2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
44 #include <linux/pagemap.h>
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE 50
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH 8
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS 0
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG 0
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG 0
84 #ifndef CONFIG_NANDSIM_MAX_PARTS
85 #define CONFIG_NANDSIM_MAX_PARTS 32
88 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
89 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
90 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
91 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
92 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
93 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
94 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
95 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
96 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
97 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
98 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
99 static uint log
= CONFIG_NANDSIM_LOG
;
100 static uint dbg
= CONFIG_NANDSIM_DBG
;
101 static unsigned long parts
[CONFIG_NANDSIM_MAX_PARTS
];
102 static unsigned int parts_num
;
103 static char *badblocks
= NULL
;
104 static char *weakblocks
= NULL
;
105 static char *weakpages
= NULL
;
106 static unsigned int bitflips
= 0;
107 static char *gravepages
= NULL
;
108 static unsigned int rptwear
= 0;
109 static unsigned int overridesize
= 0;
110 static char *cache_file
= NULL
;
111 static unsigned int bbt
;
112 static unsigned int bch
;
114 module_param(first_id_byte
, uint
, 0400);
115 module_param(second_id_byte
, uint
, 0400);
116 module_param(third_id_byte
, uint
, 0400);
117 module_param(fourth_id_byte
, uint
, 0400);
118 module_param(access_delay
, uint
, 0400);
119 module_param(programm_delay
, uint
, 0400);
120 module_param(erase_delay
, uint
, 0400);
121 module_param(output_cycle
, uint
, 0400);
122 module_param(input_cycle
, uint
, 0400);
123 module_param(bus_width
, uint
, 0400);
124 module_param(do_delays
, uint
, 0400);
125 module_param(log
, uint
, 0400);
126 module_param(dbg
, uint
, 0400);
127 module_param_array(parts
, ulong
, &parts_num
, 0400);
128 module_param(badblocks
, charp
, 0400);
129 module_param(weakblocks
, charp
, 0400);
130 module_param(weakpages
, charp
, 0400);
131 module_param(bitflips
, uint
, 0400);
132 module_param(gravepages
, charp
, 0400);
133 module_param(rptwear
, uint
, 0400);
134 module_param(overridesize
, uint
, 0400);
135 module_param(cache_file
, charp
, 0400);
136 module_param(bbt
, uint
, 0400);
137 module_param(bch
, uint
, 0400);
139 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log
, "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
152 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 " separated by commas e.g. 113:2 means eb 113"
157 " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
159 " separated by commas e.g. 1401:2 means page 1401"
160 " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
163 " separated by commas e.g. 1401:2 means page 1401"
164 " can be read only twice before failing");
165 MODULE_PARM_DESC(rptwear
, "Number of erases between reporting wear, if not zero");
166 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
167 "The size is specified in erase blocks and as the exponent of a power of two"
168 " e.g. 5 means a size of 32 erase blocks");
169 MODULE_PARM_DESC(cache_file
, "File to use to cache nand pages instead of memory");
170 MODULE_PARM_DESC(bbt
, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171 MODULE_PARM_DESC(bch
, "Enable BCH ecc and set how many bits should "
172 "be correctable in 512-byte blocks");
174 /* The largest possible page size */
175 #define NS_LARGEST_PAGE_SIZE 4096
177 /* The prefix for simulator output */
178 #define NS_OUTPUT_PREFIX "[nandsim]"
180 /* Simulator's output macros (logging, debugging, warning, error) */
181 #define NS_LOG(args...) \
182 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183 #define NS_DBG(args...) \
184 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185 #define NS_WARN(args...) \
186 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187 #define NS_ERR(args...) \
188 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189 #define NS_INFO(args...) \
190 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
192 /* Busy-wait delay macros (microseconds, milliseconds) */
193 #define NS_UDELAY(us) \
194 do { if (do_delays) udelay(us); } while(0)
195 #define NS_MDELAY(us) \
196 do { if (do_delays) mdelay(us); } while(0)
198 /* Is the nandsim structure initialized ? */
199 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
201 /* Good operation completion status */
202 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
204 /* Operation failed completion status */
205 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
207 /* Calculate the page offset in flash RAM image by (row, column) address */
208 #define NS_RAW_OFFSET(ns) \
209 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
211 /* Calculate the OOB offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
214 /* After a command is input, the simulator goes to one of the following states */
215 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
216 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
217 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
218 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
219 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
220 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
221 #define STATE_CMD_STATUS 0x00000007 /* read status */
222 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
223 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
224 #define STATE_CMD_READID 0x0000000A /* read ID */
225 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
226 #define STATE_CMD_RESET 0x0000000C /* reset */
227 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
228 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
229 #define STATE_CMD_MASK 0x0000000F /* command states mask */
231 /* After an address is input, the simulator goes to one of these states */
232 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
233 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
234 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
235 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
236 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
238 /* During data input/output the simulator is in these states */
239 #define STATE_DATAIN 0x00000100 /* waiting for data input */
240 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
242 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
243 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
244 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
245 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
248 /* Previous operation is done, ready to accept new requests */
249 #define STATE_READY 0x00000000
251 /* This state is used to mark that the next state isn't known yet */
252 #define STATE_UNKNOWN 0x10000000
254 /* Simulator's actions bit masks */
255 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
256 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
257 #define ACTION_SECERASE 0x00300000 /* erase sector */
258 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
259 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
260 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
261 #define ACTION_MASK 0x00700000 /* action mask */
263 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
264 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
266 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
267 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
268 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
269 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
270 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
280 * Maximum previous states which need to be saved. Currently saving is
281 * only needed for page program operation with preceded read command
282 * (which is only valid for 512-byte pages).
284 #define NS_MAX_PREVSTATES 1
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
290 * A union to represent flash memory contents and flash buffer.
293 u_char
*byte
; /* for byte access */
294 uint16_t *word
; /* for 16-bit word access */
298 * The structure which describes all the internal simulator data.
301 struct mtd_partition partitions
[CONFIG_NANDSIM_MAX_PARTS
];
302 unsigned int nbparts
;
304 uint busw
; /* flash chip bus width (8 or 16) */
305 u_char ids
[4]; /* chip's ID bytes */
306 uint32_t options
; /* chip's characteristic bits */
307 uint32_t state
; /* current chip state */
308 uint32_t nxstate
; /* next expected state */
310 uint32_t *op
; /* current operation, NULL operations isn't known yet */
311 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
312 uint16_t npstates
; /* number of previous states saved */
313 uint16_t stateidx
; /* current state index */
315 /* The simulated NAND flash pages array */
318 /* Slab allocator for nand pages */
319 struct kmem_cache
*nand_pages_slab
;
321 /* Internal buffer of page + OOB size bytes */
324 /* NAND flash "geometry" */
326 uint64_t totsz
; /* total flash size, bytes */
327 uint32_t secsz
; /* flash sector (erase block) size, bytes */
328 uint pgsz
; /* NAND flash page size, bytes */
329 uint oobsz
; /* page OOB area size, bytes */
330 uint64_t totszoob
; /* total flash size including OOB, bytes */
331 uint pgszoob
; /* page size including OOB , bytes*/
332 uint secszoob
; /* sector size including OOB, bytes */
333 uint pgnum
; /* total number of pages */
334 uint pgsec
; /* number of pages per sector */
335 uint secshift
; /* bits number in sector size */
336 uint pgshift
; /* bits number in page size */
337 uint oobshift
; /* bits number in OOB size */
338 uint pgaddrbytes
; /* bytes per page address */
339 uint secaddrbytes
; /* bytes per sector address */
340 uint idbytes
; /* the number ID bytes that this chip outputs */
343 /* NAND flash internal registers */
345 unsigned command
; /* the command register */
346 u_char status
; /* the status register */
347 uint row
; /* the page number */
348 uint column
; /* the offset within page */
349 uint count
; /* internal counter */
350 uint num
; /* number of bytes which must be processed */
351 uint off
; /* fixed page offset */
354 /* NAND flash lines state */
356 int ce
; /* chip Enable */
357 int cle
; /* command Latch Enable */
358 int ale
; /* address Latch Enable */
359 int wp
; /* write Protect */
362 /* Fields needed when using a cache file */
363 struct file
*cfile
; /* Open file */
364 unsigned char *pages_written
; /* Which pages have been written */
366 struct page
*held_pages
[NS_MAX_HELD_PAGES
];
371 * Operations array. To perform any operation the simulator must pass
372 * through the correspondent states chain.
374 static struct nandsim_operations
{
375 uint32_t reqopts
; /* options which are required to perform the operation */
376 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
377 } ops
[NS_OPER_NUM
] = {
378 /* Read page + OOB from the beginning */
379 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
380 STATE_DATAOUT
, STATE_READY
}},
381 /* Read page + OOB from the second half */
382 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
383 STATE_DATAOUT
, STATE_READY
}},
385 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
386 STATE_DATAOUT
, STATE_READY
}},
387 /* Program page starting from the beginning */
388 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
389 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
390 /* Program page starting from the beginning */
391 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
392 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
393 /* Program page starting from the second half */
394 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
395 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
397 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
398 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
400 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
402 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
403 /* Read multi-plane status */
404 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
406 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
407 /* Large page devices read page */
408 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
409 STATE_DATAOUT
, STATE_READY
}},
410 /* Large page devices random page read */
411 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
412 STATE_DATAOUT
, STATE_READY
}},
416 struct list_head list
;
417 unsigned int erase_block_no
;
418 unsigned int max_erases
;
419 unsigned int erases_done
;
422 static LIST_HEAD(weak_blocks
);
425 struct list_head list
;
426 unsigned int page_no
;
427 unsigned int max_writes
;
428 unsigned int writes_done
;
431 static LIST_HEAD(weak_pages
);
434 struct list_head list
;
435 unsigned int page_no
;
436 unsigned int max_reads
;
437 unsigned int reads_done
;
440 static LIST_HEAD(grave_pages
);
442 static unsigned long *erase_block_wear
= NULL
;
443 static unsigned int wear_eb_count
= 0;
444 static unsigned long total_wear
= 0;
445 static unsigned int rptwear_cnt
= 0;
447 /* MTD structure for NAND controller */
448 static struct mtd_info
*nsmtd
;
450 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
453 * Allocate array of page pointers, create slab allocation for an array
454 * and initialize the array by NULL pointers.
456 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
458 static int alloc_device(struct nandsim
*ns
)
464 cfile
= filp_open(cache_file
, O_CREAT
| O_RDWR
| O_LARGEFILE
, 0600);
466 return PTR_ERR(cfile
);
467 if (!cfile
->f_op
|| (!cfile
->f_op
->read
&& !cfile
->f_op
->aio_read
)) {
468 NS_ERR("alloc_device: cache file not readable\n");
472 if (!cfile
->f_op
->write
&& !cfile
->f_op
->aio_write
) {
473 NS_ERR("alloc_device: cache file not writeable\n");
477 ns
->pages_written
= vzalloc(ns
->geom
.pgnum
);
478 if (!ns
->pages_written
) {
479 NS_ERR("alloc_device: unable to allocate pages written array\n");
483 ns
->file_buf
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
485 NS_ERR("alloc_device: unable to allocate file buf\n");
493 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
495 NS_ERR("alloc_device: unable to allocate page array\n");
498 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
499 ns
->pages
[i
].byte
= NULL
;
501 ns
->nand_pages_slab
= kmem_cache_create("nandsim",
502 ns
->geom
.pgszoob
, 0, 0, NULL
);
503 if (!ns
->nand_pages_slab
) {
504 NS_ERR("cache_create: unable to create kmem_cache\n");
511 vfree(ns
->pages_written
);
513 filp_close(cfile
, NULL
);
518 * Free any allocated pages, and free the array of page pointers.
520 static void free_device(struct nandsim
*ns
)
526 vfree(ns
->pages_written
);
527 filp_close(ns
->cfile
, NULL
);
532 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
533 if (ns
->pages
[i
].byte
)
534 kmem_cache_free(ns
->nand_pages_slab
,
537 kmem_cache_destroy(ns
->nand_pages_slab
);
542 static char *get_partition_name(int i
)
545 sprintf(buf
, "NAND simulator partition %d", i
);
546 return kstrdup(buf
, GFP_KERNEL
);
550 * Initialize the nandsim structure.
552 * RETURNS: 0 if success, -ERRNO if failure.
554 static int init_nandsim(struct mtd_info
*mtd
)
556 struct nand_chip
*chip
= mtd
->priv
;
557 struct nandsim
*ns
= chip
->priv
;
560 uint64_t next_offset
;
562 if (NS_IS_INITIALIZED(ns
)) {
563 NS_ERR("init_nandsim: nandsim is already initialized\n");
567 /* Force mtd to not do delays */
568 chip
->chip_delay
= 0;
570 /* Initialize the NAND flash parameters */
571 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
572 ns
->geom
.totsz
= mtd
->size
;
573 ns
->geom
.pgsz
= mtd
->writesize
;
574 ns
->geom
.oobsz
= mtd
->oobsize
;
575 ns
->geom
.secsz
= mtd
->erasesize
;
576 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
577 ns
->geom
.pgnum
= div_u64(ns
->geom
.totsz
, ns
->geom
.pgsz
);
578 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
579 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
580 ns
->geom
.pgshift
= chip
->page_shift
;
581 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
582 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
583 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
586 if (ns
->geom
.pgsz
== 256) {
587 ns
->options
|= OPT_PAGE256
;
589 else if (ns
->geom
.pgsz
== 512) {
590 ns
->options
|= OPT_PAGE512
;
592 ns
->options
|= OPT_PAGE512_8BIT
;
593 } else if (ns
->geom
.pgsz
== 2048) {
594 ns
->options
|= OPT_PAGE2048
;
595 } else if (ns
->geom
.pgsz
== 4096) {
596 ns
->options
|= OPT_PAGE4096
;
598 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
602 if (ns
->options
& OPT_SMALLPAGE
) {
603 if (ns
->geom
.totsz
<= (32 << 20)) {
604 ns
->geom
.pgaddrbytes
= 3;
605 ns
->geom
.secaddrbytes
= 2;
607 ns
->geom
.pgaddrbytes
= 4;
608 ns
->geom
.secaddrbytes
= 3;
611 if (ns
->geom
.totsz
<= (128 << 20)) {
612 ns
->geom
.pgaddrbytes
= 4;
613 ns
->geom
.secaddrbytes
= 2;
615 ns
->geom
.pgaddrbytes
= 5;
616 ns
->geom
.secaddrbytes
= 3;
620 /* Fill the partition_info structure */
621 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
622 NS_ERR("too many partitions.\n");
626 remains
= ns
->geom
.totsz
;
628 for (i
= 0; i
< parts_num
; ++i
) {
629 uint64_t part_sz
= (uint64_t)parts
[i
] * ns
->geom
.secsz
;
631 if (!part_sz
|| part_sz
> remains
) {
632 NS_ERR("bad partition size.\n");
636 ns
->partitions
[i
].name
= get_partition_name(i
);
637 ns
->partitions
[i
].offset
= next_offset
;
638 ns
->partitions
[i
].size
= part_sz
;
639 next_offset
+= ns
->partitions
[i
].size
;
640 remains
-= ns
->partitions
[i
].size
;
642 ns
->nbparts
= parts_num
;
644 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
645 NS_ERR("too many partitions.\n");
649 ns
->partitions
[i
].name
= get_partition_name(i
);
650 ns
->partitions
[i
].offset
= next_offset
;
651 ns
->partitions
[i
].size
= remains
;
655 /* Detect how many ID bytes the NAND chip outputs */
656 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
657 if (second_id_byte
!= nand_flash_ids
[i
].id
)
662 NS_WARN("16-bit flashes support wasn't tested\n");
664 printk("flash size: %llu MiB\n",
665 (unsigned long long)ns
->geom
.totsz
>> 20);
666 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
667 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
668 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
669 printk("pages number: %u\n", ns
->geom
.pgnum
);
670 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
671 printk("bus width: %u\n", ns
->busw
);
672 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
673 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
674 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
675 printk("flash size with OOB: %llu KiB\n",
676 (unsigned long long)ns
->geom
.totszoob
>> 10);
677 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
678 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
679 printk("options: %#x\n", ns
->options
);
681 if ((ret
= alloc_device(ns
)) != 0)
684 /* Allocate / initialize the internal buffer */
685 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
687 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
692 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
703 * Free the nandsim structure.
705 static void free_nandsim(struct nandsim
*ns
)
713 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
717 unsigned int erase_block_no
;
724 zero_ok
= (*w
== '0' ? 1 : 0);
725 erase_block_no
= simple_strtoul(w
, &w
, 0);
726 if (!zero_ok
&& !erase_block_no
) {
727 NS_ERR("invalid badblocks.\n");
730 offset
= erase_block_no
* ns
->geom
.secsz
;
731 if (mtd_block_markbad(mtd
, offset
)) {
732 NS_ERR("invalid badblocks.\n");
741 static int parse_weakblocks(void)
745 unsigned int erase_block_no
;
746 unsigned int max_erases
;
747 struct weak_block
*wb
;
753 zero_ok
= (*w
== '0' ? 1 : 0);
754 erase_block_no
= simple_strtoul(w
, &w
, 0);
755 if (!zero_ok
&& !erase_block_no
) {
756 NS_ERR("invalid weakblocks.\n");
762 max_erases
= simple_strtoul(w
, &w
, 0);
766 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
768 NS_ERR("unable to allocate memory.\n");
771 wb
->erase_block_no
= erase_block_no
;
772 wb
->max_erases
= max_erases
;
773 list_add(&wb
->list
, &weak_blocks
);
778 static int erase_error(unsigned int erase_block_no
)
780 struct weak_block
*wb
;
782 list_for_each_entry(wb
, &weak_blocks
, list
)
783 if (wb
->erase_block_no
== erase_block_no
) {
784 if (wb
->erases_done
>= wb
->max_erases
)
786 wb
->erases_done
+= 1;
792 static int parse_weakpages(void)
796 unsigned int page_no
;
797 unsigned int max_writes
;
798 struct weak_page
*wp
;
804 zero_ok
= (*w
== '0' ? 1 : 0);
805 page_no
= simple_strtoul(w
, &w
, 0);
806 if (!zero_ok
&& !page_no
) {
807 NS_ERR("invalid weakpagess.\n");
813 max_writes
= simple_strtoul(w
, &w
, 0);
817 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
819 NS_ERR("unable to allocate memory.\n");
822 wp
->page_no
= page_no
;
823 wp
->max_writes
= max_writes
;
824 list_add(&wp
->list
, &weak_pages
);
829 static int write_error(unsigned int page_no
)
831 struct weak_page
*wp
;
833 list_for_each_entry(wp
, &weak_pages
, list
)
834 if (wp
->page_no
== page_no
) {
835 if (wp
->writes_done
>= wp
->max_writes
)
837 wp
->writes_done
+= 1;
843 static int parse_gravepages(void)
847 unsigned int page_no
;
848 unsigned int max_reads
;
849 struct grave_page
*gp
;
855 zero_ok
= (*g
== '0' ? 1 : 0);
856 page_no
= simple_strtoul(g
, &g
, 0);
857 if (!zero_ok
&& !page_no
) {
858 NS_ERR("invalid gravepagess.\n");
864 max_reads
= simple_strtoul(g
, &g
, 0);
868 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
870 NS_ERR("unable to allocate memory.\n");
873 gp
->page_no
= page_no
;
874 gp
->max_reads
= max_reads
;
875 list_add(&gp
->list
, &grave_pages
);
880 static int read_error(unsigned int page_no
)
882 struct grave_page
*gp
;
884 list_for_each_entry(gp
, &grave_pages
, list
)
885 if (gp
->page_no
== page_no
) {
886 if (gp
->reads_done
>= gp
->max_reads
)
894 static void free_lists(void)
896 struct list_head
*pos
, *n
;
897 list_for_each_safe(pos
, n
, &weak_blocks
) {
899 kfree(list_entry(pos
, struct weak_block
, list
));
901 list_for_each_safe(pos
, n
, &weak_pages
) {
903 kfree(list_entry(pos
, struct weak_page
, list
));
905 list_for_each_safe(pos
, n
, &grave_pages
) {
907 kfree(list_entry(pos
, struct grave_page
, list
));
909 kfree(erase_block_wear
);
912 static int setup_wear_reporting(struct mtd_info
*mtd
)
918 wear_eb_count
= div_u64(mtd
->size
, mtd
->erasesize
);
919 mem
= wear_eb_count
* sizeof(unsigned long);
920 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
921 NS_ERR("Too many erase blocks for wear reporting\n");
924 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
925 if (!erase_block_wear
) {
926 NS_ERR("Too many erase blocks for wear reporting\n");
932 static void update_wear(unsigned int erase_block_no
)
934 unsigned long wmin
= -1, wmax
= 0, avg
;
935 unsigned long deciles
[10], decile_max
[10], tot
= 0;
938 if (!erase_block_wear
)
942 NS_ERR("Erase counter total overflow\n");
943 erase_block_wear
[erase_block_no
] += 1;
944 if (erase_block_wear
[erase_block_no
] == 0)
945 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
947 if (rptwear_cnt
< rptwear
)
950 /* Calc wear stats */
951 for (i
= 0; i
< wear_eb_count
; ++i
) {
952 unsigned long wear
= erase_block_wear
[i
];
959 for (i
= 0; i
< 9; ++i
) {
961 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
964 decile_max
[9] = wmax
;
965 for (i
= 0; i
< wear_eb_count
; ++i
) {
967 unsigned long wear
= erase_block_wear
[i
];
968 for (d
= 0; d
< 10; ++d
)
969 if (wear
<= decile_max
[d
]) {
974 avg
= tot
/ wear_eb_count
;
975 /* Output wear report */
976 NS_INFO("*** Wear Report ***\n");
977 NS_INFO("Total numbers of erases: %lu\n", tot
);
978 NS_INFO("Number of erase blocks: %u\n", wear_eb_count
);
979 NS_INFO("Average number of erases: %lu\n", avg
);
980 NS_INFO("Maximum number of erases: %lu\n", wmax
);
981 NS_INFO("Minimum number of erases: %lu\n", wmin
);
982 for (i
= 0; i
< 10; ++i
) {
983 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
984 if (from
> decile_max
[i
])
986 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
991 NS_INFO("*** End of Wear Report ***\n");
995 * Returns the string representation of 'state' state.
997 static char *get_state_name(uint32_t state
)
999 switch (NS_STATE(state
)) {
1000 case STATE_CMD_READ0
:
1001 return "STATE_CMD_READ0";
1002 case STATE_CMD_READ1
:
1003 return "STATE_CMD_READ1";
1004 case STATE_CMD_PAGEPROG
:
1005 return "STATE_CMD_PAGEPROG";
1006 case STATE_CMD_READOOB
:
1007 return "STATE_CMD_READOOB";
1008 case STATE_CMD_READSTART
:
1009 return "STATE_CMD_READSTART";
1010 case STATE_CMD_ERASE1
:
1011 return "STATE_CMD_ERASE1";
1012 case STATE_CMD_STATUS
:
1013 return "STATE_CMD_STATUS";
1014 case STATE_CMD_STATUS_M
:
1015 return "STATE_CMD_STATUS_M";
1016 case STATE_CMD_SEQIN
:
1017 return "STATE_CMD_SEQIN";
1018 case STATE_CMD_READID
:
1019 return "STATE_CMD_READID";
1020 case STATE_CMD_ERASE2
:
1021 return "STATE_CMD_ERASE2";
1022 case STATE_CMD_RESET
:
1023 return "STATE_CMD_RESET";
1024 case STATE_CMD_RNDOUT
:
1025 return "STATE_CMD_RNDOUT";
1026 case STATE_CMD_RNDOUTSTART
:
1027 return "STATE_CMD_RNDOUTSTART";
1028 case STATE_ADDR_PAGE
:
1029 return "STATE_ADDR_PAGE";
1030 case STATE_ADDR_SEC
:
1031 return "STATE_ADDR_SEC";
1032 case STATE_ADDR_ZERO
:
1033 return "STATE_ADDR_ZERO";
1034 case STATE_ADDR_COLUMN
:
1035 return "STATE_ADDR_COLUMN";
1037 return "STATE_DATAIN";
1039 return "STATE_DATAOUT";
1040 case STATE_DATAOUT_ID
:
1041 return "STATE_DATAOUT_ID";
1042 case STATE_DATAOUT_STATUS
:
1043 return "STATE_DATAOUT_STATUS";
1044 case STATE_DATAOUT_STATUS_M
:
1045 return "STATE_DATAOUT_STATUS_M";
1047 return "STATE_READY";
1049 return "STATE_UNKNOWN";
1052 NS_ERR("get_state_name: unknown state, BUG\n");
1057 * Check if command is valid.
1059 * RETURNS: 1 if wrong command, 0 if right.
1061 static int check_command(int cmd
)
1065 case NAND_CMD_READ0
:
1066 case NAND_CMD_READ1
:
1067 case NAND_CMD_READSTART
:
1068 case NAND_CMD_PAGEPROG
:
1069 case NAND_CMD_READOOB
:
1070 case NAND_CMD_ERASE1
:
1071 case NAND_CMD_STATUS
:
1072 case NAND_CMD_SEQIN
:
1073 case NAND_CMD_READID
:
1074 case NAND_CMD_ERASE2
:
1075 case NAND_CMD_RESET
:
1076 case NAND_CMD_RNDOUT
:
1077 case NAND_CMD_RNDOUTSTART
:
1080 case NAND_CMD_STATUS_MULTI
:
1087 * Returns state after command is accepted by command number.
1089 static uint32_t get_state_by_command(unsigned command
)
1092 case NAND_CMD_READ0
:
1093 return STATE_CMD_READ0
;
1094 case NAND_CMD_READ1
:
1095 return STATE_CMD_READ1
;
1096 case NAND_CMD_PAGEPROG
:
1097 return STATE_CMD_PAGEPROG
;
1098 case NAND_CMD_READSTART
:
1099 return STATE_CMD_READSTART
;
1100 case NAND_CMD_READOOB
:
1101 return STATE_CMD_READOOB
;
1102 case NAND_CMD_ERASE1
:
1103 return STATE_CMD_ERASE1
;
1104 case NAND_CMD_STATUS
:
1105 return STATE_CMD_STATUS
;
1106 case NAND_CMD_STATUS_MULTI
:
1107 return STATE_CMD_STATUS_M
;
1108 case NAND_CMD_SEQIN
:
1109 return STATE_CMD_SEQIN
;
1110 case NAND_CMD_READID
:
1111 return STATE_CMD_READID
;
1112 case NAND_CMD_ERASE2
:
1113 return STATE_CMD_ERASE2
;
1114 case NAND_CMD_RESET
:
1115 return STATE_CMD_RESET
;
1116 case NAND_CMD_RNDOUT
:
1117 return STATE_CMD_RNDOUT
;
1118 case NAND_CMD_RNDOUTSTART
:
1119 return STATE_CMD_RNDOUTSTART
;
1122 NS_ERR("get_state_by_command: unknown command, BUG\n");
1127 * Move an address byte to the correspondent internal register.
1129 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1131 uint byte
= (uint
)bt
;
1133 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1134 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1136 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1137 ns
->geom
.pgaddrbytes
+
1138 ns
->geom
.secaddrbytes
));
1145 * Switch to STATE_READY state.
1147 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1149 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1151 ns
->state
= STATE_READY
;
1152 ns
->nxstate
= STATE_UNKNOWN
;
1160 ns
->regs
.column
= 0;
1161 ns
->regs
.status
= status
;
1165 * If the operation isn't known yet, try to find it in the global array
1166 * of supported operations.
1168 * Operation can be unknown because of the following.
1169 * 1. New command was accepted and this is the first call to find the
1170 * correspondent states chain. In this case ns->npstates = 0;
1171 * 2. There are several operations which begin with the same command(s)
1172 * (for example program from the second half and read from the
1173 * second half operations both begin with the READ1 command). In this
1174 * case the ns->pstates[] array contains previous states.
1176 * Thus, the function tries to find operation containing the following
1177 * states (if the 'flag' parameter is 0):
1178 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1180 * If (one and only one) matching operation is found, it is accepted (
1181 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1184 * If there are several matches, the current state is pushed to the
1187 * The operation can be unknown only while commands are input to the chip.
1188 * As soon as address command is accepted, the operation must be known.
1189 * In such situation the function is called with 'flag' != 0, and the
1190 * operation is searched using the following pattern:
1191 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1193 * It is supposed that this pattern must either match one operation or
1194 * none. There can't be ambiguity in that case.
1196 * If no matches found, the function does the following:
1197 * 1. if there are saved states present, try to ignore them and search
1198 * again only using the last command. If nothing was found, switch
1199 * to the STATE_READY state.
1200 * 2. if there are no saved states, switch to the STATE_READY state.
1202 * RETURNS: -2 - no matched operations found.
1203 * -1 - several matches.
1204 * 0 - operation is found.
1206 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1211 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1215 if (!(ns
->options
& ops
[i
].reqopts
))
1216 /* Ignore operations we can't perform */
1220 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1223 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1227 for (j
= 0; j
< ns
->npstates
; j
++)
1228 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1229 && (ns
->options
& ops
[idx
].reqopts
)) {
1240 if (opsfound
== 1) {
1242 ns
->op
= &ops
[idx
].states
[0];
1245 * In this case the find_operation function was
1246 * called when address has just began input. But it isn't
1247 * yet fully input and the current state must
1248 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1249 * state must be the next state (ns->nxstate).
1251 ns
->stateidx
= ns
->npstates
- 1;
1253 ns
->stateidx
= ns
->npstates
;
1256 ns
->state
= ns
->op
[ns
->stateidx
];
1257 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1258 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1259 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1263 if (opsfound
== 0) {
1264 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1265 if (ns
->npstates
!= 0) {
1266 NS_DBG("find_operation: no operation found, try again with state %s\n",
1267 get_state_name(ns
->state
));
1269 return find_operation(ns
, 0);
1272 NS_DBG("find_operation: no operations found\n");
1273 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1278 /* This shouldn't happen */
1279 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1283 NS_DBG("find_operation: there is still ambiguity\n");
1285 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1290 static void put_pages(struct nandsim
*ns
)
1294 for (i
= 0; i
< ns
->held_cnt
; i
++)
1295 page_cache_release(ns
->held_pages
[i
]);
1298 /* Get page cache pages in advance to provide NOFS memory allocation */
1299 static int get_pages(struct nandsim
*ns
, struct file
*file
, size_t count
, loff_t pos
)
1301 pgoff_t index
, start_index
, end_index
;
1303 struct address_space
*mapping
= file
->f_mapping
;
1305 start_index
= pos
>> PAGE_CACHE_SHIFT
;
1306 end_index
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1307 if (end_index
- start_index
+ 1 > NS_MAX_HELD_PAGES
)
1310 for (index
= start_index
; index
<= end_index
; index
++) {
1311 page
= find_get_page(mapping
, index
);
1313 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1315 write_inode_now(mapping
->host
, 1);
1316 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1324 ns
->held_pages
[ns
->held_cnt
++] = page
;
1329 static int set_memalloc(void)
1331 if (current
->flags
& PF_MEMALLOC
)
1333 current
->flags
|= PF_MEMALLOC
;
1337 static void clear_memalloc(int memalloc
)
1340 current
->flags
&= ~PF_MEMALLOC
;
1343 static ssize_t
read_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t
*pos
)
1345 mm_segment_t old_fs
;
1349 err
= get_pages(ns
, file
, count
, *pos
);
1354 memalloc
= set_memalloc();
1355 tx
= vfs_read(file
, (char __user
*)buf
, count
, pos
);
1356 clear_memalloc(memalloc
);
1362 static ssize_t
write_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t
*pos
)
1364 mm_segment_t old_fs
;
1368 err
= get_pages(ns
, file
, count
, *pos
);
1373 memalloc
= set_memalloc();
1374 tx
= vfs_write(file
, (char __user
*)buf
, count
, pos
);
1375 clear_memalloc(memalloc
);
1382 * Returns a pointer to the current page.
1384 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1386 return &(ns
->pages
[ns
->regs
.row
]);
1390 * Retuns a pointer to the current byte, within the current page.
1392 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1394 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1397 int do_read_error(struct nandsim
*ns
, int num
)
1399 unsigned int page_no
= ns
->regs
.row
;
1401 if (read_error(page_no
)) {
1403 memset(ns
->buf
.byte
, 0xFF, num
);
1404 for (i
= 0; i
< num
; ++i
)
1405 ns
->buf
.byte
[i
] = random32();
1406 NS_WARN("simulating read error in page %u\n", page_no
);
1412 void do_bit_flips(struct nandsim
*ns
, int num
)
1414 if (bitflips
&& random32() < (1 << 22)) {
1417 flips
= (random32() % (int) bitflips
) + 1;
1419 int pos
= random32() % (num
* 8);
1420 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1421 NS_WARN("read_page: flipping bit %d in page %d "
1422 "reading from %d ecc: corrected=%u failed=%u\n",
1423 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1424 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1430 * Fill the NAND buffer with data read from the specified page.
1432 static void read_page(struct nandsim
*ns
, int num
)
1434 union ns_mem
*mypage
;
1437 if (!ns
->pages_written
[ns
->regs
.row
]) {
1438 NS_DBG("read_page: page %d not written\n", ns
->regs
.row
);
1439 memset(ns
->buf
.byte
, 0xFF, num
);
1444 NS_DBG("read_page: page %d written, reading from %d\n",
1445 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1446 if (do_read_error(ns
, num
))
1448 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1449 tx
= read_file(ns
, ns
->cfile
, ns
->buf
.byte
, num
, &pos
);
1451 NS_ERR("read_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1454 do_bit_flips(ns
, num
);
1459 mypage
= NS_GET_PAGE(ns
);
1460 if (mypage
->byte
== NULL
) {
1461 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1462 memset(ns
->buf
.byte
, 0xFF, num
);
1464 NS_DBG("read_page: page %d allocated, reading from %d\n",
1465 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1466 if (do_read_error(ns
, num
))
1468 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1469 do_bit_flips(ns
, num
);
1474 * Erase all pages in the specified sector.
1476 static void erase_sector(struct nandsim
*ns
)
1478 union ns_mem
*mypage
;
1482 for (i
= 0; i
< ns
->geom
.pgsec
; i
++)
1483 if (ns
->pages_written
[ns
->regs
.row
+ i
]) {
1484 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+ i
);
1485 ns
->pages_written
[ns
->regs
.row
+ i
] = 0;
1490 mypage
= NS_GET_PAGE(ns
);
1491 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1492 if (mypage
->byte
!= NULL
) {
1493 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1494 kmem_cache_free(ns
->nand_pages_slab
, mypage
->byte
);
1495 mypage
->byte
= NULL
;
1502 * Program the specified page with the contents from the NAND buffer.
1504 static int prog_page(struct nandsim
*ns
, int num
)
1507 union ns_mem
*mypage
;
1515 NS_DBG("prog_page: writing page %d\n", ns
->regs
.row
);
1516 pg_off
= ns
->file_buf
+ ns
->regs
.column
+ ns
->regs
.off
;
1517 off
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1518 if (!ns
->pages_written
[ns
->regs
.row
]) {
1520 memset(ns
->file_buf
, 0xff, ns
->geom
.pgszoob
);
1524 tx
= read_file(ns
, ns
->cfile
, pg_off
, num
, &pos
);
1526 NS_ERR("prog_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1530 for (i
= 0; i
< num
; i
++)
1531 pg_off
[i
] &= ns
->buf
.byte
[i
];
1533 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
;
1534 tx
= write_file(ns
, ns
->cfile
, ns
->file_buf
, ns
->geom
.pgszoob
, &pos
);
1535 if (tx
!= ns
->geom
.pgszoob
) {
1536 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1539 ns
->pages_written
[ns
->regs
.row
] = 1;
1542 tx
= write_file(ns
, ns
->cfile
, pg_off
, num
, &pos
);
1544 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1551 mypage
= NS_GET_PAGE(ns
);
1552 if (mypage
->byte
== NULL
) {
1553 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1555 * We allocate memory with GFP_NOFS because a flash FS may
1556 * utilize this. If it is holding an FS lock, then gets here,
1557 * then kernel memory alloc runs writeback which goes to the FS
1558 * again and deadlocks. This was seen in practice.
1560 mypage
->byte
= kmem_cache_alloc(ns
->nand_pages_slab
, GFP_NOFS
);
1561 if (mypage
->byte
== NULL
) {
1562 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1565 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1568 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1569 for (i
= 0; i
< num
; i
++)
1570 pg_off
[i
] &= ns
->buf
.byte
[i
];
1576 * If state has any action bit, perform this action.
1578 * RETURNS: 0 if success, -1 if error.
1580 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1583 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1584 unsigned int erase_block_no
, page_no
;
1586 action
&= ACTION_MASK
;
1588 /* Check that page address input is correct */
1589 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1590 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1598 * Copy page data to the internal buffer.
1601 /* Column shouldn't be very large */
1602 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1603 NS_ERR("do_state_action: column number is too large\n");
1606 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1609 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1610 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1612 if (ns
->regs
.off
== 0)
1613 NS_LOG("read page %d\n", ns
->regs
.row
);
1614 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1615 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1617 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1619 NS_UDELAY(access_delay
);
1620 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1624 case ACTION_SECERASE
:
1630 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1634 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1635 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1636 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1640 ns
->regs
.row
= (ns
->regs
.row
<<
1641 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1642 ns
->regs
.column
= 0;
1644 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1646 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1647 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1648 NS_LOG("erase sector %u\n", erase_block_no
);
1652 NS_MDELAY(erase_delay
);
1654 if (erase_block_wear
)
1655 update_wear(erase_block_no
);
1657 if (erase_error(erase_block_no
)) {
1658 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1664 case ACTION_PRGPAGE
:
1666 * Program page - move internal buffer data to the page.
1670 NS_WARN("do_state_action: device is write-protected, programm\n");
1674 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1675 if (num
!= ns
->regs
.count
) {
1676 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1677 ns
->regs
.count
, num
);
1681 if (prog_page(ns
, num
) == -1)
1684 page_no
= ns
->regs
.row
;
1686 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1687 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1688 NS_LOG("programm page %d\n", ns
->regs
.row
);
1690 NS_UDELAY(programm_delay
);
1691 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1693 if (write_error(page_no
)) {
1694 NS_WARN("simulating write failure in page %u\n", page_no
);
1700 case ACTION_ZEROOFF
:
1701 NS_DBG("do_state_action: set internal offset to 0\n");
1705 case ACTION_HALFOFF
:
1706 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1707 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1708 "byte page size 8x chips\n");
1711 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1712 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1716 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1717 ns
->regs
.off
= ns
->geom
.pgsz
;
1721 NS_DBG("do_state_action: BUG! unknown action\n");
1728 * Switch simulator's state.
1730 static void switch_state(struct nandsim
*ns
)
1734 * The current operation have already been identified.
1735 * Just follow the states chain.
1739 ns
->state
= ns
->nxstate
;
1740 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1742 NS_DBG("switch_state: operation is known, switch to the next state, "
1743 "state: %s, nxstate: %s\n",
1744 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1746 /* See, whether we need to do some action */
1747 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1748 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1754 * We don't yet know which operation we perform.
1755 * Try to identify it.
1759 * The only event causing the switch_state function to
1760 * be called with yet unknown operation is new command.
1762 ns
->state
= get_state_by_command(ns
->regs
.command
);
1764 NS_DBG("switch_state: operation is unknown, try to find it\n");
1766 if (find_operation(ns
, 0) != 0)
1769 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1770 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1775 /* For 16x devices column means the page offset in words */
1776 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1777 NS_DBG("switch_state: double the column number for 16x device\n");
1778 ns
->regs
.column
<<= 1;
1781 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1783 * The current state is the last. Return to STATE_READY
1786 u_char status
= NS_STATUS_OK(ns
);
1788 /* In case of data states, see if all bytes were input/output */
1789 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1790 && ns
->regs
.count
!= ns
->regs
.num
) {
1791 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1792 ns
->regs
.num
- ns
->regs
.count
);
1793 status
= NS_STATUS_FAILED(ns
);
1796 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1798 switch_to_ready_state(ns
, status
);
1801 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1803 * If the next state is data input/output, switch to it now
1806 ns
->state
= ns
->nxstate
;
1807 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1808 ns
->regs
.num
= ns
->regs
.count
= 0;
1810 NS_DBG("switch_state: the next state is data I/O, switch, "
1811 "state: %s, nxstate: %s\n",
1812 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1815 * Set the internal register to the count of bytes which
1816 * are expected to be input or output
1818 switch (NS_STATE(ns
->state
)) {
1821 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1824 case STATE_DATAOUT_ID
:
1825 ns
->regs
.num
= ns
->geom
.idbytes
;
1828 case STATE_DATAOUT_STATUS
:
1829 case STATE_DATAOUT_STATUS_M
:
1830 ns
->regs
.count
= ns
->regs
.num
= 0;
1834 NS_ERR("switch_state: BUG! unknown data state\n");
1837 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1839 * If the next state is address input, set the internal
1840 * register to the number of expected address bytes
1845 switch (NS_STATE(ns
->nxstate
)) {
1846 case STATE_ADDR_PAGE
:
1847 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1850 case STATE_ADDR_SEC
:
1851 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1854 case STATE_ADDR_ZERO
:
1858 case STATE_ADDR_COLUMN
:
1859 /* Column address is always 2 bytes */
1860 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1864 NS_ERR("switch_state: BUG! unknown address state\n");
1868 * Just reset internal counters.
1876 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1878 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1881 /* Sanity and correctness checks */
1882 if (!ns
->lines
.ce
) {
1883 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1886 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1887 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1890 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1891 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1892 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1896 /* Status register may be read as many times as it is wanted */
1897 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1898 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1899 return ns
->regs
.status
;
1902 /* Check if there is any data in the internal buffer which may be read */
1903 if (ns
->regs
.count
== ns
->regs
.num
) {
1904 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1908 switch (NS_STATE(ns
->state
)) {
1910 if (ns
->busw
== 8) {
1911 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1912 ns
->regs
.count
+= 1;
1914 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1915 ns
->regs
.count
+= 2;
1918 case STATE_DATAOUT_ID
:
1919 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1920 outb
= ns
->ids
[ns
->regs
.count
];
1921 ns
->regs
.count
+= 1;
1927 if (ns
->regs
.count
== ns
->regs
.num
) {
1928 NS_DBG("read_byte: all bytes were read\n");
1930 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1937 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1939 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1941 /* Sanity and correctness checks */
1942 if (!ns
->lines
.ce
) {
1943 NS_ERR("write_byte: chip is disabled, ignore write\n");
1946 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1947 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1951 if (ns
->lines
.cle
== 1) {
1953 * The byte written is a command.
1956 if (byte
== NAND_CMD_RESET
) {
1957 NS_LOG("reset chip\n");
1958 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1962 /* Check that the command byte is correct */
1963 if (check_command(byte
)) {
1964 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1968 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1969 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1970 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1971 int row
= ns
->regs
.row
;
1974 if (byte
== NAND_CMD_RNDOUT
)
1978 /* Check if chip is expecting command */
1979 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1980 /* Do not warn if only 2 id bytes are read */
1981 if (!(ns
->regs
.command
== NAND_CMD_READID
&&
1982 NS_STATE(ns
->state
) == STATE_DATAOUT_ID
&& ns
->regs
.count
== 2)) {
1984 * We are in situation when something else (not command)
1985 * was expected but command was input. In this case ignore
1986 * previous command(s)/state(s) and accept the last one.
1988 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1989 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1991 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1994 NS_DBG("command byte corresponding to %s state accepted\n",
1995 get_state_name(get_state_by_command(byte
)));
1996 ns
->regs
.command
= byte
;
1999 } else if (ns
->lines
.ale
== 1) {
2001 * The byte written is an address.
2004 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
2006 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2008 if (find_operation(ns
, 1) < 0)
2011 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
2012 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2017 switch (NS_STATE(ns
->nxstate
)) {
2018 case STATE_ADDR_PAGE
:
2019 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
2021 case STATE_ADDR_SEC
:
2022 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
2024 case STATE_ADDR_ZERO
:
2032 /* Check that chip is expecting address */
2033 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
2034 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2035 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2036 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2040 /* Check if this is expected byte */
2041 if (ns
->regs
.count
== ns
->regs
.num
) {
2042 NS_ERR("write_byte: no more address bytes expected\n");
2043 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2047 accept_addr_byte(ns
, byte
);
2049 ns
->regs
.count
+= 1;
2051 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2052 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
2054 if (ns
->regs
.count
== ns
->regs
.num
) {
2055 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
2061 * The byte written is an input data.
2064 /* Check that chip is expecting data input */
2065 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2066 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2067 "switch to %s\n", (uint
)byte
,
2068 get_state_name(ns
->state
), get_state_name(STATE_READY
));
2069 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2073 /* Check if this is expected byte */
2074 if (ns
->regs
.count
== ns
->regs
.num
) {
2075 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2080 if (ns
->busw
== 8) {
2081 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
2082 ns
->regs
.count
+= 1;
2084 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
2085 ns
->regs
.count
+= 2;
2092 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
2094 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2096 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
2097 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
2098 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
2100 if (cmd
!= NAND_CMD_NONE
)
2101 ns_nand_write_byte(mtd
, cmd
);
2104 static int ns_device_ready(struct mtd_info
*mtd
)
2106 NS_DBG("device_ready\n");
2110 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
2112 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
2114 NS_DBG("read_word\n");
2116 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
2119 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2121 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2123 /* Check that chip is expecting data input */
2124 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2125 NS_ERR("write_buf: data input isn't expected, state is %s, "
2126 "switch to STATE_READY\n", get_state_name(ns
->state
));
2127 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2131 /* Check if these are expected bytes */
2132 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2133 NS_ERR("write_buf: too many input bytes\n");
2134 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2138 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
2139 ns
->regs
.count
+= len
;
2141 if (ns
->regs
.count
== ns
->regs
.num
) {
2142 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
2146 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
2148 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2150 /* Sanity and correctness checks */
2151 if (!ns
->lines
.ce
) {
2152 NS_ERR("read_buf: chip is disabled\n");
2155 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
2156 NS_ERR("read_buf: ALE or CLE pin is high\n");
2159 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
2160 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2161 get_state_name(ns
->state
));
2165 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
2168 for (i
= 0; i
< len
; i
++)
2169 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
2174 /* Check if these are expected bytes */
2175 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2176 NS_ERR("read_buf: too many bytes to read\n");
2177 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2181 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
2182 ns
->regs
.count
+= len
;
2184 if (ns
->regs
.count
== ns
->regs
.num
) {
2185 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
2192 static int ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2194 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
2196 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
2197 NS_DBG("verify_buf: the buffer is OK\n");
2200 NS_DBG("verify_buf: the buffer is wrong\n");
2206 * Module initialization function
2208 static int __init
ns_init_module(void)
2210 struct nand_chip
*chip
;
2211 struct nandsim
*nand
;
2212 int retval
= -ENOMEM
, i
;
2214 if (bus_width
!= 8 && bus_width
!= 16) {
2215 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
2219 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2220 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
2221 + sizeof(struct nandsim
), GFP_KERNEL
);
2223 NS_ERR("unable to allocate core structures.\n");
2226 chip
= (struct nand_chip
*)(nsmtd
+ 1);
2227 nsmtd
->priv
= (void *)chip
;
2228 nand
= (struct nandsim
*)(chip
+ 1);
2229 chip
->priv
= (void *)nand
;
2232 * Register simulator's callbacks.
2234 chip
->cmd_ctrl
= ns_hwcontrol
;
2235 chip
->read_byte
= ns_nand_read_byte
;
2236 chip
->dev_ready
= ns_device_ready
;
2237 chip
->write_buf
= ns_nand_write_buf
;
2238 chip
->read_buf
= ns_nand_read_buf
;
2239 chip
->verify_buf
= ns_nand_verify_buf
;
2240 chip
->read_word
= ns_nand_read_word
;
2241 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2242 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2243 /* and 'badblocks' parameters to work */
2244 chip
->options
|= NAND_SKIP_BBTSCAN
;
2248 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
2250 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2254 NS_ERR("bbt has to be 0..2\n");
2259 * Perform minimum nandsim structure initialization to handle
2260 * the initial ID read command correctly
2262 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
2263 nand
->geom
.idbytes
= 4;
2265 nand
->geom
.idbytes
= 2;
2266 nand
->regs
.status
= NS_STATUS_OK(nand
);
2267 nand
->nxstate
= STATE_UNKNOWN
;
2268 nand
->options
|= OPT_PAGE256
; /* temporary value */
2269 nand
->ids
[0] = first_id_byte
;
2270 nand
->ids
[1] = second_id_byte
;
2271 nand
->ids
[2] = third_id_byte
;
2272 nand
->ids
[3] = fourth_id_byte
;
2273 if (bus_width
== 16) {
2275 chip
->options
|= NAND_BUSWIDTH_16
;
2278 nsmtd
->owner
= THIS_MODULE
;
2280 if ((retval
= parse_weakblocks()) != 0)
2283 if ((retval
= parse_weakpages()) != 0)
2286 if ((retval
= parse_gravepages()) != 0)
2289 retval
= nand_scan_ident(nsmtd
, 1, NULL
);
2291 NS_ERR("cannot scan NAND Simulator device\n");
2298 unsigned int eccsteps
, eccbytes
;
2299 if (!mtd_nand_has_bch()) {
2300 NS_ERR("BCH ECC support is disabled\n");
2304 /* use 512-byte ecc blocks */
2305 eccsteps
= nsmtd
->writesize
/512;
2306 eccbytes
= (bch
*13+7)/8;
2307 /* do not bother supporting small page devices */
2308 if ((nsmtd
->oobsize
< 64) || !eccsteps
) {
2309 NS_ERR("bch not available on small page devices\n");
2313 if ((eccbytes
*eccsteps
+2) > nsmtd
->oobsize
) {
2314 NS_ERR("invalid bch value %u\n", bch
);
2318 chip
->ecc
.mode
= NAND_ECC_SOFT_BCH
;
2319 chip
->ecc
.size
= 512;
2320 chip
->ecc
.bytes
= eccbytes
;
2321 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch
, chip
->ecc
.size
);
2324 retval
= nand_scan_tail(nsmtd
);
2326 NS_ERR("can't register NAND Simulator\n");
2333 uint64_t new_size
= (uint64_t)nsmtd
->erasesize
<< overridesize
;
2334 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2335 NS_ERR("overridesize is too big\n");
2339 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2340 nsmtd
->size
= new_size
;
2341 chip
->chipsize
= new_size
;
2342 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2343 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2346 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2349 if ((retval
= init_nandsim(nsmtd
)) != 0)
2352 if ((retval
= nand_default_bbt(nsmtd
)) != 0)
2355 if ((retval
= parse_badblocks(nand
, nsmtd
)) != 0)
2358 /* Register NAND partitions */
2359 retval
= mtd_device_register(nsmtd
, &nand
->partitions
[0],
2368 nand_release(nsmtd
);
2369 for (i
= 0;i
< ARRAY_SIZE(nand
->partitions
); ++i
)
2370 kfree(nand
->partitions
[i
].name
);
2378 module_init(ns_init_module
);
2381 * Module clean-up function
2383 static void __exit
ns_cleanup_module(void)
2385 struct nandsim
*ns
= ((struct nand_chip
*)nsmtd
->priv
)->priv
;
2388 free_nandsim(ns
); /* Free nandsim private resources */
2389 nand_release(nsmtd
); /* Unregister driver */
2390 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2391 kfree(ns
->partitions
[i
].name
);
2392 kfree(nsmtd
); /* Free other structures */
2396 module_exit(ns_cleanup_module
);
2398 MODULE_LICENSE ("GPL");
2399 MODULE_AUTHOR ("Artem B. Bityuckiy");
2400 MODULE_DESCRIPTION ("The NAND flash simulator");