Linux 3.17-rc2
[linux/fpc-iii.git] / arch / powerpc / perf / core-fsl-emb.c
blobd35ae52c69dca3a20fb96e5dcb9fccc05bd5a54d
1 /*
2 * Performance event support - Freescale Embedded Performance Monitor
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 * Copyright 2010 Freescale Semiconductor, Inc.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu.h>
16 #include <linux/hardirq.h>
17 #include <asm/reg_fsl_emb.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
23 struct cpu_hw_events {
24 int n_events;
25 int disabled;
26 u8 pmcs_enabled;
27 struct perf_event *event[MAX_HWEVENTS];
29 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
31 static struct fsl_emb_pmu *ppmu;
33 /* Number of perf_events counting hardware events */
34 static atomic_t num_events;
35 /* Used to avoid races in calling reserve/release_pmc_hardware */
36 static DEFINE_MUTEX(pmc_reserve_mutex);
39 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
40 * it as an NMI.
42 static inline int perf_intr_is_nmi(struct pt_regs *regs)
44 #ifdef __powerpc64__
45 return !regs->softe;
46 #else
47 return 0;
48 #endif
51 static void perf_event_interrupt(struct pt_regs *regs);
54 * Read one performance monitor counter (PMC).
56 static unsigned long read_pmc(int idx)
58 unsigned long val;
60 switch (idx) {
61 case 0:
62 val = mfpmr(PMRN_PMC0);
63 break;
64 case 1:
65 val = mfpmr(PMRN_PMC1);
66 break;
67 case 2:
68 val = mfpmr(PMRN_PMC2);
69 break;
70 case 3:
71 val = mfpmr(PMRN_PMC3);
72 break;
73 case 4:
74 val = mfpmr(PMRN_PMC4);
75 break;
76 case 5:
77 val = mfpmr(PMRN_PMC5);
78 break;
79 default:
80 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
81 val = 0;
83 return val;
87 * Write one PMC.
89 static void write_pmc(int idx, unsigned long val)
91 switch (idx) {
92 case 0:
93 mtpmr(PMRN_PMC0, val);
94 break;
95 case 1:
96 mtpmr(PMRN_PMC1, val);
97 break;
98 case 2:
99 mtpmr(PMRN_PMC2, val);
100 break;
101 case 3:
102 mtpmr(PMRN_PMC3, val);
103 break;
104 case 4:
105 mtpmr(PMRN_PMC4, val);
106 break;
107 case 5:
108 mtpmr(PMRN_PMC5, val);
109 break;
110 default:
111 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
114 isync();
118 * Write one local control A register
120 static void write_pmlca(int idx, unsigned long val)
122 switch (idx) {
123 case 0:
124 mtpmr(PMRN_PMLCA0, val);
125 break;
126 case 1:
127 mtpmr(PMRN_PMLCA1, val);
128 break;
129 case 2:
130 mtpmr(PMRN_PMLCA2, val);
131 break;
132 case 3:
133 mtpmr(PMRN_PMLCA3, val);
134 break;
135 case 4:
136 mtpmr(PMRN_PMLCA4, val);
137 break;
138 case 5:
139 mtpmr(PMRN_PMLCA5, val);
140 break;
141 default:
142 printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
145 isync();
149 * Write one local control B register
151 static void write_pmlcb(int idx, unsigned long val)
153 switch (idx) {
154 case 0:
155 mtpmr(PMRN_PMLCB0, val);
156 break;
157 case 1:
158 mtpmr(PMRN_PMLCB1, val);
159 break;
160 case 2:
161 mtpmr(PMRN_PMLCB2, val);
162 break;
163 case 3:
164 mtpmr(PMRN_PMLCB3, val);
165 break;
166 case 4:
167 mtpmr(PMRN_PMLCB4, val);
168 break;
169 case 5:
170 mtpmr(PMRN_PMLCB5, val);
171 break;
172 default:
173 printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
176 isync();
179 static void fsl_emb_pmu_read(struct perf_event *event)
181 s64 val, delta, prev;
183 if (event->hw.state & PERF_HES_STOPPED)
184 return;
187 * Performance monitor interrupts come even when interrupts
188 * are soft-disabled, as long as interrupts are hard-enabled.
189 * Therefore we treat them like NMIs.
191 do {
192 prev = local64_read(&event->hw.prev_count);
193 barrier();
194 val = read_pmc(event->hw.idx);
195 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
197 /* The counters are only 32 bits wide */
198 delta = (val - prev) & 0xfffffffful;
199 local64_add(delta, &event->count);
200 local64_sub(delta, &event->hw.period_left);
204 * Disable all events to prevent PMU interrupts and to allow
205 * events to be added or removed.
207 static void fsl_emb_pmu_disable(struct pmu *pmu)
209 struct cpu_hw_events *cpuhw;
210 unsigned long flags;
212 local_irq_save(flags);
213 cpuhw = &__get_cpu_var(cpu_hw_events);
215 if (!cpuhw->disabled) {
216 cpuhw->disabled = 1;
219 * Check if we ever enabled the PMU on this cpu.
221 if (!cpuhw->pmcs_enabled) {
222 ppc_enable_pmcs();
223 cpuhw->pmcs_enabled = 1;
226 if (atomic_read(&num_events)) {
228 * Set the 'freeze all counters' bit, and disable
229 * interrupts. The barrier is to make sure the
230 * mtpmr has been executed and the PMU has frozen
231 * the events before we return.
234 mtpmr(PMRN_PMGC0, PMGC0_FAC);
235 isync();
238 local_irq_restore(flags);
242 * Re-enable all events if disable == 0.
243 * If we were previously disabled and events were added, then
244 * put the new config on the PMU.
246 static void fsl_emb_pmu_enable(struct pmu *pmu)
248 struct cpu_hw_events *cpuhw;
249 unsigned long flags;
251 local_irq_save(flags);
252 cpuhw = &__get_cpu_var(cpu_hw_events);
253 if (!cpuhw->disabled)
254 goto out;
256 cpuhw->disabled = 0;
257 ppc_set_pmu_inuse(cpuhw->n_events != 0);
259 if (cpuhw->n_events > 0) {
260 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
261 isync();
264 out:
265 local_irq_restore(flags);
268 static int collect_events(struct perf_event *group, int max_count,
269 struct perf_event *ctrs[])
271 int n = 0;
272 struct perf_event *event;
274 if (!is_software_event(group)) {
275 if (n >= max_count)
276 return -1;
277 ctrs[n] = group;
278 n++;
280 list_for_each_entry(event, &group->sibling_list, group_entry) {
281 if (!is_software_event(event) &&
282 event->state != PERF_EVENT_STATE_OFF) {
283 if (n >= max_count)
284 return -1;
285 ctrs[n] = event;
286 n++;
289 return n;
292 /* context locked on entry */
293 static int fsl_emb_pmu_add(struct perf_event *event, int flags)
295 struct cpu_hw_events *cpuhw;
296 int ret = -EAGAIN;
297 int num_counters = ppmu->n_counter;
298 u64 val;
299 int i;
301 perf_pmu_disable(event->pmu);
302 cpuhw = &get_cpu_var(cpu_hw_events);
304 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
305 num_counters = ppmu->n_restricted;
308 * Allocate counters from top-down, so that restricted-capable
309 * counters are kept free as long as possible.
311 for (i = num_counters - 1; i >= 0; i--) {
312 if (cpuhw->event[i])
313 continue;
315 break;
318 if (i < 0)
319 goto out;
321 event->hw.idx = i;
322 cpuhw->event[i] = event;
323 ++cpuhw->n_events;
325 val = 0;
326 if (event->hw.sample_period) {
327 s64 left = local64_read(&event->hw.period_left);
328 if (left < 0x80000000L)
329 val = 0x80000000L - left;
331 local64_set(&event->hw.prev_count, val);
333 if (!(flags & PERF_EF_START)) {
334 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
335 val = 0;
338 write_pmc(i, val);
339 perf_event_update_userpage(event);
341 write_pmlcb(i, event->hw.config >> 32);
342 write_pmlca(i, event->hw.config_base);
344 ret = 0;
345 out:
346 put_cpu_var(cpu_hw_events);
347 perf_pmu_enable(event->pmu);
348 return ret;
351 /* context locked on entry */
352 static void fsl_emb_pmu_del(struct perf_event *event, int flags)
354 struct cpu_hw_events *cpuhw;
355 int i = event->hw.idx;
357 perf_pmu_disable(event->pmu);
358 if (i < 0)
359 goto out;
361 fsl_emb_pmu_read(event);
363 cpuhw = &get_cpu_var(cpu_hw_events);
365 WARN_ON(event != cpuhw->event[event->hw.idx]);
367 write_pmlca(i, 0);
368 write_pmlcb(i, 0);
369 write_pmc(i, 0);
371 cpuhw->event[i] = NULL;
372 event->hw.idx = -1;
375 * TODO: if at least one restricted event exists, and we
376 * just freed up a non-restricted-capable counter, and
377 * there is a restricted-capable counter occupied by
378 * a non-restricted event, migrate that event to the
379 * vacated counter.
382 cpuhw->n_events--;
384 out:
385 perf_pmu_enable(event->pmu);
386 put_cpu_var(cpu_hw_events);
389 static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
391 unsigned long flags;
392 s64 left;
394 if (event->hw.idx < 0 || !event->hw.sample_period)
395 return;
397 if (!(event->hw.state & PERF_HES_STOPPED))
398 return;
400 if (ef_flags & PERF_EF_RELOAD)
401 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
403 local_irq_save(flags);
404 perf_pmu_disable(event->pmu);
406 event->hw.state = 0;
407 left = local64_read(&event->hw.period_left);
408 write_pmc(event->hw.idx, left);
410 perf_event_update_userpage(event);
411 perf_pmu_enable(event->pmu);
412 local_irq_restore(flags);
415 static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
417 unsigned long flags;
419 if (event->hw.idx < 0 || !event->hw.sample_period)
420 return;
422 if (event->hw.state & PERF_HES_STOPPED)
423 return;
425 local_irq_save(flags);
426 perf_pmu_disable(event->pmu);
428 fsl_emb_pmu_read(event);
429 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
430 write_pmc(event->hw.idx, 0);
432 perf_event_update_userpage(event);
433 perf_pmu_enable(event->pmu);
434 local_irq_restore(flags);
438 * Release the PMU if this is the last perf_event.
440 static void hw_perf_event_destroy(struct perf_event *event)
442 if (!atomic_add_unless(&num_events, -1, 1)) {
443 mutex_lock(&pmc_reserve_mutex);
444 if (atomic_dec_return(&num_events) == 0)
445 release_pmc_hardware();
446 mutex_unlock(&pmc_reserve_mutex);
451 * Translate a generic cache event_id config to a raw event_id code.
453 static int hw_perf_cache_event(u64 config, u64 *eventp)
455 unsigned long type, op, result;
456 int ev;
458 if (!ppmu->cache_events)
459 return -EINVAL;
461 /* unpack config */
462 type = config & 0xff;
463 op = (config >> 8) & 0xff;
464 result = (config >> 16) & 0xff;
466 if (type >= PERF_COUNT_HW_CACHE_MAX ||
467 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
468 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
469 return -EINVAL;
471 ev = (*ppmu->cache_events)[type][op][result];
472 if (ev == 0)
473 return -EOPNOTSUPP;
474 if (ev == -1)
475 return -EINVAL;
476 *eventp = ev;
477 return 0;
480 static int fsl_emb_pmu_event_init(struct perf_event *event)
482 u64 ev;
483 struct perf_event *events[MAX_HWEVENTS];
484 int n;
485 int err;
486 int num_restricted;
487 int i;
489 if (ppmu->n_counter > MAX_HWEVENTS) {
490 WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n",
491 ppmu->n_counter, MAX_HWEVENTS);
492 ppmu->n_counter = MAX_HWEVENTS;
495 switch (event->attr.type) {
496 case PERF_TYPE_HARDWARE:
497 ev = event->attr.config;
498 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
499 return -EOPNOTSUPP;
500 ev = ppmu->generic_events[ev];
501 break;
503 case PERF_TYPE_HW_CACHE:
504 err = hw_perf_cache_event(event->attr.config, &ev);
505 if (err)
506 return err;
507 break;
509 case PERF_TYPE_RAW:
510 ev = event->attr.config;
511 break;
513 default:
514 return -ENOENT;
517 event->hw.config = ppmu->xlate_event(ev);
518 if (!(event->hw.config & FSL_EMB_EVENT_VALID))
519 return -EINVAL;
522 * If this is in a group, check if it can go on with all the
523 * other hardware events in the group. We assume the event
524 * hasn't been linked into its leader's sibling list at this point.
526 n = 0;
527 if (event->group_leader != event) {
528 n = collect_events(event->group_leader,
529 ppmu->n_counter - 1, events);
530 if (n < 0)
531 return -EINVAL;
534 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
535 num_restricted = 0;
536 for (i = 0; i < n; i++) {
537 if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
538 num_restricted++;
541 if (num_restricted >= ppmu->n_restricted)
542 return -EINVAL;
545 event->hw.idx = -1;
547 event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
548 (u32)((ev << 16) & PMLCA_EVENT_MASK);
550 if (event->attr.exclude_user)
551 event->hw.config_base |= PMLCA_FCU;
552 if (event->attr.exclude_kernel)
553 event->hw.config_base |= PMLCA_FCS;
554 if (event->attr.exclude_idle)
555 return -ENOTSUPP;
557 event->hw.last_period = event->hw.sample_period;
558 local64_set(&event->hw.period_left, event->hw.last_period);
561 * See if we need to reserve the PMU.
562 * If no events are currently in use, then we have to take a
563 * mutex to ensure that we don't race with another task doing
564 * reserve_pmc_hardware or release_pmc_hardware.
566 err = 0;
567 if (!atomic_inc_not_zero(&num_events)) {
568 mutex_lock(&pmc_reserve_mutex);
569 if (atomic_read(&num_events) == 0 &&
570 reserve_pmc_hardware(perf_event_interrupt))
571 err = -EBUSY;
572 else
573 atomic_inc(&num_events);
574 mutex_unlock(&pmc_reserve_mutex);
576 mtpmr(PMRN_PMGC0, PMGC0_FAC);
577 isync();
579 event->destroy = hw_perf_event_destroy;
581 return err;
584 static struct pmu fsl_emb_pmu = {
585 .pmu_enable = fsl_emb_pmu_enable,
586 .pmu_disable = fsl_emb_pmu_disable,
587 .event_init = fsl_emb_pmu_event_init,
588 .add = fsl_emb_pmu_add,
589 .del = fsl_emb_pmu_del,
590 .start = fsl_emb_pmu_start,
591 .stop = fsl_emb_pmu_stop,
592 .read = fsl_emb_pmu_read,
596 * A counter has overflowed; update its count and record
597 * things if requested. Note that interrupts are hard-disabled
598 * here so there is no possibility of being interrupted.
600 static void record_and_restart(struct perf_event *event, unsigned long val,
601 struct pt_regs *regs)
603 u64 period = event->hw.sample_period;
604 s64 prev, delta, left;
605 int record = 0;
607 if (event->hw.state & PERF_HES_STOPPED) {
608 write_pmc(event->hw.idx, 0);
609 return;
612 /* we don't have to worry about interrupts here */
613 prev = local64_read(&event->hw.prev_count);
614 delta = (val - prev) & 0xfffffffful;
615 local64_add(delta, &event->count);
618 * See if the total period for this event has expired,
619 * and update for the next period.
621 val = 0;
622 left = local64_read(&event->hw.period_left) - delta;
623 if (period) {
624 if (left <= 0) {
625 left += period;
626 if (left <= 0)
627 left = period;
628 record = 1;
629 event->hw.last_period = event->hw.sample_period;
631 if (left < 0x80000000LL)
632 val = 0x80000000LL - left;
635 write_pmc(event->hw.idx, val);
636 local64_set(&event->hw.prev_count, val);
637 local64_set(&event->hw.period_left, left);
638 perf_event_update_userpage(event);
641 * Finally record data if requested.
643 if (record) {
644 struct perf_sample_data data;
646 perf_sample_data_init(&data, 0, event->hw.last_period);
648 if (perf_event_overflow(event, &data, regs))
649 fsl_emb_pmu_stop(event, 0);
653 static void perf_event_interrupt(struct pt_regs *regs)
655 int i;
656 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
657 struct perf_event *event;
658 unsigned long val;
659 int found = 0;
660 int nmi;
662 nmi = perf_intr_is_nmi(regs);
663 if (nmi)
664 nmi_enter();
665 else
666 irq_enter();
668 for (i = 0; i < ppmu->n_counter; ++i) {
669 event = cpuhw->event[i];
671 val = read_pmc(i);
672 if ((int)val < 0) {
673 if (event) {
674 /* event has overflowed */
675 found = 1;
676 record_and_restart(event, val, regs);
677 } else {
679 * Disabled counter is negative,
680 * reset it just in case.
682 write_pmc(i, 0);
687 /* PMM will keep counters frozen until we return from the interrupt. */
688 mtmsr(mfmsr() | MSR_PMM);
689 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
690 isync();
692 if (nmi)
693 nmi_exit();
694 else
695 irq_exit();
698 void hw_perf_event_setup(int cpu)
700 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
702 memset(cpuhw, 0, sizeof(*cpuhw));
705 int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
707 if (ppmu)
708 return -EBUSY; /* something's already registered */
710 ppmu = pmu;
711 pr_info("%s performance monitor hardware support registered\n",
712 pmu->name);
714 perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
716 return 0;