fs/epoll: simplify ep_send_events_proc() ready-list loop
[linux/fpc-iii.git] / fs / eventpoll.c
blobaaf614ee08e4f1275f44b1cc15ff8c4d8c3af1ba
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
48 * LOCKING:
49 * There are three level of locking required by epoll :
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->wq.lock (spinlock)
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->wq.lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->wq.lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
108 #define EP_UNACTIVE_PTR ((void *) -1L)
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
112 struct epoll_filefd {
113 struct file *file;
114 int fd;
115 } __packed;
118 * Structure used to track possible nested calls, for too deep recursions
119 * and loop cycles.
121 struct nested_call_node {
122 struct list_head llink;
123 void *cookie;
124 void *ctx;
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
131 struct nested_calls {
132 struct list_head tasks_call_list;
133 spinlock_t lock;
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
142 struct epitem {
143 union {
144 /* RB tree node links this structure to the eventpoll RB tree */
145 struct rb_node rbn;
146 /* Used to free the struct epitem */
147 struct rcu_head rcu;
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink;
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
157 struct epitem *next;
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd;
162 /* Number of active wait queue attached to poll operations */
163 int nwait;
165 /* List containing poll wait queues */
166 struct list_head pwqlist;
168 /* The "container" of this item */
169 struct eventpoll *ep;
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink;
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu *ws;
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event;
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
184 * interface.
186 * Access to it is protected by the lock inside wq.
188 struct eventpoll {
190 * This mutex is used to ensure that files are not removed
191 * while epoll is using them. This is held during the event
192 * collection loop, the file cleanup path, the epoll file exit
193 * code and the ctl operations.
195 struct mutex mtx;
197 /* Wait queue used by sys_epoll_wait() */
198 wait_queue_head_t wq;
200 /* Wait queue used by file->poll() */
201 wait_queue_head_t poll_wait;
203 /* List of ready file descriptors */
204 struct list_head rdllist;
206 /* RB tree root used to store monitored fd structs */
207 struct rb_root_cached rbr;
210 * This is a single linked list that chains all the "struct epitem" that
211 * happened while transferring ready events to userspace w/out
212 * holding ->wq.lock.
214 struct epitem *ovflist;
216 /* wakeup_source used when ep_scan_ready_list is running */
217 struct wakeup_source *ws;
219 /* The user that created the eventpoll descriptor */
220 struct user_struct *user;
222 struct file *file;
224 /* used to optimize loop detection check */
225 int visited;
226 struct list_head visited_list_link;
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id;
231 #endif
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 /* List header used to link this structure to the "struct epitem" */
237 struct list_head llink;
239 /* The "base" pointer is set to the container "struct epitem" */
240 struct epitem *base;
243 * Wait queue item that will be linked to the target file wait
244 * queue head.
246 wait_queue_entry_t wait;
248 /* The wait queue head that linked the "wait" wait queue item */
249 wait_queue_head_t *whead;
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 poll_table pt;
255 struct epitem *epi;
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 int maxevents;
261 struct epoll_event __user *events;
262 int res;
266 * Configuration options available inside /proc/sys/fs/epoll/
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 static DEFINE_MUTEX(epmutex);
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
289 * List of files with newly added links, where we may need to limit the number
290 * of emanating paths. Protected by the epmutex.
292 static LIST_HEAD(tfile_check_list);
294 #ifdef CONFIG_SYSCTL
296 #include <linux/sysctl.h>
298 static long zero;
299 static long long_max = LONG_MAX;
301 struct ctl_table epoll_table[] = {
303 .procname = "max_user_watches",
304 .data = &max_user_watches,
305 .maxlen = sizeof(max_user_watches),
306 .mode = 0644,
307 .proc_handler = proc_doulongvec_minmax,
308 .extra1 = &zero,
309 .extra2 = &long_max,
313 #endif /* CONFIG_SYSCTL */
315 static const struct file_operations eventpoll_fops;
317 static inline int is_file_epoll(struct file *f)
319 return f->f_op == &eventpoll_fops;
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 struct file *file, int fd)
326 ffd->file = file;
327 ffd->fd = fd;
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 struct epoll_filefd *p2)
334 return (p1->file > p2->file ? +1:
335 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct epitem *epi)
341 return !list_empty(&epi->rdllink);
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
346 return container_of(p, struct eppoll_entry, wait);
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
352 return container_of(p, struct eppoll_entry, wait)->base;
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
358 return container_of(p, struct ep_pqueue, pt)->epi;
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
364 return op != EPOLL_CTL_DEL;
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
370 INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 spin_lock_init(&ncalls->lock);
375 * ep_events_available - Checks if ready events might be available.
377 * @ep: Pointer to the eventpoll context.
379 * Returns: Returns a value different than zero if ready events are available,
380 * or zero otherwise.
382 static inline int ep_events_available(struct eventpoll *ep)
384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
387 #ifdef CONFIG_NET_RX_BUSY_POLL
388 static bool ep_busy_loop_end(void *p, unsigned long start_time)
390 struct eventpoll *ep = p;
392 return ep_events_available(ep) || busy_loop_timeout(start_time);
396 * Busy poll if globally on and supporting sockets found && no events,
397 * busy loop will return if need_resched or ep_events_available.
399 * we must do our busy polling with irqs enabled
401 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
403 unsigned int napi_id = READ_ONCE(ep->napi_id);
405 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
406 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
409 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
411 if (ep->napi_id)
412 ep->napi_id = 0;
416 * Set epoll busy poll NAPI ID from sk.
418 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
420 struct eventpoll *ep;
421 unsigned int napi_id;
422 struct socket *sock;
423 struct sock *sk;
424 int err;
426 if (!net_busy_loop_on())
427 return;
429 sock = sock_from_file(epi->ffd.file, &err);
430 if (!sock)
431 return;
433 sk = sock->sk;
434 if (!sk)
435 return;
437 napi_id = READ_ONCE(sk->sk_napi_id);
438 ep = epi->ep;
440 /* Non-NAPI IDs can be rejected
441 * or
442 * Nothing to do if we already have this ID
444 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
445 return;
447 /* record NAPI ID for use in next busy poll */
448 ep->napi_id = napi_id;
451 #else
453 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
457 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
465 #endif /* CONFIG_NET_RX_BUSY_POLL */
468 * ep_call_nested - Perform a bound (possibly) nested call, by checking
469 * that the recursion limit is not exceeded, and that
470 * the same nested call (by the meaning of same cookie) is
471 * no re-entered.
473 * @ncalls: Pointer to the nested_calls structure to be used for this call.
474 * @nproc: Nested call core function pointer.
475 * @priv: Opaque data to be passed to the @nproc callback.
476 * @cookie: Cookie to be used to identify this nested call.
477 * @ctx: This instance context.
479 * Returns: Returns the code returned by the @nproc callback, or -1 if
480 * the maximum recursion limit has been exceeded.
482 static int ep_call_nested(struct nested_calls *ncalls,
483 int (*nproc)(void *, void *, int), void *priv,
484 void *cookie, void *ctx)
486 int error, call_nests = 0;
487 unsigned long flags;
488 struct list_head *lsthead = &ncalls->tasks_call_list;
489 struct nested_call_node *tncur;
490 struct nested_call_node tnode;
492 spin_lock_irqsave(&ncalls->lock, flags);
495 * Try to see if the current task is already inside this wakeup call.
496 * We use a list here, since the population inside this set is always
497 * very much limited.
499 list_for_each_entry(tncur, lsthead, llink) {
500 if (tncur->ctx == ctx &&
501 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
503 * Ops ... loop detected or maximum nest level reached.
504 * We abort this wake by breaking the cycle itself.
506 error = -1;
507 goto out_unlock;
511 /* Add the current task and cookie to the list */
512 tnode.ctx = ctx;
513 tnode.cookie = cookie;
514 list_add(&tnode.llink, lsthead);
516 spin_unlock_irqrestore(&ncalls->lock, flags);
518 /* Call the nested function */
519 error = (*nproc)(priv, cookie, call_nests);
521 /* Remove the current task from the list */
522 spin_lock_irqsave(&ncalls->lock, flags);
523 list_del(&tnode.llink);
524 out_unlock:
525 spin_unlock_irqrestore(&ncalls->lock, flags);
527 return error;
531 * As described in commit 0ccf831cb lockdep: annotate epoll
532 * the use of wait queues used by epoll is done in a very controlled
533 * manner. Wake ups can nest inside each other, but are never done
534 * with the same locking. For example:
536 * dfd = socket(...);
537 * efd1 = epoll_create();
538 * efd2 = epoll_create();
539 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
540 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
542 * When a packet arrives to the device underneath "dfd", the net code will
543 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
544 * callback wakeup entry on that queue, and the wake_up() performed by the
545 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
546 * (efd1) notices that it may have some event ready, so it needs to wake up
547 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
548 * that ends up in another wake_up(), after having checked about the
549 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
550 * avoid stack blasting.
552 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
553 * this special case of epoll.
555 #ifdef CONFIG_DEBUG_LOCK_ALLOC
557 static struct nested_calls poll_safewake_ncalls;
559 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
561 unsigned long flags;
562 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
564 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
565 wake_up_locked_poll(wqueue, EPOLLIN);
566 spin_unlock_irqrestore(&wqueue->lock, flags);
568 return 0;
571 static void ep_poll_safewake(wait_queue_head_t *wq)
573 int this_cpu = get_cpu();
575 ep_call_nested(&poll_safewake_ncalls,
576 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
578 put_cpu();
581 #else
583 static void ep_poll_safewake(wait_queue_head_t *wq)
585 wake_up_poll(wq, EPOLLIN);
588 #endif
590 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
592 wait_queue_head_t *whead;
594 rcu_read_lock();
596 * If it is cleared by POLLFREE, it should be rcu-safe.
597 * If we read NULL we need a barrier paired with
598 * smp_store_release() in ep_poll_callback(), otherwise
599 * we rely on whead->lock.
601 whead = smp_load_acquire(&pwq->whead);
602 if (whead)
603 remove_wait_queue(whead, &pwq->wait);
604 rcu_read_unlock();
608 * This function unregisters poll callbacks from the associated file
609 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
610 * ep_free).
612 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
614 struct list_head *lsthead = &epi->pwqlist;
615 struct eppoll_entry *pwq;
617 while (!list_empty(lsthead)) {
618 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
620 list_del(&pwq->llink);
621 ep_remove_wait_queue(pwq);
622 kmem_cache_free(pwq_cache, pwq);
626 /* call only when ep->mtx is held */
627 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
629 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
632 /* call only when ep->mtx is held */
633 static inline void ep_pm_stay_awake(struct epitem *epi)
635 struct wakeup_source *ws = ep_wakeup_source(epi);
637 if (ws)
638 __pm_stay_awake(ws);
641 static inline bool ep_has_wakeup_source(struct epitem *epi)
643 return rcu_access_pointer(epi->ws) ? true : false;
646 /* call when ep->mtx cannot be held (ep_poll_callback) */
647 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
649 struct wakeup_source *ws;
651 rcu_read_lock();
652 ws = rcu_dereference(epi->ws);
653 if (ws)
654 __pm_stay_awake(ws);
655 rcu_read_unlock();
659 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
660 * the scan code, to call f_op->poll(). Also allows for
661 * O(NumReady) performance.
663 * @ep: Pointer to the epoll private data structure.
664 * @sproc: Pointer to the scan callback.
665 * @priv: Private opaque data passed to the @sproc callback.
666 * @depth: The current depth of recursive f_op->poll calls.
667 * @ep_locked: caller already holds ep->mtx
669 * Returns: The same integer error code returned by the @sproc callback.
671 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
672 __poll_t (*sproc)(struct eventpoll *,
673 struct list_head *, void *),
674 void *priv, int depth, bool ep_locked)
676 __poll_t res;
677 int pwake = 0;
678 struct epitem *epi, *nepi;
679 LIST_HEAD(txlist);
681 lockdep_assert_irqs_enabled();
684 * We need to lock this because we could be hit by
685 * eventpoll_release_file() and epoll_ctl().
688 if (!ep_locked)
689 mutex_lock_nested(&ep->mtx, depth);
692 * Steal the ready list, and re-init the original one to the
693 * empty list. Also, set ep->ovflist to NULL so that events
694 * happening while looping w/out locks, are not lost. We cannot
695 * have the poll callback to queue directly on ep->rdllist,
696 * because we want the "sproc" callback to be able to do it
697 * in a lockless way.
699 spin_lock_irq(&ep->wq.lock);
700 list_splice_init(&ep->rdllist, &txlist);
701 ep->ovflist = NULL;
702 spin_unlock_irq(&ep->wq.lock);
705 * Now call the callback function.
707 res = (*sproc)(ep, &txlist, priv);
709 spin_lock_irq(&ep->wq.lock);
711 * During the time we spent inside the "sproc" callback, some
712 * other events might have been queued by the poll callback.
713 * We re-insert them inside the main ready-list here.
715 for (nepi = ep->ovflist; (epi = nepi) != NULL;
716 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
718 * We need to check if the item is already in the list.
719 * During the "sproc" callback execution time, items are
720 * queued into ->ovflist but the "txlist" might already
721 * contain them, and the list_splice() below takes care of them.
723 if (!ep_is_linked(epi)) {
724 list_add_tail(&epi->rdllink, &ep->rdllist);
725 ep_pm_stay_awake(epi);
729 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
730 * releasing the lock, events will be queued in the normal way inside
731 * ep->rdllist.
733 ep->ovflist = EP_UNACTIVE_PTR;
736 * Quickly re-inject items left on "txlist".
738 list_splice(&txlist, &ep->rdllist);
739 __pm_relax(ep->ws);
741 if (!list_empty(&ep->rdllist)) {
743 * Wake up (if active) both the eventpoll wait list and
744 * the ->poll() wait list (delayed after we release the lock).
746 if (waitqueue_active(&ep->wq))
747 wake_up_locked(&ep->wq);
748 if (waitqueue_active(&ep->poll_wait))
749 pwake++;
751 spin_unlock_irq(&ep->wq.lock);
753 if (!ep_locked)
754 mutex_unlock(&ep->mtx);
756 /* We have to call this outside the lock */
757 if (pwake)
758 ep_poll_safewake(&ep->poll_wait);
760 return res;
763 static void epi_rcu_free(struct rcu_head *head)
765 struct epitem *epi = container_of(head, struct epitem, rcu);
766 kmem_cache_free(epi_cache, epi);
770 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
771 * all the associated resources. Must be called with "mtx" held.
773 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
775 struct file *file = epi->ffd.file;
777 lockdep_assert_irqs_enabled();
780 * Removes poll wait queue hooks.
782 ep_unregister_pollwait(ep, epi);
784 /* Remove the current item from the list of epoll hooks */
785 spin_lock(&file->f_lock);
786 list_del_rcu(&epi->fllink);
787 spin_unlock(&file->f_lock);
789 rb_erase_cached(&epi->rbn, &ep->rbr);
791 spin_lock_irq(&ep->wq.lock);
792 if (ep_is_linked(epi))
793 list_del_init(&epi->rdllink);
794 spin_unlock_irq(&ep->wq.lock);
796 wakeup_source_unregister(ep_wakeup_source(epi));
798 * At this point it is safe to free the eventpoll item. Use the union
799 * field epi->rcu, since we are trying to minimize the size of
800 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
801 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
802 * use of the rbn field.
804 call_rcu(&epi->rcu, epi_rcu_free);
806 atomic_long_dec(&ep->user->epoll_watches);
808 return 0;
811 static void ep_free(struct eventpoll *ep)
813 struct rb_node *rbp;
814 struct epitem *epi;
816 /* We need to release all tasks waiting for these file */
817 if (waitqueue_active(&ep->poll_wait))
818 ep_poll_safewake(&ep->poll_wait);
821 * We need to lock this because we could be hit by
822 * eventpoll_release_file() while we're freeing the "struct eventpoll".
823 * We do not need to hold "ep->mtx" here because the epoll file
824 * is on the way to be removed and no one has references to it
825 * anymore. The only hit might come from eventpoll_release_file() but
826 * holding "epmutex" is sufficient here.
828 mutex_lock(&epmutex);
831 * Walks through the whole tree by unregistering poll callbacks.
833 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
834 epi = rb_entry(rbp, struct epitem, rbn);
836 ep_unregister_pollwait(ep, epi);
837 cond_resched();
841 * Walks through the whole tree by freeing each "struct epitem". At this
842 * point we are sure no poll callbacks will be lingering around, and also by
843 * holding "epmutex" we can be sure that no file cleanup code will hit
844 * us during this operation. So we can avoid the lock on "ep->wq.lock".
845 * We do not need to lock ep->mtx, either, we only do it to prevent
846 * a lockdep warning.
848 mutex_lock(&ep->mtx);
849 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
850 epi = rb_entry(rbp, struct epitem, rbn);
851 ep_remove(ep, epi);
852 cond_resched();
854 mutex_unlock(&ep->mtx);
856 mutex_unlock(&epmutex);
857 mutex_destroy(&ep->mtx);
858 free_uid(ep->user);
859 wakeup_source_unregister(ep->ws);
860 kfree(ep);
863 static int ep_eventpoll_release(struct inode *inode, struct file *file)
865 struct eventpoll *ep = file->private_data;
867 if (ep)
868 ep_free(ep);
870 return 0;
873 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
874 void *priv);
875 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
876 poll_table *pt);
879 * Differs from ep_eventpoll_poll() in that internal callers already have
880 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
881 * is correctly annotated.
883 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
884 int depth)
886 struct eventpoll *ep;
887 bool locked;
889 pt->_key = epi->event.events;
890 if (!is_file_epoll(epi->ffd.file))
891 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
893 ep = epi->ffd.file->private_data;
894 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
895 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
897 return ep_scan_ready_list(epi->ffd.file->private_data,
898 ep_read_events_proc, &depth, depth,
899 locked) & epi->event.events;
902 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
903 void *priv)
905 struct epitem *epi, *tmp;
906 poll_table pt;
907 int depth = *(int *)priv;
909 init_poll_funcptr(&pt, NULL);
910 depth++;
912 list_for_each_entry_safe(epi, tmp, head, rdllink) {
913 if (ep_item_poll(epi, &pt, depth)) {
914 return EPOLLIN | EPOLLRDNORM;
915 } else {
917 * Item has been dropped into the ready list by the poll
918 * callback, but it's not actually ready, as far as
919 * caller requested events goes. We can remove it here.
921 __pm_relax(ep_wakeup_source(epi));
922 list_del_init(&epi->rdllink);
926 return 0;
929 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
931 struct eventpoll *ep = file->private_data;
932 int depth = 0;
934 /* Insert inside our poll wait queue */
935 poll_wait(file, &ep->poll_wait, wait);
938 * Proceed to find out if wanted events are really available inside
939 * the ready list.
941 return ep_scan_ready_list(ep, ep_read_events_proc,
942 &depth, depth, false);
945 #ifdef CONFIG_PROC_FS
946 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
948 struct eventpoll *ep = f->private_data;
949 struct rb_node *rbp;
951 mutex_lock(&ep->mtx);
952 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
953 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
954 struct inode *inode = file_inode(epi->ffd.file);
956 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
957 " pos:%lli ino:%lx sdev:%x\n",
958 epi->ffd.fd, epi->event.events,
959 (long long)epi->event.data,
960 (long long)epi->ffd.file->f_pos,
961 inode->i_ino, inode->i_sb->s_dev);
962 if (seq_has_overflowed(m))
963 break;
965 mutex_unlock(&ep->mtx);
967 #endif
969 /* File callbacks that implement the eventpoll file behaviour */
970 static const struct file_operations eventpoll_fops = {
971 #ifdef CONFIG_PROC_FS
972 .show_fdinfo = ep_show_fdinfo,
973 #endif
974 .release = ep_eventpoll_release,
975 .poll = ep_eventpoll_poll,
976 .llseek = noop_llseek,
980 * This is called from eventpoll_release() to unlink files from the eventpoll
981 * interface. We need to have this facility to cleanup correctly files that are
982 * closed without being removed from the eventpoll interface.
984 void eventpoll_release_file(struct file *file)
986 struct eventpoll *ep;
987 struct epitem *epi, *next;
990 * We don't want to get "file->f_lock" because it is not
991 * necessary. It is not necessary because we're in the "struct file"
992 * cleanup path, and this means that no one is using this file anymore.
993 * So, for example, epoll_ctl() cannot hit here since if we reach this
994 * point, the file counter already went to zero and fget() would fail.
995 * The only hit might come from ep_free() but by holding the mutex
996 * will correctly serialize the operation. We do need to acquire
997 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
998 * from anywhere but ep_free().
1000 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1002 mutex_lock(&epmutex);
1003 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1004 ep = epi->ep;
1005 mutex_lock_nested(&ep->mtx, 0);
1006 ep_remove(ep, epi);
1007 mutex_unlock(&ep->mtx);
1009 mutex_unlock(&epmutex);
1012 static int ep_alloc(struct eventpoll **pep)
1014 int error;
1015 struct user_struct *user;
1016 struct eventpoll *ep;
1018 user = get_current_user();
1019 error = -ENOMEM;
1020 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1021 if (unlikely(!ep))
1022 goto free_uid;
1024 mutex_init(&ep->mtx);
1025 init_waitqueue_head(&ep->wq);
1026 init_waitqueue_head(&ep->poll_wait);
1027 INIT_LIST_HEAD(&ep->rdllist);
1028 ep->rbr = RB_ROOT_CACHED;
1029 ep->ovflist = EP_UNACTIVE_PTR;
1030 ep->user = user;
1032 *pep = ep;
1034 return 0;
1036 free_uid:
1037 free_uid(user);
1038 return error;
1042 * Search the file inside the eventpoll tree. The RB tree operations
1043 * are protected by the "mtx" mutex, and ep_find() must be called with
1044 * "mtx" held.
1046 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1048 int kcmp;
1049 struct rb_node *rbp;
1050 struct epitem *epi, *epir = NULL;
1051 struct epoll_filefd ffd;
1053 ep_set_ffd(&ffd, file, fd);
1054 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1055 epi = rb_entry(rbp, struct epitem, rbn);
1056 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1057 if (kcmp > 0)
1058 rbp = rbp->rb_right;
1059 else if (kcmp < 0)
1060 rbp = rbp->rb_left;
1061 else {
1062 epir = epi;
1063 break;
1067 return epir;
1070 #ifdef CONFIG_CHECKPOINT_RESTORE
1071 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1073 struct rb_node *rbp;
1074 struct epitem *epi;
1076 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1077 epi = rb_entry(rbp, struct epitem, rbn);
1078 if (epi->ffd.fd == tfd) {
1079 if (toff == 0)
1080 return epi;
1081 else
1082 toff--;
1084 cond_resched();
1087 return NULL;
1090 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1091 unsigned long toff)
1093 struct file *file_raw;
1094 struct eventpoll *ep;
1095 struct epitem *epi;
1097 if (!is_file_epoll(file))
1098 return ERR_PTR(-EINVAL);
1100 ep = file->private_data;
1102 mutex_lock(&ep->mtx);
1103 epi = ep_find_tfd(ep, tfd, toff);
1104 if (epi)
1105 file_raw = epi->ffd.file;
1106 else
1107 file_raw = ERR_PTR(-ENOENT);
1108 mutex_unlock(&ep->mtx);
1110 return file_raw;
1112 #endif /* CONFIG_CHECKPOINT_RESTORE */
1115 * This is the callback that is passed to the wait queue wakeup
1116 * mechanism. It is called by the stored file descriptors when they
1117 * have events to report.
1119 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1121 int pwake = 0;
1122 unsigned long flags;
1123 struct epitem *epi = ep_item_from_wait(wait);
1124 struct eventpoll *ep = epi->ep;
1125 __poll_t pollflags = key_to_poll(key);
1126 int ewake = 0;
1128 spin_lock_irqsave(&ep->wq.lock, flags);
1130 ep_set_busy_poll_napi_id(epi);
1133 * If the event mask does not contain any poll(2) event, we consider the
1134 * descriptor to be disabled. This condition is likely the effect of the
1135 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1136 * until the next EPOLL_CTL_MOD will be issued.
1138 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1139 goto out_unlock;
1142 * Check the events coming with the callback. At this stage, not
1143 * every device reports the events in the "key" parameter of the
1144 * callback. We need to be able to handle both cases here, hence the
1145 * test for "key" != NULL before the event match test.
1147 if (pollflags && !(pollflags & epi->event.events))
1148 goto out_unlock;
1151 * If we are transferring events to userspace, we can hold no locks
1152 * (because we're accessing user memory, and because of linux f_op->poll()
1153 * semantics). All the events that happen during that period of time are
1154 * chained in ep->ovflist and requeued later on.
1156 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1157 if (epi->next == EP_UNACTIVE_PTR) {
1158 epi->next = ep->ovflist;
1159 ep->ovflist = epi;
1160 if (epi->ws) {
1162 * Activate ep->ws since epi->ws may get
1163 * deactivated at any time.
1165 __pm_stay_awake(ep->ws);
1169 goto out_unlock;
1172 /* If this file is already in the ready list we exit soon */
1173 if (!ep_is_linked(epi)) {
1174 list_add_tail(&epi->rdllink, &ep->rdllist);
1175 ep_pm_stay_awake_rcu(epi);
1179 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1180 * wait list.
1182 if (waitqueue_active(&ep->wq)) {
1183 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1184 !(pollflags & POLLFREE)) {
1185 switch (pollflags & EPOLLINOUT_BITS) {
1186 case EPOLLIN:
1187 if (epi->event.events & EPOLLIN)
1188 ewake = 1;
1189 break;
1190 case EPOLLOUT:
1191 if (epi->event.events & EPOLLOUT)
1192 ewake = 1;
1193 break;
1194 case 0:
1195 ewake = 1;
1196 break;
1199 wake_up_locked(&ep->wq);
1201 if (waitqueue_active(&ep->poll_wait))
1202 pwake++;
1204 out_unlock:
1205 spin_unlock_irqrestore(&ep->wq.lock, flags);
1207 /* We have to call this outside the lock */
1208 if (pwake)
1209 ep_poll_safewake(&ep->poll_wait);
1211 if (!(epi->event.events & EPOLLEXCLUSIVE))
1212 ewake = 1;
1214 if (pollflags & POLLFREE) {
1216 * If we race with ep_remove_wait_queue() it can miss
1217 * ->whead = NULL and do another remove_wait_queue() after
1218 * us, so we can't use __remove_wait_queue().
1220 list_del_init(&wait->entry);
1222 * ->whead != NULL protects us from the race with ep_free()
1223 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1224 * held by the caller. Once we nullify it, nothing protects
1225 * ep/epi or even wait.
1227 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1230 return ewake;
1234 * This is the callback that is used to add our wait queue to the
1235 * target file wakeup lists.
1237 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1238 poll_table *pt)
1240 struct epitem *epi = ep_item_from_epqueue(pt);
1241 struct eppoll_entry *pwq;
1243 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1244 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1245 pwq->whead = whead;
1246 pwq->base = epi;
1247 if (epi->event.events & EPOLLEXCLUSIVE)
1248 add_wait_queue_exclusive(whead, &pwq->wait);
1249 else
1250 add_wait_queue(whead, &pwq->wait);
1251 list_add_tail(&pwq->llink, &epi->pwqlist);
1252 epi->nwait++;
1253 } else {
1254 /* We have to signal that an error occurred */
1255 epi->nwait = -1;
1259 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1261 int kcmp;
1262 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1263 struct epitem *epic;
1264 bool leftmost = true;
1266 while (*p) {
1267 parent = *p;
1268 epic = rb_entry(parent, struct epitem, rbn);
1269 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1270 if (kcmp > 0) {
1271 p = &parent->rb_right;
1272 leftmost = false;
1273 } else
1274 p = &parent->rb_left;
1276 rb_link_node(&epi->rbn, parent, p);
1277 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1282 #define PATH_ARR_SIZE 5
1284 * These are the number paths of length 1 to 5, that we are allowing to emanate
1285 * from a single file of interest. For example, we allow 1000 paths of length
1286 * 1, to emanate from each file of interest. This essentially represents the
1287 * potential wakeup paths, which need to be limited in order to avoid massive
1288 * uncontrolled wakeup storms. The common use case should be a single ep which
1289 * is connected to n file sources. In this case each file source has 1 path
1290 * of length 1. Thus, the numbers below should be more than sufficient. These
1291 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1292 * and delete can't add additional paths. Protected by the epmutex.
1294 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1295 static int path_count[PATH_ARR_SIZE];
1297 static int path_count_inc(int nests)
1299 /* Allow an arbitrary number of depth 1 paths */
1300 if (nests == 0)
1301 return 0;
1303 if (++path_count[nests] > path_limits[nests])
1304 return -1;
1305 return 0;
1308 static void path_count_init(void)
1310 int i;
1312 for (i = 0; i < PATH_ARR_SIZE; i++)
1313 path_count[i] = 0;
1316 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1318 int error = 0;
1319 struct file *file = priv;
1320 struct file *child_file;
1321 struct epitem *epi;
1323 /* CTL_DEL can remove links here, but that can't increase our count */
1324 rcu_read_lock();
1325 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1326 child_file = epi->ep->file;
1327 if (is_file_epoll(child_file)) {
1328 if (list_empty(&child_file->f_ep_links)) {
1329 if (path_count_inc(call_nests)) {
1330 error = -1;
1331 break;
1333 } else {
1334 error = ep_call_nested(&poll_loop_ncalls,
1335 reverse_path_check_proc,
1336 child_file, child_file,
1337 current);
1339 if (error != 0)
1340 break;
1341 } else {
1342 printk(KERN_ERR "reverse_path_check_proc: "
1343 "file is not an ep!\n");
1346 rcu_read_unlock();
1347 return error;
1351 * reverse_path_check - The tfile_check_list is list of file *, which have
1352 * links that are proposed to be newly added. We need to
1353 * make sure that those added links don't add too many
1354 * paths such that we will spend all our time waking up
1355 * eventpoll objects.
1357 * Returns: Returns zero if the proposed links don't create too many paths,
1358 * -1 otherwise.
1360 static int reverse_path_check(void)
1362 int error = 0;
1363 struct file *current_file;
1365 /* let's call this for all tfiles */
1366 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1367 path_count_init();
1368 error = ep_call_nested(&poll_loop_ncalls,
1369 reverse_path_check_proc, current_file,
1370 current_file, current);
1371 if (error)
1372 break;
1374 return error;
1377 static int ep_create_wakeup_source(struct epitem *epi)
1379 const char *name;
1380 struct wakeup_source *ws;
1382 if (!epi->ep->ws) {
1383 epi->ep->ws = wakeup_source_register("eventpoll");
1384 if (!epi->ep->ws)
1385 return -ENOMEM;
1388 name = epi->ffd.file->f_path.dentry->d_name.name;
1389 ws = wakeup_source_register(name);
1391 if (!ws)
1392 return -ENOMEM;
1393 rcu_assign_pointer(epi->ws, ws);
1395 return 0;
1398 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1399 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1401 struct wakeup_source *ws = ep_wakeup_source(epi);
1403 RCU_INIT_POINTER(epi->ws, NULL);
1406 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1407 * used internally by wakeup_source_remove, too (called by
1408 * wakeup_source_unregister), so we cannot use call_rcu
1410 synchronize_rcu();
1411 wakeup_source_unregister(ws);
1415 * Must be called with "mtx" held.
1417 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1418 struct file *tfile, int fd, int full_check)
1420 int error, pwake = 0;
1421 __poll_t revents;
1422 long user_watches;
1423 struct epitem *epi;
1424 struct ep_pqueue epq;
1426 lockdep_assert_irqs_enabled();
1428 user_watches = atomic_long_read(&ep->user->epoll_watches);
1429 if (unlikely(user_watches >= max_user_watches))
1430 return -ENOSPC;
1431 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1432 return -ENOMEM;
1434 /* Item initialization follow here ... */
1435 INIT_LIST_HEAD(&epi->rdllink);
1436 INIT_LIST_HEAD(&epi->fllink);
1437 INIT_LIST_HEAD(&epi->pwqlist);
1438 epi->ep = ep;
1439 ep_set_ffd(&epi->ffd, tfile, fd);
1440 epi->event = *event;
1441 epi->nwait = 0;
1442 epi->next = EP_UNACTIVE_PTR;
1443 if (epi->event.events & EPOLLWAKEUP) {
1444 error = ep_create_wakeup_source(epi);
1445 if (error)
1446 goto error_create_wakeup_source;
1447 } else {
1448 RCU_INIT_POINTER(epi->ws, NULL);
1451 /* Initialize the poll table using the queue callback */
1452 epq.epi = epi;
1453 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1456 * Attach the item to the poll hooks and get current event bits.
1457 * We can safely use the file* here because its usage count has
1458 * been increased by the caller of this function. Note that after
1459 * this operation completes, the poll callback can start hitting
1460 * the new item.
1462 revents = ep_item_poll(epi, &epq.pt, 1);
1465 * We have to check if something went wrong during the poll wait queue
1466 * install process. Namely an allocation for a wait queue failed due
1467 * high memory pressure.
1469 error = -ENOMEM;
1470 if (epi->nwait < 0)
1471 goto error_unregister;
1473 /* Add the current item to the list of active epoll hook for this file */
1474 spin_lock(&tfile->f_lock);
1475 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1476 spin_unlock(&tfile->f_lock);
1479 * Add the current item to the RB tree. All RB tree operations are
1480 * protected by "mtx", and ep_insert() is called with "mtx" held.
1482 ep_rbtree_insert(ep, epi);
1484 /* now check if we've created too many backpaths */
1485 error = -EINVAL;
1486 if (full_check && reverse_path_check())
1487 goto error_remove_epi;
1489 /* We have to drop the new item inside our item list to keep track of it */
1490 spin_lock_irq(&ep->wq.lock);
1492 /* record NAPI ID of new item if present */
1493 ep_set_busy_poll_napi_id(epi);
1495 /* If the file is already "ready" we drop it inside the ready list */
1496 if (revents && !ep_is_linked(epi)) {
1497 list_add_tail(&epi->rdllink, &ep->rdllist);
1498 ep_pm_stay_awake(epi);
1500 /* Notify waiting tasks that events are available */
1501 if (waitqueue_active(&ep->wq))
1502 wake_up_locked(&ep->wq);
1503 if (waitqueue_active(&ep->poll_wait))
1504 pwake++;
1507 spin_unlock_irq(&ep->wq.lock);
1509 atomic_long_inc(&ep->user->epoll_watches);
1511 /* We have to call this outside the lock */
1512 if (pwake)
1513 ep_poll_safewake(&ep->poll_wait);
1515 return 0;
1517 error_remove_epi:
1518 spin_lock(&tfile->f_lock);
1519 list_del_rcu(&epi->fllink);
1520 spin_unlock(&tfile->f_lock);
1522 rb_erase_cached(&epi->rbn, &ep->rbr);
1524 error_unregister:
1525 ep_unregister_pollwait(ep, epi);
1528 * We need to do this because an event could have been arrived on some
1529 * allocated wait queue. Note that we don't care about the ep->ovflist
1530 * list, since that is used/cleaned only inside a section bound by "mtx".
1531 * And ep_insert() is called with "mtx" held.
1533 spin_lock_irq(&ep->wq.lock);
1534 if (ep_is_linked(epi))
1535 list_del_init(&epi->rdllink);
1536 spin_unlock_irq(&ep->wq.lock);
1538 wakeup_source_unregister(ep_wakeup_source(epi));
1540 error_create_wakeup_source:
1541 kmem_cache_free(epi_cache, epi);
1543 return error;
1547 * Modify the interest event mask by dropping an event if the new mask
1548 * has a match in the current file status. Must be called with "mtx" held.
1550 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551 const struct epoll_event *event)
1553 int pwake = 0;
1554 poll_table pt;
1556 lockdep_assert_irqs_enabled();
1558 init_poll_funcptr(&pt, NULL);
1561 * Set the new event interest mask before calling f_op->poll();
1562 * otherwise we might miss an event that happens between the
1563 * f_op->poll() call and the new event set registering.
1565 epi->event.events = event->events; /* need barrier below */
1566 epi->event.data = event->data; /* protected by mtx */
1567 if (epi->event.events & EPOLLWAKEUP) {
1568 if (!ep_has_wakeup_source(epi))
1569 ep_create_wakeup_source(epi);
1570 } else if (ep_has_wakeup_source(epi)) {
1571 ep_destroy_wakeup_source(epi);
1575 * The following barrier has two effects:
1577 * 1) Flush epi changes above to other CPUs. This ensures
1578 * we do not miss events from ep_poll_callback if an
1579 * event occurs immediately after we call f_op->poll().
1580 * We need this because we did not take ep->wq.lock while
1581 * changing epi above (but ep_poll_callback does take
1582 * ep->wq.lock).
1584 * 2) We also need to ensure we do not miss _past_ events
1585 * when calling f_op->poll(). This barrier also
1586 * pairs with the barrier in wq_has_sleeper (see
1587 * comments for wq_has_sleeper).
1589 * This barrier will now guarantee ep_poll_callback or f_op->poll
1590 * (or both) will notice the readiness of an item.
1592 smp_mb();
1595 * Get current event bits. We can safely use the file* here because
1596 * its usage count has been increased by the caller of this function.
1597 * If the item is "hot" and it is not registered inside the ready
1598 * list, push it inside.
1600 if (ep_item_poll(epi, &pt, 1)) {
1601 spin_lock_irq(&ep->wq.lock);
1602 if (!ep_is_linked(epi)) {
1603 list_add_tail(&epi->rdllink, &ep->rdllist);
1604 ep_pm_stay_awake(epi);
1606 /* Notify waiting tasks that events are available */
1607 if (waitqueue_active(&ep->wq))
1608 wake_up_locked(&ep->wq);
1609 if (waitqueue_active(&ep->poll_wait))
1610 pwake++;
1612 spin_unlock_irq(&ep->wq.lock);
1615 /* We have to call this outside the lock */
1616 if (pwake)
1617 ep_poll_safewake(&ep->poll_wait);
1619 return 0;
1622 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1623 void *priv)
1625 struct ep_send_events_data *esed = priv;
1626 __poll_t revents;
1627 struct epitem *epi, *tmp;
1628 struct epoll_event __user *uevent = esed->events;
1629 struct wakeup_source *ws;
1630 poll_table pt;
1632 init_poll_funcptr(&pt, NULL);
1633 esed->res = 0;
1636 * We can loop without lock because we are passed a task private list.
1637 * Items cannot vanish during the loop because ep_scan_ready_list() is
1638 * holding "mtx" during this call.
1640 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1641 if (esed->res >= esed->maxevents)
1642 break;
1645 * Activate ep->ws before deactivating epi->ws to prevent
1646 * triggering auto-suspend here (in case we reactive epi->ws
1647 * below).
1649 * This could be rearranged to delay the deactivation of epi->ws
1650 * instead, but then epi->ws would temporarily be out of sync
1651 * with ep_is_linked().
1653 ws = ep_wakeup_source(epi);
1654 if (ws) {
1655 if (ws->active)
1656 __pm_stay_awake(ep->ws);
1657 __pm_relax(ws);
1660 list_del_init(&epi->rdllink);
1663 * If the event mask intersect the caller-requested one,
1664 * deliver the event to userspace. Again, ep_scan_ready_list()
1665 * is holding ep->mtx, so no operations coming from userspace
1666 * can change the item.
1668 revents = ep_item_poll(epi, &pt, 1);
1669 if (!revents)
1670 continue;
1672 if (__put_user(revents, &uevent->events) ||
1673 __put_user(epi->event.data, &uevent->data)) {
1674 list_add(&epi->rdllink, head);
1675 ep_pm_stay_awake(epi);
1676 if (!esed->res)
1677 esed->res = -EFAULT;
1678 return 0;
1680 esed->res++;
1681 uevent++;
1682 if (epi->event.events & EPOLLONESHOT)
1683 epi->event.events &= EP_PRIVATE_BITS;
1684 else if (!(epi->event.events & EPOLLET)) {
1686 * If this file has been added with Level
1687 * Trigger mode, we need to insert back inside
1688 * the ready list, so that the next call to
1689 * epoll_wait() will check again the events
1690 * availability. At this point, no one can insert
1691 * into ep->rdllist besides us. The epoll_ctl()
1692 * callers are locked out by
1693 * ep_scan_ready_list() holding "mtx" and the
1694 * poll callback will queue them in ep->ovflist.
1696 list_add_tail(&epi->rdllink, &ep->rdllist);
1697 ep_pm_stay_awake(epi);
1701 return 0;
1704 static int ep_send_events(struct eventpoll *ep,
1705 struct epoll_event __user *events, int maxevents)
1707 struct ep_send_events_data esed;
1709 esed.maxevents = maxevents;
1710 esed.events = events;
1712 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1713 return esed.res;
1716 static inline struct timespec64 ep_set_mstimeout(long ms)
1718 struct timespec64 now, ts = {
1719 .tv_sec = ms / MSEC_PER_SEC,
1720 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1723 ktime_get_ts64(&now);
1724 return timespec64_add_safe(now, ts);
1728 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1729 * event buffer.
1731 * @ep: Pointer to the eventpoll context.
1732 * @events: Pointer to the userspace buffer where the ready events should be
1733 * stored.
1734 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1735 * @timeout: Maximum timeout for the ready events fetch operation, in
1736 * milliseconds. If the @timeout is zero, the function will not block,
1737 * while if the @timeout is less than zero, the function will block
1738 * until at least one event has been retrieved (or an error
1739 * occurred).
1741 * Returns: Returns the number of ready events which have been fetched, or an
1742 * error code, in case of error.
1744 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1745 int maxevents, long timeout)
1747 int res = 0, eavail, timed_out = 0;
1748 u64 slack = 0;
1749 wait_queue_entry_t wait;
1750 ktime_t expires, *to = NULL;
1752 lockdep_assert_irqs_enabled();
1754 if (timeout > 0) {
1755 struct timespec64 end_time = ep_set_mstimeout(timeout);
1757 slack = select_estimate_accuracy(&end_time);
1758 to = &expires;
1759 *to = timespec64_to_ktime(end_time);
1760 } else if (timeout == 0) {
1762 * Avoid the unnecessary trip to the wait queue loop, if the
1763 * caller specified a non blocking operation.
1765 timed_out = 1;
1766 spin_lock_irq(&ep->wq.lock);
1767 goto check_events;
1770 fetch_events:
1772 if (!ep_events_available(ep))
1773 ep_busy_loop(ep, timed_out);
1775 spin_lock_irq(&ep->wq.lock);
1777 if (!ep_events_available(ep)) {
1779 * Busy poll timed out. Drop NAPI ID for now, we can add
1780 * it back in when we have moved a socket with a valid NAPI
1781 * ID onto the ready list.
1783 ep_reset_busy_poll_napi_id(ep);
1786 * We don't have any available event to return to the caller.
1787 * We need to sleep here, and we will be wake up by
1788 * ep_poll_callback() when events will become available.
1790 init_waitqueue_entry(&wait, current);
1791 __add_wait_queue_exclusive(&ep->wq, &wait);
1793 for (;;) {
1795 * We don't want to sleep if the ep_poll_callback() sends us
1796 * a wakeup in between. That's why we set the task state
1797 * to TASK_INTERRUPTIBLE before doing the checks.
1799 set_current_state(TASK_INTERRUPTIBLE);
1801 * Always short-circuit for fatal signals to allow
1802 * threads to make a timely exit without the chance of
1803 * finding more events available and fetching
1804 * repeatedly.
1806 if (fatal_signal_pending(current)) {
1807 res = -EINTR;
1808 break;
1810 if (ep_events_available(ep) || timed_out)
1811 break;
1812 if (signal_pending(current)) {
1813 res = -EINTR;
1814 break;
1817 spin_unlock_irq(&ep->wq.lock);
1818 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1819 timed_out = 1;
1821 spin_lock_irq(&ep->wq.lock);
1824 __remove_wait_queue(&ep->wq, &wait);
1825 __set_current_state(TASK_RUNNING);
1827 check_events:
1828 /* Is it worth to try to dig for events ? */
1829 eavail = ep_events_available(ep);
1831 spin_unlock_irq(&ep->wq.lock);
1834 * Try to transfer events to user space. In case we get 0 events and
1835 * there's still timeout left over, we go trying again in search of
1836 * more luck.
1838 if (!res && eavail &&
1839 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1840 goto fetch_events;
1842 return res;
1846 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1847 * API, to verify that adding an epoll file inside another
1848 * epoll structure, does not violate the constraints, in
1849 * terms of closed loops, or too deep chains (which can
1850 * result in excessive stack usage).
1852 * @priv: Pointer to the epoll file to be currently checked.
1853 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1854 * data structure pointer.
1855 * @call_nests: Current dept of the @ep_call_nested() call stack.
1857 * Returns: Returns zero if adding the epoll @file inside current epoll
1858 * structure @ep does not violate the constraints, or -1 otherwise.
1860 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1862 int error = 0;
1863 struct file *file = priv;
1864 struct eventpoll *ep = file->private_data;
1865 struct eventpoll *ep_tovisit;
1866 struct rb_node *rbp;
1867 struct epitem *epi;
1869 mutex_lock_nested(&ep->mtx, call_nests + 1);
1870 ep->visited = 1;
1871 list_add(&ep->visited_list_link, &visited_list);
1872 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1873 epi = rb_entry(rbp, struct epitem, rbn);
1874 if (unlikely(is_file_epoll(epi->ffd.file))) {
1875 ep_tovisit = epi->ffd.file->private_data;
1876 if (ep_tovisit->visited)
1877 continue;
1878 error = ep_call_nested(&poll_loop_ncalls,
1879 ep_loop_check_proc, epi->ffd.file,
1880 ep_tovisit, current);
1881 if (error != 0)
1882 break;
1883 } else {
1885 * If we've reached a file that is not associated with
1886 * an ep, then we need to check if the newly added
1887 * links are going to add too many wakeup paths. We do
1888 * this by adding it to the tfile_check_list, if it's
1889 * not already there, and calling reverse_path_check()
1890 * during ep_insert().
1892 if (list_empty(&epi->ffd.file->f_tfile_llink))
1893 list_add(&epi->ffd.file->f_tfile_llink,
1894 &tfile_check_list);
1897 mutex_unlock(&ep->mtx);
1899 return error;
1903 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1904 * another epoll file (represented by @ep) does not create
1905 * closed loops or too deep chains.
1907 * @ep: Pointer to the epoll private data structure.
1908 * @file: Pointer to the epoll file to be checked.
1910 * Returns: Returns zero if adding the epoll @file inside current epoll
1911 * structure @ep does not violate the constraints, or -1 otherwise.
1913 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1915 int ret;
1916 struct eventpoll *ep_cur, *ep_next;
1918 ret = ep_call_nested(&poll_loop_ncalls,
1919 ep_loop_check_proc, file, ep, current);
1920 /* clear visited list */
1921 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1922 visited_list_link) {
1923 ep_cur->visited = 0;
1924 list_del(&ep_cur->visited_list_link);
1926 return ret;
1929 static void clear_tfile_check_list(void)
1931 struct file *file;
1933 /* first clear the tfile_check_list */
1934 while (!list_empty(&tfile_check_list)) {
1935 file = list_first_entry(&tfile_check_list, struct file,
1936 f_tfile_llink);
1937 list_del_init(&file->f_tfile_llink);
1939 INIT_LIST_HEAD(&tfile_check_list);
1943 * Open an eventpoll file descriptor.
1945 static int do_epoll_create(int flags)
1947 int error, fd;
1948 struct eventpoll *ep = NULL;
1949 struct file *file;
1951 /* Check the EPOLL_* constant for consistency. */
1952 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1954 if (flags & ~EPOLL_CLOEXEC)
1955 return -EINVAL;
1957 * Create the internal data structure ("struct eventpoll").
1959 error = ep_alloc(&ep);
1960 if (error < 0)
1961 return error;
1963 * Creates all the items needed to setup an eventpoll file. That is,
1964 * a file structure and a free file descriptor.
1966 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1967 if (fd < 0) {
1968 error = fd;
1969 goto out_free_ep;
1971 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1972 O_RDWR | (flags & O_CLOEXEC));
1973 if (IS_ERR(file)) {
1974 error = PTR_ERR(file);
1975 goto out_free_fd;
1977 ep->file = file;
1978 fd_install(fd, file);
1979 return fd;
1981 out_free_fd:
1982 put_unused_fd(fd);
1983 out_free_ep:
1984 ep_free(ep);
1985 return error;
1988 SYSCALL_DEFINE1(epoll_create1, int, flags)
1990 return do_epoll_create(flags);
1993 SYSCALL_DEFINE1(epoll_create, int, size)
1995 if (size <= 0)
1996 return -EINVAL;
1998 return do_epoll_create(0);
2002 * The following function implements the controller interface for
2003 * the eventpoll file that enables the insertion/removal/change of
2004 * file descriptors inside the interest set.
2006 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2007 struct epoll_event __user *, event)
2009 int error;
2010 int full_check = 0;
2011 struct fd f, tf;
2012 struct eventpoll *ep;
2013 struct epitem *epi;
2014 struct epoll_event epds;
2015 struct eventpoll *tep = NULL;
2017 error = -EFAULT;
2018 if (ep_op_has_event(op) &&
2019 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2020 goto error_return;
2022 error = -EBADF;
2023 f = fdget(epfd);
2024 if (!f.file)
2025 goto error_return;
2027 /* Get the "struct file *" for the target file */
2028 tf = fdget(fd);
2029 if (!tf.file)
2030 goto error_fput;
2032 /* The target file descriptor must support poll */
2033 error = -EPERM;
2034 if (!file_can_poll(tf.file))
2035 goto error_tgt_fput;
2037 /* Check if EPOLLWAKEUP is allowed */
2038 if (ep_op_has_event(op))
2039 ep_take_care_of_epollwakeup(&epds);
2042 * We have to check that the file structure underneath the file descriptor
2043 * the user passed to us _is_ an eventpoll file. And also we do not permit
2044 * adding an epoll file descriptor inside itself.
2046 error = -EINVAL;
2047 if (f.file == tf.file || !is_file_epoll(f.file))
2048 goto error_tgt_fput;
2051 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2052 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2053 * Also, we do not currently supported nested exclusive wakeups.
2055 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2056 if (op == EPOLL_CTL_MOD)
2057 goto error_tgt_fput;
2058 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2059 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2060 goto error_tgt_fput;
2064 * At this point it is safe to assume that the "private_data" contains
2065 * our own data structure.
2067 ep = f.file->private_data;
2070 * When we insert an epoll file descriptor, inside another epoll file
2071 * descriptor, there is the change of creating closed loops, which are
2072 * better be handled here, than in more critical paths. While we are
2073 * checking for loops we also determine the list of files reachable
2074 * and hang them on the tfile_check_list, so we can check that we
2075 * haven't created too many possible wakeup paths.
2077 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2078 * the epoll file descriptor is attaching directly to a wakeup source,
2079 * unless the epoll file descriptor is nested. The purpose of taking the
2080 * 'epmutex' on add is to prevent complex toplogies such as loops and
2081 * deep wakeup paths from forming in parallel through multiple
2082 * EPOLL_CTL_ADD operations.
2084 mutex_lock_nested(&ep->mtx, 0);
2085 if (op == EPOLL_CTL_ADD) {
2086 if (!list_empty(&f.file->f_ep_links) ||
2087 is_file_epoll(tf.file)) {
2088 full_check = 1;
2089 mutex_unlock(&ep->mtx);
2090 mutex_lock(&epmutex);
2091 if (is_file_epoll(tf.file)) {
2092 error = -ELOOP;
2093 if (ep_loop_check(ep, tf.file) != 0) {
2094 clear_tfile_check_list();
2095 goto error_tgt_fput;
2097 } else
2098 list_add(&tf.file->f_tfile_llink,
2099 &tfile_check_list);
2100 mutex_lock_nested(&ep->mtx, 0);
2101 if (is_file_epoll(tf.file)) {
2102 tep = tf.file->private_data;
2103 mutex_lock_nested(&tep->mtx, 1);
2109 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2110 * above, we can be sure to be able to use the item looked up by
2111 * ep_find() till we release the mutex.
2113 epi = ep_find(ep, tf.file, fd);
2115 error = -EINVAL;
2116 switch (op) {
2117 case EPOLL_CTL_ADD:
2118 if (!epi) {
2119 epds.events |= EPOLLERR | EPOLLHUP;
2120 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2121 } else
2122 error = -EEXIST;
2123 if (full_check)
2124 clear_tfile_check_list();
2125 break;
2126 case EPOLL_CTL_DEL:
2127 if (epi)
2128 error = ep_remove(ep, epi);
2129 else
2130 error = -ENOENT;
2131 break;
2132 case EPOLL_CTL_MOD:
2133 if (epi) {
2134 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2135 epds.events |= EPOLLERR | EPOLLHUP;
2136 error = ep_modify(ep, epi, &epds);
2138 } else
2139 error = -ENOENT;
2140 break;
2142 if (tep != NULL)
2143 mutex_unlock(&tep->mtx);
2144 mutex_unlock(&ep->mtx);
2146 error_tgt_fput:
2147 if (full_check)
2148 mutex_unlock(&epmutex);
2150 fdput(tf);
2151 error_fput:
2152 fdput(f);
2153 error_return:
2155 return error;
2159 * Implement the event wait interface for the eventpoll file. It is the kernel
2160 * part of the user space epoll_wait(2).
2162 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2163 int maxevents, int timeout)
2165 int error;
2166 struct fd f;
2167 struct eventpoll *ep;
2169 /* The maximum number of event must be greater than zero */
2170 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2171 return -EINVAL;
2173 /* Verify that the area passed by the user is writeable */
2174 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2175 return -EFAULT;
2177 /* Get the "struct file *" for the eventpoll file */
2178 f = fdget(epfd);
2179 if (!f.file)
2180 return -EBADF;
2183 * We have to check that the file structure underneath the fd
2184 * the user passed to us _is_ an eventpoll file.
2186 error = -EINVAL;
2187 if (!is_file_epoll(f.file))
2188 goto error_fput;
2191 * At this point it is safe to assume that the "private_data" contains
2192 * our own data structure.
2194 ep = f.file->private_data;
2196 /* Time to fish for events ... */
2197 error = ep_poll(ep, events, maxevents, timeout);
2199 error_fput:
2200 fdput(f);
2201 return error;
2204 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2205 int, maxevents, int, timeout)
2207 return do_epoll_wait(epfd, events, maxevents, timeout);
2211 * Implement the event wait interface for the eventpoll file. It is the kernel
2212 * part of the user space epoll_pwait(2).
2214 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2215 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2216 size_t, sigsetsize)
2218 int error;
2219 sigset_t ksigmask, sigsaved;
2222 * If the caller wants a certain signal mask to be set during the wait,
2223 * we apply it here.
2225 error = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2226 if (error)
2227 return error;
2229 error = do_epoll_wait(epfd, events, maxevents, timeout);
2231 restore_user_sigmask(sigmask, &sigsaved);
2233 return error;
2236 #ifdef CONFIG_COMPAT
2237 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2238 struct epoll_event __user *, events,
2239 int, maxevents, int, timeout,
2240 const compat_sigset_t __user *, sigmask,
2241 compat_size_t, sigsetsize)
2243 long err;
2244 sigset_t ksigmask, sigsaved;
2247 * If the caller wants a certain signal mask to be set during the wait,
2248 * we apply it here.
2250 err = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2251 if (err)
2252 return err;
2254 err = do_epoll_wait(epfd, events, maxevents, timeout);
2256 restore_user_sigmask(sigmask, &sigsaved);
2258 return err;
2260 #endif
2262 static int __init eventpoll_init(void)
2264 struct sysinfo si;
2266 si_meminfo(&si);
2268 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2270 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2271 EP_ITEM_COST;
2272 BUG_ON(max_user_watches < 0);
2275 * Initialize the structure used to perform epoll file descriptor
2276 * inclusion loops checks.
2278 ep_nested_calls_init(&poll_loop_ncalls);
2280 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2281 /* Initialize the structure used to perform safe poll wait head wake ups */
2282 ep_nested_calls_init(&poll_safewake_ncalls);
2283 #endif
2286 * We can have many thousands of epitems, so prevent this from
2287 * using an extra cache line on 64-bit (and smaller) CPUs
2289 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2291 /* Allocates slab cache used to allocate "struct epitem" items */
2292 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2293 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2295 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2296 pwq_cache = kmem_cache_create("eventpoll_pwq",
2297 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2299 return 0;
2301 fs_initcall(eventpoll_init);