media: v4l: rcar_fdp1: Change platform dependency to ARCH_RENESAS
[linux/fpc-iii.git] / block / blk-mq.c
blobb429d515b5689eddb29c19886fc221d0e0c463f9
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
96 struct mq_inflight *mi = priv;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq->part == mi->part)
104 mi->inflight[0]++;
105 if (mi->part->partno)
106 mi->inflight[1]++;
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
120 bool reserved)
122 struct mq_inflight *mi = priv;
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
137 void blk_freeze_queue_start(struct request_queue *q)
139 int freeze_depth;
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
144 if (q->mq_ops)
145 blk_mq_run_hw_queues(q, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
161 timeout);
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue *q)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q);
179 if (!q->mq_ops)
180 blk_drain_queue(q);
181 blk_mq_freeze_queue_wait(q);
184 void blk_mq_freeze_queue(struct request_queue *q)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
190 blk_freeze_queue(q);
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 void blk_mq_unfreeze_queue(struct request_queue *q)
196 int freeze_depth;
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
200 if (!freeze_depth) {
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 * @q: request queue.
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue *q)
228 struct blk_mq_hw_ctx *hctx;
229 unsigned int i;
230 bool rcu = false;
232 blk_mq_quiesce_queue_nowait(q);
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
237 else
238 rcu = true;
240 if (rcu)
241 synchronize_rcu();
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247 * @q: request queue.
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue *q)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 void blk_mq_wake_waiters(struct request_queue *q)
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 return blk_mq_has_free_tags(hctx->tags);
275 EXPORT_SYMBOL(blk_mq_can_queue);
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->tag = -1;
286 rq->internal_tag = tag;
287 } else {
288 if (blk_mq_tag_busy(data->hctx)) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
292 rq->tag = tag;
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
301 rq->cpu = -1;
302 rq->cmd_flags = op;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
310 rq->rq_disk = NULL;
311 rq->part = NULL;
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321 rq->__deadline = 0;
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
330 #ifdef CONFIG_BLK_CGROUP
331 rq->rl = NULL;
332 #endif
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
336 return rq;
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
343 struct elevator_queue *e = q->elevator;
344 struct request *rq;
345 unsigned int tag;
346 bool put_ctx_on_error = false;
348 blk_queue_enter_live(q);
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 if (op & REQ_NOWAIT)
357 data->flags |= BLK_MQ_REQ_NOWAIT;
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
372 tag = blk_mq_get_tag(data);
373 if (tag == BLK_MQ_TAG_FAIL) {
374 if (put_ctx_on_error) {
375 blk_mq_put_ctx(data->ctx);
376 data->ctx = NULL;
378 blk_queue_exit(q);
379 return NULL;
382 rq = blk_mq_rq_ctx_init(data, tag, op);
383 if (!op_is_flush(op)) {
384 rq->elv.icq = NULL;
385 if (e && e->type->ops.mq.prepare_request) {
386 if (e->type->icq_cache && rq_ioc(bio))
387 blk_mq_sched_assign_ioc(rq, bio);
389 e->type->ops.mq.prepare_request(rq, bio);
390 rq->rq_flags |= RQF_ELVPRIV;
393 data->hctx->queued++;
394 return rq;
397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398 blk_mq_req_flags_t flags)
400 struct blk_mq_alloc_data alloc_data = { .flags = flags };
401 struct request *rq;
402 int ret;
404 ret = blk_queue_enter(q, flags);
405 if (ret)
406 return ERR_PTR(ret);
408 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 blk_queue_exit(q);
411 if (!rq)
412 return ERR_PTR(-EWOULDBLOCK);
414 blk_mq_put_ctx(alloc_data.ctx);
416 rq->__data_len = 0;
417 rq->__sector = (sector_t) -1;
418 rq->bio = rq->biotail = NULL;
419 return rq;
421 EXPORT_SYMBOL(blk_mq_alloc_request);
423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
426 struct blk_mq_alloc_data alloc_data = { .flags = flags };
427 struct request *rq;
428 unsigned int cpu;
429 int ret;
432 * If the tag allocator sleeps we could get an allocation for a
433 * different hardware context. No need to complicate the low level
434 * allocator for this for the rare use case of a command tied to
435 * a specific queue.
437 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
438 return ERR_PTR(-EINVAL);
440 if (hctx_idx >= q->nr_hw_queues)
441 return ERR_PTR(-EIO);
443 ret = blk_queue_enter(q, flags);
444 if (ret)
445 return ERR_PTR(ret);
448 * Check if the hardware context is actually mapped to anything.
449 * If not tell the caller that it should skip this queue.
451 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
453 blk_queue_exit(q);
454 return ERR_PTR(-EXDEV);
456 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
459 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460 blk_queue_exit(q);
462 if (!rq)
463 return ERR_PTR(-EWOULDBLOCK);
465 return rq;
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
469 static void __blk_mq_free_request(struct request *rq)
471 struct request_queue *q = rq->q;
472 struct blk_mq_ctx *ctx = rq->mq_ctx;
473 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474 const int sched_tag = rq->internal_tag;
476 if (rq->tag != -1)
477 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
478 if (sched_tag != -1)
479 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
480 blk_mq_sched_restart(hctx);
481 blk_queue_exit(q);
484 void blk_mq_free_request(struct request *rq)
486 struct request_queue *q = rq->q;
487 struct elevator_queue *e = q->elevator;
488 struct blk_mq_ctx *ctx = rq->mq_ctx;
489 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
491 if (rq->rq_flags & RQF_ELVPRIV) {
492 if (e && e->type->ops.mq.finish_request)
493 e->type->ops.mq.finish_request(rq);
494 if (rq->elv.icq) {
495 put_io_context(rq->elv.icq->ioc);
496 rq->elv.icq = NULL;
500 ctx->rq_completed[rq_is_sync(rq)]++;
501 if (rq->rq_flags & RQF_MQ_INFLIGHT)
502 atomic_dec(&hctx->nr_active);
504 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
505 laptop_io_completion(q->backing_dev_info);
507 wbt_done(q->rq_wb, rq);
509 if (blk_rq_rl(rq))
510 blk_put_rl(blk_rq_rl(rq));
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
520 u64 now = ktime_get_ns();
522 if (rq->rq_flags & RQF_STATS) {
523 blk_mq_poll_stats_start(rq->q);
524 blk_stat_add(rq, now);
527 blk_account_io_done(rq, now);
529 if (rq->end_io) {
530 wbt_done(rq->q->rq_wb, rq);
531 rq->end_io(rq, error);
532 } else {
533 if (unlikely(blk_bidi_rq(rq)))
534 blk_mq_free_request(rq->next_rq);
535 blk_mq_free_request(rq);
538 EXPORT_SYMBOL(__blk_mq_end_request);
540 void blk_mq_end_request(struct request *rq, blk_status_t error)
542 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
543 BUG();
544 __blk_mq_end_request(rq, error);
546 EXPORT_SYMBOL(blk_mq_end_request);
548 static void __blk_mq_complete_request_remote(void *data)
550 struct request *rq = data;
552 rq->q->softirq_done_fn(rq);
555 static void __blk_mq_complete_request(struct request *rq)
557 struct blk_mq_ctx *ctx = rq->mq_ctx;
558 bool shared = false;
559 int cpu;
561 if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
562 MQ_RQ_IN_FLIGHT)
563 return;
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
570 return;
573 cpu = get_cpu();
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
579 rq->csd.info = rq;
580 rq->csd.flags = 0;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
582 } else {
583 rq->q->softirq_done_fn(rq);
585 put_cpu();
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 rcu_read_unlock();
593 else
594 srcu_read_unlock(hctx->srcu, srcu_idx);
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
602 *srcu_idx = 0;
603 rcu_read_lock();
604 } else
605 *srcu_idx = srcu_read_lock(hctx->srcu);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request *rq)
618 if (unlikely(blk_should_fake_timeout(rq->q)))
619 return;
620 __blk_mq_complete_request(rq);
622 EXPORT_SYMBOL(blk_mq_complete_request);
624 int blk_mq_request_started(struct request *rq)
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
630 void blk_mq_start_request(struct request *rq)
632 struct request_queue *q = rq->q;
634 blk_mq_sched_started_request(rq);
636 trace_block_rq_issue(q, rq);
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 rq->rq_flags |= RQF_STATS;
644 wbt_issue(q->rq_wb, rq);
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
649 blk_add_timer(rq);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq->nr_phys_segments++;
661 EXPORT_SYMBOL(blk_mq_start_request);
663 static void __blk_mq_requeue_request(struct request *rq)
665 struct request_queue *q = rq->q;
667 blk_mq_put_driver_tag(rq);
669 trace_block_rq_requeue(q, rq);
670 wbt_requeue(q->rq_wb, rq);
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
682 __blk_mq_requeue_request(rq);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
690 EXPORT_SYMBOL(blk_mq_requeue_request);
692 static void blk_mq_requeue_work(struct work_struct *work)
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
696 LIST_HEAD(rq_list);
697 struct request *rq, *next;
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 continue;
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
709 blk_mq_sched_insert_request(rq, true, false, false);
712 while (!list_empty(&rq_list)) {
713 rq = list_entry(rq_list.next, struct request, queuelist);
714 list_del_init(&rq->queuelist);
715 blk_mq_sched_insert_request(rq, false, false, false);
718 blk_mq_run_hw_queues(q, false);
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722 bool kick_requeue_list)
724 struct request_queue *q = rq->q;
725 unsigned long flags;
728 * We abuse this flag that is otherwise used by the I/O scheduler to
729 * request head insertion from the workqueue.
731 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
733 spin_lock_irqsave(&q->requeue_lock, flags);
734 if (at_head) {
735 rq->rq_flags |= RQF_SOFTBARRIER;
736 list_add(&rq->queuelist, &q->requeue_list);
737 } else {
738 list_add_tail(&rq->queuelist, &q->requeue_list);
740 spin_unlock_irqrestore(&q->requeue_lock, flags);
742 if (kick_requeue_list)
743 blk_mq_kick_requeue_list(q);
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
747 void blk_mq_kick_requeue_list(struct request_queue *q)
749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754 unsigned long msecs)
756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757 msecs_to_jiffies(msecs));
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
763 if (tag < tags->nr_tags) {
764 prefetch(tags->rqs[tag]);
765 return tags->rqs[tag];
768 return NULL;
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
774 req->rq_flags |= RQF_TIMED_OUT;
775 if (req->q->mq_ops->timeout) {
776 enum blk_eh_timer_return ret;
778 ret = req->q->mq_ops->timeout(req, reserved);
779 if (ret == BLK_EH_DONE)
780 return;
781 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
784 blk_add_timer(req);
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
789 unsigned long deadline;
791 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
792 return false;
793 if (rq->rq_flags & RQF_TIMED_OUT)
794 return false;
796 deadline = blk_rq_deadline(rq);
797 if (time_after_eq(jiffies, deadline))
798 return true;
800 if (*next == 0)
801 *next = deadline;
802 else if (time_after(*next, deadline))
803 *next = deadline;
804 return false;
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 struct request *rq, void *priv, bool reserved)
810 unsigned long *next = priv;
813 * Just do a quick check if it is expired before locking the request in
814 * so we're not unnecessarilly synchronizing across CPUs.
816 if (!blk_mq_req_expired(rq, next))
817 return;
820 * We have reason to believe the request may be expired. Take a
821 * reference on the request to lock this request lifetime into its
822 * currently allocated context to prevent it from being reallocated in
823 * the event the completion by-passes this timeout handler.
825 * If the reference was already released, then the driver beat the
826 * timeout handler to posting a natural completion.
828 if (!refcount_inc_not_zero(&rq->ref))
829 return;
832 * The request is now locked and cannot be reallocated underneath the
833 * timeout handler's processing. Re-verify this exact request is truly
834 * expired; if it is not expired, then the request was completed and
835 * reallocated as a new request.
837 if (blk_mq_req_expired(rq, next))
838 blk_mq_rq_timed_out(rq, reserved);
839 if (refcount_dec_and_test(&rq->ref))
840 __blk_mq_free_request(rq);
843 static void blk_mq_timeout_work(struct work_struct *work)
845 struct request_queue *q =
846 container_of(work, struct request_queue, timeout_work);
847 unsigned long next = 0;
848 struct blk_mq_hw_ctx *hctx;
849 int i;
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
862 * zero.
864 if (!percpu_ref_tryget(&q->q_usage_counter))
865 return;
867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
869 if (next != 0) {
870 mod_timer(&q->timeout, next);
871 } else {
873 * Request timeouts are handled as a forward rolling timer. If
874 * we end up here it means that no requests are pending and
875 * also that no request has been pending for a while. Mark
876 * each hctx as idle.
878 queue_for_each_hw_ctx(q, hctx, i) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx))
881 blk_mq_tag_idle(hctx);
884 blk_queue_exit(q);
887 struct flush_busy_ctx_data {
888 struct blk_mq_hw_ctx *hctx;
889 struct list_head *list;
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
894 struct flush_busy_ctx_data *flush_data = data;
895 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
898 spin_lock(&ctx->lock);
899 list_splice_tail_init(&ctx->rq_list, flush_data->list);
900 sbitmap_clear_bit(sb, bitnr);
901 spin_unlock(&ctx->lock);
902 return true;
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
911 struct flush_busy_ctx_data data = {
912 .hctx = hctx,
913 .list = list,
916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
920 struct dispatch_rq_data {
921 struct blk_mq_hw_ctx *hctx;
922 struct request *rq;
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 void *data)
928 struct dispatch_rq_data *dispatch_data = data;
929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
932 spin_lock(&ctx->lock);
933 if (!list_empty(&ctx->rq_list)) {
934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 list_del_init(&dispatch_data->rq->queuelist);
936 if (list_empty(&ctx->rq_list))
937 sbitmap_clear_bit(sb, bitnr);
939 spin_unlock(&ctx->lock);
941 return !dispatch_data->rq;
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 struct blk_mq_ctx *start)
947 unsigned off = start ? start->index_hw : 0;
948 struct dispatch_rq_data data = {
949 .hctx = hctx,
950 .rq = NULL,
953 __sbitmap_for_each_set(&hctx->ctx_map, off,
954 dispatch_rq_from_ctx, &data);
956 return data.rq;
959 static inline unsigned int queued_to_index(unsigned int queued)
961 if (!queued)
962 return 0;
964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 bool wait)
970 struct blk_mq_alloc_data data = {
971 .q = rq->q,
972 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
976 might_sleep_if(wait);
978 if (rq->tag != -1)
979 goto done;
981 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982 data.flags |= BLK_MQ_REQ_RESERVED;
984 rq->tag = blk_mq_get_tag(&data);
985 if (rq->tag >= 0) {
986 if (blk_mq_tag_busy(data.hctx)) {
987 rq->rq_flags |= RQF_MQ_INFLIGHT;
988 atomic_inc(&data.hctx->nr_active);
990 data.hctx->tags->rqs[rq->tag] = rq;
993 done:
994 if (hctx)
995 *hctx = data.hctx;
996 return rq->tag != -1;
999 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1000 int flags, void *key)
1002 struct blk_mq_hw_ctx *hctx;
1004 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1006 list_del_init(&wait->entry);
1007 blk_mq_run_hw_queue(hctx, true);
1008 return 1;
1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014 * restart. For both cases, take care to check the condition again after
1015 * marking us as waiting.
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1018 struct request *rq)
1020 struct blk_mq_hw_ctx *this_hctx = *hctx;
1021 struct sbq_wait_state *ws;
1022 wait_queue_entry_t *wait;
1023 bool ret;
1025 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1026 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1027 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1030 * It's possible that a tag was freed in the window between the
1031 * allocation failure and adding the hardware queue to the wait
1032 * queue.
1034 * Don't clear RESTART here, someone else could have set it.
1035 * At most this will cost an extra queue run.
1037 return blk_mq_get_driver_tag(rq, hctx, false);
1040 wait = &this_hctx->dispatch_wait;
1041 if (!list_empty_careful(&wait->entry))
1042 return false;
1044 spin_lock(&this_hctx->lock);
1045 if (!list_empty(&wait->entry)) {
1046 spin_unlock(&this_hctx->lock);
1047 return false;
1050 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1051 add_wait_queue(&ws->wait, wait);
1054 * It's possible that a tag was freed in the window between the
1055 * allocation failure and adding the hardware queue to the wait
1056 * queue.
1058 ret = blk_mq_get_driver_tag(rq, hctx, false);
1059 if (!ret) {
1060 spin_unlock(&this_hctx->lock);
1061 return false;
1065 * We got a tag, remove ourselves from the wait queue to ensure
1066 * someone else gets the wakeup.
1068 spin_lock_irq(&ws->wait.lock);
1069 list_del_init(&wait->entry);
1070 spin_unlock_irq(&ws->wait.lock);
1071 spin_unlock(&this_hctx->lock);
1073 return true;
1076 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1078 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1079 bool got_budget)
1081 struct blk_mq_hw_ctx *hctx;
1082 struct request *rq, *nxt;
1083 bool no_tag = false;
1084 int errors, queued;
1085 blk_status_t ret = BLK_STS_OK;
1087 if (list_empty(list))
1088 return false;
1090 WARN_ON(!list_is_singular(list) && got_budget);
1093 * Now process all the entries, sending them to the driver.
1095 errors = queued = 0;
1096 do {
1097 struct blk_mq_queue_data bd;
1099 rq = list_first_entry(list, struct request, queuelist);
1101 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1102 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1103 break;
1105 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1107 * The initial allocation attempt failed, so we need to
1108 * rerun the hardware queue when a tag is freed. The
1109 * waitqueue takes care of that. If the queue is run
1110 * before we add this entry back on the dispatch list,
1111 * we'll re-run it below.
1113 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1114 blk_mq_put_dispatch_budget(hctx);
1116 * For non-shared tags, the RESTART check
1117 * will suffice.
1119 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1120 no_tag = true;
1121 break;
1125 list_del_init(&rq->queuelist);
1127 bd.rq = rq;
1130 * Flag last if we have no more requests, or if we have more
1131 * but can't assign a driver tag to it.
1133 if (list_empty(list))
1134 bd.last = true;
1135 else {
1136 nxt = list_first_entry(list, struct request, queuelist);
1137 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1140 ret = q->mq_ops->queue_rq(hctx, &bd);
1141 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1143 * If an I/O scheduler has been configured and we got a
1144 * driver tag for the next request already, free it
1145 * again.
1147 if (!list_empty(list)) {
1148 nxt = list_first_entry(list, struct request, queuelist);
1149 blk_mq_put_driver_tag(nxt);
1151 list_add(&rq->queuelist, list);
1152 __blk_mq_requeue_request(rq);
1153 break;
1156 if (unlikely(ret != BLK_STS_OK)) {
1157 errors++;
1158 blk_mq_end_request(rq, BLK_STS_IOERR);
1159 continue;
1162 queued++;
1163 } while (!list_empty(list));
1165 hctx->dispatched[queued_to_index(queued)]++;
1168 * Any items that need requeuing? Stuff them into hctx->dispatch,
1169 * that is where we will continue on next queue run.
1171 if (!list_empty(list)) {
1172 bool needs_restart;
1174 spin_lock(&hctx->lock);
1175 list_splice_init(list, &hctx->dispatch);
1176 spin_unlock(&hctx->lock);
1179 * If SCHED_RESTART was set by the caller of this function and
1180 * it is no longer set that means that it was cleared by another
1181 * thread and hence that a queue rerun is needed.
1183 * If 'no_tag' is set, that means that we failed getting
1184 * a driver tag with an I/O scheduler attached. If our dispatch
1185 * waitqueue is no longer active, ensure that we run the queue
1186 * AFTER adding our entries back to the list.
1188 * If no I/O scheduler has been configured it is possible that
1189 * the hardware queue got stopped and restarted before requests
1190 * were pushed back onto the dispatch list. Rerun the queue to
1191 * avoid starvation. Notes:
1192 * - blk_mq_run_hw_queue() checks whether or not a queue has
1193 * been stopped before rerunning a queue.
1194 * - Some but not all block drivers stop a queue before
1195 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1196 * and dm-rq.
1198 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1199 * bit is set, run queue after a delay to avoid IO stalls
1200 * that could otherwise occur if the queue is idle.
1202 needs_restart = blk_mq_sched_needs_restart(hctx);
1203 if (!needs_restart ||
1204 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1205 blk_mq_run_hw_queue(hctx, true);
1206 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1207 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1210 return (queued + errors) != 0;
1213 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1215 int srcu_idx;
1218 * We should be running this queue from one of the CPUs that
1219 * are mapped to it.
1221 * There are at least two related races now between setting
1222 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1223 * __blk_mq_run_hw_queue():
1225 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1226 * but later it becomes online, then this warning is harmless
1227 * at all
1229 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1230 * but later it becomes offline, then the warning can't be
1231 * triggered, and we depend on blk-mq timeout handler to
1232 * handle dispatched requests to this hctx
1234 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1235 cpu_online(hctx->next_cpu)) {
1236 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1237 raw_smp_processor_id(),
1238 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1239 dump_stack();
1243 * We can't run the queue inline with ints disabled. Ensure that
1244 * we catch bad users of this early.
1246 WARN_ON_ONCE(in_interrupt());
1248 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1250 hctx_lock(hctx, &srcu_idx);
1251 blk_mq_sched_dispatch_requests(hctx);
1252 hctx_unlock(hctx, srcu_idx);
1255 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1257 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1259 if (cpu >= nr_cpu_ids)
1260 cpu = cpumask_first(hctx->cpumask);
1261 return cpu;
1265 * It'd be great if the workqueue API had a way to pass
1266 * in a mask and had some smarts for more clever placement.
1267 * For now we just round-robin here, switching for every
1268 * BLK_MQ_CPU_WORK_BATCH queued items.
1270 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1272 bool tried = false;
1273 int next_cpu = hctx->next_cpu;
1275 if (hctx->queue->nr_hw_queues == 1)
1276 return WORK_CPU_UNBOUND;
1278 if (--hctx->next_cpu_batch <= 0) {
1279 select_cpu:
1280 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1281 cpu_online_mask);
1282 if (next_cpu >= nr_cpu_ids)
1283 next_cpu = blk_mq_first_mapped_cpu(hctx);
1284 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1288 * Do unbound schedule if we can't find a online CPU for this hctx,
1289 * and it should only happen in the path of handling CPU DEAD.
1291 if (!cpu_online(next_cpu)) {
1292 if (!tried) {
1293 tried = true;
1294 goto select_cpu;
1298 * Make sure to re-select CPU next time once after CPUs
1299 * in hctx->cpumask become online again.
1301 hctx->next_cpu = next_cpu;
1302 hctx->next_cpu_batch = 1;
1303 return WORK_CPU_UNBOUND;
1306 hctx->next_cpu = next_cpu;
1307 return next_cpu;
1310 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1311 unsigned long msecs)
1313 if (unlikely(blk_mq_hctx_stopped(hctx)))
1314 return;
1316 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1317 int cpu = get_cpu();
1318 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1319 __blk_mq_run_hw_queue(hctx);
1320 put_cpu();
1321 return;
1324 put_cpu();
1327 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1328 msecs_to_jiffies(msecs));
1331 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1333 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1335 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1337 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1339 int srcu_idx;
1340 bool need_run;
1343 * When queue is quiesced, we may be switching io scheduler, or
1344 * updating nr_hw_queues, or other things, and we can't run queue
1345 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1347 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1348 * quiesced.
1350 hctx_lock(hctx, &srcu_idx);
1351 need_run = !blk_queue_quiesced(hctx->queue) &&
1352 blk_mq_hctx_has_pending(hctx);
1353 hctx_unlock(hctx, srcu_idx);
1355 if (need_run) {
1356 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1357 return true;
1360 return false;
1362 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1364 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1366 struct blk_mq_hw_ctx *hctx;
1367 int i;
1369 queue_for_each_hw_ctx(q, hctx, i) {
1370 if (blk_mq_hctx_stopped(hctx))
1371 continue;
1373 blk_mq_run_hw_queue(hctx, async);
1376 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1379 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1380 * @q: request queue.
1382 * The caller is responsible for serializing this function against
1383 * blk_mq_{start,stop}_hw_queue().
1385 bool blk_mq_queue_stopped(struct request_queue *q)
1387 struct blk_mq_hw_ctx *hctx;
1388 int i;
1390 queue_for_each_hw_ctx(q, hctx, i)
1391 if (blk_mq_hctx_stopped(hctx))
1392 return true;
1394 return false;
1396 EXPORT_SYMBOL(blk_mq_queue_stopped);
1399 * This function is often used for pausing .queue_rq() by driver when
1400 * there isn't enough resource or some conditions aren't satisfied, and
1401 * BLK_STS_RESOURCE is usually returned.
1403 * We do not guarantee that dispatch can be drained or blocked
1404 * after blk_mq_stop_hw_queue() returns. Please use
1405 * blk_mq_quiesce_queue() for that requirement.
1407 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1409 cancel_delayed_work(&hctx->run_work);
1411 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1413 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1416 * This function is often used for pausing .queue_rq() by driver when
1417 * there isn't enough resource or some conditions aren't satisfied, and
1418 * BLK_STS_RESOURCE is usually returned.
1420 * We do not guarantee that dispatch can be drained or blocked
1421 * after blk_mq_stop_hw_queues() returns. Please use
1422 * blk_mq_quiesce_queue() for that requirement.
1424 void blk_mq_stop_hw_queues(struct request_queue *q)
1426 struct blk_mq_hw_ctx *hctx;
1427 int i;
1429 queue_for_each_hw_ctx(q, hctx, i)
1430 blk_mq_stop_hw_queue(hctx);
1432 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1434 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1436 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1438 blk_mq_run_hw_queue(hctx, false);
1440 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1442 void blk_mq_start_hw_queues(struct request_queue *q)
1444 struct blk_mq_hw_ctx *hctx;
1445 int i;
1447 queue_for_each_hw_ctx(q, hctx, i)
1448 blk_mq_start_hw_queue(hctx);
1450 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1452 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1454 if (!blk_mq_hctx_stopped(hctx))
1455 return;
1457 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1458 blk_mq_run_hw_queue(hctx, async);
1460 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1462 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1464 struct blk_mq_hw_ctx *hctx;
1465 int i;
1467 queue_for_each_hw_ctx(q, hctx, i)
1468 blk_mq_start_stopped_hw_queue(hctx, async);
1470 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1472 static void blk_mq_run_work_fn(struct work_struct *work)
1474 struct blk_mq_hw_ctx *hctx;
1476 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1479 * If we are stopped, don't run the queue.
1481 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1482 return;
1484 __blk_mq_run_hw_queue(hctx);
1487 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1488 struct request *rq,
1489 bool at_head)
1491 struct blk_mq_ctx *ctx = rq->mq_ctx;
1493 lockdep_assert_held(&ctx->lock);
1495 trace_block_rq_insert(hctx->queue, rq);
1497 if (at_head)
1498 list_add(&rq->queuelist, &ctx->rq_list);
1499 else
1500 list_add_tail(&rq->queuelist, &ctx->rq_list);
1503 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1504 bool at_head)
1506 struct blk_mq_ctx *ctx = rq->mq_ctx;
1508 lockdep_assert_held(&ctx->lock);
1510 __blk_mq_insert_req_list(hctx, rq, at_head);
1511 blk_mq_hctx_mark_pending(hctx, ctx);
1515 * Should only be used carefully, when the caller knows we want to
1516 * bypass a potential IO scheduler on the target device.
1518 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1520 struct blk_mq_ctx *ctx = rq->mq_ctx;
1521 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1523 spin_lock(&hctx->lock);
1524 list_add_tail(&rq->queuelist, &hctx->dispatch);
1525 spin_unlock(&hctx->lock);
1527 if (run_queue)
1528 blk_mq_run_hw_queue(hctx, false);
1531 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1532 struct list_head *list)
1536 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1537 * offline now
1539 spin_lock(&ctx->lock);
1540 while (!list_empty(list)) {
1541 struct request *rq;
1543 rq = list_first_entry(list, struct request, queuelist);
1544 BUG_ON(rq->mq_ctx != ctx);
1545 list_del_init(&rq->queuelist);
1546 __blk_mq_insert_req_list(hctx, rq, false);
1548 blk_mq_hctx_mark_pending(hctx, ctx);
1549 spin_unlock(&ctx->lock);
1552 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1554 struct request *rqa = container_of(a, struct request, queuelist);
1555 struct request *rqb = container_of(b, struct request, queuelist);
1557 return !(rqa->mq_ctx < rqb->mq_ctx ||
1558 (rqa->mq_ctx == rqb->mq_ctx &&
1559 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1562 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1564 struct blk_mq_ctx *this_ctx;
1565 struct request_queue *this_q;
1566 struct request *rq;
1567 LIST_HEAD(list);
1568 LIST_HEAD(ctx_list);
1569 unsigned int depth;
1571 list_splice_init(&plug->mq_list, &list);
1573 list_sort(NULL, &list, plug_ctx_cmp);
1575 this_q = NULL;
1576 this_ctx = NULL;
1577 depth = 0;
1579 while (!list_empty(&list)) {
1580 rq = list_entry_rq(list.next);
1581 list_del_init(&rq->queuelist);
1582 BUG_ON(!rq->q);
1583 if (rq->mq_ctx != this_ctx) {
1584 if (this_ctx) {
1585 trace_block_unplug(this_q, depth, from_schedule);
1586 blk_mq_sched_insert_requests(this_q, this_ctx,
1587 &ctx_list,
1588 from_schedule);
1591 this_ctx = rq->mq_ctx;
1592 this_q = rq->q;
1593 depth = 0;
1596 depth++;
1597 list_add_tail(&rq->queuelist, &ctx_list);
1601 * If 'this_ctx' is set, we know we have entries to complete
1602 * on 'ctx_list'. Do those.
1604 if (this_ctx) {
1605 trace_block_unplug(this_q, depth, from_schedule);
1606 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1607 from_schedule);
1611 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1613 blk_init_request_from_bio(rq, bio);
1615 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1617 blk_account_io_start(rq, true);
1620 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1622 if (rq->tag != -1)
1623 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1625 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1628 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1629 struct request *rq,
1630 blk_qc_t *cookie)
1632 struct request_queue *q = rq->q;
1633 struct blk_mq_queue_data bd = {
1634 .rq = rq,
1635 .last = true,
1637 blk_qc_t new_cookie;
1638 blk_status_t ret;
1640 new_cookie = request_to_qc_t(hctx, rq);
1643 * For OK queue, we are done. For error, caller may kill it.
1644 * Any other error (busy), just add it to our list as we
1645 * previously would have done.
1647 ret = q->mq_ops->queue_rq(hctx, &bd);
1648 switch (ret) {
1649 case BLK_STS_OK:
1650 *cookie = new_cookie;
1651 break;
1652 case BLK_STS_RESOURCE:
1653 case BLK_STS_DEV_RESOURCE:
1654 __blk_mq_requeue_request(rq);
1655 break;
1656 default:
1657 *cookie = BLK_QC_T_NONE;
1658 break;
1661 return ret;
1664 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1665 struct request *rq,
1666 blk_qc_t *cookie,
1667 bool bypass_insert)
1669 struct request_queue *q = rq->q;
1670 bool run_queue = true;
1673 * RCU or SRCU read lock is needed before checking quiesced flag.
1675 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1676 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1677 * and avoid driver to try to dispatch again.
1679 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1680 run_queue = false;
1681 bypass_insert = false;
1682 goto insert;
1685 if (q->elevator && !bypass_insert)
1686 goto insert;
1688 if (!blk_mq_get_dispatch_budget(hctx))
1689 goto insert;
1691 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1692 blk_mq_put_dispatch_budget(hctx);
1693 goto insert;
1696 return __blk_mq_issue_directly(hctx, rq, cookie);
1697 insert:
1698 if (bypass_insert)
1699 return BLK_STS_RESOURCE;
1701 blk_mq_sched_insert_request(rq, false, run_queue, false);
1702 return BLK_STS_OK;
1705 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1706 struct request *rq, blk_qc_t *cookie)
1708 blk_status_t ret;
1709 int srcu_idx;
1711 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1713 hctx_lock(hctx, &srcu_idx);
1715 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1716 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1717 blk_mq_sched_insert_request(rq, false, true, false);
1718 else if (ret != BLK_STS_OK)
1719 blk_mq_end_request(rq, ret);
1721 hctx_unlock(hctx, srcu_idx);
1724 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1726 blk_status_t ret;
1727 int srcu_idx;
1728 blk_qc_t unused_cookie;
1729 struct blk_mq_ctx *ctx = rq->mq_ctx;
1730 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1732 hctx_lock(hctx, &srcu_idx);
1733 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1734 hctx_unlock(hctx, srcu_idx);
1736 return ret;
1739 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1741 const int is_sync = op_is_sync(bio->bi_opf);
1742 const int is_flush_fua = op_is_flush(bio->bi_opf);
1743 struct blk_mq_alloc_data data = { .flags = 0 };
1744 struct request *rq;
1745 unsigned int request_count = 0;
1746 struct blk_plug *plug;
1747 struct request *same_queue_rq = NULL;
1748 blk_qc_t cookie;
1749 unsigned int wb_acct;
1751 blk_queue_bounce(q, &bio);
1753 blk_queue_split(q, &bio);
1755 if (!bio_integrity_prep(bio))
1756 return BLK_QC_T_NONE;
1758 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1759 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1760 return BLK_QC_T_NONE;
1762 if (blk_mq_sched_bio_merge(q, bio))
1763 return BLK_QC_T_NONE;
1765 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1767 trace_block_getrq(q, bio, bio->bi_opf);
1769 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1770 if (unlikely(!rq)) {
1771 __wbt_done(q->rq_wb, wb_acct);
1772 if (bio->bi_opf & REQ_NOWAIT)
1773 bio_wouldblock_error(bio);
1774 return BLK_QC_T_NONE;
1777 wbt_track(rq, wb_acct);
1779 cookie = request_to_qc_t(data.hctx, rq);
1781 plug = current->plug;
1782 if (unlikely(is_flush_fua)) {
1783 blk_mq_put_ctx(data.ctx);
1784 blk_mq_bio_to_request(rq, bio);
1786 /* bypass scheduler for flush rq */
1787 blk_insert_flush(rq);
1788 blk_mq_run_hw_queue(data.hctx, true);
1789 } else if (plug && q->nr_hw_queues == 1) {
1790 struct request *last = NULL;
1792 blk_mq_put_ctx(data.ctx);
1793 blk_mq_bio_to_request(rq, bio);
1796 * @request_count may become stale because of schedule
1797 * out, so check the list again.
1799 if (list_empty(&plug->mq_list))
1800 request_count = 0;
1801 else if (blk_queue_nomerges(q))
1802 request_count = blk_plug_queued_count(q);
1804 if (!request_count)
1805 trace_block_plug(q);
1806 else
1807 last = list_entry_rq(plug->mq_list.prev);
1809 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1810 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1811 blk_flush_plug_list(plug, false);
1812 trace_block_plug(q);
1815 list_add_tail(&rq->queuelist, &plug->mq_list);
1816 } else if (plug && !blk_queue_nomerges(q)) {
1817 blk_mq_bio_to_request(rq, bio);
1820 * We do limited plugging. If the bio can be merged, do that.
1821 * Otherwise the existing request in the plug list will be
1822 * issued. So the plug list will have one request at most
1823 * The plug list might get flushed before this. If that happens,
1824 * the plug list is empty, and same_queue_rq is invalid.
1826 if (list_empty(&plug->mq_list))
1827 same_queue_rq = NULL;
1828 if (same_queue_rq)
1829 list_del_init(&same_queue_rq->queuelist);
1830 list_add_tail(&rq->queuelist, &plug->mq_list);
1832 blk_mq_put_ctx(data.ctx);
1834 if (same_queue_rq) {
1835 data.hctx = blk_mq_map_queue(q,
1836 same_queue_rq->mq_ctx->cpu);
1837 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1838 &cookie);
1840 } else if (q->nr_hw_queues > 1 && is_sync) {
1841 blk_mq_put_ctx(data.ctx);
1842 blk_mq_bio_to_request(rq, bio);
1843 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1844 } else {
1845 blk_mq_put_ctx(data.ctx);
1846 blk_mq_bio_to_request(rq, bio);
1847 blk_mq_sched_insert_request(rq, false, true, true);
1850 return cookie;
1853 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1854 unsigned int hctx_idx)
1856 struct page *page;
1858 if (tags->rqs && set->ops->exit_request) {
1859 int i;
1861 for (i = 0; i < tags->nr_tags; i++) {
1862 struct request *rq = tags->static_rqs[i];
1864 if (!rq)
1865 continue;
1866 set->ops->exit_request(set, rq, hctx_idx);
1867 tags->static_rqs[i] = NULL;
1871 while (!list_empty(&tags->page_list)) {
1872 page = list_first_entry(&tags->page_list, struct page, lru);
1873 list_del_init(&page->lru);
1875 * Remove kmemleak object previously allocated in
1876 * blk_mq_init_rq_map().
1878 kmemleak_free(page_address(page));
1879 __free_pages(page, page->private);
1883 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1885 kfree(tags->rqs);
1886 tags->rqs = NULL;
1887 kfree(tags->static_rqs);
1888 tags->static_rqs = NULL;
1890 blk_mq_free_tags(tags);
1893 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1894 unsigned int hctx_idx,
1895 unsigned int nr_tags,
1896 unsigned int reserved_tags)
1898 struct blk_mq_tags *tags;
1899 int node;
1901 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1902 if (node == NUMA_NO_NODE)
1903 node = set->numa_node;
1905 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1906 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1907 if (!tags)
1908 return NULL;
1910 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1911 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1912 node);
1913 if (!tags->rqs) {
1914 blk_mq_free_tags(tags);
1915 return NULL;
1918 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1919 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1920 node);
1921 if (!tags->static_rqs) {
1922 kfree(tags->rqs);
1923 blk_mq_free_tags(tags);
1924 return NULL;
1927 return tags;
1930 static size_t order_to_size(unsigned int order)
1932 return (size_t)PAGE_SIZE << order;
1935 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1936 unsigned int hctx_idx, int node)
1938 int ret;
1940 if (set->ops->init_request) {
1941 ret = set->ops->init_request(set, rq, hctx_idx, node);
1942 if (ret)
1943 return ret;
1946 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1947 return 0;
1950 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1951 unsigned int hctx_idx, unsigned int depth)
1953 unsigned int i, j, entries_per_page, max_order = 4;
1954 size_t rq_size, left;
1955 int node;
1957 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1958 if (node == NUMA_NO_NODE)
1959 node = set->numa_node;
1961 INIT_LIST_HEAD(&tags->page_list);
1964 * rq_size is the size of the request plus driver payload, rounded
1965 * to the cacheline size
1967 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1968 cache_line_size());
1969 left = rq_size * depth;
1971 for (i = 0; i < depth; ) {
1972 int this_order = max_order;
1973 struct page *page;
1974 int to_do;
1975 void *p;
1977 while (this_order && left < order_to_size(this_order - 1))
1978 this_order--;
1980 do {
1981 page = alloc_pages_node(node,
1982 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1983 this_order);
1984 if (page)
1985 break;
1986 if (!this_order--)
1987 break;
1988 if (order_to_size(this_order) < rq_size)
1989 break;
1990 } while (1);
1992 if (!page)
1993 goto fail;
1995 page->private = this_order;
1996 list_add_tail(&page->lru, &tags->page_list);
1998 p = page_address(page);
2000 * Allow kmemleak to scan these pages as they contain pointers
2001 * to additional allocations like via ops->init_request().
2003 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2004 entries_per_page = order_to_size(this_order) / rq_size;
2005 to_do = min(entries_per_page, depth - i);
2006 left -= to_do * rq_size;
2007 for (j = 0; j < to_do; j++) {
2008 struct request *rq = p;
2010 tags->static_rqs[i] = rq;
2011 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2012 tags->static_rqs[i] = NULL;
2013 goto fail;
2016 p += rq_size;
2017 i++;
2020 return 0;
2022 fail:
2023 blk_mq_free_rqs(set, tags, hctx_idx);
2024 return -ENOMEM;
2028 * 'cpu' is going away. splice any existing rq_list entries from this
2029 * software queue to the hw queue dispatch list, and ensure that it
2030 * gets run.
2032 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2034 struct blk_mq_hw_ctx *hctx;
2035 struct blk_mq_ctx *ctx;
2036 LIST_HEAD(tmp);
2038 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2039 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2041 spin_lock(&ctx->lock);
2042 if (!list_empty(&ctx->rq_list)) {
2043 list_splice_init(&ctx->rq_list, &tmp);
2044 blk_mq_hctx_clear_pending(hctx, ctx);
2046 spin_unlock(&ctx->lock);
2048 if (list_empty(&tmp))
2049 return 0;
2051 spin_lock(&hctx->lock);
2052 list_splice_tail_init(&tmp, &hctx->dispatch);
2053 spin_unlock(&hctx->lock);
2055 blk_mq_run_hw_queue(hctx, true);
2056 return 0;
2059 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2061 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2062 &hctx->cpuhp_dead);
2065 /* hctx->ctxs will be freed in queue's release handler */
2066 static void blk_mq_exit_hctx(struct request_queue *q,
2067 struct blk_mq_tag_set *set,
2068 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2070 blk_mq_debugfs_unregister_hctx(hctx);
2072 if (blk_mq_hw_queue_mapped(hctx))
2073 blk_mq_tag_idle(hctx);
2075 if (set->ops->exit_request)
2076 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2078 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2080 if (set->ops->exit_hctx)
2081 set->ops->exit_hctx(hctx, hctx_idx);
2083 if (hctx->flags & BLK_MQ_F_BLOCKING)
2084 cleanup_srcu_struct(hctx->srcu);
2086 blk_mq_remove_cpuhp(hctx);
2087 blk_free_flush_queue(hctx->fq);
2088 sbitmap_free(&hctx->ctx_map);
2091 static void blk_mq_exit_hw_queues(struct request_queue *q,
2092 struct blk_mq_tag_set *set, int nr_queue)
2094 struct blk_mq_hw_ctx *hctx;
2095 unsigned int i;
2097 queue_for_each_hw_ctx(q, hctx, i) {
2098 if (i == nr_queue)
2099 break;
2100 blk_mq_exit_hctx(q, set, hctx, i);
2104 static int blk_mq_init_hctx(struct request_queue *q,
2105 struct blk_mq_tag_set *set,
2106 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2108 int node;
2110 node = hctx->numa_node;
2111 if (node == NUMA_NO_NODE)
2112 node = hctx->numa_node = set->numa_node;
2114 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2115 spin_lock_init(&hctx->lock);
2116 INIT_LIST_HEAD(&hctx->dispatch);
2117 hctx->queue = q;
2118 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2120 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2122 hctx->tags = set->tags[hctx_idx];
2125 * Allocate space for all possible cpus to avoid allocation at
2126 * runtime
2128 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2129 GFP_KERNEL, node);
2130 if (!hctx->ctxs)
2131 goto unregister_cpu_notifier;
2133 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2134 node))
2135 goto free_ctxs;
2137 hctx->nr_ctx = 0;
2139 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2140 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2142 if (set->ops->init_hctx &&
2143 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2144 goto free_bitmap;
2146 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2147 goto exit_hctx;
2149 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2150 if (!hctx->fq)
2151 goto sched_exit_hctx;
2153 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2154 goto free_fq;
2156 if (hctx->flags & BLK_MQ_F_BLOCKING)
2157 init_srcu_struct(hctx->srcu);
2159 blk_mq_debugfs_register_hctx(q, hctx);
2161 return 0;
2163 free_fq:
2164 kfree(hctx->fq);
2165 sched_exit_hctx:
2166 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2167 exit_hctx:
2168 if (set->ops->exit_hctx)
2169 set->ops->exit_hctx(hctx, hctx_idx);
2170 free_bitmap:
2171 sbitmap_free(&hctx->ctx_map);
2172 free_ctxs:
2173 kfree(hctx->ctxs);
2174 unregister_cpu_notifier:
2175 blk_mq_remove_cpuhp(hctx);
2176 return -1;
2179 static void blk_mq_init_cpu_queues(struct request_queue *q,
2180 unsigned int nr_hw_queues)
2182 unsigned int i;
2184 for_each_possible_cpu(i) {
2185 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2186 struct blk_mq_hw_ctx *hctx;
2188 __ctx->cpu = i;
2189 spin_lock_init(&__ctx->lock);
2190 INIT_LIST_HEAD(&__ctx->rq_list);
2191 __ctx->queue = q;
2194 * Set local node, IFF we have more than one hw queue. If
2195 * not, we remain on the home node of the device
2197 hctx = blk_mq_map_queue(q, i);
2198 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2199 hctx->numa_node = local_memory_node(cpu_to_node(i));
2203 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2205 int ret = 0;
2207 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2208 set->queue_depth, set->reserved_tags);
2209 if (!set->tags[hctx_idx])
2210 return false;
2212 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2213 set->queue_depth);
2214 if (!ret)
2215 return true;
2217 blk_mq_free_rq_map(set->tags[hctx_idx]);
2218 set->tags[hctx_idx] = NULL;
2219 return false;
2222 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2223 unsigned int hctx_idx)
2225 if (set->tags[hctx_idx]) {
2226 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2227 blk_mq_free_rq_map(set->tags[hctx_idx]);
2228 set->tags[hctx_idx] = NULL;
2232 static void blk_mq_map_swqueue(struct request_queue *q)
2234 unsigned int i, hctx_idx;
2235 struct blk_mq_hw_ctx *hctx;
2236 struct blk_mq_ctx *ctx;
2237 struct blk_mq_tag_set *set = q->tag_set;
2240 * Avoid others reading imcomplete hctx->cpumask through sysfs
2242 mutex_lock(&q->sysfs_lock);
2244 queue_for_each_hw_ctx(q, hctx, i) {
2245 cpumask_clear(hctx->cpumask);
2246 hctx->nr_ctx = 0;
2247 hctx->dispatch_from = NULL;
2251 * Map software to hardware queues.
2253 * If the cpu isn't present, the cpu is mapped to first hctx.
2255 for_each_possible_cpu(i) {
2256 hctx_idx = q->mq_map[i];
2257 /* unmapped hw queue can be remapped after CPU topo changed */
2258 if (!set->tags[hctx_idx] &&
2259 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2261 * If tags initialization fail for some hctx,
2262 * that hctx won't be brought online. In this
2263 * case, remap the current ctx to hctx[0] which
2264 * is guaranteed to always have tags allocated
2266 q->mq_map[i] = 0;
2269 ctx = per_cpu_ptr(q->queue_ctx, i);
2270 hctx = blk_mq_map_queue(q, i);
2272 cpumask_set_cpu(i, hctx->cpumask);
2273 ctx->index_hw = hctx->nr_ctx;
2274 hctx->ctxs[hctx->nr_ctx++] = ctx;
2277 mutex_unlock(&q->sysfs_lock);
2279 queue_for_each_hw_ctx(q, hctx, i) {
2281 * If no software queues are mapped to this hardware queue,
2282 * disable it and free the request entries.
2284 if (!hctx->nr_ctx) {
2285 /* Never unmap queue 0. We need it as a
2286 * fallback in case of a new remap fails
2287 * allocation
2289 if (i && set->tags[i])
2290 blk_mq_free_map_and_requests(set, i);
2292 hctx->tags = NULL;
2293 continue;
2296 hctx->tags = set->tags[i];
2297 WARN_ON(!hctx->tags);
2300 * Set the map size to the number of mapped software queues.
2301 * This is more accurate and more efficient than looping
2302 * over all possibly mapped software queues.
2304 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2307 * Initialize batch roundrobin counts
2309 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2310 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2315 * Caller needs to ensure that we're either frozen/quiesced, or that
2316 * the queue isn't live yet.
2318 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2320 struct blk_mq_hw_ctx *hctx;
2321 int i;
2323 queue_for_each_hw_ctx(q, hctx, i) {
2324 if (shared) {
2325 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2326 atomic_inc(&q->shared_hctx_restart);
2327 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2328 } else {
2329 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2330 atomic_dec(&q->shared_hctx_restart);
2331 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2336 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2337 bool shared)
2339 struct request_queue *q;
2341 lockdep_assert_held(&set->tag_list_lock);
2343 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2344 blk_mq_freeze_queue(q);
2345 queue_set_hctx_shared(q, shared);
2346 blk_mq_unfreeze_queue(q);
2350 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2352 struct blk_mq_tag_set *set = q->tag_set;
2354 mutex_lock(&set->tag_list_lock);
2355 list_del_rcu(&q->tag_set_list);
2356 if (list_is_singular(&set->tag_list)) {
2357 /* just transitioned to unshared */
2358 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2359 /* update existing queue */
2360 blk_mq_update_tag_set_depth(set, false);
2362 mutex_unlock(&set->tag_list_lock);
2363 synchronize_rcu();
2364 INIT_LIST_HEAD(&q->tag_set_list);
2367 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2368 struct request_queue *q)
2370 q->tag_set = set;
2372 mutex_lock(&set->tag_list_lock);
2375 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2377 if (!list_empty(&set->tag_list) &&
2378 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2379 set->flags |= BLK_MQ_F_TAG_SHARED;
2380 /* update existing queue */
2381 blk_mq_update_tag_set_depth(set, true);
2383 if (set->flags & BLK_MQ_F_TAG_SHARED)
2384 queue_set_hctx_shared(q, true);
2385 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2387 mutex_unlock(&set->tag_list_lock);
2391 * It is the actual release handler for mq, but we do it from
2392 * request queue's release handler for avoiding use-after-free
2393 * and headache because q->mq_kobj shouldn't have been introduced,
2394 * but we can't group ctx/kctx kobj without it.
2396 void blk_mq_release(struct request_queue *q)
2398 struct blk_mq_hw_ctx *hctx;
2399 unsigned int i;
2401 /* hctx kobj stays in hctx */
2402 queue_for_each_hw_ctx(q, hctx, i) {
2403 if (!hctx)
2404 continue;
2405 kobject_put(&hctx->kobj);
2408 q->mq_map = NULL;
2410 kfree(q->queue_hw_ctx);
2413 * release .mq_kobj and sw queue's kobject now because
2414 * both share lifetime with request queue.
2416 blk_mq_sysfs_deinit(q);
2418 free_percpu(q->queue_ctx);
2421 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2423 struct request_queue *uninit_q, *q;
2425 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2426 if (!uninit_q)
2427 return ERR_PTR(-ENOMEM);
2429 q = blk_mq_init_allocated_queue(set, uninit_q);
2430 if (IS_ERR(q))
2431 blk_cleanup_queue(uninit_q);
2433 return q;
2435 EXPORT_SYMBOL(blk_mq_init_queue);
2437 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2439 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2441 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2442 __alignof__(struct blk_mq_hw_ctx)) !=
2443 sizeof(struct blk_mq_hw_ctx));
2445 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2446 hw_ctx_size += sizeof(struct srcu_struct);
2448 return hw_ctx_size;
2451 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2452 struct request_queue *q)
2454 int i, j;
2455 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2457 blk_mq_sysfs_unregister(q);
2459 /* protect against switching io scheduler */
2460 mutex_lock(&q->sysfs_lock);
2461 for (i = 0; i < set->nr_hw_queues; i++) {
2462 int node;
2464 if (hctxs[i])
2465 continue;
2467 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2468 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2469 GFP_KERNEL, node);
2470 if (!hctxs[i])
2471 break;
2473 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2474 node)) {
2475 kfree(hctxs[i]);
2476 hctxs[i] = NULL;
2477 break;
2480 atomic_set(&hctxs[i]->nr_active, 0);
2481 hctxs[i]->numa_node = node;
2482 hctxs[i]->queue_num = i;
2484 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2485 free_cpumask_var(hctxs[i]->cpumask);
2486 kfree(hctxs[i]);
2487 hctxs[i] = NULL;
2488 break;
2490 blk_mq_hctx_kobj_init(hctxs[i]);
2492 for (j = i; j < q->nr_hw_queues; j++) {
2493 struct blk_mq_hw_ctx *hctx = hctxs[j];
2495 if (hctx) {
2496 if (hctx->tags)
2497 blk_mq_free_map_and_requests(set, j);
2498 blk_mq_exit_hctx(q, set, hctx, j);
2499 kobject_put(&hctx->kobj);
2500 hctxs[j] = NULL;
2504 q->nr_hw_queues = i;
2505 mutex_unlock(&q->sysfs_lock);
2506 blk_mq_sysfs_register(q);
2509 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2510 struct request_queue *q)
2512 /* mark the queue as mq asap */
2513 q->mq_ops = set->ops;
2515 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2516 blk_mq_poll_stats_bkt,
2517 BLK_MQ_POLL_STATS_BKTS, q);
2518 if (!q->poll_cb)
2519 goto err_exit;
2521 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2522 if (!q->queue_ctx)
2523 goto err_exit;
2525 /* init q->mq_kobj and sw queues' kobjects */
2526 blk_mq_sysfs_init(q);
2528 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2529 GFP_KERNEL, set->numa_node);
2530 if (!q->queue_hw_ctx)
2531 goto err_percpu;
2533 q->mq_map = set->mq_map;
2535 blk_mq_realloc_hw_ctxs(set, q);
2536 if (!q->nr_hw_queues)
2537 goto err_hctxs;
2539 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2540 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2542 q->nr_queues = nr_cpu_ids;
2544 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2546 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2547 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2549 q->sg_reserved_size = INT_MAX;
2551 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2552 INIT_LIST_HEAD(&q->requeue_list);
2553 spin_lock_init(&q->requeue_lock);
2555 blk_queue_make_request(q, blk_mq_make_request);
2556 if (q->mq_ops->poll)
2557 q->poll_fn = blk_mq_poll;
2560 * Do this after blk_queue_make_request() overrides it...
2562 q->nr_requests = set->queue_depth;
2565 * Default to classic polling
2567 q->poll_nsec = -1;
2569 if (set->ops->complete)
2570 blk_queue_softirq_done(q, set->ops->complete);
2572 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2573 blk_mq_add_queue_tag_set(set, q);
2574 blk_mq_map_swqueue(q);
2576 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2577 int ret;
2579 ret = elevator_init_mq(q);
2580 if (ret)
2581 return ERR_PTR(ret);
2584 return q;
2586 err_hctxs:
2587 kfree(q->queue_hw_ctx);
2588 err_percpu:
2589 free_percpu(q->queue_ctx);
2590 err_exit:
2591 q->mq_ops = NULL;
2592 return ERR_PTR(-ENOMEM);
2594 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2596 void blk_mq_free_queue(struct request_queue *q)
2598 struct blk_mq_tag_set *set = q->tag_set;
2600 blk_mq_del_queue_tag_set(q);
2601 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2604 /* Basically redo blk_mq_init_queue with queue frozen */
2605 static void blk_mq_queue_reinit(struct request_queue *q)
2607 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2609 blk_mq_debugfs_unregister_hctxs(q);
2610 blk_mq_sysfs_unregister(q);
2613 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2614 * we should change hctx numa_node according to the new topology (this
2615 * involves freeing and re-allocating memory, worth doing?)
2617 blk_mq_map_swqueue(q);
2619 blk_mq_sysfs_register(q);
2620 blk_mq_debugfs_register_hctxs(q);
2623 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2625 int i;
2627 for (i = 0; i < set->nr_hw_queues; i++)
2628 if (!__blk_mq_alloc_rq_map(set, i))
2629 goto out_unwind;
2631 return 0;
2633 out_unwind:
2634 while (--i >= 0)
2635 blk_mq_free_rq_map(set->tags[i]);
2637 return -ENOMEM;
2641 * Allocate the request maps associated with this tag_set. Note that this
2642 * may reduce the depth asked for, if memory is tight. set->queue_depth
2643 * will be updated to reflect the allocated depth.
2645 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2647 unsigned int depth;
2648 int err;
2650 depth = set->queue_depth;
2651 do {
2652 err = __blk_mq_alloc_rq_maps(set);
2653 if (!err)
2654 break;
2656 set->queue_depth >>= 1;
2657 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2658 err = -ENOMEM;
2659 break;
2661 } while (set->queue_depth);
2663 if (!set->queue_depth || err) {
2664 pr_err("blk-mq: failed to allocate request map\n");
2665 return -ENOMEM;
2668 if (depth != set->queue_depth)
2669 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2670 depth, set->queue_depth);
2672 return 0;
2675 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2677 if (set->ops->map_queues) {
2678 int cpu;
2680 * transport .map_queues is usually done in the following
2681 * way:
2683 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2684 * mask = get_cpu_mask(queue)
2685 * for_each_cpu(cpu, mask)
2686 * set->mq_map[cpu] = queue;
2689 * When we need to remap, the table has to be cleared for
2690 * killing stale mapping since one CPU may not be mapped
2691 * to any hw queue.
2693 for_each_possible_cpu(cpu)
2694 set->mq_map[cpu] = 0;
2696 return set->ops->map_queues(set);
2697 } else
2698 return blk_mq_map_queues(set);
2702 * Alloc a tag set to be associated with one or more request queues.
2703 * May fail with EINVAL for various error conditions. May adjust the
2704 * requested depth down, if if it too large. In that case, the set
2705 * value will be stored in set->queue_depth.
2707 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2709 int ret;
2711 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2713 if (!set->nr_hw_queues)
2714 return -EINVAL;
2715 if (!set->queue_depth)
2716 return -EINVAL;
2717 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2718 return -EINVAL;
2720 if (!set->ops->queue_rq)
2721 return -EINVAL;
2723 if (!set->ops->get_budget ^ !set->ops->put_budget)
2724 return -EINVAL;
2726 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2727 pr_info("blk-mq: reduced tag depth to %u\n",
2728 BLK_MQ_MAX_DEPTH);
2729 set->queue_depth = BLK_MQ_MAX_DEPTH;
2733 * If a crashdump is active, then we are potentially in a very
2734 * memory constrained environment. Limit us to 1 queue and
2735 * 64 tags to prevent using too much memory.
2737 if (is_kdump_kernel()) {
2738 set->nr_hw_queues = 1;
2739 set->queue_depth = min(64U, set->queue_depth);
2742 * There is no use for more h/w queues than cpus.
2744 if (set->nr_hw_queues > nr_cpu_ids)
2745 set->nr_hw_queues = nr_cpu_ids;
2747 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2748 GFP_KERNEL, set->numa_node);
2749 if (!set->tags)
2750 return -ENOMEM;
2752 ret = -ENOMEM;
2753 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2754 GFP_KERNEL, set->numa_node);
2755 if (!set->mq_map)
2756 goto out_free_tags;
2758 ret = blk_mq_update_queue_map(set);
2759 if (ret)
2760 goto out_free_mq_map;
2762 ret = blk_mq_alloc_rq_maps(set);
2763 if (ret)
2764 goto out_free_mq_map;
2766 mutex_init(&set->tag_list_lock);
2767 INIT_LIST_HEAD(&set->tag_list);
2769 return 0;
2771 out_free_mq_map:
2772 kfree(set->mq_map);
2773 set->mq_map = NULL;
2774 out_free_tags:
2775 kfree(set->tags);
2776 set->tags = NULL;
2777 return ret;
2779 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2781 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2783 int i;
2785 for (i = 0; i < nr_cpu_ids; i++)
2786 blk_mq_free_map_and_requests(set, i);
2788 kfree(set->mq_map);
2789 set->mq_map = NULL;
2791 kfree(set->tags);
2792 set->tags = NULL;
2794 EXPORT_SYMBOL(blk_mq_free_tag_set);
2796 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2798 struct blk_mq_tag_set *set = q->tag_set;
2799 struct blk_mq_hw_ctx *hctx;
2800 int i, ret;
2802 if (!set)
2803 return -EINVAL;
2805 blk_mq_freeze_queue(q);
2806 blk_mq_quiesce_queue(q);
2808 ret = 0;
2809 queue_for_each_hw_ctx(q, hctx, i) {
2810 if (!hctx->tags)
2811 continue;
2813 * If we're using an MQ scheduler, just update the scheduler
2814 * queue depth. This is similar to what the old code would do.
2816 if (!hctx->sched_tags) {
2817 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2818 false);
2819 } else {
2820 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2821 nr, true);
2823 if (ret)
2824 break;
2827 if (!ret)
2828 q->nr_requests = nr;
2830 blk_mq_unquiesce_queue(q);
2831 blk_mq_unfreeze_queue(q);
2833 return ret;
2836 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2837 int nr_hw_queues)
2839 struct request_queue *q;
2841 lockdep_assert_held(&set->tag_list_lock);
2843 if (nr_hw_queues > nr_cpu_ids)
2844 nr_hw_queues = nr_cpu_ids;
2845 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2846 return;
2848 list_for_each_entry(q, &set->tag_list, tag_set_list)
2849 blk_mq_freeze_queue(q);
2851 set->nr_hw_queues = nr_hw_queues;
2852 blk_mq_update_queue_map(set);
2853 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2854 blk_mq_realloc_hw_ctxs(set, q);
2855 blk_mq_queue_reinit(q);
2858 list_for_each_entry(q, &set->tag_list, tag_set_list)
2859 blk_mq_unfreeze_queue(q);
2862 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2864 mutex_lock(&set->tag_list_lock);
2865 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2866 mutex_unlock(&set->tag_list_lock);
2868 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2870 /* Enable polling stats and return whether they were already enabled. */
2871 static bool blk_poll_stats_enable(struct request_queue *q)
2873 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2874 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2875 return true;
2876 blk_stat_add_callback(q, q->poll_cb);
2877 return false;
2880 static void blk_mq_poll_stats_start(struct request_queue *q)
2883 * We don't arm the callback if polling stats are not enabled or the
2884 * callback is already active.
2886 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2887 blk_stat_is_active(q->poll_cb))
2888 return;
2890 blk_stat_activate_msecs(q->poll_cb, 100);
2893 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2895 struct request_queue *q = cb->data;
2896 int bucket;
2898 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2899 if (cb->stat[bucket].nr_samples)
2900 q->poll_stat[bucket] = cb->stat[bucket];
2904 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2905 struct blk_mq_hw_ctx *hctx,
2906 struct request *rq)
2908 unsigned long ret = 0;
2909 int bucket;
2912 * If stats collection isn't on, don't sleep but turn it on for
2913 * future users
2915 if (!blk_poll_stats_enable(q))
2916 return 0;
2919 * As an optimistic guess, use half of the mean service time
2920 * for this type of request. We can (and should) make this smarter.
2921 * For instance, if the completion latencies are tight, we can
2922 * get closer than just half the mean. This is especially
2923 * important on devices where the completion latencies are longer
2924 * than ~10 usec. We do use the stats for the relevant IO size
2925 * if available which does lead to better estimates.
2927 bucket = blk_mq_poll_stats_bkt(rq);
2928 if (bucket < 0)
2929 return ret;
2931 if (q->poll_stat[bucket].nr_samples)
2932 ret = (q->poll_stat[bucket].mean + 1) / 2;
2934 return ret;
2937 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2938 struct blk_mq_hw_ctx *hctx,
2939 struct request *rq)
2941 struct hrtimer_sleeper hs;
2942 enum hrtimer_mode mode;
2943 unsigned int nsecs;
2944 ktime_t kt;
2946 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2947 return false;
2950 * poll_nsec can be:
2952 * -1: don't ever hybrid sleep
2953 * 0: use half of prev avg
2954 * >0: use this specific value
2956 if (q->poll_nsec == -1)
2957 return false;
2958 else if (q->poll_nsec > 0)
2959 nsecs = q->poll_nsec;
2960 else
2961 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2963 if (!nsecs)
2964 return false;
2966 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2969 * This will be replaced with the stats tracking code, using
2970 * 'avg_completion_time / 2' as the pre-sleep target.
2972 kt = nsecs;
2974 mode = HRTIMER_MODE_REL;
2975 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2976 hrtimer_set_expires(&hs.timer, kt);
2978 hrtimer_init_sleeper(&hs, current);
2979 do {
2980 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2981 break;
2982 set_current_state(TASK_UNINTERRUPTIBLE);
2983 hrtimer_start_expires(&hs.timer, mode);
2984 if (hs.task)
2985 io_schedule();
2986 hrtimer_cancel(&hs.timer);
2987 mode = HRTIMER_MODE_ABS;
2988 } while (hs.task && !signal_pending(current));
2990 __set_current_state(TASK_RUNNING);
2991 destroy_hrtimer_on_stack(&hs.timer);
2992 return true;
2995 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2997 struct request_queue *q = hctx->queue;
2998 long state;
3001 * If we sleep, have the caller restart the poll loop to reset
3002 * the state. Like for the other success return cases, the
3003 * caller is responsible for checking if the IO completed. If
3004 * the IO isn't complete, we'll get called again and will go
3005 * straight to the busy poll loop.
3007 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3008 return true;
3010 hctx->poll_considered++;
3012 state = current->state;
3013 while (!need_resched()) {
3014 int ret;
3016 hctx->poll_invoked++;
3018 ret = q->mq_ops->poll(hctx, rq->tag);
3019 if (ret > 0) {
3020 hctx->poll_success++;
3021 set_current_state(TASK_RUNNING);
3022 return true;
3025 if (signal_pending_state(state, current))
3026 set_current_state(TASK_RUNNING);
3028 if (current->state == TASK_RUNNING)
3029 return true;
3030 if (ret < 0)
3031 break;
3032 cpu_relax();
3035 __set_current_state(TASK_RUNNING);
3036 return false;
3039 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3041 struct blk_mq_hw_ctx *hctx;
3042 struct request *rq;
3044 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3045 return false;
3047 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3048 if (!blk_qc_t_is_internal(cookie))
3049 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3050 else {
3051 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3053 * With scheduling, if the request has completed, we'll
3054 * get a NULL return here, as we clear the sched tag when
3055 * that happens. The request still remains valid, like always,
3056 * so we should be safe with just the NULL check.
3058 if (!rq)
3059 return false;
3062 return __blk_mq_poll(hctx, rq);
3065 static int __init blk_mq_init(void)
3067 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3068 blk_mq_hctx_notify_dead);
3069 return 0;
3071 subsys_initcall(blk_mq_init);