3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
42 #include <linux/poison.h>
43 #include <linux/memblock.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
47 #include <asm/pgalloc.h>
52 #include <asm/mmu_context.h>
53 #include <asm/pgtable.h>
55 #include <asm/uaccess.h>
57 #include <asm/machdep.h>
60 #include <asm/processor.h>
61 #include <asm/mmzone.h>
62 #include <asm/cputable.h>
63 #include <asm/sections.h>
64 #include <asm/iommu.h>
69 #ifdef CONFIG_PPC_STD_MMU_64
70 #if PGTABLE_RANGE > USER_VSID_RANGE
71 #warning Limited user VSID range means pagetable space is wasted
74 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
75 #warning TASK_SIZE is smaller than it needs to be.
77 #endif /* CONFIG_PPC_STD_MMU_64 */
79 phys_addr_t memstart_addr
= ~0;
80 EXPORT_SYMBOL_GPL(memstart_addr
);
81 phys_addr_t kernstart_addr
;
82 EXPORT_SYMBOL_GPL(kernstart_addr
);
84 static void pgd_ctor(void *addr
)
86 memset(addr
, 0, PGD_TABLE_SIZE
);
89 static void pmd_ctor(void *addr
)
91 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
92 memset(addr
, 0, PMD_TABLE_SIZE
* 2);
94 memset(addr
, 0, PMD_TABLE_SIZE
);
98 struct kmem_cache
*pgtable_cache
[MAX_PGTABLE_INDEX_SIZE
];
101 * Create a kmem_cache() for pagetables. This is not used for PTE
102 * pages - they're linked to struct page, come from the normal free
103 * pages pool and have a different entry size (see real_pte_t) to
104 * everything else. Caches created by this function are used for all
105 * the higher level pagetables, and for hugepage pagetables.
107 void pgtable_cache_add(unsigned shift
, void (*ctor
)(void *))
110 unsigned long table_size
= sizeof(void *) << shift
;
111 unsigned long align
= table_size
;
113 /* When batching pgtable pointers for RCU freeing, we store
114 * the index size in the low bits. Table alignment must be
115 * big enough to fit it.
117 * Likewise, hugeapge pagetable pointers contain a (different)
118 * shift value in the low bits. All tables must be aligned so
119 * as to leave enough 0 bits in the address to contain it. */
120 unsigned long minalign
= max(MAX_PGTABLE_INDEX_SIZE
+ 1,
121 HUGEPD_SHIFT_MASK
+ 1);
122 struct kmem_cache
*new;
124 /* It would be nice if this was a BUILD_BUG_ON(), but at the
125 * moment, gcc doesn't seem to recognize is_power_of_2 as a
126 * constant expression, so so much for that. */
127 BUG_ON(!is_power_of_2(minalign
));
128 BUG_ON((shift
< 1) || (shift
> MAX_PGTABLE_INDEX_SIZE
));
130 if (PGT_CACHE(shift
))
131 return; /* Already have a cache of this size */
133 align
= max_t(unsigned long, align
, minalign
);
134 name
= kasprintf(GFP_KERNEL
, "pgtable-2^%d", shift
);
135 new = kmem_cache_create(name
, table_size
, align
, 0, ctor
);
136 pgtable_cache
[shift
- 1] = new;
137 pr_debug("Allocated pgtable cache for order %d\n", shift
);
141 void pgtable_cache_init(void)
143 pgtable_cache_add(PGD_INDEX_SIZE
, pgd_ctor
);
144 pgtable_cache_add(PMD_CACHE_INDEX
, pmd_ctor
);
145 if (!PGT_CACHE(PGD_INDEX_SIZE
) || !PGT_CACHE(PMD_CACHE_INDEX
))
146 panic("Couldn't allocate pgtable caches");
147 /* In all current configs, when the PUD index exists it's the
148 * same size as either the pgd or pmd index. Verify that the
149 * initialization above has also created a PUD cache. This
150 * will need re-examiniation if we add new possibilities for
151 * the pagetable layout. */
152 BUG_ON(PUD_INDEX_SIZE
&& !PGT_CACHE(PUD_INDEX_SIZE
));
155 #ifdef CONFIG_SPARSEMEM_VMEMMAP
157 * Given an address within the vmemmap, determine the pfn of the page that
158 * represents the start of the section it is within. Note that we have to
159 * do this by hand as the proffered address may not be correctly aligned.
160 * Subtraction of non-aligned pointers produces undefined results.
162 static unsigned long __meminit
vmemmap_section_start(unsigned long page
)
164 unsigned long offset
= page
- ((unsigned long)(vmemmap
));
166 /* Return the pfn of the start of the section. */
167 return (offset
/ sizeof(struct page
)) & PAGE_SECTION_MASK
;
171 * Check if this vmemmap page is already initialised. If any section
172 * which overlaps this vmemmap page is initialised then this page is
173 * initialised already.
175 static int __meminit
vmemmap_populated(unsigned long start
, int page_size
)
177 unsigned long end
= start
+ page_size
;
178 start
= (unsigned long)(pfn_to_page(vmemmap_section_start(start
)));
180 for (; start
< end
; start
+= (PAGES_PER_SECTION
* sizeof(struct page
)))
181 if (pfn_valid(page_to_pfn((struct page
*)start
)))
187 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
189 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
190 * the vmalloc space using normal page tables, though the size of
191 * pages encoded in the PTEs can be different
194 #ifdef CONFIG_PPC_BOOK3E
195 static void __meminit
vmemmap_create_mapping(unsigned long start
,
196 unsigned long page_size
,
199 /* Create a PTE encoding without page size */
200 unsigned long i
, flags
= _PAGE_PRESENT
| _PAGE_ACCESSED
|
203 /* PTEs only contain page size encodings up to 32M */
204 BUG_ON(mmu_psize_defs
[mmu_vmemmap_psize
].enc
> 0xf);
206 /* Encode the size in the PTE */
207 flags
|= mmu_psize_defs
[mmu_vmemmap_psize
].enc
<< 8;
209 /* For each PTE for that area, map things. Note that we don't
210 * increment phys because all PTEs are of the large size and
211 * thus must have the low bits clear
213 for (i
= 0; i
< page_size
; i
+= PAGE_SIZE
)
214 BUG_ON(map_kernel_page(start
+ i
, phys
, flags
));
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static void vmemmap_remove_mapping(unsigned long start
,
219 unsigned long page_size
)
223 #else /* CONFIG_PPC_BOOK3E */
224 static void __meminit
vmemmap_create_mapping(unsigned long start
,
225 unsigned long page_size
,
228 int mapped
= htab_bolt_mapping(start
, start
+ page_size
, phys
,
229 pgprot_val(PAGE_KERNEL
),
235 #ifdef CONFIG_MEMORY_HOTPLUG
236 extern int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
237 int psize
, int ssize
);
239 static void vmemmap_remove_mapping(unsigned long start
,
240 unsigned long page_size
)
242 int mapped
= htab_remove_mapping(start
, start
+ page_size
,
249 #endif /* CONFIG_PPC_BOOK3E */
251 struct vmemmap_backing
*vmemmap_list
;
252 static struct vmemmap_backing
*next
;
254 static int num_freed
;
256 static __meminit
struct vmemmap_backing
* vmemmap_list_alloc(int node
)
258 struct vmemmap_backing
*vmem_back
;
259 /* get from freed entries first */
268 /* allocate a page when required and hand out chunks */
270 next
= vmemmap_alloc_block(PAGE_SIZE
, node
);
271 if (unlikely(!next
)) {
275 num_left
= PAGE_SIZE
/ sizeof(struct vmemmap_backing
);
283 static __meminit
void vmemmap_list_populate(unsigned long phys
,
287 struct vmemmap_backing
*vmem_back
;
289 vmem_back
= vmemmap_list_alloc(node
);
290 if (unlikely(!vmem_back
)) {
295 vmem_back
->phys
= phys
;
296 vmem_back
->virt_addr
= start
;
297 vmem_back
->list
= vmemmap_list
;
299 vmemmap_list
= vmem_back
;
302 int __meminit
vmemmap_populate(unsigned long start
, unsigned long end
, int node
)
304 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
306 /* Align to the page size of the linear mapping. */
307 start
= _ALIGN_DOWN(start
, page_size
);
309 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start
, end
, node
);
311 for (; start
< end
; start
+= page_size
) {
314 if (vmemmap_populated(start
, page_size
))
317 p
= vmemmap_alloc_block(page_size
, node
);
321 vmemmap_list_populate(__pa(p
), start
, node
);
323 pr_debug(" * %016lx..%016lx allocated at %p\n",
324 start
, start
+ page_size
, p
);
326 vmemmap_create_mapping(start
, page_size
, __pa(p
));
332 #ifdef CONFIG_MEMORY_HOTPLUG
333 static unsigned long vmemmap_list_free(unsigned long start
)
335 struct vmemmap_backing
*vmem_back
, *vmem_back_prev
;
337 vmem_back_prev
= vmem_back
= vmemmap_list
;
339 /* look for it with prev pointer recorded */
340 for (; vmem_back
; vmem_back
= vmem_back
->list
) {
341 if (vmem_back
->virt_addr
== start
)
343 vmem_back_prev
= vmem_back
;
346 if (unlikely(!vmem_back
)) {
351 /* remove it from vmemmap_list */
352 if (vmem_back
== vmemmap_list
) /* remove head */
353 vmemmap_list
= vmem_back
->list
;
355 vmem_back_prev
->list
= vmem_back
->list
;
357 /* next point to this freed entry */
358 vmem_back
->list
= next
;
362 return vmem_back
->phys
;
365 void __ref
vmemmap_free(unsigned long start
, unsigned long end
)
367 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
369 start
= _ALIGN_DOWN(start
, page_size
);
371 pr_debug("vmemmap_free %lx...%lx\n", start
, end
);
373 for (; start
< end
; start
+= page_size
) {
377 * the section has already be marked as invalid, so
378 * vmemmap_populated() true means some other sections still
379 * in this page, so skip it.
381 if (vmemmap_populated(start
, page_size
))
384 addr
= vmemmap_list_free(start
);
386 struct page
*page
= pfn_to_page(addr
>> PAGE_SHIFT
);
388 if (PageReserved(page
)) {
389 /* allocated from bootmem */
390 if (page_size
< PAGE_SIZE
) {
392 * this shouldn't happen, but if it is
393 * the case, leave the memory there
397 unsigned int nr_pages
=
398 1 << get_order(page_size
);
400 free_reserved_page(page
++);
403 free_pages((unsigned long)(__va(addr
)),
404 get_order(page_size
));
406 vmemmap_remove_mapping(start
, page_size
);
411 void register_page_bootmem_memmap(unsigned long section_nr
,
412 struct page
*start_page
, unsigned long size
)
417 * We do not have access to the sparsemem vmemmap, so we fallback to
418 * walking the list of sparsemem blocks which we already maintain for
419 * the sake of crashdump. In the long run, we might want to maintain
420 * a tree if performance of that linear walk becomes a problem.
422 * realmode_pfn_to_page functions can fail due to:
423 * 1) As real sparsemem blocks do not lay in RAM continously (they
424 * are in virtual address space which is not available in the real mode),
425 * the requested page struct can be split between blocks so get_page/put_page
427 * 2) When huge pages are used, the get_page/put_page API will fail
428 * in real mode as the linked addresses in the page struct are virtual
431 struct page
*realmode_pfn_to_page(unsigned long pfn
)
433 struct vmemmap_backing
*vmem_back
;
435 unsigned long page_size
= 1 << mmu_psize_defs
[mmu_vmemmap_psize
].shift
;
436 unsigned long pg_va
= (unsigned long) pfn_to_page(pfn
);
438 for (vmem_back
= vmemmap_list
; vmem_back
; vmem_back
= vmem_back
->list
) {
439 if (pg_va
< vmem_back
->virt_addr
)
442 /* After vmemmap_list entry free is possible, need check all */
443 if ((pg_va
+ sizeof(struct page
)) <=
444 (vmem_back
->virt_addr
+ page_size
)) {
445 page
= (struct page
*) (vmem_back
->phys
+ pg_va
-
446 vmem_back
->virt_addr
);
451 /* Probably that page struct is split between real pages */
454 EXPORT_SYMBOL_GPL(realmode_pfn_to_page
);
456 #elif defined(CONFIG_FLATMEM)
458 struct page
*realmode_pfn_to_page(unsigned long pfn
)
460 struct page
*page
= pfn_to_page(pfn
);
463 EXPORT_SYMBOL_GPL(realmode_pfn_to_page
);
465 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */