2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return !list_empty_careful(&hctx
->dispatch
) ||
67 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
88 struct hd_struct
*part
;
89 unsigned int *inflight
;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
93 struct request
*rq
, void *priv
,
96 struct mq_inflight
*mi
= priv
;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq
->part
== mi
->part
)
105 if (mi
->part
->partno
)
109 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
110 unsigned int inflight
[2])
112 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
114 inflight
[0] = inflight
[1] = 0;
115 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
119 struct request
*rq
, void *priv
,
122 struct mq_inflight
*mi
= priv
;
124 if (rq
->part
== mi
->part
)
125 mi
->inflight
[rq_data_dir(rq
)]++;
128 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
129 unsigned int inflight
[2])
131 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
133 inflight
[0] = inflight
[1] = 0;
134 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
137 void blk_freeze_queue_start(struct request_queue
*q
)
141 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
142 if (freeze_depth
== 1) {
143 percpu_ref_kill(&q
->q_usage_counter
);
145 blk_mq_run_hw_queues(q
, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
150 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
152 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
157 unsigned long timeout
)
159 return wait_event_timeout(q
->mq_freeze_wq
,
160 percpu_ref_is_zero(&q
->q_usage_counter
),
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue
*q
)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q
);
181 blk_mq_freeze_queue_wait(q
);
184 void blk_mq_freeze_queue(struct request_queue
*q
)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
194 void blk_mq_unfreeze_queue(struct request_queue
*q
)
198 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
199 WARN_ON_ONCE(freeze_depth
< 0);
201 percpu_ref_reinit(&q
->q_usage_counter
);
202 wake_up_all(&q
->mq_freeze_wq
);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue
*q
)
228 struct blk_mq_hw_ctx
*hctx
;
232 blk_mq_quiesce_queue_nowait(q
);
234 queue_for_each_hw_ctx(q
, hctx
, i
) {
235 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
236 synchronize_srcu(hctx
->srcu
);
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue
*q
)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q
, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
261 void blk_mq_wake_waiters(struct request_queue
*q
)
263 struct blk_mq_hw_ctx
*hctx
;
266 queue_for_each_hw_ctx(q
, hctx
, i
)
267 if (blk_mq_hw_queue_mapped(hctx
))
268 blk_mq_tag_wakeup_all(hctx
->tags
, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
273 return blk_mq_has_free_tags(hctx
->tags
);
275 EXPORT_SYMBOL(blk_mq_can_queue
);
277 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
278 unsigned int tag
, unsigned int op
)
280 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
281 struct request
*rq
= tags
->static_rqs
[tag
];
282 req_flags_t rq_flags
= 0;
284 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
286 rq
->internal_tag
= tag
;
288 if (blk_mq_tag_busy(data
->hctx
)) {
289 rq_flags
= RQF_MQ_INFLIGHT
;
290 atomic_inc(&data
->hctx
->nr_active
);
293 rq
->internal_tag
= -1;
294 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
297 /* csd/requeue_work/fifo_time is initialized before use */
299 rq
->mq_ctx
= data
->ctx
;
300 rq
->rq_flags
= rq_flags
;
303 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
304 rq
->rq_flags
|= RQF_PREEMPT
;
305 if (blk_queue_io_stat(data
->q
))
306 rq
->rq_flags
|= RQF_IO_STAT
;
307 INIT_LIST_HEAD(&rq
->queuelist
);
308 INIT_HLIST_NODE(&rq
->hash
);
309 RB_CLEAR_NODE(&rq
->rb_node
);
312 rq
->start_time_ns
= ktime_get_ns();
313 rq
->io_start_time_ns
= 0;
314 rq
->nr_phys_segments
= 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq
->nr_integrity_segments
= 0;
319 /* tag was already set */
323 INIT_LIST_HEAD(&rq
->timeout_list
);
327 rq
->end_io_data
= NULL
;
330 #ifdef CONFIG_BLK_CGROUP
334 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
335 refcount_set(&rq
->ref
, 1);
339 static struct request
*blk_mq_get_request(struct request_queue
*q
,
340 struct bio
*bio
, unsigned int op
,
341 struct blk_mq_alloc_data
*data
)
343 struct elevator_queue
*e
= q
->elevator
;
346 bool put_ctx_on_error
= false;
348 blk_queue_enter_live(q
);
350 if (likely(!data
->ctx
)) {
351 data
->ctx
= blk_mq_get_ctx(q
);
352 put_ctx_on_error
= true;
354 if (likely(!data
->hctx
))
355 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
357 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
360 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
&&
368 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
369 e
->type
->ops
.mq
.limit_depth(op
, data
);
372 tag
= blk_mq_get_tag(data
);
373 if (tag
== BLK_MQ_TAG_FAIL
) {
374 if (put_ctx_on_error
) {
375 blk_mq_put_ctx(data
->ctx
);
382 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
383 if (!op_is_flush(op
)) {
385 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
386 if (e
->type
->icq_cache
&& rq_ioc(bio
))
387 blk_mq_sched_assign_ioc(rq
, bio
);
389 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
390 rq
->rq_flags
|= RQF_ELVPRIV
;
393 data
->hctx
->queued
++;
397 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
398 blk_mq_req_flags_t flags
)
400 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
404 ret
= blk_queue_enter(q
, flags
);
408 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
412 return ERR_PTR(-EWOULDBLOCK
);
414 blk_mq_put_ctx(alloc_data
.ctx
);
417 rq
->__sector
= (sector_t
) -1;
418 rq
->bio
= rq
->biotail
= NULL
;
421 EXPORT_SYMBOL(blk_mq_alloc_request
);
423 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
424 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
426 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
432 * If the tag allocator sleeps we could get an allocation for a
433 * different hardware context. No need to complicate the low level
434 * allocator for this for the rare use case of a command tied to
437 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
438 return ERR_PTR(-EINVAL
);
440 if (hctx_idx
>= q
->nr_hw_queues
)
441 return ERR_PTR(-EIO
);
443 ret
= blk_queue_enter(q
, flags
);
448 * Check if the hardware context is actually mapped to anything.
449 * If not tell the caller that it should skip this queue.
451 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
452 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
454 return ERR_PTR(-EXDEV
);
456 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
457 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
459 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
463 return ERR_PTR(-EWOULDBLOCK
);
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
469 static void __blk_mq_free_request(struct request
*rq
)
471 struct request_queue
*q
= rq
->q
;
472 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
473 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
474 const int sched_tag
= rq
->internal_tag
;
477 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
479 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
480 blk_mq_sched_restart(hctx
);
484 void blk_mq_free_request(struct request
*rq
)
486 struct request_queue
*q
= rq
->q
;
487 struct elevator_queue
*e
= q
->elevator
;
488 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
489 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
491 if (rq
->rq_flags
& RQF_ELVPRIV
) {
492 if (e
&& e
->type
->ops
.mq
.finish_request
)
493 e
->type
->ops
.mq
.finish_request(rq
);
495 put_io_context(rq
->elv
.icq
->ioc
);
500 ctx
->rq_completed
[rq_is_sync(rq
)]++;
501 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
502 atomic_dec(&hctx
->nr_active
);
504 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
505 laptop_io_completion(q
->backing_dev_info
);
507 wbt_done(q
->rq_wb
, rq
);
510 blk_put_rl(blk_rq_rl(rq
));
512 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
513 if (refcount_dec_and_test(&rq
->ref
))
514 __blk_mq_free_request(rq
);
516 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
518 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
520 u64 now
= ktime_get_ns();
522 if (rq
->rq_flags
& RQF_STATS
) {
523 blk_mq_poll_stats_start(rq
->q
);
524 blk_stat_add(rq
, now
);
527 blk_account_io_done(rq
, now
);
530 wbt_done(rq
->q
->rq_wb
, rq
);
531 rq
->end_io(rq
, error
);
533 if (unlikely(blk_bidi_rq(rq
)))
534 blk_mq_free_request(rq
->next_rq
);
535 blk_mq_free_request(rq
);
538 EXPORT_SYMBOL(__blk_mq_end_request
);
540 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
542 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
544 __blk_mq_end_request(rq
, error
);
546 EXPORT_SYMBOL(blk_mq_end_request
);
548 static void __blk_mq_complete_request_remote(void *data
)
550 struct request
*rq
= data
;
552 rq
->q
->softirq_done_fn(rq
);
555 static void __blk_mq_complete_request(struct request
*rq
)
557 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
561 if (cmpxchg(&rq
->state
, MQ_RQ_IN_FLIGHT
, MQ_RQ_COMPLETE
) !=
565 if (rq
->internal_tag
!= -1)
566 blk_mq_sched_completed_request(rq
);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
569 rq
->q
->softirq_done_fn(rq
);
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
575 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
577 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
578 rq
->csd
.func
= __blk_mq_complete_request_remote
;
581 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
583 rq
->q
->softirq_done_fn(rq
);
588 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
589 __releases(hctx
->srcu
)
591 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
594 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
597 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
598 __acquires(hctx
->srcu
)
600 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
601 /* shut up gcc false positive */
605 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request
*rq
)
618 if (unlikely(blk_should_fake_timeout(rq
->q
)))
620 __blk_mq_complete_request(rq
);
622 EXPORT_SYMBOL(blk_mq_complete_request
);
624 int blk_mq_request_started(struct request
*rq
)
626 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
630 void blk_mq_start_request(struct request
*rq
)
632 struct request_queue
*q
= rq
->q
;
634 blk_mq_sched_started_request(rq
);
636 trace_block_rq_issue(q
, rq
);
638 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
639 rq
->io_start_time_ns
= ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq
->throtl_size
= blk_rq_sectors(rq
);
643 rq
->rq_flags
|= RQF_STATS
;
644 wbt_issue(q
->rq_wb
, rq
);
647 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
650 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
652 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq
->nr_phys_segments
++;
661 EXPORT_SYMBOL(blk_mq_start_request
);
663 static void __blk_mq_requeue_request(struct request
*rq
)
665 struct request_queue
*q
= rq
->q
;
667 blk_mq_put_driver_tag(rq
);
669 trace_block_rq_requeue(q
, rq
);
670 wbt_requeue(q
->rq_wb
, rq
);
672 if (blk_mq_request_started(rq
)) {
673 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
674 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
675 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
676 rq
->nr_phys_segments
--;
680 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
682 __blk_mq_requeue_request(rq
);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq
);
687 BUG_ON(blk_queued_rq(rq
));
688 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
690 EXPORT_SYMBOL(blk_mq_requeue_request
);
692 static void blk_mq_requeue_work(struct work_struct
*work
)
694 struct request_queue
*q
=
695 container_of(work
, struct request_queue
, requeue_work
.work
);
697 struct request
*rq
, *next
;
699 spin_lock_irq(&q
->requeue_lock
);
700 list_splice_init(&q
->requeue_list
, &rq_list
);
701 spin_unlock_irq(&q
->requeue_lock
);
703 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
704 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
707 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
708 list_del_init(&rq
->queuelist
);
709 blk_mq_sched_insert_request(rq
, true, false, false);
712 while (!list_empty(&rq_list
)) {
713 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
714 list_del_init(&rq
->queuelist
);
715 blk_mq_sched_insert_request(rq
, false, false, false);
718 blk_mq_run_hw_queues(q
, false);
721 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
722 bool kick_requeue_list
)
724 struct request_queue
*q
= rq
->q
;
728 * We abuse this flag that is otherwise used by the I/O scheduler to
729 * request head insertion from the workqueue.
731 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
733 spin_lock_irqsave(&q
->requeue_lock
, flags
);
735 rq
->rq_flags
|= RQF_SOFTBARRIER
;
736 list_add(&rq
->queuelist
, &q
->requeue_list
);
738 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
740 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
742 if (kick_requeue_list
)
743 blk_mq_kick_requeue_list(q
);
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
747 void blk_mq_kick_requeue_list(struct request_queue
*q
)
749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
753 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
757 msecs_to_jiffies(msecs
));
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
761 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
763 if (tag
< tags
->nr_tags
) {
764 prefetch(tags
->rqs
[tag
]);
765 return tags
->rqs
[tag
];
770 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
772 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
774 req
->rq_flags
|= RQF_TIMED_OUT
;
775 if (req
->q
->mq_ops
->timeout
) {
776 enum blk_eh_timer_return ret
;
778 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
779 if (ret
== BLK_EH_DONE
)
781 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
787 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
789 unsigned long deadline
;
791 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
793 if (rq
->rq_flags
& RQF_TIMED_OUT
)
796 deadline
= blk_rq_deadline(rq
);
797 if (time_after_eq(jiffies
, deadline
))
802 else if (time_after(*next
, deadline
))
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
808 struct request
*rq
, void *priv
, bool reserved
)
810 unsigned long *next
= priv
;
813 * Just do a quick check if it is expired before locking the request in
814 * so we're not unnecessarilly synchronizing across CPUs.
816 if (!blk_mq_req_expired(rq
, next
))
820 * We have reason to believe the request may be expired. Take a
821 * reference on the request to lock this request lifetime into its
822 * currently allocated context to prevent it from being reallocated in
823 * the event the completion by-passes this timeout handler.
825 * If the reference was already released, then the driver beat the
826 * timeout handler to posting a natural completion.
828 if (!refcount_inc_not_zero(&rq
->ref
))
832 * The request is now locked and cannot be reallocated underneath the
833 * timeout handler's processing. Re-verify this exact request is truly
834 * expired; if it is not expired, then the request was completed and
835 * reallocated as a new request.
837 if (blk_mq_req_expired(rq
, next
))
838 blk_mq_rq_timed_out(rq
, reserved
);
839 if (refcount_dec_and_test(&rq
->ref
))
840 __blk_mq_free_request(rq
);
843 static void blk_mq_timeout_work(struct work_struct
*work
)
845 struct request_queue
*q
=
846 container_of(work
, struct request_queue
, timeout_work
);
847 unsigned long next
= 0;
848 struct blk_mq_hw_ctx
*hctx
;
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
864 if (!percpu_ref_tryget(&q
->q_usage_counter
))
867 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
870 mod_timer(&q
->timeout
, next
);
873 * Request timeouts are handled as a forward rolling timer. If
874 * we end up here it means that no requests are pending and
875 * also that no request has been pending for a while. Mark
878 queue_for_each_hw_ctx(q
, hctx
, i
) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx
))
881 blk_mq_tag_idle(hctx
);
887 struct flush_busy_ctx_data
{
888 struct blk_mq_hw_ctx
*hctx
;
889 struct list_head
*list
;
892 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
894 struct flush_busy_ctx_data
*flush_data
= data
;
895 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
896 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
898 spin_lock(&ctx
->lock
);
899 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
900 sbitmap_clear_bit(sb
, bitnr
);
901 spin_unlock(&ctx
->lock
);
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
911 struct flush_busy_ctx_data data
= {
916 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
920 struct dispatch_rq_data
{
921 struct blk_mq_hw_ctx
*hctx
;
925 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
928 struct dispatch_rq_data
*dispatch_data
= data
;
929 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
930 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
932 spin_lock(&ctx
->lock
);
933 if (!list_empty(&ctx
->rq_list
)) {
934 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
935 list_del_init(&dispatch_data
->rq
->queuelist
);
936 if (list_empty(&ctx
->rq_list
))
937 sbitmap_clear_bit(sb
, bitnr
);
939 spin_unlock(&ctx
->lock
);
941 return !dispatch_data
->rq
;
944 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
945 struct blk_mq_ctx
*start
)
947 unsigned off
= start
? start
->index_hw
: 0;
948 struct dispatch_rq_data data
= {
953 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
954 dispatch_rq_from_ctx
, &data
);
959 static inline unsigned int queued_to_index(unsigned int queued
)
964 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
967 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
970 struct blk_mq_alloc_data data
= {
972 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
973 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
976 might_sleep_if(wait
);
981 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
982 data
.flags
|= BLK_MQ_REQ_RESERVED
;
984 rq
->tag
= blk_mq_get_tag(&data
);
986 if (blk_mq_tag_busy(data
.hctx
)) {
987 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
988 atomic_inc(&data
.hctx
->nr_active
);
990 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
996 return rq
->tag
!= -1;
999 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1000 int flags
, void *key
)
1002 struct blk_mq_hw_ctx
*hctx
;
1004 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1006 list_del_init(&wait
->entry
);
1007 blk_mq_run_hw_queue(hctx
, true);
1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014 * restart. For both cases, take care to check the condition again after
1015 * marking us as waiting.
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
**hctx
,
1020 struct blk_mq_hw_ctx
*this_hctx
= *hctx
;
1021 struct sbq_wait_state
*ws
;
1022 wait_queue_entry_t
*wait
;
1025 if (!(this_hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1026 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &this_hctx
->state
))
1027 set_bit(BLK_MQ_S_SCHED_RESTART
, &this_hctx
->state
);
1030 * It's possible that a tag was freed in the window between the
1031 * allocation failure and adding the hardware queue to the wait
1034 * Don't clear RESTART here, someone else could have set it.
1035 * At most this will cost an extra queue run.
1037 return blk_mq_get_driver_tag(rq
, hctx
, false);
1040 wait
= &this_hctx
->dispatch_wait
;
1041 if (!list_empty_careful(&wait
->entry
))
1044 spin_lock(&this_hctx
->lock
);
1045 if (!list_empty(&wait
->entry
)) {
1046 spin_unlock(&this_hctx
->lock
);
1050 ws
= bt_wait_ptr(&this_hctx
->tags
->bitmap_tags
, this_hctx
);
1051 add_wait_queue(&ws
->wait
, wait
);
1054 * It's possible that a tag was freed in the window between the
1055 * allocation failure and adding the hardware queue to the wait
1058 ret
= blk_mq_get_driver_tag(rq
, hctx
, false);
1060 spin_unlock(&this_hctx
->lock
);
1065 * We got a tag, remove ourselves from the wait queue to ensure
1066 * someone else gets the wakeup.
1068 spin_lock_irq(&ws
->wait
.lock
);
1069 list_del_init(&wait
->entry
);
1070 spin_unlock_irq(&ws
->wait
.lock
);
1071 spin_unlock(&this_hctx
->lock
);
1076 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1078 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1081 struct blk_mq_hw_ctx
*hctx
;
1082 struct request
*rq
, *nxt
;
1083 bool no_tag
= false;
1085 blk_status_t ret
= BLK_STS_OK
;
1087 if (list_empty(list
))
1090 WARN_ON(!list_is_singular(list
) && got_budget
);
1093 * Now process all the entries, sending them to the driver.
1095 errors
= queued
= 0;
1097 struct blk_mq_queue_data bd
;
1099 rq
= list_first_entry(list
, struct request
, queuelist
);
1101 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
1102 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1105 if (!blk_mq_get_driver_tag(rq
, NULL
, false)) {
1107 * The initial allocation attempt failed, so we need to
1108 * rerun the hardware queue when a tag is freed. The
1109 * waitqueue takes care of that. If the queue is run
1110 * before we add this entry back on the dispatch list,
1111 * we'll re-run it below.
1113 if (!blk_mq_mark_tag_wait(&hctx
, rq
)) {
1114 blk_mq_put_dispatch_budget(hctx
);
1116 * For non-shared tags, the RESTART check
1119 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1125 list_del_init(&rq
->queuelist
);
1130 * Flag last if we have no more requests, or if we have more
1131 * but can't assign a driver tag to it.
1133 if (list_empty(list
))
1136 nxt
= list_first_entry(list
, struct request
, queuelist
);
1137 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1140 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1141 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1143 * If an I/O scheduler has been configured and we got a
1144 * driver tag for the next request already, free it
1147 if (!list_empty(list
)) {
1148 nxt
= list_first_entry(list
, struct request
, queuelist
);
1149 blk_mq_put_driver_tag(nxt
);
1151 list_add(&rq
->queuelist
, list
);
1152 __blk_mq_requeue_request(rq
);
1156 if (unlikely(ret
!= BLK_STS_OK
)) {
1158 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1163 } while (!list_empty(list
));
1165 hctx
->dispatched
[queued_to_index(queued
)]++;
1168 * Any items that need requeuing? Stuff them into hctx->dispatch,
1169 * that is where we will continue on next queue run.
1171 if (!list_empty(list
)) {
1174 spin_lock(&hctx
->lock
);
1175 list_splice_init(list
, &hctx
->dispatch
);
1176 spin_unlock(&hctx
->lock
);
1179 * If SCHED_RESTART was set by the caller of this function and
1180 * it is no longer set that means that it was cleared by another
1181 * thread and hence that a queue rerun is needed.
1183 * If 'no_tag' is set, that means that we failed getting
1184 * a driver tag with an I/O scheduler attached. If our dispatch
1185 * waitqueue is no longer active, ensure that we run the queue
1186 * AFTER adding our entries back to the list.
1188 * If no I/O scheduler has been configured it is possible that
1189 * the hardware queue got stopped and restarted before requests
1190 * were pushed back onto the dispatch list. Rerun the queue to
1191 * avoid starvation. Notes:
1192 * - blk_mq_run_hw_queue() checks whether or not a queue has
1193 * been stopped before rerunning a queue.
1194 * - Some but not all block drivers stop a queue before
1195 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1198 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1199 * bit is set, run queue after a delay to avoid IO stalls
1200 * that could otherwise occur if the queue is idle.
1202 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1203 if (!needs_restart
||
1204 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1205 blk_mq_run_hw_queue(hctx
, true);
1206 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1207 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1210 return (queued
+ errors
) != 0;
1213 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1218 * We should be running this queue from one of the CPUs that
1221 * There are at least two related races now between setting
1222 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1223 * __blk_mq_run_hw_queue():
1225 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1226 * but later it becomes online, then this warning is harmless
1229 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1230 * but later it becomes offline, then the warning can't be
1231 * triggered, and we depend on blk-mq timeout handler to
1232 * handle dispatched requests to this hctx
1234 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1235 cpu_online(hctx
->next_cpu
)) {
1236 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1237 raw_smp_processor_id(),
1238 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1243 * We can't run the queue inline with ints disabled. Ensure that
1244 * we catch bad users of this early.
1246 WARN_ON_ONCE(in_interrupt());
1248 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1250 hctx_lock(hctx
, &srcu_idx
);
1251 blk_mq_sched_dispatch_requests(hctx
);
1252 hctx_unlock(hctx
, srcu_idx
);
1255 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1257 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1259 if (cpu
>= nr_cpu_ids
)
1260 cpu
= cpumask_first(hctx
->cpumask
);
1265 * It'd be great if the workqueue API had a way to pass
1266 * in a mask and had some smarts for more clever placement.
1267 * For now we just round-robin here, switching for every
1268 * BLK_MQ_CPU_WORK_BATCH queued items.
1270 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1273 int next_cpu
= hctx
->next_cpu
;
1275 if (hctx
->queue
->nr_hw_queues
== 1)
1276 return WORK_CPU_UNBOUND
;
1278 if (--hctx
->next_cpu_batch
<= 0) {
1280 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1282 if (next_cpu
>= nr_cpu_ids
)
1283 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1284 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1288 * Do unbound schedule if we can't find a online CPU for this hctx,
1289 * and it should only happen in the path of handling CPU DEAD.
1291 if (!cpu_online(next_cpu
)) {
1298 * Make sure to re-select CPU next time once after CPUs
1299 * in hctx->cpumask become online again.
1301 hctx
->next_cpu
= next_cpu
;
1302 hctx
->next_cpu_batch
= 1;
1303 return WORK_CPU_UNBOUND
;
1306 hctx
->next_cpu
= next_cpu
;
1310 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1311 unsigned long msecs
)
1313 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1316 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1317 int cpu
= get_cpu();
1318 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1319 __blk_mq_run_hw_queue(hctx
);
1327 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1328 msecs_to_jiffies(msecs
));
1331 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1333 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1335 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1337 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1343 * When queue is quiesced, we may be switching io scheduler, or
1344 * updating nr_hw_queues, or other things, and we can't run queue
1345 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1347 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1350 hctx_lock(hctx
, &srcu_idx
);
1351 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1352 blk_mq_hctx_has_pending(hctx
);
1353 hctx_unlock(hctx
, srcu_idx
);
1356 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1362 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1364 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1366 struct blk_mq_hw_ctx
*hctx
;
1369 queue_for_each_hw_ctx(q
, hctx
, i
) {
1370 if (blk_mq_hctx_stopped(hctx
))
1373 blk_mq_run_hw_queue(hctx
, async
);
1376 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1379 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1380 * @q: request queue.
1382 * The caller is responsible for serializing this function against
1383 * blk_mq_{start,stop}_hw_queue().
1385 bool blk_mq_queue_stopped(struct request_queue
*q
)
1387 struct blk_mq_hw_ctx
*hctx
;
1390 queue_for_each_hw_ctx(q
, hctx
, i
)
1391 if (blk_mq_hctx_stopped(hctx
))
1396 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1399 * This function is often used for pausing .queue_rq() by driver when
1400 * there isn't enough resource or some conditions aren't satisfied, and
1401 * BLK_STS_RESOURCE is usually returned.
1403 * We do not guarantee that dispatch can be drained or blocked
1404 * after blk_mq_stop_hw_queue() returns. Please use
1405 * blk_mq_quiesce_queue() for that requirement.
1407 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1409 cancel_delayed_work(&hctx
->run_work
);
1411 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1413 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1416 * This function is often used for pausing .queue_rq() by driver when
1417 * there isn't enough resource or some conditions aren't satisfied, and
1418 * BLK_STS_RESOURCE is usually returned.
1420 * We do not guarantee that dispatch can be drained or blocked
1421 * after blk_mq_stop_hw_queues() returns. Please use
1422 * blk_mq_quiesce_queue() for that requirement.
1424 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1426 struct blk_mq_hw_ctx
*hctx
;
1429 queue_for_each_hw_ctx(q
, hctx
, i
)
1430 blk_mq_stop_hw_queue(hctx
);
1432 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1434 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1436 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1438 blk_mq_run_hw_queue(hctx
, false);
1440 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1442 void blk_mq_start_hw_queues(struct request_queue
*q
)
1444 struct blk_mq_hw_ctx
*hctx
;
1447 queue_for_each_hw_ctx(q
, hctx
, i
)
1448 blk_mq_start_hw_queue(hctx
);
1450 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1452 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1454 if (!blk_mq_hctx_stopped(hctx
))
1457 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1458 blk_mq_run_hw_queue(hctx
, async
);
1460 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1462 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1464 struct blk_mq_hw_ctx
*hctx
;
1467 queue_for_each_hw_ctx(q
, hctx
, i
)
1468 blk_mq_start_stopped_hw_queue(hctx
, async
);
1470 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1472 static void blk_mq_run_work_fn(struct work_struct
*work
)
1474 struct blk_mq_hw_ctx
*hctx
;
1476 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1479 * If we are stopped, don't run the queue.
1481 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1484 __blk_mq_run_hw_queue(hctx
);
1487 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1491 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1493 lockdep_assert_held(&ctx
->lock
);
1495 trace_block_rq_insert(hctx
->queue
, rq
);
1498 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1500 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1503 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1506 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1508 lockdep_assert_held(&ctx
->lock
);
1510 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1511 blk_mq_hctx_mark_pending(hctx
, ctx
);
1515 * Should only be used carefully, when the caller knows we want to
1516 * bypass a potential IO scheduler on the target device.
1518 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1520 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1521 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1523 spin_lock(&hctx
->lock
);
1524 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1525 spin_unlock(&hctx
->lock
);
1528 blk_mq_run_hw_queue(hctx
, false);
1531 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1532 struct list_head
*list
)
1536 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1539 spin_lock(&ctx
->lock
);
1540 while (!list_empty(list
)) {
1543 rq
= list_first_entry(list
, struct request
, queuelist
);
1544 BUG_ON(rq
->mq_ctx
!= ctx
);
1545 list_del_init(&rq
->queuelist
);
1546 __blk_mq_insert_req_list(hctx
, rq
, false);
1548 blk_mq_hctx_mark_pending(hctx
, ctx
);
1549 spin_unlock(&ctx
->lock
);
1552 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1554 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1555 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1557 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1558 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1559 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1562 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1564 struct blk_mq_ctx
*this_ctx
;
1565 struct request_queue
*this_q
;
1568 LIST_HEAD(ctx_list
);
1571 list_splice_init(&plug
->mq_list
, &list
);
1573 list_sort(NULL
, &list
, plug_ctx_cmp
);
1579 while (!list_empty(&list
)) {
1580 rq
= list_entry_rq(list
.next
);
1581 list_del_init(&rq
->queuelist
);
1583 if (rq
->mq_ctx
!= this_ctx
) {
1585 trace_block_unplug(this_q
, depth
, from_schedule
);
1586 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1591 this_ctx
= rq
->mq_ctx
;
1597 list_add_tail(&rq
->queuelist
, &ctx_list
);
1601 * If 'this_ctx' is set, we know we have entries to complete
1602 * on 'ctx_list'. Do those.
1605 trace_block_unplug(this_q
, depth
, from_schedule
);
1606 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1611 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1613 blk_init_request_from_bio(rq
, bio
);
1615 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1617 blk_account_io_start(rq
, true);
1620 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1623 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1625 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1628 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1632 struct request_queue
*q
= rq
->q
;
1633 struct blk_mq_queue_data bd
= {
1637 blk_qc_t new_cookie
;
1640 new_cookie
= request_to_qc_t(hctx
, rq
);
1643 * For OK queue, we are done. For error, caller may kill it.
1644 * Any other error (busy), just add it to our list as we
1645 * previously would have done.
1647 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1650 *cookie
= new_cookie
;
1652 case BLK_STS_RESOURCE
:
1653 case BLK_STS_DEV_RESOURCE
:
1654 __blk_mq_requeue_request(rq
);
1657 *cookie
= BLK_QC_T_NONE
;
1664 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1669 struct request_queue
*q
= rq
->q
;
1670 bool run_queue
= true;
1673 * RCU or SRCU read lock is needed before checking quiesced flag.
1675 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1676 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1677 * and avoid driver to try to dispatch again.
1679 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1681 bypass_insert
= false;
1685 if (q
->elevator
&& !bypass_insert
)
1688 if (!blk_mq_get_dispatch_budget(hctx
))
1691 if (!blk_mq_get_driver_tag(rq
, NULL
, false)) {
1692 blk_mq_put_dispatch_budget(hctx
);
1696 return __blk_mq_issue_directly(hctx
, rq
, cookie
);
1699 return BLK_STS_RESOURCE
;
1701 blk_mq_sched_insert_request(rq
, false, run_queue
, false);
1705 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1706 struct request
*rq
, blk_qc_t
*cookie
)
1711 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1713 hctx_lock(hctx
, &srcu_idx
);
1715 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1716 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1717 blk_mq_sched_insert_request(rq
, false, true, false);
1718 else if (ret
!= BLK_STS_OK
)
1719 blk_mq_end_request(rq
, ret
);
1721 hctx_unlock(hctx
, srcu_idx
);
1724 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
)
1728 blk_qc_t unused_cookie
;
1729 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1730 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1732 hctx_lock(hctx
, &srcu_idx
);
1733 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true);
1734 hctx_unlock(hctx
, srcu_idx
);
1739 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1741 const int is_sync
= op_is_sync(bio
->bi_opf
);
1742 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1743 struct blk_mq_alloc_data data
= { .flags
= 0 };
1745 unsigned int request_count
= 0;
1746 struct blk_plug
*plug
;
1747 struct request
*same_queue_rq
= NULL
;
1749 unsigned int wb_acct
;
1751 blk_queue_bounce(q
, &bio
);
1753 blk_queue_split(q
, &bio
);
1755 if (!bio_integrity_prep(bio
))
1756 return BLK_QC_T_NONE
;
1758 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1759 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1760 return BLK_QC_T_NONE
;
1762 if (blk_mq_sched_bio_merge(q
, bio
))
1763 return BLK_QC_T_NONE
;
1765 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1767 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1769 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1770 if (unlikely(!rq
)) {
1771 __wbt_done(q
->rq_wb
, wb_acct
);
1772 if (bio
->bi_opf
& REQ_NOWAIT
)
1773 bio_wouldblock_error(bio
);
1774 return BLK_QC_T_NONE
;
1777 wbt_track(rq
, wb_acct
);
1779 cookie
= request_to_qc_t(data
.hctx
, rq
);
1781 plug
= current
->plug
;
1782 if (unlikely(is_flush_fua
)) {
1783 blk_mq_put_ctx(data
.ctx
);
1784 blk_mq_bio_to_request(rq
, bio
);
1786 /* bypass scheduler for flush rq */
1787 blk_insert_flush(rq
);
1788 blk_mq_run_hw_queue(data
.hctx
, true);
1789 } else if (plug
&& q
->nr_hw_queues
== 1) {
1790 struct request
*last
= NULL
;
1792 blk_mq_put_ctx(data
.ctx
);
1793 blk_mq_bio_to_request(rq
, bio
);
1796 * @request_count may become stale because of schedule
1797 * out, so check the list again.
1799 if (list_empty(&plug
->mq_list
))
1801 else if (blk_queue_nomerges(q
))
1802 request_count
= blk_plug_queued_count(q
);
1805 trace_block_plug(q
);
1807 last
= list_entry_rq(plug
->mq_list
.prev
);
1809 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1810 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1811 blk_flush_plug_list(plug
, false);
1812 trace_block_plug(q
);
1815 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1816 } else if (plug
&& !blk_queue_nomerges(q
)) {
1817 blk_mq_bio_to_request(rq
, bio
);
1820 * We do limited plugging. If the bio can be merged, do that.
1821 * Otherwise the existing request in the plug list will be
1822 * issued. So the plug list will have one request at most
1823 * The plug list might get flushed before this. If that happens,
1824 * the plug list is empty, and same_queue_rq is invalid.
1826 if (list_empty(&plug
->mq_list
))
1827 same_queue_rq
= NULL
;
1829 list_del_init(&same_queue_rq
->queuelist
);
1830 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1832 blk_mq_put_ctx(data
.ctx
);
1834 if (same_queue_rq
) {
1835 data
.hctx
= blk_mq_map_queue(q
,
1836 same_queue_rq
->mq_ctx
->cpu
);
1837 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1840 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1841 blk_mq_put_ctx(data
.ctx
);
1842 blk_mq_bio_to_request(rq
, bio
);
1843 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1845 blk_mq_put_ctx(data
.ctx
);
1846 blk_mq_bio_to_request(rq
, bio
);
1847 blk_mq_sched_insert_request(rq
, false, true, true);
1853 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1854 unsigned int hctx_idx
)
1858 if (tags
->rqs
&& set
->ops
->exit_request
) {
1861 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1862 struct request
*rq
= tags
->static_rqs
[i
];
1866 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1867 tags
->static_rqs
[i
] = NULL
;
1871 while (!list_empty(&tags
->page_list
)) {
1872 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1873 list_del_init(&page
->lru
);
1875 * Remove kmemleak object previously allocated in
1876 * blk_mq_init_rq_map().
1878 kmemleak_free(page_address(page
));
1879 __free_pages(page
, page
->private);
1883 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1887 kfree(tags
->static_rqs
);
1888 tags
->static_rqs
= NULL
;
1890 blk_mq_free_tags(tags
);
1893 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1894 unsigned int hctx_idx
,
1895 unsigned int nr_tags
,
1896 unsigned int reserved_tags
)
1898 struct blk_mq_tags
*tags
;
1901 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1902 if (node
== NUMA_NO_NODE
)
1903 node
= set
->numa_node
;
1905 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1906 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1910 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1911 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1914 blk_mq_free_tags(tags
);
1918 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1919 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1921 if (!tags
->static_rqs
) {
1923 blk_mq_free_tags(tags
);
1930 static size_t order_to_size(unsigned int order
)
1932 return (size_t)PAGE_SIZE
<< order
;
1935 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1936 unsigned int hctx_idx
, int node
)
1940 if (set
->ops
->init_request
) {
1941 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
1946 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1950 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1951 unsigned int hctx_idx
, unsigned int depth
)
1953 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1954 size_t rq_size
, left
;
1957 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1958 if (node
== NUMA_NO_NODE
)
1959 node
= set
->numa_node
;
1961 INIT_LIST_HEAD(&tags
->page_list
);
1964 * rq_size is the size of the request plus driver payload, rounded
1965 * to the cacheline size
1967 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1969 left
= rq_size
* depth
;
1971 for (i
= 0; i
< depth
; ) {
1972 int this_order
= max_order
;
1977 while (this_order
&& left
< order_to_size(this_order
- 1))
1981 page
= alloc_pages_node(node
,
1982 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1988 if (order_to_size(this_order
) < rq_size
)
1995 page
->private = this_order
;
1996 list_add_tail(&page
->lru
, &tags
->page_list
);
1998 p
= page_address(page
);
2000 * Allow kmemleak to scan these pages as they contain pointers
2001 * to additional allocations like via ops->init_request().
2003 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2004 entries_per_page
= order_to_size(this_order
) / rq_size
;
2005 to_do
= min(entries_per_page
, depth
- i
);
2006 left
-= to_do
* rq_size
;
2007 for (j
= 0; j
< to_do
; j
++) {
2008 struct request
*rq
= p
;
2010 tags
->static_rqs
[i
] = rq
;
2011 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2012 tags
->static_rqs
[i
] = NULL
;
2023 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2028 * 'cpu' is going away. splice any existing rq_list entries from this
2029 * software queue to the hw queue dispatch list, and ensure that it
2032 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2034 struct blk_mq_hw_ctx
*hctx
;
2035 struct blk_mq_ctx
*ctx
;
2038 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2039 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2041 spin_lock(&ctx
->lock
);
2042 if (!list_empty(&ctx
->rq_list
)) {
2043 list_splice_init(&ctx
->rq_list
, &tmp
);
2044 blk_mq_hctx_clear_pending(hctx
, ctx
);
2046 spin_unlock(&ctx
->lock
);
2048 if (list_empty(&tmp
))
2051 spin_lock(&hctx
->lock
);
2052 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2053 spin_unlock(&hctx
->lock
);
2055 blk_mq_run_hw_queue(hctx
, true);
2059 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2061 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2065 /* hctx->ctxs will be freed in queue's release handler */
2066 static void blk_mq_exit_hctx(struct request_queue
*q
,
2067 struct blk_mq_tag_set
*set
,
2068 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2070 blk_mq_debugfs_unregister_hctx(hctx
);
2072 if (blk_mq_hw_queue_mapped(hctx
))
2073 blk_mq_tag_idle(hctx
);
2075 if (set
->ops
->exit_request
)
2076 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2078 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2080 if (set
->ops
->exit_hctx
)
2081 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2083 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2084 cleanup_srcu_struct(hctx
->srcu
);
2086 blk_mq_remove_cpuhp(hctx
);
2087 blk_free_flush_queue(hctx
->fq
);
2088 sbitmap_free(&hctx
->ctx_map
);
2091 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2092 struct blk_mq_tag_set
*set
, int nr_queue
)
2094 struct blk_mq_hw_ctx
*hctx
;
2097 queue_for_each_hw_ctx(q
, hctx
, i
) {
2100 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2104 static int blk_mq_init_hctx(struct request_queue
*q
,
2105 struct blk_mq_tag_set
*set
,
2106 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2110 node
= hctx
->numa_node
;
2111 if (node
== NUMA_NO_NODE
)
2112 node
= hctx
->numa_node
= set
->numa_node
;
2114 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2115 spin_lock_init(&hctx
->lock
);
2116 INIT_LIST_HEAD(&hctx
->dispatch
);
2118 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2120 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2122 hctx
->tags
= set
->tags
[hctx_idx
];
2125 * Allocate space for all possible cpus to avoid allocation at
2128 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2131 goto unregister_cpu_notifier
;
2133 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2139 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2140 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2142 if (set
->ops
->init_hctx
&&
2143 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2146 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
2149 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2151 goto sched_exit_hctx
;
2153 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
, node
))
2156 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2157 init_srcu_struct(hctx
->srcu
);
2159 blk_mq_debugfs_register_hctx(q
, hctx
);
2166 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2168 if (set
->ops
->exit_hctx
)
2169 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2171 sbitmap_free(&hctx
->ctx_map
);
2174 unregister_cpu_notifier
:
2175 blk_mq_remove_cpuhp(hctx
);
2179 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2180 unsigned int nr_hw_queues
)
2184 for_each_possible_cpu(i
) {
2185 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2186 struct blk_mq_hw_ctx
*hctx
;
2189 spin_lock_init(&__ctx
->lock
);
2190 INIT_LIST_HEAD(&__ctx
->rq_list
);
2194 * Set local node, IFF we have more than one hw queue. If
2195 * not, we remain on the home node of the device
2197 hctx
= blk_mq_map_queue(q
, i
);
2198 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2199 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2203 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2207 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2208 set
->queue_depth
, set
->reserved_tags
);
2209 if (!set
->tags
[hctx_idx
])
2212 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2217 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2218 set
->tags
[hctx_idx
] = NULL
;
2222 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2223 unsigned int hctx_idx
)
2225 if (set
->tags
[hctx_idx
]) {
2226 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2227 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2228 set
->tags
[hctx_idx
] = NULL
;
2232 static void blk_mq_map_swqueue(struct request_queue
*q
)
2234 unsigned int i
, hctx_idx
;
2235 struct blk_mq_hw_ctx
*hctx
;
2236 struct blk_mq_ctx
*ctx
;
2237 struct blk_mq_tag_set
*set
= q
->tag_set
;
2240 * Avoid others reading imcomplete hctx->cpumask through sysfs
2242 mutex_lock(&q
->sysfs_lock
);
2244 queue_for_each_hw_ctx(q
, hctx
, i
) {
2245 cpumask_clear(hctx
->cpumask
);
2247 hctx
->dispatch_from
= NULL
;
2251 * Map software to hardware queues.
2253 * If the cpu isn't present, the cpu is mapped to first hctx.
2255 for_each_possible_cpu(i
) {
2256 hctx_idx
= q
->mq_map
[i
];
2257 /* unmapped hw queue can be remapped after CPU topo changed */
2258 if (!set
->tags
[hctx_idx
] &&
2259 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2261 * If tags initialization fail for some hctx,
2262 * that hctx won't be brought online. In this
2263 * case, remap the current ctx to hctx[0] which
2264 * is guaranteed to always have tags allocated
2269 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2270 hctx
= blk_mq_map_queue(q
, i
);
2272 cpumask_set_cpu(i
, hctx
->cpumask
);
2273 ctx
->index_hw
= hctx
->nr_ctx
;
2274 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2277 mutex_unlock(&q
->sysfs_lock
);
2279 queue_for_each_hw_ctx(q
, hctx
, i
) {
2281 * If no software queues are mapped to this hardware queue,
2282 * disable it and free the request entries.
2284 if (!hctx
->nr_ctx
) {
2285 /* Never unmap queue 0. We need it as a
2286 * fallback in case of a new remap fails
2289 if (i
&& set
->tags
[i
])
2290 blk_mq_free_map_and_requests(set
, i
);
2296 hctx
->tags
= set
->tags
[i
];
2297 WARN_ON(!hctx
->tags
);
2300 * Set the map size to the number of mapped software queues.
2301 * This is more accurate and more efficient than looping
2302 * over all possibly mapped software queues.
2304 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2307 * Initialize batch roundrobin counts
2309 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2310 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2315 * Caller needs to ensure that we're either frozen/quiesced, or that
2316 * the queue isn't live yet.
2318 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2320 struct blk_mq_hw_ctx
*hctx
;
2323 queue_for_each_hw_ctx(q
, hctx
, i
) {
2325 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2326 atomic_inc(&q
->shared_hctx_restart
);
2327 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2329 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2330 atomic_dec(&q
->shared_hctx_restart
);
2331 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2336 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2339 struct request_queue
*q
;
2341 lockdep_assert_held(&set
->tag_list_lock
);
2343 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2344 blk_mq_freeze_queue(q
);
2345 queue_set_hctx_shared(q
, shared
);
2346 blk_mq_unfreeze_queue(q
);
2350 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2352 struct blk_mq_tag_set
*set
= q
->tag_set
;
2354 mutex_lock(&set
->tag_list_lock
);
2355 list_del_rcu(&q
->tag_set_list
);
2356 if (list_is_singular(&set
->tag_list
)) {
2357 /* just transitioned to unshared */
2358 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2359 /* update existing queue */
2360 blk_mq_update_tag_set_depth(set
, false);
2362 mutex_unlock(&set
->tag_list_lock
);
2364 INIT_LIST_HEAD(&q
->tag_set_list
);
2367 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2368 struct request_queue
*q
)
2372 mutex_lock(&set
->tag_list_lock
);
2375 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2377 if (!list_empty(&set
->tag_list
) &&
2378 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2379 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2380 /* update existing queue */
2381 blk_mq_update_tag_set_depth(set
, true);
2383 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2384 queue_set_hctx_shared(q
, true);
2385 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2387 mutex_unlock(&set
->tag_list_lock
);
2391 * It is the actual release handler for mq, but we do it from
2392 * request queue's release handler for avoiding use-after-free
2393 * and headache because q->mq_kobj shouldn't have been introduced,
2394 * but we can't group ctx/kctx kobj without it.
2396 void blk_mq_release(struct request_queue
*q
)
2398 struct blk_mq_hw_ctx
*hctx
;
2401 /* hctx kobj stays in hctx */
2402 queue_for_each_hw_ctx(q
, hctx
, i
) {
2405 kobject_put(&hctx
->kobj
);
2410 kfree(q
->queue_hw_ctx
);
2413 * release .mq_kobj and sw queue's kobject now because
2414 * both share lifetime with request queue.
2416 blk_mq_sysfs_deinit(q
);
2418 free_percpu(q
->queue_ctx
);
2421 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2423 struct request_queue
*uninit_q
, *q
;
2425 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
, NULL
);
2427 return ERR_PTR(-ENOMEM
);
2429 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2431 blk_cleanup_queue(uninit_q
);
2435 EXPORT_SYMBOL(blk_mq_init_queue
);
2437 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2439 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2441 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2442 __alignof__(struct blk_mq_hw_ctx
)) !=
2443 sizeof(struct blk_mq_hw_ctx
));
2445 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2446 hw_ctx_size
+= sizeof(struct srcu_struct
);
2451 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2452 struct request_queue
*q
)
2455 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2457 blk_mq_sysfs_unregister(q
);
2459 /* protect against switching io scheduler */
2460 mutex_lock(&q
->sysfs_lock
);
2461 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2467 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2468 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2473 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2480 atomic_set(&hctxs
[i
]->nr_active
, 0);
2481 hctxs
[i
]->numa_node
= node
;
2482 hctxs
[i
]->queue_num
= i
;
2484 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2485 free_cpumask_var(hctxs
[i
]->cpumask
);
2490 blk_mq_hctx_kobj_init(hctxs
[i
]);
2492 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2493 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2497 blk_mq_free_map_and_requests(set
, j
);
2498 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2499 kobject_put(&hctx
->kobj
);
2504 q
->nr_hw_queues
= i
;
2505 mutex_unlock(&q
->sysfs_lock
);
2506 blk_mq_sysfs_register(q
);
2509 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2510 struct request_queue
*q
)
2512 /* mark the queue as mq asap */
2513 q
->mq_ops
= set
->ops
;
2515 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2516 blk_mq_poll_stats_bkt
,
2517 BLK_MQ_POLL_STATS_BKTS
, q
);
2521 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2525 /* init q->mq_kobj and sw queues' kobjects */
2526 blk_mq_sysfs_init(q
);
2528 q
->queue_hw_ctx
= kcalloc_node(nr_cpu_ids
, sizeof(*(q
->queue_hw_ctx
)),
2529 GFP_KERNEL
, set
->numa_node
);
2530 if (!q
->queue_hw_ctx
)
2533 q
->mq_map
= set
->mq_map
;
2535 blk_mq_realloc_hw_ctxs(set
, q
);
2536 if (!q
->nr_hw_queues
)
2539 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2540 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2542 q
->nr_queues
= nr_cpu_ids
;
2544 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2546 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2547 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
2549 q
->sg_reserved_size
= INT_MAX
;
2551 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2552 INIT_LIST_HEAD(&q
->requeue_list
);
2553 spin_lock_init(&q
->requeue_lock
);
2555 blk_queue_make_request(q
, blk_mq_make_request
);
2556 if (q
->mq_ops
->poll
)
2557 q
->poll_fn
= blk_mq_poll
;
2560 * Do this after blk_queue_make_request() overrides it...
2562 q
->nr_requests
= set
->queue_depth
;
2565 * Default to classic polling
2569 if (set
->ops
->complete
)
2570 blk_queue_softirq_done(q
, set
->ops
->complete
);
2572 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2573 blk_mq_add_queue_tag_set(set
, q
);
2574 blk_mq_map_swqueue(q
);
2576 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2579 ret
= elevator_init_mq(q
);
2581 return ERR_PTR(ret
);
2587 kfree(q
->queue_hw_ctx
);
2589 free_percpu(q
->queue_ctx
);
2592 return ERR_PTR(-ENOMEM
);
2594 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2596 void blk_mq_free_queue(struct request_queue
*q
)
2598 struct blk_mq_tag_set
*set
= q
->tag_set
;
2600 blk_mq_del_queue_tag_set(q
);
2601 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2604 /* Basically redo blk_mq_init_queue with queue frozen */
2605 static void blk_mq_queue_reinit(struct request_queue
*q
)
2607 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2609 blk_mq_debugfs_unregister_hctxs(q
);
2610 blk_mq_sysfs_unregister(q
);
2613 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2614 * we should change hctx numa_node according to the new topology (this
2615 * involves freeing and re-allocating memory, worth doing?)
2617 blk_mq_map_swqueue(q
);
2619 blk_mq_sysfs_register(q
);
2620 blk_mq_debugfs_register_hctxs(q
);
2623 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2627 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2628 if (!__blk_mq_alloc_rq_map(set
, i
))
2635 blk_mq_free_rq_map(set
->tags
[i
]);
2641 * Allocate the request maps associated with this tag_set. Note that this
2642 * may reduce the depth asked for, if memory is tight. set->queue_depth
2643 * will be updated to reflect the allocated depth.
2645 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2650 depth
= set
->queue_depth
;
2652 err
= __blk_mq_alloc_rq_maps(set
);
2656 set
->queue_depth
>>= 1;
2657 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2661 } while (set
->queue_depth
);
2663 if (!set
->queue_depth
|| err
) {
2664 pr_err("blk-mq: failed to allocate request map\n");
2668 if (depth
!= set
->queue_depth
)
2669 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2670 depth
, set
->queue_depth
);
2675 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2677 if (set
->ops
->map_queues
) {
2680 * transport .map_queues is usually done in the following
2683 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2684 * mask = get_cpu_mask(queue)
2685 * for_each_cpu(cpu, mask)
2686 * set->mq_map[cpu] = queue;
2689 * When we need to remap, the table has to be cleared for
2690 * killing stale mapping since one CPU may not be mapped
2693 for_each_possible_cpu(cpu
)
2694 set
->mq_map
[cpu
] = 0;
2696 return set
->ops
->map_queues(set
);
2698 return blk_mq_map_queues(set
);
2702 * Alloc a tag set to be associated with one or more request queues.
2703 * May fail with EINVAL for various error conditions. May adjust the
2704 * requested depth down, if if it too large. In that case, the set
2705 * value will be stored in set->queue_depth.
2707 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2711 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2713 if (!set
->nr_hw_queues
)
2715 if (!set
->queue_depth
)
2717 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2720 if (!set
->ops
->queue_rq
)
2723 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2726 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2727 pr_info("blk-mq: reduced tag depth to %u\n",
2729 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2733 * If a crashdump is active, then we are potentially in a very
2734 * memory constrained environment. Limit us to 1 queue and
2735 * 64 tags to prevent using too much memory.
2737 if (is_kdump_kernel()) {
2738 set
->nr_hw_queues
= 1;
2739 set
->queue_depth
= min(64U, set
->queue_depth
);
2742 * There is no use for more h/w queues than cpus.
2744 if (set
->nr_hw_queues
> nr_cpu_ids
)
2745 set
->nr_hw_queues
= nr_cpu_ids
;
2747 set
->tags
= kcalloc_node(nr_cpu_ids
, sizeof(struct blk_mq_tags
*),
2748 GFP_KERNEL
, set
->numa_node
);
2753 set
->mq_map
= kcalloc_node(nr_cpu_ids
, sizeof(*set
->mq_map
),
2754 GFP_KERNEL
, set
->numa_node
);
2758 ret
= blk_mq_update_queue_map(set
);
2760 goto out_free_mq_map
;
2762 ret
= blk_mq_alloc_rq_maps(set
);
2764 goto out_free_mq_map
;
2766 mutex_init(&set
->tag_list_lock
);
2767 INIT_LIST_HEAD(&set
->tag_list
);
2779 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2781 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2785 for (i
= 0; i
< nr_cpu_ids
; i
++)
2786 blk_mq_free_map_and_requests(set
, i
);
2794 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2796 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2798 struct blk_mq_tag_set
*set
= q
->tag_set
;
2799 struct blk_mq_hw_ctx
*hctx
;
2805 blk_mq_freeze_queue(q
);
2806 blk_mq_quiesce_queue(q
);
2809 queue_for_each_hw_ctx(q
, hctx
, i
) {
2813 * If we're using an MQ scheduler, just update the scheduler
2814 * queue depth. This is similar to what the old code would do.
2816 if (!hctx
->sched_tags
) {
2817 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2820 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2828 q
->nr_requests
= nr
;
2830 blk_mq_unquiesce_queue(q
);
2831 blk_mq_unfreeze_queue(q
);
2836 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2839 struct request_queue
*q
;
2841 lockdep_assert_held(&set
->tag_list_lock
);
2843 if (nr_hw_queues
> nr_cpu_ids
)
2844 nr_hw_queues
= nr_cpu_ids
;
2845 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2848 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2849 blk_mq_freeze_queue(q
);
2851 set
->nr_hw_queues
= nr_hw_queues
;
2852 blk_mq_update_queue_map(set
);
2853 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2854 blk_mq_realloc_hw_ctxs(set
, q
);
2855 blk_mq_queue_reinit(q
);
2858 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2859 blk_mq_unfreeze_queue(q
);
2862 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2864 mutex_lock(&set
->tag_list_lock
);
2865 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2866 mutex_unlock(&set
->tag_list_lock
);
2868 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2870 /* Enable polling stats and return whether they were already enabled. */
2871 static bool blk_poll_stats_enable(struct request_queue
*q
)
2873 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2874 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
2876 blk_stat_add_callback(q
, q
->poll_cb
);
2880 static void blk_mq_poll_stats_start(struct request_queue
*q
)
2883 * We don't arm the callback if polling stats are not enabled or the
2884 * callback is already active.
2886 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2887 blk_stat_is_active(q
->poll_cb
))
2890 blk_stat_activate_msecs(q
->poll_cb
, 100);
2893 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
2895 struct request_queue
*q
= cb
->data
;
2898 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
2899 if (cb
->stat
[bucket
].nr_samples
)
2900 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
2904 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2905 struct blk_mq_hw_ctx
*hctx
,
2908 unsigned long ret
= 0;
2912 * If stats collection isn't on, don't sleep but turn it on for
2915 if (!blk_poll_stats_enable(q
))
2919 * As an optimistic guess, use half of the mean service time
2920 * for this type of request. We can (and should) make this smarter.
2921 * For instance, if the completion latencies are tight, we can
2922 * get closer than just half the mean. This is especially
2923 * important on devices where the completion latencies are longer
2924 * than ~10 usec. We do use the stats for the relevant IO size
2925 * if available which does lead to better estimates.
2927 bucket
= blk_mq_poll_stats_bkt(rq
);
2931 if (q
->poll_stat
[bucket
].nr_samples
)
2932 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
2937 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2938 struct blk_mq_hw_ctx
*hctx
,
2941 struct hrtimer_sleeper hs
;
2942 enum hrtimer_mode mode
;
2946 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
2952 * -1: don't ever hybrid sleep
2953 * 0: use half of prev avg
2954 * >0: use this specific value
2956 if (q
->poll_nsec
== -1)
2958 else if (q
->poll_nsec
> 0)
2959 nsecs
= q
->poll_nsec
;
2961 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2966 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
2969 * This will be replaced with the stats tracking code, using
2970 * 'avg_completion_time / 2' as the pre-sleep target.
2974 mode
= HRTIMER_MODE_REL
;
2975 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2976 hrtimer_set_expires(&hs
.timer
, kt
);
2978 hrtimer_init_sleeper(&hs
, current
);
2980 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
2982 set_current_state(TASK_UNINTERRUPTIBLE
);
2983 hrtimer_start_expires(&hs
.timer
, mode
);
2986 hrtimer_cancel(&hs
.timer
);
2987 mode
= HRTIMER_MODE_ABS
;
2988 } while (hs
.task
&& !signal_pending(current
));
2990 __set_current_state(TASK_RUNNING
);
2991 destroy_hrtimer_on_stack(&hs
.timer
);
2995 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2997 struct request_queue
*q
= hctx
->queue
;
3001 * If we sleep, have the caller restart the poll loop to reset
3002 * the state. Like for the other success return cases, the
3003 * caller is responsible for checking if the IO completed. If
3004 * the IO isn't complete, we'll get called again and will go
3005 * straight to the busy poll loop.
3007 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
3010 hctx
->poll_considered
++;
3012 state
= current
->state
;
3013 while (!need_resched()) {
3016 hctx
->poll_invoked
++;
3018 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
3020 hctx
->poll_success
++;
3021 set_current_state(TASK_RUNNING
);
3025 if (signal_pending_state(state
, current
))
3026 set_current_state(TASK_RUNNING
);
3028 if (current
->state
== TASK_RUNNING
)
3035 __set_current_state(TASK_RUNNING
);
3039 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
3041 struct blk_mq_hw_ctx
*hctx
;
3044 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3047 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3048 if (!blk_qc_t_is_internal(cookie
))
3049 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3051 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3053 * With scheduling, if the request has completed, we'll
3054 * get a NULL return here, as we clear the sched tag when
3055 * that happens. The request still remains valid, like always,
3056 * so we should be safe with just the NULL check.
3062 return __blk_mq_poll(hctx
, rq
);
3065 static int __init
blk_mq_init(void)
3067 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3068 blk_mq_hctx_notify_dead
);
3071 subsys_initcall(blk_mq_init
);