2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT
;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
44 u64 gpage_list
[MAX_NUMBER_GPAGES
];
45 unsigned int nr_gpages
;
47 static struct psize_gpages gpage_freearray
[MMU_PAGE_COUNT
];
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray
[MAX_NUMBER_GPAGES
];
51 static unsigned nr_gpages
;
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 #ifdef CONFIG_PPC_BOOK3S_64
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
66 int pmd_huge(pmd_t pmd
)
69 * leaf pte for huge page, bottom two bits != 00
71 return ((pmd_val(pmd
) & 0x3) != 0x0);
74 int pud_huge(pud_t pud
)
77 * leaf pte for huge page, bottom two bits != 00
79 return ((pud_val(pud
) & 0x3) != 0x0);
82 int pgd_huge(pgd_t pgd
)
85 * leaf pte for huge page, bottom two bits != 00
87 return ((pgd_val(pgd
) & 0x3) != 0x0);
90 int pmd_huge(pmd_t pmd
)
95 int pud_huge(pud_t pud
)
100 int pgd_huge(pgd_t pgd
)
106 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
108 /* Only called for hugetlbfs pages, hence can ignore THP */
109 return find_linux_pte_or_hugepte(mm
->pgd
, addr
, NULL
);
112 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
113 unsigned long address
, unsigned pdshift
, unsigned pshift
)
115 struct kmem_cache
*cachep
;
118 #ifdef CONFIG_PPC_FSL_BOOK3E
120 int num_hugepd
= 1 << (pshift
- pdshift
);
121 cachep
= hugepte_cache
;
123 cachep
= PGT_CACHE(pdshift
- pshift
);
126 new = kmem_cache_zalloc(cachep
, GFP_KERNEL
|__GFP_REPEAT
);
128 BUG_ON(pshift
> HUGEPD_SHIFT_MASK
);
129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK
);
134 spin_lock(&mm
->page_table_lock
);
135 #ifdef CONFIG_PPC_FSL_BOOK3E
137 * We have multiple higher-level entries that point to the same
138 * actual pte location. Fill in each as we go and backtrack on error.
139 * We need all of these so the DTLB pgtable walk code can find the
140 * right higher-level entry without knowing if it's a hugepage or not.
142 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++) {
143 if (unlikely(!hugepd_none(*hpdp
)))
146 /* We use the old format for PPC_FSL_BOOK3E */
147 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
149 /* If we bailed from the for loop early, an error occurred, clean up */
150 if (i
< num_hugepd
) {
151 for (i
= i
- 1 ; i
>= 0; i
--, hpdp
--)
153 kmem_cache_free(cachep
, new);
156 if (!hugepd_none(*hpdp
))
157 kmem_cache_free(cachep
, new);
159 #ifdef CONFIG_PPC_BOOK3S_64
160 hpdp
->pd
= (unsigned long)new |
161 (shift_to_mmu_psize(pshift
) << 2);
163 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
167 spin_unlock(&mm
->page_table_lock
);
172 * These macros define how to determine which level of the page table holds
175 #ifdef CONFIG_PPC_FSL_BOOK3E
176 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
177 #define HUGEPD_PUD_SHIFT PUD_SHIFT
179 #define HUGEPD_PGD_SHIFT PUD_SHIFT
180 #define HUGEPD_PUD_SHIFT PMD_SHIFT
183 #ifdef CONFIG_PPC_BOOK3S_64
185 * At this point we do the placement change only for BOOK3S 64. This would
186 * possibly work on other subarchs.
188 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
193 hugepd_t
*hpdp
= NULL
;
194 unsigned pshift
= __ffs(sz
);
195 unsigned pdshift
= PGDIR_SHIFT
;
198 pg
= pgd_offset(mm
, addr
);
200 if (pshift
== PGDIR_SHIFT
)
203 else if (pshift
> PUD_SHIFT
)
205 * We need to use hugepd table
207 hpdp
= (hugepd_t
*)pg
;
210 pu
= pud_alloc(mm
, pg
, addr
);
211 if (pshift
== PUD_SHIFT
)
213 else if (pshift
> PMD_SHIFT
)
214 hpdp
= (hugepd_t
*)pu
;
217 pm
= pmd_alloc(mm
, pu
, addr
);
218 if (pshift
== PMD_SHIFT
)
222 hpdp
= (hugepd_t
*)pm
;
228 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
230 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
233 return hugepte_offset(hpdp
, addr
, pdshift
);
238 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
243 hugepd_t
*hpdp
= NULL
;
244 unsigned pshift
= __ffs(sz
);
245 unsigned pdshift
= PGDIR_SHIFT
;
249 pg
= pgd_offset(mm
, addr
);
251 if (pshift
>= HUGEPD_PGD_SHIFT
) {
252 hpdp
= (hugepd_t
*)pg
;
255 pu
= pud_alloc(mm
, pg
, addr
);
256 if (pshift
>= HUGEPD_PUD_SHIFT
) {
257 hpdp
= (hugepd_t
*)pu
;
260 pm
= pmd_alloc(mm
, pu
, addr
);
261 hpdp
= (hugepd_t
*)pm
;
268 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
270 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
273 return hugepte_offset(hpdp
, addr
, pdshift
);
277 #ifdef CONFIG_PPC_FSL_BOOK3E
278 /* Build list of addresses of gigantic pages. This function is used in early
279 * boot before the buddy or bootmem allocator is setup.
281 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
283 unsigned int idx
= shift_to_mmu_psize(__ffs(page_size
));
289 gpage_freearray
[idx
].nr_gpages
= number_of_pages
;
291 for (i
= 0; i
< number_of_pages
; i
++) {
292 gpage_freearray
[idx
].gpage_list
[i
] = addr
;
298 * Moves the gigantic page addresses from the temporary list to the
299 * huge_boot_pages list.
301 int alloc_bootmem_huge_page(struct hstate
*hstate
)
303 struct huge_bootmem_page
*m
;
304 int idx
= shift_to_mmu_psize(huge_page_shift(hstate
));
305 int nr_gpages
= gpage_freearray
[idx
].nr_gpages
;
310 #ifdef CONFIG_HIGHMEM
312 * If gpages can be in highmem we can't use the trick of storing the
313 * data structure in the page; allocate space for this
315 m
= alloc_bootmem(sizeof(struct huge_bootmem_page
));
316 m
->phys
= gpage_freearray
[idx
].gpage_list
[--nr_gpages
];
318 m
= phys_to_virt(gpage_freearray
[idx
].gpage_list
[--nr_gpages
]);
321 list_add(&m
->list
, &huge_boot_pages
);
322 gpage_freearray
[idx
].nr_gpages
= nr_gpages
;
323 gpage_freearray
[idx
].gpage_list
[nr_gpages
] = 0;
329 * Scan the command line hugepagesz= options for gigantic pages; store those in
330 * a list that we use to allocate the memory once all options are parsed.
333 unsigned long gpage_npages
[MMU_PAGE_COUNT
];
335 static int __init
do_gpage_early_setup(char *param
, char *val
,
338 static phys_addr_t size
;
339 unsigned long npages
;
342 * The hugepagesz and hugepages cmdline options are interleaved. We
343 * use the size variable to keep track of whether or not this was done
344 * properly and skip over instances where it is incorrect. Other
345 * command-line parsing code will issue warnings, so we don't need to.
348 if ((strcmp(param
, "default_hugepagesz") == 0) ||
349 (strcmp(param
, "hugepagesz") == 0)) {
350 size
= memparse(val
, NULL
);
351 } else if (strcmp(param
, "hugepages") == 0) {
353 if (sscanf(val
, "%lu", &npages
) <= 0)
355 gpage_npages
[shift_to_mmu_psize(__ffs(size
))] = npages
;
364 * This function allocates physical space for pages that are larger than the
365 * buddy allocator can handle. We want to allocate these in highmem because
366 * the amount of lowmem is limited. This means that this function MUST be
367 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
368 * allocate to grab highmem.
370 void __init
reserve_hugetlb_gpages(void)
372 static __initdata
char cmdline
[COMMAND_LINE_SIZE
];
373 phys_addr_t size
, base
;
376 strlcpy(cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
377 parse_args("hugetlb gpages", cmdline
, NULL
, 0, 0, 0,
378 &do_gpage_early_setup
);
381 * Walk gpage list in reverse, allocating larger page sizes first.
382 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
383 * When we reach the point in the list where pages are no longer
384 * considered gpages, we're done.
386 for (i
= MMU_PAGE_COUNT
-1; i
>= 0; i
--) {
387 if (mmu_psize_defs
[i
].shift
== 0 || gpage_npages
[i
] == 0)
389 else if (mmu_psize_to_shift(i
) < (MAX_ORDER
+ PAGE_SHIFT
))
392 size
= (phys_addr_t
)(1ULL << mmu_psize_to_shift(i
));
393 base
= memblock_alloc_base(size
* gpage_npages
[i
], size
,
394 MEMBLOCK_ALLOC_ANYWHERE
);
395 add_gpage(base
, size
, gpage_npages
[i
]);
399 #else /* !PPC_FSL_BOOK3E */
401 /* Build list of addresses of gigantic pages. This function is used in early
402 * boot before the buddy or bootmem allocator is setup.
404 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
408 while (number_of_pages
> 0) {
409 gpage_freearray
[nr_gpages
] = addr
;
416 /* Moves the gigantic page addresses from the temporary list to the
417 * huge_boot_pages list.
419 int alloc_bootmem_huge_page(struct hstate
*hstate
)
421 struct huge_bootmem_page
*m
;
424 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
425 gpage_freearray
[nr_gpages
] = 0;
426 list_add(&m
->list
, &huge_boot_pages
);
432 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
437 #ifdef CONFIG_PPC_FSL_BOOK3E
438 #define HUGEPD_FREELIST_SIZE \
439 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
441 struct hugepd_freelist
{
447 static DEFINE_PER_CPU(struct hugepd_freelist
*, hugepd_freelist_cur
);
449 static void hugepd_free_rcu_callback(struct rcu_head
*head
)
451 struct hugepd_freelist
*batch
=
452 container_of(head
, struct hugepd_freelist
, rcu
);
455 for (i
= 0; i
< batch
->index
; i
++)
456 kmem_cache_free(hugepte_cache
, batch
->ptes
[i
]);
458 free_page((unsigned long)batch
);
461 static void hugepd_free(struct mmu_gather
*tlb
, void *hugepte
)
463 struct hugepd_freelist
**batchp
;
465 batchp
= &get_cpu_var(hugepd_freelist_cur
);
467 if (atomic_read(&tlb
->mm
->mm_users
) < 2 ||
468 cpumask_equal(mm_cpumask(tlb
->mm
),
469 cpumask_of(smp_processor_id()))) {
470 kmem_cache_free(hugepte_cache
, hugepte
);
471 put_cpu_var(hugepd_freelist_cur
);
475 if (*batchp
== NULL
) {
476 *batchp
= (struct hugepd_freelist
*)__get_free_page(GFP_ATOMIC
);
477 (*batchp
)->index
= 0;
480 (*batchp
)->ptes
[(*batchp
)->index
++] = hugepte
;
481 if ((*batchp
)->index
== HUGEPD_FREELIST_SIZE
) {
482 call_rcu_sched(&(*batchp
)->rcu
, hugepd_free_rcu_callback
);
485 put_cpu_var(hugepd_freelist_cur
);
489 static void free_hugepd_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
, int pdshift
,
490 unsigned long start
, unsigned long end
,
491 unsigned long floor
, unsigned long ceiling
)
493 pte_t
*hugepte
= hugepd_page(*hpdp
);
496 unsigned long pdmask
= ~((1UL << pdshift
) - 1);
497 unsigned int num_hugepd
= 1;
499 #ifdef CONFIG_PPC_FSL_BOOK3E
500 /* Note: On fsl the hpdp may be the first of several */
501 num_hugepd
= (1 << (hugepd_shift(*hpdp
) - pdshift
));
503 unsigned int shift
= hugepd_shift(*hpdp
);
514 if (end
- 1 > ceiling
- 1)
517 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++)
522 #ifdef CONFIG_PPC_FSL_BOOK3E
523 hugepd_free(tlb
, hugepte
);
525 pgtable_free_tlb(tlb
, hugepte
, pdshift
- shift
);
529 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
530 unsigned long addr
, unsigned long end
,
531 unsigned long floor
, unsigned long ceiling
)
539 pmd
= pmd_offset(pud
, addr
);
540 next
= pmd_addr_end(addr
, end
);
541 if (!is_hugepd(pmd
)) {
543 * if it is not hugepd pointer, we should already find
546 WARN_ON(!pmd_none_or_clear_bad(pmd
));
549 #ifdef CONFIG_PPC_FSL_BOOK3E
551 * Increment next by the size of the huge mapping since
552 * there may be more than one entry at this level for a
553 * single hugepage, but all of them point to
554 * the same kmem cache that holds the hugepte.
556 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pmd
));
558 free_hugepd_range(tlb
, (hugepd_t
*)pmd
, PMD_SHIFT
,
559 addr
, next
, floor
, ceiling
);
560 } while (addr
= next
, addr
!= end
);
570 if (end
- 1 > ceiling
- 1)
573 pmd
= pmd_offset(pud
, start
);
575 pmd_free_tlb(tlb
, pmd
, start
);
578 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
579 unsigned long addr
, unsigned long end
,
580 unsigned long floor
, unsigned long ceiling
)
588 pud
= pud_offset(pgd
, addr
);
589 next
= pud_addr_end(addr
, end
);
590 if (!is_hugepd(pud
)) {
591 if (pud_none_or_clear_bad(pud
))
593 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
596 #ifdef CONFIG_PPC_FSL_BOOK3E
598 * Increment next by the size of the huge mapping since
599 * there may be more than one entry at this level for a
600 * single hugepage, but all of them point to
601 * the same kmem cache that holds the hugepte.
603 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pud
));
605 free_hugepd_range(tlb
, (hugepd_t
*)pud
, PUD_SHIFT
,
606 addr
, next
, floor
, ceiling
);
608 } while (addr
= next
, addr
!= end
);
614 ceiling
&= PGDIR_MASK
;
618 if (end
- 1 > ceiling
- 1)
621 pud
= pud_offset(pgd
, start
);
623 pud_free_tlb(tlb
, pud
, start
);
627 * This function frees user-level page tables of a process.
629 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
630 unsigned long addr
, unsigned long end
,
631 unsigned long floor
, unsigned long ceiling
)
637 * Because there are a number of different possible pagetable
638 * layouts for hugepage ranges, we limit knowledge of how
639 * things should be laid out to the allocation path
640 * (huge_pte_alloc(), above). Everything else works out the
641 * structure as it goes from information in the hugepd
642 * pointers. That means that we can't here use the
643 * optimization used in the normal page free_pgd_range(), of
644 * checking whether we're actually covering a large enough
645 * range to have to do anything at the top level of the walk
646 * instead of at the bottom.
648 * To make sense of this, you should probably go read the big
649 * block comment at the top of the normal free_pgd_range(),
654 next
= pgd_addr_end(addr
, end
);
655 pgd
= pgd_offset(tlb
->mm
, addr
);
656 if (!is_hugepd(pgd
)) {
657 if (pgd_none_or_clear_bad(pgd
))
659 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
661 #ifdef CONFIG_PPC_FSL_BOOK3E
663 * Increment next by the size of the huge mapping since
664 * there may be more than one entry at the pgd level
665 * for a single hugepage, but all of them point to the
666 * same kmem cache that holds the hugepte.
668 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pgd
));
670 free_hugepd_range(tlb
, (hugepd_t
*)pgd
, PGDIR_SHIFT
,
671 addr
, next
, floor
, ceiling
);
673 } while (addr
= next
, addr
!= end
);
677 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
684 * Transparent hugepages are handled by generic code. We can skip them
687 ptep
= find_linux_pte_or_hugepte(mm
->pgd
, address
, &shift
);
689 /* Verify it is a huge page else bail. */
690 if (!ptep
|| !shift
|| pmd_trans_huge(*(pmd_t
*)ptep
))
691 return ERR_PTR(-EINVAL
);
693 mask
= (1UL << shift
) - 1;
694 page
= pte_page(*ptep
);
696 page
+= (address
& mask
) / PAGE_SIZE
;
702 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
703 pmd_t
*pmd
, int write
)
709 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
712 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
713 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
716 int gup_hugepd(hugepd_t
*hugepd
, unsigned pdshift
,
717 unsigned long addr
, unsigned long end
,
718 int write
, struct page
**pages
, int *nr
)
721 unsigned long sz
= 1UL << hugepd_shift(*hugepd
);
724 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
726 next
= hugepte_addr_end(addr
, end
, sz
);
727 if (!gup_hugepte(ptep
, sz
, addr
, end
, write
, pages
, nr
))
729 } while (ptep
++, addr
= next
, addr
!= end
);
734 #ifdef CONFIG_PPC_MM_SLICES
735 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
736 unsigned long len
, unsigned long pgoff
,
739 struct hstate
*hstate
= hstate_file(file
);
740 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
742 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1);
746 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
748 #ifdef CONFIG_PPC_MM_SLICES
749 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
751 return 1UL << mmu_psize_to_shift(psize
);
753 if (!is_vm_hugetlb_page(vma
))
756 return huge_page_size(hstate_vma(vma
));
760 static inline bool is_power_of_4(unsigned long x
)
762 if (is_power_of_2(x
))
763 return (__ilog2(x
) % 2) ? false : true;
767 static int __init
add_huge_page_size(unsigned long long size
)
769 int shift
= __ffs(size
);
772 /* Check that it is a page size supported by the hardware and
773 * that it fits within pagetable and slice limits. */
774 #ifdef CONFIG_PPC_FSL_BOOK3E
775 if ((size
< PAGE_SIZE
) || !is_power_of_4(size
))
778 if (!is_power_of_2(size
)
779 || (shift
> SLICE_HIGH_SHIFT
) || (shift
<= PAGE_SHIFT
))
783 if ((mmu_psize
= shift_to_mmu_psize(shift
)) < 0)
786 #ifdef CONFIG_SPU_FS_64K_LS
787 /* Disable support for 64K huge pages when 64K SPU local store
788 * support is enabled as the current implementation conflicts.
790 if (shift
== PAGE_SHIFT_64K
)
792 #endif /* CONFIG_SPU_FS_64K_LS */
794 BUG_ON(mmu_psize_defs
[mmu_psize
].shift
!= shift
);
796 /* Return if huge page size has already been setup */
797 if (size_to_hstate(size
))
800 hugetlb_add_hstate(shift
- PAGE_SHIFT
);
805 static int __init
hugepage_setup_sz(char *str
)
807 unsigned long long size
;
809 size
= memparse(str
, &str
);
811 if (add_huge_page_size(size
) != 0)
812 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
816 __setup("hugepagesz=", hugepage_setup_sz
);
818 #ifdef CONFIG_PPC_FSL_BOOK3E
819 struct kmem_cache
*hugepte_cache
;
820 static int __init
hugetlbpage_init(void)
824 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
827 if (!mmu_psize_defs
[psize
].shift
)
830 shift
= mmu_psize_to_shift(psize
);
832 /* Don't treat normal page sizes as huge... */
833 if (shift
!= PAGE_SHIFT
)
834 if (add_huge_page_size(1ULL << shift
) < 0)
839 * Create a kmem cache for hugeptes. The bottom bits in the pte have
840 * size information encoded in them, so align them to allow this
842 hugepte_cache
= kmem_cache_create("hugepte-cache", sizeof(pte_t
),
843 HUGEPD_SHIFT_MASK
+ 1, 0, NULL
);
844 if (hugepte_cache
== NULL
)
845 panic("%s: Unable to create kmem cache for hugeptes\n",
848 /* Default hpage size = 4M */
849 if (mmu_psize_defs
[MMU_PAGE_4M
].shift
)
850 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_4M
].shift
;
852 panic("%s: Unable to set default huge page size\n", __func__
);
858 static int __init
hugetlbpage_init(void)
862 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
865 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
869 if (!mmu_psize_defs
[psize
].shift
)
872 shift
= mmu_psize_to_shift(psize
);
874 if (add_huge_page_size(1ULL << shift
) < 0)
877 if (shift
< PMD_SHIFT
)
879 else if (shift
< PUD_SHIFT
)
882 pdshift
= PGDIR_SHIFT
;
884 * if we have pdshift and shift value same, we don't
885 * use pgt cache for hugepd.
887 if (pdshift
!= shift
) {
888 pgtable_cache_add(pdshift
- shift
, NULL
);
889 if (!PGT_CACHE(pdshift
- shift
))
890 panic("hugetlbpage_init(): could not create "
891 "pgtable cache for %d bit pagesize\n", shift
);
895 /* Set default large page size. Currently, we pick 16M or 1M
896 * depending on what is available
898 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
899 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_16M
].shift
;
900 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
901 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_1M
].shift
;
906 module_init(hugetlbpage_init
);
908 void flush_dcache_icache_hugepage(struct page
*page
)
913 BUG_ON(!PageCompound(page
));
915 for (i
= 0; i
< (1UL << compound_order(page
)); i
++) {
916 if (!PageHighMem(page
)) {
917 __flush_dcache_icache(page_address(page
+i
));
919 start
= kmap_atomic(page
+i
);
920 __flush_dcache_icache(start
);
921 kunmap_atomic(start
);
926 #endif /* CONFIG_HUGETLB_PAGE */
929 * We have 4 cases for pgds and pmds:
930 * (1) invalid (all zeroes)
931 * (2) pointer to next table, as normal; bottom 6 bits == 0
932 * (3) leaf pte for huge page, bottom two bits != 00
933 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
935 * So long as we atomically load page table pointers we are safe against teardown,
936 * we can follow the address down to the the page and take a ref on it.
939 pte_t
*find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
, unsigned *shift
)
945 hugepd_t
*hpdp
= NULL
;
946 unsigned pdshift
= PGDIR_SHIFT
;
951 pgdp
= pgdir
+ pgd_index(ea
);
952 pgd
= ACCESS_ONCE(*pgdp
);
954 * Always operate on the local stack value. This make sure the
955 * value don't get updated by a parallel THP split/collapse,
956 * page fault or a page unmap. The return pte_t * is still not
957 * stable. So should be checked there for above conditions.
961 else if (pgd_huge(pgd
)) {
962 ret_pte
= (pte_t
*) pgdp
;
964 } else if (is_hugepd(&pgd
))
965 hpdp
= (hugepd_t
*)&pgd
;
968 * Even if we end up with an unmap, the pgtable will not
969 * be freed, because we do an rcu free and here we are
973 pudp
= pud_offset(&pgd
, ea
);
974 pud
= ACCESS_ONCE(*pudp
);
978 else if (pud_huge(pud
)) {
979 ret_pte
= (pte_t
*) pudp
;
981 } else if (is_hugepd(&pud
))
982 hpdp
= (hugepd_t
*)&pud
;
985 pmdp
= pmd_offset(&pud
, ea
);
986 pmd
= ACCESS_ONCE(*pmdp
);
988 * A hugepage collapse is captured by pmd_none, because
989 * it mark the pmd none and do a hpte invalidate.
991 * A hugepage split is captured by pmd_trans_splitting
992 * because we mark the pmd trans splitting and do a
996 if (pmd_none(pmd
) || pmd_trans_splitting(pmd
))
999 if (pmd_huge(pmd
) || pmd_large(pmd
)) {
1000 ret_pte
= (pte_t
*) pmdp
;
1002 } else if (is_hugepd(&pmd
))
1003 hpdp
= (hugepd_t
*)&pmd
;
1005 return pte_offset_kernel(&pmd
, ea
);
1011 ret_pte
= hugepte_offset(hpdp
, ea
, pdshift
);
1012 pdshift
= hugepd_shift(*hpdp
);
1018 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte
);
1020 int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
1021 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1024 unsigned long pte_end
;
1025 struct page
*head
, *page
, *tail
;
1029 pte_end
= (addr
+ sz
) & ~(sz
-1);
1033 pte
= ACCESS_ONCE(*ptep
);
1034 mask
= _PAGE_PRESENT
| _PAGE_USER
;
1038 if ((pte_val(pte
) & mask
) != mask
)
1041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1043 * check for splitting here
1045 if (pmd_trans_splitting(pte_pmd(pte
)))
1049 /* hugepages are never "special" */
1050 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1053 head
= pte_page(pte
);
1055 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
1058 VM_BUG_ON(compound_head(page
) != head
);
1063 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1065 if (!page_cache_add_speculative(head
, refs
)) {
1070 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1071 /* Could be optimized better */
1079 * Any tail page need their mapcount reference taken before we
1084 get_huge_page_tail(tail
);