Linux 3.17-rc2
[linux/fpc-iii.git] / fs / f2fs / node.c
blobd3d90d2846313d546c1328145d48a2013645f3dd
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 struct f2fs_nm_info *nm_i = NM_I(sbi);
33 struct sysinfo val;
34 unsigned long mem_size = 0;
35 bool res = false;
37 si_meminfo(&val);
38 /* give 25%, 25%, 50% memory for each components respectively */
39 if (type == FREE_NIDS) {
40 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
41 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
42 } else if (type == NAT_ENTRIES) {
43 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
44 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
45 } else if (type == DIRTY_DENTS) {
46 if (sbi->sb->s_bdi->dirty_exceeded)
47 return false;
48 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
49 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
51 return res;
54 static void clear_node_page_dirty(struct page *page)
56 struct address_space *mapping = page->mapping;
57 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
58 unsigned int long flags;
60 if (PageDirty(page)) {
61 spin_lock_irqsave(&mapping->tree_lock, flags);
62 radix_tree_tag_clear(&mapping->page_tree,
63 page_index(page),
64 PAGECACHE_TAG_DIRTY);
65 spin_unlock_irqrestore(&mapping->tree_lock, flags);
67 clear_page_dirty_for_io(page);
68 dec_page_count(sbi, F2FS_DIRTY_NODES);
70 ClearPageUptodate(page);
73 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
75 pgoff_t index = current_nat_addr(sbi, nid);
76 return get_meta_page(sbi, index);
79 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
81 struct page *src_page;
82 struct page *dst_page;
83 pgoff_t src_off;
84 pgoff_t dst_off;
85 void *src_addr;
86 void *dst_addr;
87 struct f2fs_nm_info *nm_i = NM_I(sbi);
89 src_off = current_nat_addr(sbi, nid);
90 dst_off = next_nat_addr(sbi, src_off);
92 /* get current nat block page with lock */
93 src_page = get_meta_page(sbi, src_off);
94 dst_page = grab_meta_page(sbi, dst_off);
95 f2fs_bug_on(PageDirty(src_page));
97 src_addr = page_address(src_page);
98 dst_addr = page_address(dst_page);
99 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
100 set_page_dirty(dst_page);
101 f2fs_put_page(src_page, 1);
103 set_to_next_nat(nm_i, nid);
105 return dst_page;
108 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
110 return radix_tree_lookup(&nm_i->nat_root, n);
113 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
114 nid_t start, unsigned int nr, struct nat_entry **ep)
116 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
119 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
121 list_del(&e->list);
122 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
123 nm_i->nat_cnt--;
124 kmem_cache_free(nat_entry_slab, e);
127 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
129 struct f2fs_nm_info *nm_i = NM_I(sbi);
130 struct nat_entry *e;
131 int is_cp = 1;
133 read_lock(&nm_i->nat_tree_lock);
134 e = __lookup_nat_cache(nm_i, nid);
135 if (e && !e->checkpointed)
136 is_cp = 0;
137 read_unlock(&nm_i->nat_tree_lock);
138 return is_cp;
141 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144 struct nat_entry *e;
145 bool fsync_done = false;
147 read_lock(&nm_i->nat_tree_lock);
148 e = __lookup_nat_cache(nm_i, nid);
149 if (e)
150 fsync_done = e->fsync_done;
151 read_unlock(&nm_i->nat_tree_lock);
152 return fsync_done;
155 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
157 struct f2fs_nm_info *nm_i = NM_I(sbi);
158 struct nat_entry *e;
160 write_lock(&nm_i->nat_tree_lock);
161 e = __lookup_nat_cache(nm_i, nid);
162 if (e)
163 e->fsync_done = false;
164 write_unlock(&nm_i->nat_tree_lock);
167 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
169 struct nat_entry *new;
171 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
172 if (!new)
173 return NULL;
174 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
175 kmem_cache_free(nat_entry_slab, new);
176 return NULL;
178 memset(new, 0, sizeof(struct nat_entry));
179 nat_set_nid(new, nid);
180 new->checkpointed = true;
181 list_add_tail(&new->list, &nm_i->nat_entries);
182 nm_i->nat_cnt++;
183 return new;
186 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
187 struct f2fs_nat_entry *ne)
189 struct nat_entry *e;
190 retry:
191 write_lock(&nm_i->nat_tree_lock);
192 e = __lookup_nat_cache(nm_i, nid);
193 if (!e) {
194 e = grab_nat_entry(nm_i, nid);
195 if (!e) {
196 write_unlock(&nm_i->nat_tree_lock);
197 goto retry;
199 node_info_from_raw_nat(&e->ni, ne);
201 write_unlock(&nm_i->nat_tree_lock);
204 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
205 block_t new_blkaddr, bool fsync_done)
207 struct f2fs_nm_info *nm_i = NM_I(sbi);
208 struct nat_entry *e;
209 retry:
210 write_lock(&nm_i->nat_tree_lock);
211 e = __lookup_nat_cache(nm_i, ni->nid);
212 if (!e) {
213 e = grab_nat_entry(nm_i, ni->nid);
214 if (!e) {
215 write_unlock(&nm_i->nat_tree_lock);
216 goto retry;
218 e->ni = *ni;
219 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
220 } else if (new_blkaddr == NEW_ADDR) {
222 * when nid is reallocated,
223 * previous nat entry can be remained in nat cache.
224 * So, reinitialize it with new information.
226 e->ni = *ni;
227 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
230 /* sanity check */
231 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
232 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
233 new_blkaddr == NULL_ADDR);
234 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
235 new_blkaddr == NEW_ADDR);
236 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
237 nat_get_blkaddr(e) != NULL_ADDR &&
238 new_blkaddr == NEW_ADDR);
240 /* increament version no as node is removed */
241 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
242 unsigned char version = nat_get_version(e);
243 nat_set_version(e, inc_node_version(version));
246 /* change address */
247 nat_set_blkaddr(e, new_blkaddr);
248 __set_nat_cache_dirty(nm_i, e);
250 /* update fsync_mark if its inode nat entry is still alive */
251 e = __lookup_nat_cache(nm_i, ni->ino);
252 if (e)
253 e->fsync_done = fsync_done;
254 write_unlock(&nm_i->nat_tree_lock);
257 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
259 struct f2fs_nm_info *nm_i = NM_I(sbi);
261 if (available_free_memory(sbi, NAT_ENTRIES))
262 return 0;
264 write_lock(&nm_i->nat_tree_lock);
265 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
266 struct nat_entry *ne;
267 ne = list_first_entry(&nm_i->nat_entries,
268 struct nat_entry, list);
269 __del_from_nat_cache(nm_i, ne);
270 nr_shrink--;
272 write_unlock(&nm_i->nat_tree_lock);
273 return nr_shrink;
277 * This function returns always success
279 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
281 struct f2fs_nm_info *nm_i = NM_I(sbi);
282 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
283 struct f2fs_summary_block *sum = curseg->sum_blk;
284 nid_t start_nid = START_NID(nid);
285 struct f2fs_nat_block *nat_blk;
286 struct page *page = NULL;
287 struct f2fs_nat_entry ne;
288 struct nat_entry *e;
289 int i;
291 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
292 ni->nid = nid;
294 /* Check nat cache */
295 read_lock(&nm_i->nat_tree_lock);
296 e = __lookup_nat_cache(nm_i, nid);
297 if (e) {
298 ni->ino = nat_get_ino(e);
299 ni->blk_addr = nat_get_blkaddr(e);
300 ni->version = nat_get_version(e);
302 read_unlock(&nm_i->nat_tree_lock);
303 if (e)
304 return;
306 /* Check current segment summary */
307 mutex_lock(&curseg->curseg_mutex);
308 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
309 if (i >= 0) {
310 ne = nat_in_journal(sum, i);
311 node_info_from_raw_nat(ni, &ne);
313 mutex_unlock(&curseg->curseg_mutex);
314 if (i >= 0)
315 goto cache;
317 /* Fill node_info from nat page */
318 page = get_current_nat_page(sbi, start_nid);
319 nat_blk = (struct f2fs_nat_block *)page_address(page);
320 ne = nat_blk->entries[nid - start_nid];
321 node_info_from_raw_nat(ni, &ne);
322 f2fs_put_page(page, 1);
323 cache:
324 /* cache nat entry */
325 cache_nat_entry(NM_I(sbi), nid, &ne);
329 * The maximum depth is four.
330 * Offset[0] will have raw inode offset.
332 static int get_node_path(struct f2fs_inode_info *fi, long block,
333 int offset[4], unsigned int noffset[4])
335 const long direct_index = ADDRS_PER_INODE(fi);
336 const long direct_blks = ADDRS_PER_BLOCK;
337 const long dptrs_per_blk = NIDS_PER_BLOCK;
338 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
339 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
340 int n = 0;
341 int level = 0;
343 noffset[0] = 0;
345 if (block < direct_index) {
346 offset[n] = block;
347 goto got;
349 block -= direct_index;
350 if (block < direct_blks) {
351 offset[n++] = NODE_DIR1_BLOCK;
352 noffset[n] = 1;
353 offset[n] = block;
354 level = 1;
355 goto got;
357 block -= direct_blks;
358 if (block < direct_blks) {
359 offset[n++] = NODE_DIR2_BLOCK;
360 noffset[n] = 2;
361 offset[n] = block;
362 level = 1;
363 goto got;
365 block -= direct_blks;
366 if (block < indirect_blks) {
367 offset[n++] = NODE_IND1_BLOCK;
368 noffset[n] = 3;
369 offset[n++] = block / direct_blks;
370 noffset[n] = 4 + offset[n - 1];
371 offset[n] = block % direct_blks;
372 level = 2;
373 goto got;
375 block -= indirect_blks;
376 if (block < indirect_blks) {
377 offset[n++] = NODE_IND2_BLOCK;
378 noffset[n] = 4 + dptrs_per_blk;
379 offset[n++] = block / direct_blks;
380 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
381 offset[n] = block % direct_blks;
382 level = 2;
383 goto got;
385 block -= indirect_blks;
386 if (block < dindirect_blks) {
387 offset[n++] = NODE_DIND_BLOCK;
388 noffset[n] = 5 + (dptrs_per_blk * 2);
389 offset[n++] = block / indirect_blks;
390 noffset[n] = 6 + (dptrs_per_blk * 2) +
391 offset[n - 1] * (dptrs_per_blk + 1);
392 offset[n++] = (block / direct_blks) % dptrs_per_blk;
393 noffset[n] = 7 + (dptrs_per_blk * 2) +
394 offset[n - 2] * (dptrs_per_blk + 1) +
395 offset[n - 1];
396 offset[n] = block % direct_blks;
397 level = 3;
398 goto got;
399 } else {
400 BUG();
402 got:
403 return level;
407 * Caller should call f2fs_put_dnode(dn).
408 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
409 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
410 * In the case of RDONLY_NODE, we don't need to care about mutex.
412 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
414 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
415 struct page *npage[4];
416 struct page *parent;
417 int offset[4];
418 unsigned int noffset[4];
419 nid_t nids[4];
420 int level, i;
421 int err = 0;
423 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
425 nids[0] = dn->inode->i_ino;
426 npage[0] = dn->inode_page;
428 if (!npage[0]) {
429 npage[0] = get_node_page(sbi, nids[0]);
430 if (IS_ERR(npage[0]))
431 return PTR_ERR(npage[0]);
433 parent = npage[0];
434 if (level != 0)
435 nids[1] = get_nid(parent, offset[0], true);
436 dn->inode_page = npage[0];
437 dn->inode_page_locked = true;
439 /* get indirect or direct nodes */
440 for (i = 1; i <= level; i++) {
441 bool done = false;
443 if (!nids[i] && mode == ALLOC_NODE) {
444 /* alloc new node */
445 if (!alloc_nid(sbi, &(nids[i]))) {
446 err = -ENOSPC;
447 goto release_pages;
450 dn->nid = nids[i];
451 npage[i] = new_node_page(dn, noffset[i], NULL);
452 if (IS_ERR(npage[i])) {
453 alloc_nid_failed(sbi, nids[i]);
454 err = PTR_ERR(npage[i]);
455 goto release_pages;
458 set_nid(parent, offset[i - 1], nids[i], i == 1);
459 alloc_nid_done(sbi, nids[i]);
460 done = true;
461 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
462 npage[i] = get_node_page_ra(parent, offset[i - 1]);
463 if (IS_ERR(npage[i])) {
464 err = PTR_ERR(npage[i]);
465 goto release_pages;
467 done = true;
469 if (i == 1) {
470 dn->inode_page_locked = false;
471 unlock_page(parent);
472 } else {
473 f2fs_put_page(parent, 1);
476 if (!done) {
477 npage[i] = get_node_page(sbi, nids[i]);
478 if (IS_ERR(npage[i])) {
479 err = PTR_ERR(npage[i]);
480 f2fs_put_page(npage[0], 0);
481 goto release_out;
484 if (i < level) {
485 parent = npage[i];
486 nids[i + 1] = get_nid(parent, offset[i], false);
489 dn->nid = nids[level];
490 dn->ofs_in_node = offset[level];
491 dn->node_page = npage[level];
492 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
493 return 0;
495 release_pages:
496 f2fs_put_page(parent, 1);
497 if (i > 1)
498 f2fs_put_page(npage[0], 0);
499 release_out:
500 dn->inode_page = NULL;
501 dn->node_page = NULL;
502 return err;
505 static void truncate_node(struct dnode_of_data *dn)
507 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
508 struct node_info ni;
510 get_node_info(sbi, dn->nid, &ni);
511 if (dn->inode->i_blocks == 0) {
512 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
513 goto invalidate;
515 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
517 /* Deallocate node address */
518 invalidate_blocks(sbi, ni.blk_addr);
519 dec_valid_node_count(sbi, dn->inode);
520 set_node_addr(sbi, &ni, NULL_ADDR, false);
522 if (dn->nid == dn->inode->i_ino) {
523 remove_orphan_inode(sbi, dn->nid);
524 dec_valid_inode_count(sbi);
525 } else {
526 sync_inode_page(dn);
528 invalidate:
529 clear_node_page_dirty(dn->node_page);
530 F2FS_SET_SB_DIRT(sbi);
532 f2fs_put_page(dn->node_page, 1);
534 invalidate_mapping_pages(NODE_MAPPING(sbi),
535 dn->node_page->index, dn->node_page->index);
537 dn->node_page = NULL;
538 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
541 static int truncate_dnode(struct dnode_of_data *dn)
543 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
544 struct page *page;
546 if (dn->nid == 0)
547 return 1;
549 /* get direct node */
550 page = get_node_page(sbi, dn->nid);
551 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
552 return 1;
553 else if (IS_ERR(page))
554 return PTR_ERR(page);
556 /* Make dnode_of_data for parameter */
557 dn->node_page = page;
558 dn->ofs_in_node = 0;
559 truncate_data_blocks(dn);
560 truncate_node(dn);
561 return 1;
564 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
565 int ofs, int depth)
567 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
568 struct dnode_of_data rdn = *dn;
569 struct page *page;
570 struct f2fs_node *rn;
571 nid_t child_nid;
572 unsigned int child_nofs;
573 int freed = 0;
574 int i, ret;
576 if (dn->nid == 0)
577 return NIDS_PER_BLOCK + 1;
579 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
581 page = get_node_page(sbi, dn->nid);
582 if (IS_ERR(page)) {
583 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
584 return PTR_ERR(page);
587 rn = F2FS_NODE(page);
588 if (depth < 3) {
589 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
590 child_nid = le32_to_cpu(rn->in.nid[i]);
591 if (child_nid == 0)
592 continue;
593 rdn.nid = child_nid;
594 ret = truncate_dnode(&rdn);
595 if (ret < 0)
596 goto out_err;
597 set_nid(page, i, 0, false);
599 } else {
600 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
601 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
602 child_nid = le32_to_cpu(rn->in.nid[i]);
603 if (child_nid == 0) {
604 child_nofs += NIDS_PER_BLOCK + 1;
605 continue;
607 rdn.nid = child_nid;
608 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
609 if (ret == (NIDS_PER_BLOCK + 1)) {
610 set_nid(page, i, 0, false);
611 child_nofs += ret;
612 } else if (ret < 0 && ret != -ENOENT) {
613 goto out_err;
616 freed = child_nofs;
619 if (!ofs) {
620 /* remove current indirect node */
621 dn->node_page = page;
622 truncate_node(dn);
623 freed++;
624 } else {
625 f2fs_put_page(page, 1);
627 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
628 return freed;
630 out_err:
631 f2fs_put_page(page, 1);
632 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
633 return ret;
636 static int truncate_partial_nodes(struct dnode_of_data *dn,
637 struct f2fs_inode *ri, int *offset, int depth)
639 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
640 struct page *pages[2];
641 nid_t nid[3];
642 nid_t child_nid;
643 int err = 0;
644 int i;
645 int idx = depth - 2;
647 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
648 if (!nid[0])
649 return 0;
651 /* get indirect nodes in the path */
652 for (i = 0; i < idx + 1; i++) {
653 /* refernece count'll be increased */
654 pages[i] = get_node_page(sbi, nid[i]);
655 if (IS_ERR(pages[i])) {
656 err = PTR_ERR(pages[i]);
657 idx = i - 1;
658 goto fail;
660 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
663 /* free direct nodes linked to a partial indirect node */
664 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
665 child_nid = get_nid(pages[idx], i, false);
666 if (!child_nid)
667 continue;
668 dn->nid = child_nid;
669 err = truncate_dnode(dn);
670 if (err < 0)
671 goto fail;
672 set_nid(pages[idx], i, 0, false);
675 if (offset[idx + 1] == 0) {
676 dn->node_page = pages[idx];
677 dn->nid = nid[idx];
678 truncate_node(dn);
679 } else {
680 f2fs_put_page(pages[idx], 1);
682 offset[idx]++;
683 offset[idx + 1] = 0;
684 idx--;
685 fail:
686 for (i = idx; i >= 0; i--)
687 f2fs_put_page(pages[i], 1);
689 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
691 return err;
695 * All the block addresses of data and nodes should be nullified.
697 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
699 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
700 int err = 0, cont = 1;
701 int level, offset[4], noffset[4];
702 unsigned int nofs = 0;
703 struct f2fs_inode *ri;
704 struct dnode_of_data dn;
705 struct page *page;
707 trace_f2fs_truncate_inode_blocks_enter(inode, from);
709 level = get_node_path(F2FS_I(inode), from, offset, noffset);
710 restart:
711 page = get_node_page(sbi, inode->i_ino);
712 if (IS_ERR(page)) {
713 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
714 return PTR_ERR(page);
717 set_new_dnode(&dn, inode, page, NULL, 0);
718 unlock_page(page);
720 ri = F2FS_INODE(page);
721 switch (level) {
722 case 0:
723 case 1:
724 nofs = noffset[1];
725 break;
726 case 2:
727 nofs = noffset[1];
728 if (!offset[level - 1])
729 goto skip_partial;
730 err = truncate_partial_nodes(&dn, ri, offset, level);
731 if (err < 0 && err != -ENOENT)
732 goto fail;
733 nofs += 1 + NIDS_PER_BLOCK;
734 break;
735 case 3:
736 nofs = 5 + 2 * NIDS_PER_BLOCK;
737 if (!offset[level - 1])
738 goto skip_partial;
739 err = truncate_partial_nodes(&dn, ri, offset, level);
740 if (err < 0 && err != -ENOENT)
741 goto fail;
742 break;
743 default:
744 BUG();
747 skip_partial:
748 while (cont) {
749 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
750 switch (offset[0]) {
751 case NODE_DIR1_BLOCK:
752 case NODE_DIR2_BLOCK:
753 err = truncate_dnode(&dn);
754 break;
756 case NODE_IND1_BLOCK:
757 case NODE_IND2_BLOCK:
758 err = truncate_nodes(&dn, nofs, offset[1], 2);
759 break;
761 case NODE_DIND_BLOCK:
762 err = truncate_nodes(&dn, nofs, offset[1], 3);
763 cont = 0;
764 break;
766 default:
767 BUG();
769 if (err < 0 && err != -ENOENT)
770 goto fail;
771 if (offset[1] == 0 &&
772 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
773 lock_page(page);
774 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
775 f2fs_put_page(page, 1);
776 goto restart;
778 f2fs_wait_on_page_writeback(page, NODE);
779 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
780 set_page_dirty(page);
781 unlock_page(page);
783 offset[1] = 0;
784 offset[0]++;
785 nofs += err;
787 fail:
788 f2fs_put_page(page, 0);
789 trace_f2fs_truncate_inode_blocks_exit(inode, err);
790 return err > 0 ? 0 : err;
793 int truncate_xattr_node(struct inode *inode, struct page *page)
795 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
796 nid_t nid = F2FS_I(inode)->i_xattr_nid;
797 struct dnode_of_data dn;
798 struct page *npage;
800 if (!nid)
801 return 0;
803 npage = get_node_page(sbi, nid);
804 if (IS_ERR(npage))
805 return PTR_ERR(npage);
807 F2FS_I(inode)->i_xattr_nid = 0;
809 /* need to do checkpoint during fsync */
810 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
812 set_new_dnode(&dn, inode, page, npage, nid);
814 if (page)
815 dn.inode_page_locked = true;
816 truncate_node(&dn);
817 return 0;
821 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
822 * f2fs_unlock_op().
824 void remove_inode_page(struct inode *inode)
826 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
827 struct page *page;
828 nid_t ino = inode->i_ino;
829 struct dnode_of_data dn;
831 page = get_node_page(sbi, ino);
832 if (IS_ERR(page))
833 return;
835 if (truncate_xattr_node(inode, page)) {
836 f2fs_put_page(page, 1);
837 return;
839 /* 0 is possible, after f2fs_new_inode() is failed */
840 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
841 set_new_dnode(&dn, inode, page, page, ino);
842 truncate_node(&dn);
845 struct page *new_inode_page(struct inode *inode)
847 struct dnode_of_data dn;
849 /* allocate inode page for new inode */
850 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
852 /* caller should f2fs_put_page(page, 1); */
853 return new_node_page(&dn, 0, NULL);
856 struct page *new_node_page(struct dnode_of_data *dn,
857 unsigned int ofs, struct page *ipage)
859 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
860 struct node_info old_ni, new_ni;
861 struct page *page;
862 int err;
864 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
865 return ERR_PTR(-EPERM);
867 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
868 if (!page)
869 return ERR_PTR(-ENOMEM);
871 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
872 err = -ENOSPC;
873 goto fail;
876 get_node_info(sbi, dn->nid, &old_ni);
878 /* Reinitialize old_ni with new node page */
879 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
880 new_ni = old_ni;
881 new_ni.ino = dn->inode->i_ino;
882 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
884 f2fs_wait_on_page_writeback(page, NODE);
885 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
886 set_cold_node(dn->inode, page);
887 SetPageUptodate(page);
888 set_page_dirty(page);
890 if (f2fs_has_xattr_block(ofs))
891 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
893 dn->node_page = page;
894 if (ipage)
895 update_inode(dn->inode, ipage);
896 else
897 sync_inode_page(dn);
898 if (ofs == 0)
899 inc_valid_inode_count(sbi);
901 return page;
903 fail:
904 clear_node_page_dirty(page);
905 f2fs_put_page(page, 1);
906 return ERR_PTR(err);
910 * Caller should do after getting the following values.
911 * 0: f2fs_put_page(page, 0)
912 * LOCKED_PAGE: f2fs_put_page(page, 1)
913 * error: nothing
915 static int read_node_page(struct page *page, int rw)
917 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
918 struct node_info ni;
920 get_node_info(sbi, page->index, &ni);
922 if (unlikely(ni.blk_addr == NULL_ADDR)) {
923 f2fs_put_page(page, 1);
924 return -ENOENT;
927 if (PageUptodate(page))
928 return LOCKED_PAGE;
930 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
934 * Readahead a node page
936 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
938 struct page *apage;
939 int err;
941 apage = find_get_page(NODE_MAPPING(sbi), nid);
942 if (apage && PageUptodate(apage)) {
943 f2fs_put_page(apage, 0);
944 return;
946 f2fs_put_page(apage, 0);
948 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
949 if (!apage)
950 return;
952 err = read_node_page(apage, READA);
953 if (err == 0)
954 f2fs_put_page(apage, 0);
955 else if (err == LOCKED_PAGE)
956 f2fs_put_page(apage, 1);
959 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
961 struct page *page;
962 int err;
963 repeat:
964 page = grab_cache_page(NODE_MAPPING(sbi), nid);
965 if (!page)
966 return ERR_PTR(-ENOMEM);
968 err = read_node_page(page, READ_SYNC);
969 if (err < 0)
970 return ERR_PTR(err);
971 else if (err == LOCKED_PAGE)
972 goto got_it;
974 lock_page(page);
975 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
976 f2fs_put_page(page, 1);
977 return ERR_PTR(-EIO);
979 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
980 f2fs_put_page(page, 1);
981 goto repeat;
983 got_it:
984 return page;
988 * Return a locked page for the desired node page.
989 * And, readahead MAX_RA_NODE number of node pages.
991 struct page *get_node_page_ra(struct page *parent, int start)
993 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
994 struct blk_plug plug;
995 struct page *page;
996 int err, i, end;
997 nid_t nid;
999 /* First, try getting the desired direct node. */
1000 nid = get_nid(parent, start, false);
1001 if (!nid)
1002 return ERR_PTR(-ENOENT);
1003 repeat:
1004 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1005 if (!page)
1006 return ERR_PTR(-ENOMEM);
1008 err = read_node_page(page, READ_SYNC);
1009 if (err < 0)
1010 return ERR_PTR(err);
1011 else if (err == LOCKED_PAGE)
1012 goto page_hit;
1014 blk_start_plug(&plug);
1016 /* Then, try readahead for siblings of the desired node */
1017 end = start + MAX_RA_NODE;
1018 end = min(end, NIDS_PER_BLOCK);
1019 for (i = start + 1; i < end; i++) {
1020 nid = get_nid(parent, i, false);
1021 if (!nid)
1022 continue;
1023 ra_node_page(sbi, nid);
1026 blk_finish_plug(&plug);
1028 lock_page(page);
1029 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1030 f2fs_put_page(page, 1);
1031 goto repeat;
1033 page_hit:
1034 if (unlikely(!PageUptodate(page))) {
1035 f2fs_put_page(page, 1);
1036 return ERR_PTR(-EIO);
1038 return page;
1041 void sync_inode_page(struct dnode_of_data *dn)
1043 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1044 update_inode(dn->inode, dn->node_page);
1045 } else if (dn->inode_page) {
1046 if (!dn->inode_page_locked)
1047 lock_page(dn->inode_page);
1048 update_inode(dn->inode, dn->inode_page);
1049 if (!dn->inode_page_locked)
1050 unlock_page(dn->inode_page);
1051 } else {
1052 update_inode_page(dn->inode);
1056 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1057 struct writeback_control *wbc)
1059 pgoff_t index, end;
1060 struct pagevec pvec;
1061 int step = ino ? 2 : 0;
1062 int nwritten = 0, wrote = 0;
1064 pagevec_init(&pvec, 0);
1066 next_step:
1067 index = 0;
1068 end = LONG_MAX;
1070 while (index <= end) {
1071 int i, nr_pages;
1072 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1073 PAGECACHE_TAG_DIRTY,
1074 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1075 if (nr_pages == 0)
1076 break;
1078 for (i = 0; i < nr_pages; i++) {
1079 struct page *page = pvec.pages[i];
1082 * flushing sequence with step:
1083 * 0. indirect nodes
1084 * 1. dentry dnodes
1085 * 2. file dnodes
1087 if (step == 0 && IS_DNODE(page))
1088 continue;
1089 if (step == 1 && (!IS_DNODE(page) ||
1090 is_cold_node(page)))
1091 continue;
1092 if (step == 2 && (!IS_DNODE(page) ||
1093 !is_cold_node(page)))
1094 continue;
1097 * If an fsync mode,
1098 * we should not skip writing node pages.
1100 if (ino && ino_of_node(page) == ino)
1101 lock_page(page);
1102 else if (!trylock_page(page))
1103 continue;
1105 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1106 continue_unlock:
1107 unlock_page(page);
1108 continue;
1110 if (ino && ino_of_node(page) != ino)
1111 goto continue_unlock;
1113 if (!PageDirty(page)) {
1114 /* someone wrote it for us */
1115 goto continue_unlock;
1118 if (!clear_page_dirty_for_io(page))
1119 goto continue_unlock;
1121 /* called by fsync() */
1122 if (ino && IS_DNODE(page)) {
1123 int mark = !is_checkpointed_node(sbi, ino);
1124 set_fsync_mark(page, 1);
1125 if (IS_INODE(page))
1126 set_dentry_mark(page, mark);
1127 nwritten++;
1128 } else {
1129 set_fsync_mark(page, 0);
1130 set_dentry_mark(page, 0);
1132 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1133 wrote++;
1135 if (--wbc->nr_to_write == 0)
1136 break;
1138 pagevec_release(&pvec);
1139 cond_resched();
1141 if (wbc->nr_to_write == 0) {
1142 step = 2;
1143 break;
1147 if (step < 2) {
1148 step++;
1149 goto next_step;
1152 if (wrote)
1153 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1154 return nwritten;
1157 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1159 pgoff_t index = 0, end = LONG_MAX;
1160 struct pagevec pvec;
1161 int ret2 = 0, ret = 0;
1163 pagevec_init(&pvec, 0);
1165 while (index <= end) {
1166 int i, nr_pages;
1167 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1168 PAGECACHE_TAG_WRITEBACK,
1169 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1170 if (nr_pages == 0)
1171 break;
1173 for (i = 0; i < nr_pages; i++) {
1174 struct page *page = pvec.pages[i];
1176 /* until radix tree lookup accepts end_index */
1177 if (unlikely(page->index > end))
1178 continue;
1180 if (ino && ino_of_node(page) == ino) {
1181 f2fs_wait_on_page_writeback(page, NODE);
1182 if (TestClearPageError(page))
1183 ret = -EIO;
1186 pagevec_release(&pvec);
1187 cond_resched();
1190 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1191 ret2 = -ENOSPC;
1192 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1193 ret2 = -EIO;
1194 if (!ret)
1195 ret = ret2;
1196 return ret;
1199 static int f2fs_write_node_page(struct page *page,
1200 struct writeback_control *wbc)
1202 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1203 nid_t nid;
1204 block_t new_addr;
1205 struct node_info ni;
1206 struct f2fs_io_info fio = {
1207 .type = NODE,
1208 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1211 trace_f2fs_writepage(page, NODE);
1213 if (unlikely(sbi->por_doing))
1214 goto redirty_out;
1216 f2fs_wait_on_page_writeback(page, NODE);
1218 /* get old block addr of this node page */
1219 nid = nid_of_node(page);
1220 f2fs_bug_on(page->index != nid);
1222 get_node_info(sbi, nid, &ni);
1224 /* This page is already truncated */
1225 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1226 dec_page_count(sbi, F2FS_DIRTY_NODES);
1227 unlock_page(page);
1228 return 0;
1231 if (wbc->for_reclaim)
1232 goto redirty_out;
1234 down_read(&sbi->node_write);
1235 set_page_writeback(page);
1236 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1237 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1238 dec_page_count(sbi, F2FS_DIRTY_NODES);
1239 up_read(&sbi->node_write);
1240 unlock_page(page);
1241 return 0;
1243 redirty_out:
1244 redirty_page_for_writepage(wbc, page);
1245 return AOP_WRITEPAGE_ACTIVATE;
1248 static int f2fs_write_node_pages(struct address_space *mapping,
1249 struct writeback_control *wbc)
1251 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1252 long diff;
1254 trace_f2fs_writepages(mapping->host, wbc, NODE);
1256 /* balancing f2fs's metadata in background */
1257 f2fs_balance_fs_bg(sbi);
1259 /* collect a number of dirty node pages and write together */
1260 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1261 goto skip_write;
1263 diff = nr_pages_to_write(sbi, NODE, wbc);
1264 wbc->sync_mode = WB_SYNC_NONE;
1265 sync_node_pages(sbi, 0, wbc);
1266 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1267 return 0;
1269 skip_write:
1270 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1271 return 0;
1274 static int f2fs_set_node_page_dirty(struct page *page)
1276 struct address_space *mapping = page->mapping;
1277 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1279 trace_f2fs_set_page_dirty(page, NODE);
1281 SetPageUptodate(page);
1282 if (!PageDirty(page)) {
1283 __set_page_dirty_nobuffers(page);
1284 inc_page_count(sbi, F2FS_DIRTY_NODES);
1285 SetPagePrivate(page);
1286 return 1;
1288 return 0;
1291 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1292 unsigned int length)
1294 struct inode *inode = page->mapping->host;
1295 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1296 if (PageDirty(page))
1297 dec_page_count(sbi, F2FS_DIRTY_NODES);
1298 ClearPagePrivate(page);
1301 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1303 ClearPagePrivate(page);
1304 return 1;
1308 * Structure of the f2fs node operations
1310 const struct address_space_operations f2fs_node_aops = {
1311 .writepage = f2fs_write_node_page,
1312 .writepages = f2fs_write_node_pages,
1313 .set_page_dirty = f2fs_set_node_page_dirty,
1314 .invalidatepage = f2fs_invalidate_node_page,
1315 .releasepage = f2fs_release_node_page,
1318 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1319 nid_t n)
1321 return radix_tree_lookup(&nm_i->free_nid_root, n);
1324 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1325 struct free_nid *i)
1327 list_del(&i->list);
1328 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1331 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1333 struct f2fs_nm_info *nm_i = NM_I(sbi);
1334 struct free_nid *i;
1335 struct nat_entry *ne;
1336 bool allocated = false;
1338 if (!available_free_memory(sbi, FREE_NIDS))
1339 return -1;
1341 /* 0 nid should not be used */
1342 if (unlikely(nid == 0))
1343 return 0;
1345 if (build) {
1346 /* do not add allocated nids */
1347 read_lock(&nm_i->nat_tree_lock);
1348 ne = __lookup_nat_cache(nm_i, nid);
1349 if (ne &&
1350 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1351 allocated = true;
1352 read_unlock(&nm_i->nat_tree_lock);
1353 if (allocated)
1354 return 0;
1357 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1358 i->nid = nid;
1359 i->state = NID_NEW;
1361 spin_lock(&nm_i->free_nid_list_lock);
1362 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1363 spin_unlock(&nm_i->free_nid_list_lock);
1364 kmem_cache_free(free_nid_slab, i);
1365 return 0;
1367 list_add_tail(&i->list, &nm_i->free_nid_list);
1368 nm_i->fcnt++;
1369 spin_unlock(&nm_i->free_nid_list_lock);
1370 return 1;
1373 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1375 struct free_nid *i;
1376 bool need_free = false;
1378 spin_lock(&nm_i->free_nid_list_lock);
1379 i = __lookup_free_nid_list(nm_i, nid);
1380 if (i && i->state == NID_NEW) {
1381 __del_from_free_nid_list(nm_i, i);
1382 nm_i->fcnt--;
1383 need_free = true;
1385 spin_unlock(&nm_i->free_nid_list_lock);
1387 if (need_free)
1388 kmem_cache_free(free_nid_slab, i);
1391 static void scan_nat_page(struct f2fs_sb_info *sbi,
1392 struct page *nat_page, nid_t start_nid)
1394 struct f2fs_nm_info *nm_i = NM_I(sbi);
1395 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1396 block_t blk_addr;
1397 int i;
1399 i = start_nid % NAT_ENTRY_PER_BLOCK;
1401 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1403 if (unlikely(start_nid >= nm_i->max_nid))
1404 break;
1406 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1407 f2fs_bug_on(blk_addr == NEW_ADDR);
1408 if (blk_addr == NULL_ADDR) {
1409 if (add_free_nid(sbi, start_nid, true) < 0)
1410 break;
1415 static void build_free_nids(struct f2fs_sb_info *sbi)
1417 struct f2fs_nm_info *nm_i = NM_I(sbi);
1418 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1419 struct f2fs_summary_block *sum = curseg->sum_blk;
1420 int i = 0;
1421 nid_t nid = nm_i->next_scan_nid;
1423 /* Enough entries */
1424 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1425 return;
1427 /* readahead nat pages to be scanned */
1428 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1430 while (1) {
1431 struct page *page = get_current_nat_page(sbi, nid);
1433 scan_nat_page(sbi, page, nid);
1434 f2fs_put_page(page, 1);
1436 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1437 if (unlikely(nid >= nm_i->max_nid))
1438 nid = 0;
1440 if (i++ == FREE_NID_PAGES)
1441 break;
1444 /* go to the next free nat pages to find free nids abundantly */
1445 nm_i->next_scan_nid = nid;
1447 /* find free nids from current sum_pages */
1448 mutex_lock(&curseg->curseg_mutex);
1449 for (i = 0; i < nats_in_cursum(sum); i++) {
1450 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1451 nid = le32_to_cpu(nid_in_journal(sum, i));
1452 if (addr == NULL_ADDR)
1453 add_free_nid(sbi, nid, true);
1454 else
1455 remove_free_nid(nm_i, nid);
1457 mutex_unlock(&curseg->curseg_mutex);
1461 * If this function returns success, caller can obtain a new nid
1462 * from second parameter of this function.
1463 * The returned nid could be used ino as well as nid when inode is created.
1465 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1467 struct f2fs_nm_info *nm_i = NM_I(sbi);
1468 struct free_nid *i = NULL;
1469 retry:
1470 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1471 return false;
1473 spin_lock(&nm_i->free_nid_list_lock);
1475 /* We should not use stale free nids created by build_free_nids */
1476 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1477 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1478 list_for_each_entry(i, &nm_i->free_nid_list, list)
1479 if (i->state == NID_NEW)
1480 break;
1482 f2fs_bug_on(i->state != NID_NEW);
1483 *nid = i->nid;
1484 i->state = NID_ALLOC;
1485 nm_i->fcnt--;
1486 spin_unlock(&nm_i->free_nid_list_lock);
1487 return true;
1489 spin_unlock(&nm_i->free_nid_list_lock);
1491 /* Let's scan nat pages and its caches to get free nids */
1492 mutex_lock(&nm_i->build_lock);
1493 build_free_nids(sbi);
1494 mutex_unlock(&nm_i->build_lock);
1495 goto retry;
1499 * alloc_nid() should be called prior to this function.
1501 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1503 struct f2fs_nm_info *nm_i = NM_I(sbi);
1504 struct free_nid *i;
1506 spin_lock(&nm_i->free_nid_list_lock);
1507 i = __lookup_free_nid_list(nm_i, nid);
1508 f2fs_bug_on(!i || i->state != NID_ALLOC);
1509 __del_from_free_nid_list(nm_i, i);
1510 spin_unlock(&nm_i->free_nid_list_lock);
1512 kmem_cache_free(free_nid_slab, i);
1516 * alloc_nid() should be called prior to this function.
1518 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1520 struct f2fs_nm_info *nm_i = NM_I(sbi);
1521 struct free_nid *i;
1522 bool need_free = false;
1524 if (!nid)
1525 return;
1527 spin_lock(&nm_i->free_nid_list_lock);
1528 i = __lookup_free_nid_list(nm_i, nid);
1529 f2fs_bug_on(!i || i->state != NID_ALLOC);
1530 if (!available_free_memory(sbi, FREE_NIDS)) {
1531 __del_from_free_nid_list(nm_i, i);
1532 need_free = true;
1533 } else {
1534 i->state = NID_NEW;
1535 nm_i->fcnt++;
1537 spin_unlock(&nm_i->free_nid_list_lock);
1539 if (need_free)
1540 kmem_cache_free(free_nid_slab, i);
1543 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1544 struct f2fs_summary *sum, struct node_info *ni,
1545 block_t new_blkaddr)
1547 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1548 set_node_addr(sbi, ni, new_blkaddr, false);
1549 clear_node_page_dirty(page);
1552 void recover_inline_xattr(struct inode *inode, struct page *page)
1554 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1555 void *src_addr, *dst_addr;
1556 size_t inline_size;
1557 struct page *ipage;
1558 struct f2fs_inode *ri;
1560 if (!f2fs_has_inline_xattr(inode))
1561 return;
1563 if (!IS_INODE(page))
1564 return;
1566 ri = F2FS_INODE(page);
1567 if (!(ri->i_inline & F2FS_INLINE_XATTR))
1568 return;
1570 ipage = get_node_page(sbi, inode->i_ino);
1571 f2fs_bug_on(IS_ERR(ipage));
1573 dst_addr = inline_xattr_addr(ipage);
1574 src_addr = inline_xattr_addr(page);
1575 inline_size = inline_xattr_size(inode);
1577 f2fs_wait_on_page_writeback(ipage, NODE);
1578 memcpy(dst_addr, src_addr, inline_size);
1580 update_inode(inode, ipage);
1581 f2fs_put_page(ipage, 1);
1584 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1586 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1587 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1588 nid_t new_xnid = nid_of_node(page);
1589 struct node_info ni;
1591 if (!f2fs_has_xattr_block(ofs_of_node(page)))
1592 return false;
1594 /* 1: invalidate the previous xattr nid */
1595 if (!prev_xnid)
1596 goto recover_xnid;
1598 /* Deallocate node address */
1599 get_node_info(sbi, prev_xnid, &ni);
1600 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1601 invalidate_blocks(sbi, ni.blk_addr);
1602 dec_valid_node_count(sbi, inode);
1603 set_node_addr(sbi, &ni, NULL_ADDR, false);
1605 recover_xnid:
1606 /* 2: allocate new xattr nid */
1607 if (unlikely(!inc_valid_node_count(sbi, inode)))
1608 f2fs_bug_on(1);
1610 remove_free_nid(NM_I(sbi), new_xnid);
1611 get_node_info(sbi, new_xnid, &ni);
1612 ni.ino = inode->i_ino;
1613 set_node_addr(sbi, &ni, NEW_ADDR, false);
1614 F2FS_I(inode)->i_xattr_nid = new_xnid;
1616 /* 3: update xattr blkaddr */
1617 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1618 set_node_addr(sbi, &ni, blkaddr, false);
1620 update_inode_page(inode);
1621 return true;
1624 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1626 struct f2fs_inode *src, *dst;
1627 nid_t ino = ino_of_node(page);
1628 struct node_info old_ni, new_ni;
1629 struct page *ipage;
1631 get_node_info(sbi, ino, &old_ni);
1633 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1634 return -EINVAL;
1636 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1637 if (!ipage)
1638 return -ENOMEM;
1640 /* Should not use this inode from free nid list */
1641 remove_free_nid(NM_I(sbi), ino);
1643 SetPageUptodate(ipage);
1644 fill_node_footer(ipage, ino, ino, 0, true);
1646 src = F2FS_INODE(page);
1647 dst = F2FS_INODE(ipage);
1649 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1650 dst->i_size = 0;
1651 dst->i_blocks = cpu_to_le64(1);
1652 dst->i_links = cpu_to_le32(1);
1653 dst->i_xattr_nid = 0;
1655 new_ni = old_ni;
1656 new_ni.ino = ino;
1658 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1659 WARN_ON(1);
1660 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1661 inc_valid_inode_count(sbi);
1662 f2fs_put_page(ipage, 1);
1663 return 0;
1667 * ra_sum_pages() merge contiguous pages into one bio and submit.
1668 * these pre-readed pages are alloced in bd_inode's mapping tree.
1670 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1671 int start, int nrpages)
1673 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1674 struct address_space *mapping = inode->i_mapping;
1675 int i, page_idx = start;
1676 struct f2fs_io_info fio = {
1677 .type = META,
1678 .rw = READ_SYNC | REQ_META | REQ_PRIO
1681 for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1682 /* alloc page in bd_inode for reading node summary info */
1683 pages[i] = grab_cache_page(mapping, page_idx);
1684 if (!pages[i])
1685 break;
1686 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1689 f2fs_submit_merged_bio(sbi, META, READ);
1690 return i;
1693 int restore_node_summary(struct f2fs_sb_info *sbi,
1694 unsigned int segno, struct f2fs_summary_block *sum)
1696 struct f2fs_node *rn;
1697 struct f2fs_summary *sum_entry;
1698 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1699 block_t addr;
1700 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1701 struct page *pages[bio_blocks];
1702 int i, idx, last_offset, nrpages, err = 0;
1704 /* scan the node segment */
1705 last_offset = sbi->blocks_per_seg;
1706 addr = START_BLOCK(sbi, segno);
1707 sum_entry = &sum->entries[0];
1709 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1710 nrpages = min(last_offset - i, bio_blocks);
1712 /* read ahead node pages */
1713 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1714 if (!nrpages)
1715 return -ENOMEM;
1717 for (idx = 0; idx < nrpages; idx++) {
1718 if (err)
1719 goto skip;
1721 lock_page(pages[idx]);
1722 if (unlikely(!PageUptodate(pages[idx]))) {
1723 err = -EIO;
1724 } else {
1725 rn = F2FS_NODE(pages[idx]);
1726 sum_entry->nid = rn->footer.nid;
1727 sum_entry->version = 0;
1728 sum_entry->ofs_in_node = 0;
1729 sum_entry++;
1731 unlock_page(pages[idx]);
1732 skip:
1733 page_cache_release(pages[idx]);
1736 invalidate_mapping_pages(inode->i_mapping, addr,
1737 addr + nrpages);
1739 return err;
1742 static struct nat_entry_set *grab_nat_entry_set(void)
1744 struct nat_entry_set *nes =
1745 f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
1747 nes->entry_cnt = 0;
1748 INIT_LIST_HEAD(&nes->set_list);
1749 INIT_LIST_HEAD(&nes->entry_list);
1750 return nes;
1753 static void release_nat_entry_set(struct nat_entry_set *nes,
1754 struct f2fs_nm_info *nm_i)
1756 f2fs_bug_on(!list_empty(&nes->entry_list));
1758 nm_i->dirty_nat_cnt -= nes->entry_cnt;
1759 list_del(&nes->set_list);
1760 kmem_cache_free(nat_entry_set_slab, nes);
1763 static void adjust_nat_entry_set(struct nat_entry_set *nes,
1764 struct list_head *head)
1766 struct nat_entry_set *next = nes;
1768 if (list_is_last(&nes->set_list, head))
1769 return;
1771 list_for_each_entry_continue(next, head, set_list)
1772 if (nes->entry_cnt <= next->entry_cnt)
1773 break;
1775 list_move_tail(&nes->set_list, &next->set_list);
1778 static void add_nat_entry(struct nat_entry *ne, struct list_head *head)
1780 struct nat_entry_set *nes;
1781 nid_t start_nid = START_NID(ne->ni.nid);
1783 list_for_each_entry(nes, head, set_list) {
1784 if (nes->start_nid == start_nid) {
1785 list_move_tail(&ne->list, &nes->entry_list);
1786 nes->entry_cnt++;
1787 adjust_nat_entry_set(nes, head);
1788 return;
1792 nes = grab_nat_entry_set();
1794 nes->start_nid = start_nid;
1795 list_move_tail(&ne->list, &nes->entry_list);
1796 nes->entry_cnt++;
1797 list_add(&nes->set_list, head);
1800 static void merge_nats_in_set(struct f2fs_sb_info *sbi)
1802 struct f2fs_nm_info *nm_i = NM_I(sbi);
1803 struct list_head *dirty_list = &nm_i->dirty_nat_entries;
1804 struct list_head *set_list = &nm_i->nat_entry_set;
1805 struct nat_entry *ne, *tmp;
1807 write_lock(&nm_i->nat_tree_lock);
1808 list_for_each_entry_safe(ne, tmp, dirty_list, list) {
1809 if (nat_get_blkaddr(ne) == NEW_ADDR)
1810 continue;
1811 add_nat_entry(ne, set_list);
1812 nm_i->dirty_nat_cnt++;
1814 write_unlock(&nm_i->nat_tree_lock);
1817 static bool __has_cursum_space(struct f2fs_summary_block *sum, int size)
1819 if (nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES)
1820 return true;
1821 else
1822 return false;
1825 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1827 struct f2fs_nm_info *nm_i = NM_I(sbi);
1828 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1829 struct f2fs_summary_block *sum = curseg->sum_blk;
1830 int i;
1832 mutex_lock(&curseg->curseg_mutex);
1833 for (i = 0; i < nats_in_cursum(sum); i++) {
1834 struct nat_entry *ne;
1835 struct f2fs_nat_entry raw_ne;
1836 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1838 raw_ne = nat_in_journal(sum, i);
1839 retry:
1840 write_lock(&nm_i->nat_tree_lock);
1841 ne = __lookup_nat_cache(nm_i, nid);
1842 if (ne)
1843 goto found;
1845 ne = grab_nat_entry(nm_i, nid);
1846 if (!ne) {
1847 write_unlock(&nm_i->nat_tree_lock);
1848 goto retry;
1850 node_info_from_raw_nat(&ne->ni, &raw_ne);
1851 found:
1852 __set_nat_cache_dirty(nm_i, ne);
1853 write_unlock(&nm_i->nat_tree_lock);
1855 update_nats_in_cursum(sum, -i);
1856 mutex_unlock(&curseg->curseg_mutex);
1860 * This function is called during the checkpointing process.
1862 void flush_nat_entries(struct f2fs_sb_info *sbi)
1864 struct f2fs_nm_info *nm_i = NM_I(sbi);
1865 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1866 struct f2fs_summary_block *sum = curseg->sum_blk;
1867 struct nat_entry_set *nes, *tmp;
1868 struct list_head *head = &nm_i->nat_entry_set;
1869 bool to_journal = true;
1871 /* merge nat entries of dirty list to nat entry set temporarily */
1872 merge_nats_in_set(sbi);
1875 * if there are no enough space in journal to store dirty nat
1876 * entries, remove all entries from journal and merge them
1877 * into nat entry set.
1879 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt)) {
1880 remove_nats_in_journal(sbi);
1883 * merge nat entries of dirty list to nat entry set temporarily
1885 merge_nats_in_set(sbi);
1888 if (!nm_i->dirty_nat_cnt)
1889 return;
1892 * there are two steps to flush nat entries:
1893 * #1, flush nat entries to journal in current hot data summary block.
1894 * #2, flush nat entries to nat page.
1896 list_for_each_entry_safe(nes, tmp, head, set_list) {
1897 struct f2fs_nat_block *nat_blk;
1898 struct nat_entry *ne, *cur;
1899 struct page *page;
1900 nid_t start_nid = nes->start_nid;
1902 if (to_journal && !__has_cursum_space(sum, nes->entry_cnt))
1903 to_journal = false;
1905 if (to_journal) {
1906 mutex_lock(&curseg->curseg_mutex);
1907 } else {
1908 page = get_next_nat_page(sbi, start_nid);
1909 nat_blk = page_address(page);
1910 f2fs_bug_on(!nat_blk);
1913 /* flush dirty nats in nat entry set */
1914 list_for_each_entry_safe(ne, cur, &nes->entry_list, list) {
1915 struct f2fs_nat_entry *raw_ne;
1916 nid_t nid = nat_get_nid(ne);
1917 int offset;
1919 if (to_journal) {
1920 offset = lookup_journal_in_cursum(sum,
1921 NAT_JOURNAL, nid, 1);
1922 f2fs_bug_on(offset < 0);
1923 raw_ne = &nat_in_journal(sum, offset);
1924 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1925 } else {
1926 raw_ne = &nat_blk->entries[nid - start_nid];
1928 raw_nat_from_node_info(raw_ne, &ne->ni);
1930 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1931 add_free_nid(sbi, nid, false) <= 0) {
1932 write_lock(&nm_i->nat_tree_lock);
1933 __del_from_nat_cache(nm_i, ne);
1934 write_unlock(&nm_i->nat_tree_lock);
1935 } else {
1936 write_lock(&nm_i->nat_tree_lock);
1937 __clear_nat_cache_dirty(nm_i, ne);
1938 write_unlock(&nm_i->nat_tree_lock);
1942 if (to_journal)
1943 mutex_unlock(&curseg->curseg_mutex);
1944 else
1945 f2fs_put_page(page, 1);
1947 release_nat_entry_set(nes, nm_i);
1950 f2fs_bug_on(!list_empty(head));
1951 f2fs_bug_on(nm_i->dirty_nat_cnt);
1954 static int init_node_manager(struct f2fs_sb_info *sbi)
1956 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1957 struct f2fs_nm_info *nm_i = NM_I(sbi);
1958 unsigned char *version_bitmap;
1959 unsigned int nat_segs, nat_blocks;
1961 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1963 /* segment_count_nat includes pair segment so divide to 2. */
1964 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1965 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1967 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1969 /* not used nids: 0, node, meta, (and root counted as valid node) */
1970 nm_i->available_nids = nm_i->max_nid - 3;
1971 nm_i->fcnt = 0;
1972 nm_i->nat_cnt = 0;
1973 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1975 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1976 INIT_LIST_HEAD(&nm_i->free_nid_list);
1977 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1978 INIT_LIST_HEAD(&nm_i->nat_entries);
1979 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1980 INIT_LIST_HEAD(&nm_i->nat_entry_set);
1982 mutex_init(&nm_i->build_lock);
1983 spin_lock_init(&nm_i->free_nid_list_lock);
1984 rwlock_init(&nm_i->nat_tree_lock);
1986 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1987 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1988 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1989 if (!version_bitmap)
1990 return -EFAULT;
1992 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1993 GFP_KERNEL);
1994 if (!nm_i->nat_bitmap)
1995 return -ENOMEM;
1996 return 0;
1999 int build_node_manager(struct f2fs_sb_info *sbi)
2001 int err;
2003 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2004 if (!sbi->nm_info)
2005 return -ENOMEM;
2007 err = init_node_manager(sbi);
2008 if (err)
2009 return err;
2011 build_free_nids(sbi);
2012 return 0;
2015 void destroy_node_manager(struct f2fs_sb_info *sbi)
2017 struct f2fs_nm_info *nm_i = NM_I(sbi);
2018 struct free_nid *i, *next_i;
2019 struct nat_entry *natvec[NATVEC_SIZE];
2020 nid_t nid = 0;
2021 unsigned int found;
2023 if (!nm_i)
2024 return;
2026 /* destroy free nid list */
2027 spin_lock(&nm_i->free_nid_list_lock);
2028 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2029 f2fs_bug_on(i->state == NID_ALLOC);
2030 __del_from_free_nid_list(nm_i, i);
2031 nm_i->fcnt--;
2032 spin_unlock(&nm_i->free_nid_list_lock);
2033 kmem_cache_free(free_nid_slab, i);
2034 spin_lock(&nm_i->free_nid_list_lock);
2036 f2fs_bug_on(nm_i->fcnt);
2037 spin_unlock(&nm_i->free_nid_list_lock);
2039 /* destroy nat cache */
2040 write_lock(&nm_i->nat_tree_lock);
2041 while ((found = __gang_lookup_nat_cache(nm_i,
2042 nid, NATVEC_SIZE, natvec))) {
2043 unsigned idx;
2044 nid = nat_get_nid(natvec[found - 1]) + 1;
2045 for (idx = 0; idx < found; idx++)
2046 __del_from_nat_cache(nm_i, natvec[idx]);
2048 f2fs_bug_on(nm_i->nat_cnt);
2049 write_unlock(&nm_i->nat_tree_lock);
2051 kfree(nm_i->nat_bitmap);
2052 sbi->nm_info = NULL;
2053 kfree(nm_i);
2056 int __init create_node_manager_caches(void)
2058 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2059 sizeof(struct nat_entry));
2060 if (!nat_entry_slab)
2061 goto fail;
2063 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2064 sizeof(struct free_nid));
2065 if (!free_nid_slab)
2066 goto destory_nat_entry;
2068 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2069 sizeof(struct nat_entry_set));
2070 if (!nat_entry_set_slab)
2071 goto destory_free_nid;
2072 return 0;
2074 destory_free_nid:
2075 kmem_cache_destroy(free_nid_slab);
2076 destory_nat_entry:
2077 kmem_cache_destroy(nat_entry_slab);
2078 fail:
2079 return -ENOMEM;
2082 void destroy_node_manager_caches(void)
2084 kmem_cache_destroy(nat_entry_set_slab);
2085 kmem_cache_destroy(free_nid_slab);
2086 kmem_cache_destroy(nat_entry_slab);