "data at address 0x%08lx\n", regs
->dar
);
529 printk(KERN_ALERT
"Unable to handle kernel paging request for "
530 "instruction fetch\n");
533 printk(KERN_ALERT
"Unable to handle kernel paging request for "
537 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
540 stackend
= end_of_stack(current
);
541 if (current
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
542 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
544 die("Kernel access of bad area", regs
, sig
);