2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
47 #include <asm/tlbflush.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
62 #define DBG(fmt...) udbg_printf(fmt)
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #define DBG_LOW(fmt...)
78 * Note: pte --> Linux PTE
79 * HPTE --> PowerPC Hashed Page Table Entry
82 * htab_initialize is called with the MMU off (of course), but
83 * the kernel has been copied down to zero so it can directly
84 * reference global data. At this point it is very difficult
85 * to print debug info.
90 extern unsigned long dart_tablebase
;
91 #endif /* CONFIG_U3_DART */
93 static unsigned long _SDR1
;
94 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
96 struct hash_pte
*htab_address
;
97 unsigned long htab_size_bytes
;
98 unsigned long htab_hash_mask
;
99 EXPORT_SYMBOL_GPL(htab_hash_mask
);
100 int mmu_linear_psize
= MMU_PAGE_4K
;
101 int mmu_virtual_psize
= MMU_PAGE_4K
;
102 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
106 int mmu_io_psize
= MMU_PAGE_4K
;
107 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
108 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
109 u16 mmu_slb_size
= 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size
);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions
;
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8
*linear_map_hash_slots
;
116 static unsigned long linear_map_hash_count
;
117 static DEFINE_SPINLOCK(linear_map_hash_lock
);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
120 /* There are definitions of page sizes arrays to be used when none
121 * is provided by the firmware.
124 /* Pre-POWER4 CPUs (4k pages only)
126 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
130 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
136 /* POWER4, GPUL, POWER5
138 * Support for 16Mb large pages
140 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
144 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
151 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
152 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
160 unsigned long rflags
= pteflags
& 0x1fa;
162 /* _PAGE_EXEC -> NOEXEC */
163 if ((pteflags
& _PAGE_EXEC
) == 0)
166 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 * need to add in 0x1 if it's a read-only user page
169 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
170 (pteflags
& _PAGE_DIRTY
)))
173 * Always add "C" bit for perf. Memory coherence is always enabled
175 return rflags
| HPTE_R_C
| HPTE_R_M
;
178 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
179 unsigned long pstart
, unsigned long prot
,
180 int psize
, int ssize
)
182 unsigned long vaddr
, paddr
;
183 unsigned int step
, shift
;
186 shift
= mmu_psize_defs
[psize
].shift
;
189 prot
= htab_convert_pte_flags(prot
);
191 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
192 vstart
, vend
, pstart
, prot
, psize
, ssize
);
194 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
195 vaddr
+= step
, paddr
+= step
) {
196 unsigned long hash
, hpteg
;
197 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
198 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
199 unsigned long tprot
= prot
;
202 * If we hit a bad address return error.
206 /* Make kernel text executable */
207 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
210 /* Make kvm guest trampolines executable */
211 if (overlaps_kvm_tmp(vaddr
, vaddr
+ step
))
215 * If relocatable, check if it overlaps interrupt vectors that
216 * are copied down to real 0. For relocatable kernel
217 * (e.g. kdump case) we copy interrupt vectors down to real
218 * address 0. Mark that region as executable. This is
219 * because on p8 system with relocation on exception feature
220 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
221 * in order to execute the interrupt handlers in virtual
222 * mode the vector region need to be marked as executable.
224 if ((PHYSICAL_START
> MEMORY_START
) &&
225 overlaps_interrupt_vector_text(vaddr
, vaddr
+ step
))
228 hash
= hpt_hash(vpn
, shift
, ssize
);
229 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
231 BUG_ON(!ppc_md
.hpte_insert
);
232 ret
= ppc_md
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
233 HPTE_V_BOLTED
, psize
, psize
, ssize
);
237 #ifdef CONFIG_DEBUG_PAGEALLOC
238 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
239 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
240 #endif /* CONFIG_DEBUG_PAGEALLOC */
242 return ret
< 0 ? ret
: 0;
245 #ifdef CONFIG_MEMORY_HOTPLUG
246 int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
247 int psize
, int ssize
)
250 unsigned int step
, shift
;
252 shift
= mmu_psize_defs
[psize
].shift
;
255 if (!ppc_md
.hpte_removebolted
) {
256 printk(KERN_WARNING
"Platform doesn't implement "
257 "hpte_removebolted\n");
261 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
262 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
266 #endif /* CONFIG_MEMORY_HOTPLUG */
268 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
269 const char *uname
, int depth
,
272 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
276 /* We are scanning "cpu" nodes only */
277 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
280 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
283 for (; size
>= 4; size
-= 4, ++prop
) {
284 if (be32_to_cpu(prop
[0]) == 40) {
285 DBG("1T segment support detected\n");
286 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
290 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
294 static void __init
htab_init_seg_sizes(void)
296 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
299 static int __init
get_idx_from_shift(unsigned int shift
)
323 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
324 const char *uname
, int depth
,
327 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
331 /* We are scanning "cpu" nodes only */
332 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
335 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
337 pr_info("Page sizes from device-tree:\n");
339 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
341 unsigned int base_shift
= be32_to_cpu(prop
[0]);
342 unsigned int slbenc
= be32_to_cpu(prop
[1]);
343 unsigned int lpnum
= be32_to_cpu(prop
[2]);
344 struct mmu_psize_def
*def
;
347 size
-= 3; prop
+= 3;
348 base_idx
= get_idx_from_shift(base_shift
);
351 * skip the pte encoding also
353 prop
+= lpnum
* 2; size
-= lpnum
* 2;
356 def
= &mmu_psize_defs
[base_idx
];
357 if (base_idx
== MMU_PAGE_16M
)
358 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
360 def
->shift
= base_shift
;
361 if (base_shift
<= 23)
364 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
367 * We don't know for sure what's up with tlbiel, so
368 * for now we only set it for 4K and 64K pages
370 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
375 while (size
> 0 && lpnum
) {
376 unsigned int shift
= be32_to_cpu(prop
[0]);
377 int penc
= be32_to_cpu(prop
[1]);
379 prop
+= 2; size
-= 2;
382 idx
= get_idx_from_shift(shift
);
387 pr_err("Invalid penc for base_shift=%d "
388 "shift=%d\n", base_shift
, shift
);
390 def
->penc
[idx
] = penc
;
391 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
392 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
393 base_shift
, shift
, def
->sllp
,
394 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
402 #ifdef CONFIG_HUGETLB_PAGE
403 /* Scan for 16G memory blocks that have been set aside for huge pages
404 * and reserve those blocks for 16G huge pages.
406 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
407 const char *uname
, int depth
,
409 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
410 const __be64
*addr_prop
;
411 const __be32
*page_count_prop
;
412 unsigned int expected_pages
;
413 long unsigned int phys_addr
;
414 long unsigned int block_size
;
416 /* We are scanning "memory" nodes only */
417 if (type
== NULL
|| strcmp(type
, "memory") != 0)
420 /* This property is the log base 2 of the number of virtual pages that
421 * will represent this memory block. */
422 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
423 if (page_count_prop
== NULL
)
425 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
426 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
427 if (addr_prop
== NULL
)
429 phys_addr
= be64_to_cpu(addr_prop
[0]);
430 block_size
= be64_to_cpu(addr_prop
[1]);
431 if (block_size
!= (16 * GB
))
433 printk(KERN_INFO
"Huge page(16GB) memory: "
434 "addr = 0x%lX size = 0x%lX pages = %d\n",
435 phys_addr
, block_size
, expected_pages
);
436 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
437 memblock_reserve(phys_addr
, block_size
* expected_pages
);
438 add_gpage(phys_addr
, block_size
, expected_pages
);
442 #endif /* CONFIG_HUGETLB_PAGE */
444 static void mmu_psize_set_default_penc(void)
447 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
448 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
449 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
452 #ifdef CONFIG_PPC_64K_PAGES
454 static bool might_have_hea(void)
457 * The HEA ethernet adapter requires awareness of the
458 * GX bus. Without that awareness we can easily assume
459 * we will never see an HEA ethernet device.
461 #ifdef CONFIG_IBMEBUS
462 return !cpu_has_feature(CPU_FTR_ARCH_207S
);
468 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
470 static void __init
htab_init_page_sizes(void)
474 /* se the invalid penc to -1 */
475 mmu_psize_set_default_penc();
477 /* Default to 4K pages only */
478 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
479 sizeof(mmu_psize_defaults_old
));
482 * Try to find the available page sizes in the device-tree
484 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
485 if (rc
!= 0) /* Found */
489 * Not in the device-tree, let's fallback on known size
490 * list for 16M capable GP & GR
492 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
493 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
494 sizeof(mmu_psize_defaults_gp
));
496 #ifndef CONFIG_DEBUG_PAGEALLOC
498 * Pick a size for the linear mapping. Currently, we only support
499 * 16M, 1M and 4K which is the default
501 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
502 mmu_linear_psize
= MMU_PAGE_16M
;
503 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
504 mmu_linear_psize
= MMU_PAGE_1M
;
505 #endif /* CONFIG_DEBUG_PAGEALLOC */
507 #ifdef CONFIG_PPC_64K_PAGES
509 * Pick a size for the ordinary pages. Default is 4K, we support
510 * 64K for user mappings and vmalloc if supported by the processor.
511 * We only use 64k for ioremap if the processor
512 * (and firmware) support cache-inhibited large pages.
513 * If not, we use 4k and set mmu_ci_restrictions so that
514 * hash_page knows to switch processes that use cache-inhibited
515 * mappings to 4k pages.
517 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
518 mmu_virtual_psize
= MMU_PAGE_64K
;
519 mmu_vmalloc_psize
= MMU_PAGE_64K
;
520 if (mmu_linear_psize
== MMU_PAGE_4K
)
521 mmu_linear_psize
= MMU_PAGE_64K
;
522 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
524 * When running on pSeries using 64k pages for ioremap
525 * would stop us accessing the HEA ethernet. So if we
526 * have the chance of ever seeing one, stay at 4k.
528 if (!might_have_hea() || !machine_is(pseries
))
529 mmu_io_psize
= MMU_PAGE_64K
;
531 mmu_ci_restrictions
= 1;
533 #endif /* CONFIG_PPC_64K_PAGES */
535 #ifdef CONFIG_SPARSEMEM_VMEMMAP
536 /* We try to use 16M pages for vmemmap if that is supported
537 * and we have at least 1G of RAM at boot
539 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
540 memblock_phys_mem_size() >= 0x40000000)
541 mmu_vmemmap_psize
= MMU_PAGE_16M
;
542 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
543 mmu_vmemmap_psize
= MMU_PAGE_64K
;
545 mmu_vmemmap_psize
= MMU_PAGE_4K
;
546 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
548 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
549 "virtual = %d, io = %d"
550 #ifdef CONFIG_SPARSEMEM_VMEMMAP
554 mmu_psize_defs
[mmu_linear_psize
].shift
,
555 mmu_psize_defs
[mmu_virtual_psize
].shift
,
556 mmu_psize_defs
[mmu_io_psize
].shift
557 #ifdef CONFIG_SPARSEMEM_VMEMMAP
558 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
562 #ifdef CONFIG_HUGETLB_PAGE
563 /* Reserve 16G huge page memory sections for huge pages */
564 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
565 #endif /* CONFIG_HUGETLB_PAGE */
568 static int __init
htab_dt_scan_pftsize(unsigned long node
,
569 const char *uname
, int depth
,
572 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
575 /* We are scanning "cpu" nodes only */
576 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
579 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
581 /* pft_size[0] is the NUMA CEC cookie */
582 ppc64_pft_size
= be32_to_cpu(prop
[1]);
588 static unsigned long __init
htab_get_table_size(void)
590 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
592 /* If hash size isn't already provided by the platform, we try to
593 * retrieve it from the device-tree. If it's not there neither, we
594 * calculate it now based on the total RAM size
596 if (ppc64_pft_size
== 0)
597 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
599 return 1UL << ppc64_pft_size
;
601 /* round mem_size up to next power of 2 */
602 mem_size
= memblock_phys_mem_size();
603 rnd_mem_size
= 1UL << __ilog2(mem_size
);
604 if (rnd_mem_size
< mem_size
)
608 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
609 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
611 return pteg_count
<< 7;
614 #ifdef CONFIG_MEMORY_HOTPLUG
615 int create_section_mapping(unsigned long start
, unsigned long end
)
617 return htab_bolt_mapping(start
, end
, __pa(start
),
618 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
622 int remove_section_mapping(unsigned long start
, unsigned long end
)
624 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
627 #endif /* CONFIG_MEMORY_HOTPLUG */
629 extern u32 htab_call_hpte_insert1
[];
630 extern u32 htab_call_hpte_insert2
[];
631 extern u32 htab_call_hpte_remove
[];
632 extern u32 htab_call_hpte_updatepp
[];
633 extern u32 ht64_call_hpte_insert1
[];
634 extern u32 ht64_call_hpte_insert2
[];
635 extern u32 ht64_call_hpte_remove
[];
636 extern u32 ht64_call_hpte_updatepp
[];
638 static void __init
htab_finish_init(void)
640 #ifdef CONFIG_PPC_HAS_HASH_64K
641 patch_branch(ht64_call_hpte_insert1
,
642 ppc_function_entry(ppc_md
.hpte_insert
),
644 patch_branch(ht64_call_hpte_insert2
,
645 ppc_function_entry(ppc_md
.hpte_insert
),
647 patch_branch(ht64_call_hpte_remove
,
648 ppc_function_entry(ppc_md
.hpte_remove
),
650 patch_branch(ht64_call_hpte_updatepp
,
651 ppc_function_entry(ppc_md
.hpte_updatepp
),
653 #endif /* CONFIG_PPC_HAS_HASH_64K */
655 patch_branch(htab_call_hpte_insert1
,
656 ppc_function_entry(ppc_md
.hpte_insert
),
658 patch_branch(htab_call_hpte_insert2
,
659 ppc_function_entry(ppc_md
.hpte_insert
),
661 patch_branch(htab_call_hpte_remove
,
662 ppc_function_entry(ppc_md
.hpte_remove
),
664 patch_branch(htab_call_hpte_updatepp
,
665 ppc_function_entry(ppc_md
.hpte_updatepp
),
669 static void __init
htab_initialize(void)
672 unsigned long pteg_count
;
674 unsigned long base
= 0, size
= 0, limit
;
675 struct memblock_region
*reg
;
677 DBG(" -> htab_initialize()\n");
679 /* Initialize segment sizes */
680 htab_init_seg_sizes();
682 /* Initialize page sizes */
683 htab_init_page_sizes();
685 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
686 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
687 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
688 printk(KERN_INFO
"Using 1TB segments\n");
692 * Calculate the required size of the htab. We want the number of
693 * PTEGs to equal one half the number of real pages.
695 htab_size_bytes
= htab_get_table_size();
696 pteg_count
= htab_size_bytes
>> 7;
698 htab_hash_mask
= pteg_count
- 1;
700 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
701 /* Using a hypervisor which owns the htab */
704 #ifdef CONFIG_FA_DUMP
706 * If firmware assisted dump is active firmware preserves
707 * the contents of htab along with entire partition memory.
708 * Clear the htab if firmware assisted dump is active so
709 * that we dont end up using old mappings.
711 if (is_fadump_active() && ppc_md
.hpte_clear_all
)
712 ppc_md
.hpte_clear_all();
715 /* Find storage for the HPT. Must be contiguous in
716 * the absolute address space. On cell we want it to be
717 * in the first 2 Gig so we can use it for IOMMU hacks.
719 if (machine_is(cell
))
722 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
724 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
726 DBG("Hash table allocated at %lx, size: %lx\n", table
,
729 htab_address
= __va(table
);
731 /* htab absolute addr + encoded htabsize */
732 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
734 /* Initialize the HPT with no entries */
735 memset((void *)table
, 0, htab_size_bytes
);
738 mtspr(SPRN_SDR1
, _SDR1
);
741 prot
= pgprot_val(PAGE_KERNEL
);
743 #ifdef CONFIG_DEBUG_PAGEALLOC
744 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
745 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
747 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
748 #endif /* CONFIG_DEBUG_PAGEALLOC */
750 /* On U3 based machines, we need to reserve the DART area and
751 * _NOT_ map it to avoid cache paradoxes as it's remapped non
755 /* create bolted the linear mapping in the hash table */
756 for_each_memblock(memory
, reg
) {
757 base
= (unsigned long)__va(reg
->base
);
760 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
763 #ifdef CONFIG_U3_DART
764 /* Do not map the DART space. Fortunately, it will be aligned
765 * in such a way that it will not cross two memblock regions and
766 * will fit within a single 16Mb page.
767 * The DART space is assumed to be a full 16Mb region even if
768 * we only use 2Mb of that space. We will use more of it later
769 * for AGP GART. We have to use a full 16Mb large page.
771 DBG("DART base: %lx\n", dart_tablebase
);
773 if (dart_tablebase
!= 0 && dart_tablebase
>= base
774 && dart_tablebase
< (base
+ size
)) {
775 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
776 if (base
!= dart_tablebase
)
777 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
781 if ((base
+ size
) > dart_table_end
)
782 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
784 __pa(dart_table_end
),
790 #endif /* CONFIG_U3_DART */
791 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
792 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
794 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
797 * If we have a memory_limit and we've allocated TCEs then we need to
798 * explicitly map the TCE area at the top of RAM. We also cope with the
799 * case that the TCEs start below memory_limit.
800 * tce_alloc_start/end are 16MB aligned so the mapping should work
801 * for either 4K or 16MB pages.
803 if (tce_alloc_start
) {
804 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
805 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
807 if (base
+ size
>= tce_alloc_start
)
808 tce_alloc_start
= base
+ size
+ 1;
810 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
811 __pa(tce_alloc_start
), prot
,
812 mmu_linear_psize
, mmu_kernel_ssize
));
817 DBG(" <- htab_initialize()\n");
822 void __init
early_init_mmu(void)
824 /* Initialize the MMU Hash table and create the linear mapping
825 * of memory. Has to be done before SLB initialization as this is
826 * currently where the page size encoding is obtained.
830 /* Initialize SLB management */
835 void early_init_mmu_secondary(void)
837 /* Initialize hash table for that CPU */
838 if (!firmware_has_feature(FW_FEATURE_LPAR
))
839 mtspr(SPRN_SDR1
, _SDR1
);
844 #endif /* CONFIG_SMP */
847 * Called by asm hashtable.S for doing lazy icache flush
849 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
853 if (!pfn_valid(pte_pfn(pte
)))
856 page
= pte_page(pte
);
859 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
861 flush_dcache_icache_page(page
);
862 set_bit(PG_arch_1
, &page
->flags
);
869 #ifdef CONFIG_PPC_MM_SLICES
870 unsigned int get_paca_psize(unsigned long addr
)
873 unsigned char *hpsizes
;
874 unsigned long index
, mask_index
;
876 if (addr
< SLICE_LOW_TOP
) {
877 lpsizes
= get_paca()->context
.low_slices_psize
;
878 index
= GET_LOW_SLICE_INDEX(addr
);
879 return (lpsizes
>> (index
* 4)) & 0xF;
881 hpsizes
= get_paca()->context
.high_slices_psize
;
882 index
= GET_HIGH_SLICE_INDEX(addr
);
883 mask_index
= index
& 0x1;
884 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
888 unsigned int get_paca_psize(unsigned long addr
)
890 return get_paca()->context
.user_psize
;
895 * Demote a segment to using 4k pages.
896 * For now this makes the whole process use 4k pages.
898 #ifdef CONFIG_PPC_64K_PAGES
899 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
901 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
903 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
904 #ifdef CONFIG_SPU_BASE
905 spu_flush_all_slbs(mm
);
907 if (get_paca_psize(addr
) != MMU_PAGE_4K
) {
908 get_paca()->context
= mm
->context
;
909 slb_flush_and_rebolt();
912 #endif /* CONFIG_PPC_64K_PAGES */
914 #ifdef CONFIG_PPC_SUBPAGE_PROT
916 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
917 * Userspace sets the subpage permissions using the subpage_prot system call.
919 * Result is 0: full permissions, _PAGE_RW: read-only,
920 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
922 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
924 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
928 if (ea
>= spt
->maxaddr
)
930 if (ea
< 0x100000000UL
) {
931 /* addresses below 4GB use spt->low_prot */
932 sbpm
= spt
->low_prot
;
934 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
938 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
941 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
943 /* extract 2-bit bitfield for this 4k subpage */
944 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
946 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
947 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
951 #else /* CONFIG_PPC_SUBPAGE_PROT */
952 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
958 void hash_failure_debug(unsigned long ea
, unsigned long access
,
959 unsigned long vsid
, unsigned long trap
,
960 int ssize
, int psize
, int lpsize
, unsigned long pte
)
962 if (!printk_ratelimit())
964 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
965 ea
, access
, current
->comm
);
966 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
967 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
970 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
971 int psize
, bool user_region
)
974 if (psize
!= get_paca_psize(ea
)) {
975 get_paca()->context
= mm
->context
;
976 slb_flush_and_rebolt();
978 } else if (get_paca()->vmalloc_sllp
!=
979 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
980 get_paca()->vmalloc_sllp
=
981 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
982 slb_vmalloc_update();
988 * 1 - normal page fault
989 * -1 - critical hash insertion error
990 * -2 - access not permitted by subpage protection mechanism
992 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
994 enum ctx_state prev_state
= exception_enter();
997 struct mm_struct
*mm
;
1000 const struct cpumask
*tmp
;
1001 int rc
, user_region
= 0, local
= 0;
1004 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1007 /* Get region & vsid */
1008 switch (REGION_ID(ea
)) {
1009 case USER_REGION_ID
:
1013 DBG_LOW(" user region with no mm !\n");
1017 psize
= get_slice_psize(mm
, ea
);
1018 ssize
= user_segment_size(ea
);
1019 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1021 case VMALLOC_REGION_ID
:
1023 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1024 if (ea
< VMALLOC_END
)
1025 psize
= mmu_vmalloc_psize
;
1027 psize
= mmu_io_psize
;
1028 ssize
= mmu_kernel_ssize
;
1031 /* Not a valid range
1032 * Send the problem up to do_page_fault
1037 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1041 DBG_LOW("Bad address!\n");
1047 if (pgdir
== NULL
) {
1052 /* Check CPU locality */
1053 tmp
= cpumask_of(smp_processor_id());
1054 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
1057 #ifndef CONFIG_PPC_64K_PAGES
1058 /* If we use 4K pages and our psize is not 4K, then we might
1059 * be hitting a special driver mapping, and need to align the
1060 * address before we fetch the PTE.
1062 * It could also be a hugepage mapping, in which case this is
1063 * not necessary, but it's not harmful, either.
1065 if (psize
!= MMU_PAGE_4K
)
1066 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1067 #endif /* CONFIG_PPC_64K_PAGES */
1069 /* Get PTE and page size from page tables */
1070 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
1071 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1072 DBG_LOW(" no PTE !\n");
1077 /* Add _PAGE_PRESENT to the required access perm */
1078 access
|= _PAGE_PRESENT
;
1080 /* Pre-check access permissions (will be re-checked atomically
1081 * in __hash_page_XX but this pre-check is a fast path
1083 if (access
& ~pte_val(*ptep
)) {
1084 DBG_LOW(" no access !\n");
1090 if (pmd_trans_huge(*(pmd_t
*)ptep
))
1091 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1092 trap
, local
, ssize
, psize
);
1093 #ifdef CONFIG_HUGETLB_PAGE
1095 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1096 local
, ssize
, hugeshift
, psize
);
1100 * if we have hugeshift, and is not transhuge with
1101 * hugetlb disabled, something is really wrong.
1107 check_paca_psize(ea
, mm
, psize
, user_region
);
1112 #ifndef CONFIG_PPC_64K_PAGES
1113 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1115 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1116 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1118 /* Do actual hashing */
1119 #ifdef CONFIG_PPC_64K_PAGES
1120 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1121 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1122 demote_segment_4k(mm
, ea
);
1123 psize
= MMU_PAGE_4K
;
1126 /* If this PTE is non-cacheable and we have restrictions on
1127 * using non cacheable large pages, then we switch to 4k
1129 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1130 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1132 demote_segment_4k(mm
, ea
);
1133 psize
= MMU_PAGE_4K
;
1134 } else if (ea
< VMALLOC_END
) {
1136 * some driver did a non-cacheable mapping
1137 * in vmalloc space, so switch vmalloc
1140 printk(KERN_ALERT
"Reducing vmalloc segment "
1141 "to 4kB pages because of "
1142 "non-cacheable mapping\n");
1143 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1144 #ifdef CONFIG_SPU_BASE
1145 spu_flush_all_slbs(mm
);
1150 check_paca_psize(ea
, mm
, psize
, user_region
);
1151 #endif /* CONFIG_PPC_64K_PAGES */
1153 #ifdef CONFIG_PPC_HAS_HASH_64K
1154 if (psize
== MMU_PAGE_64K
)
1155 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1157 #endif /* CONFIG_PPC_HAS_HASH_64K */
1159 int spp
= subpage_protection(mm
, ea
);
1163 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1167 /* Dump some info in case of hash insertion failure, they should
1168 * never happen so it is really useful to know if/when they do
1171 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1172 psize
, pte_val(*ptep
));
1173 #ifndef CONFIG_PPC_64K_PAGES
1174 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1176 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1177 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1179 DBG_LOW(" -> rc=%d\n", rc
);
1182 exception_exit(prev_state
);
1185 EXPORT_SYMBOL_GPL(hash_page
);
1187 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1188 unsigned long access
, unsigned long trap
)
1194 unsigned long flags
;
1195 int rc
, ssize
, local
= 0;
1197 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1199 #ifdef CONFIG_PPC_MM_SLICES
1200 /* We only prefault standard pages for now */
1201 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1205 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1206 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1208 /* Get Linux PTE if available */
1214 ssize
= user_segment_size(ea
);
1215 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1219 * Hash doesn't like irqs. Walking linux page table with irq disabled
1220 * saves us from holding multiple locks.
1222 local_irq_save(flags
);
1225 * THP pages use update_mmu_cache_pmd. We don't do
1226 * hash preload there. Hence can ignore THP here
1228 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugepage_shift
);
1232 WARN_ON(hugepage_shift
);
1233 #ifdef CONFIG_PPC_64K_PAGES
1234 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1235 * a 64K kernel), then we don't preload, hash_page() will take
1236 * care of it once we actually try to access the page.
1237 * That way we don't have to duplicate all of the logic for segment
1238 * page size demotion here
1240 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1242 #endif /* CONFIG_PPC_64K_PAGES */
1244 /* Is that local to this CPU ? */
1245 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1249 #ifdef CONFIG_PPC_HAS_HASH_64K
1250 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1251 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1253 #endif /* CONFIG_PPC_HAS_HASH_64K */
1254 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
1255 subpage_protection(mm
, ea
));
1257 /* Dump some info in case of hash insertion failure, they should
1258 * never happen so it is really useful to know if/when they do
1261 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1262 mm
->context
.user_psize
,
1263 mm
->context
.user_psize
,
1266 local_irq_restore(flags
);
1269 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1270 * do not forget to update the assembly call site !
1272 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1275 unsigned long hash
, index
, shift
, hidx
, slot
;
1277 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1278 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1279 hash
= hpt_hash(vpn
, shift
, ssize
);
1280 hidx
= __rpte_to_hidx(pte
, index
);
1281 if (hidx
& _PTEIDX_SECONDARY
)
1283 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1284 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1285 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1287 * We use same base page size and actual psize, because we don't
1288 * use these functions for hugepage
1290 ppc_md
.hpte_invalidate(slot
, vpn
, psize
, psize
, ssize
, local
);
1291 } pte_iterate_hashed_end();
1293 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1294 /* Transactions are not aborted by tlbiel, only tlbie.
1295 * Without, syncing a page back to a block device w/ PIO could pick up
1296 * transactional data (bad!) so we force an abort here. Before the
1297 * sync the page will be made read-only, which will flush_hash_page.
1298 * BIG ISSUE here: if the kernel uses a page from userspace without
1299 * unmapping it first, it may see the speculated version.
1301 if (local
&& cpu_has_feature(CPU_FTR_TM
) &&
1302 current
->thread
.regs
&&
1303 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1305 tm_abort(TM_CAUSE_TLBI
);
1310 void flush_hash_range(unsigned long number
, int local
)
1312 if (ppc_md
.flush_hash_range
)
1313 ppc_md
.flush_hash_range(number
, local
);
1316 struct ppc64_tlb_batch
*batch
=
1317 &__get_cpu_var(ppc64_tlb_batch
);
1319 for (i
= 0; i
< number
; i
++)
1320 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1321 batch
->psize
, batch
->ssize
, local
);
1326 * low_hash_fault is called when we the low level hash code failed
1327 * to instert a PTE due to an hypervisor error
1329 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1331 enum ctx_state prev_state
= exception_enter();
1333 if (user_mode(regs
)) {
1334 #ifdef CONFIG_PPC_SUBPAGE_PROT
1336 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1339 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1341 bad_page_fault(regs
, address
, SIGBUS
);
1343 exception_exit(prev_state
);
1346 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1347 unsigned long pa
, unsigned long rflags
,
1348 unsigned long vflags
, int psize
, int ssize
)
1350 unsigned long hpte_group
;
1354 hpte_group
= ((hash
& htab_hash_mask
) *
1355 HPTES_PER_GROUP
) & ~0x7UL
;
1357 /* Insert into the hash table, primary slot */
1358 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1359 psize
, psize
, ssize
);
1361 /* Primary is full, try the secondary */
1362 if (unlikely(slot
== -1)) {
1363 hpte_group
= ((~hash
& htab_hash_mask
) *
1364 HPTES_PER_GROUP
) & ~0x7UL
;
1365 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1366 vflags
| HPTE_V_SECONDARY
,
1367 psize
, psize
, ssize
);
1370 hpte_group
= ((hash
& htab_hash_mask
) *
1371 HPTES_PER_GROUP
)&~0x7UL
;
1373 ppc_md
.hpte_remove(hpte_group
);
1381 #ifdef CONFIG_DEBUG_PAGEALLOC
1382 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1385 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1386 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1387 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1390 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1392 /* Don't create HPTE entries for bad address */
1396 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1398 mmu_linear_psize
, mmu_kernel_ssize
);
1401 spin_lock(&linear_map_hash_lock
);
1402 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1403 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1404 spin_unlock(&linear_map_hash_lock
);
1407 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1409 unsigned long hash
, hidx
, slot
;
1410 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1411 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1413 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1414 spin_lock(&linear_map_hash_lock
);
1415 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1416 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1417 linear_map_hash_slots
[lmi
] = 0;
1418 spin_unlock(&linear_map_hash_lock
);
1419 if (hidx
& _PTEIDX_SECONDARY
)
1421 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1422 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1423 ppc_md
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
, mmu_linear_psize
,
1424 mmu_kernel_ssize
, 0);
1427 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1429 unsigned long flags
, vaddr
, lmi
;
1432 local_irq_save(flags
);
1433 for (i
= 0; i
< numpages
; i
++, page
++) {
1434 vaddr
= (unsigned long)page_address(page
);
1435 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1436 if (lmi
>= linear_map_hash_count
)
1439 kernel_map_linear_page(vaddr
, lmi
);
1441 kernel_unmap_linear_page(vaddr
, lmi
);
1443 local_irq_restore(flags
);
1445 #endif /* CONFIG_DEBUG_PAGEALLOC */
1447 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1448 phys_addr_t first_memblock_size
)
1450 /* We don't currently support the first MEMBLOCK not mapping 0
1451 * physical on those processors
1453 BUG_ON(first_memblock_base
!= 0);
1455 /* On LPAR systems, the first entry is our RMA region,
1456 * non-LPAR 64-bit hash MMU systems don't have a limitation
1457 * on real mode access, but using the first entry works well
1458 * enough. We also clamp it to 1G to avoid some funky things
1459 * such as RTAS bugs etc...
1461 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1463 /* Finally limit subsequent allocations */
1464 memblock_set_current_limit(ppc64_rma_size
);