ipvs: WRR scheduler does not need GFP_ATOMIC allocation
[linux/fpc-iii.git] / mm / readahead.c
blobcbcbb02f3e28ab9667d196e6316588856206df16
1 /*
2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
22 * Initialise a struct file's readahead state. Assumes that the caller has
23 * memset *ra to zero.
25 void
26 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
28 ra->ra_pages = mapping->backing_dev_info->ra_pages;
29 ra->prev_pos = -1;
31 EXPORT_SYMBOL_GPL(file_ra_state_init);
33 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
36 * see if a page needs releasing upon read_cache_pages() failure
37 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
38 * before calling, such as the NFS fs marking pages that are cached locally
39 * on disk, thus we need to give the fs a chance to clean up in the event of
40 * an error
42 static void read_cache_pages_invalidate_page(struct address_space *mapping,
43 struct page *page)
45 if (page_has_private(page)) {
46 if (!trylock_page(page))
47 BUG();
48 page->mapping = mapping;
49 do_invalidatepage(page, 0);
50 page->mapping = NULL;
51 unlock_page(page);
53 page_cache_release(page);
57 * release a list of pages, invalidating them first if need be
59 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
60 struct list_head *pages)
62 struct page *victim;
64 while (!list_empty(pages)) {
65 victim = list_to_page(pages);
66 list_del(&victim->lru);
67 read_cache_pages_invalidate_page(mapping, victim);
71 /**
72 * read_cache_pages - populate an address space with some pages & start reads against them
73 * @mapping: the address_space
74 * @pages: The address of a list_head which contains the target pages. These
75 * pages have their ->index populated and are otherwise uninitialised.
76 * @filler: callback routine for filling a single page.
77 * @data: private data for the callback routine.
79 * Hides the details of the LRU cache etc from the filesystems.
81 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
82 int (*filler)(void *, struct page *), void *data)
84 struct page *page;
85 int ret = 0;
87 while (!list_empty(pages)) {
88 page = list_to_page(pages);
89 list_del(&page->lru);
90 if (add_to_page_cache_lru(page, mapping,
91 page->index, GFP_KERNEL)) {
92 read_cache_pages_invalidate_page(mapping, page);
93 continue;
95 page_cache_release(page);
97 ret = filler(data, page);
98 if (unlikely(ret)) {
99 read_cache_pages_invalidate_pages(mapping, pages);
100 break;
102 task_io_account_read(PAGE_CACHE_SIZE);
104 return ret;
107 EXPORT_SYMBOL(read_cache_pages);
109 static int read_pages(struct address_space *mapping, struct file *filp,
110 struct list_head *pages, unsigned nr_pages)
112 struct blk_plug plug;
113 unsigned page_idx;
114 int ret;
116 blk_start_plug(&plug);
118 if (mapping->a_ops->readpages) {
119 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
120 /* Clean up the remaining pages */
121 put_pages_list(pages);
122 goto out;
125 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
126 struct page *page = list_to_page(pages);
127 list_del(&page->lru);
128 if (!add_to_page_cache_lru(page, mapping,
129 page->index, GFP_KERNEL)) {
130 mapping->a_ops->readpage(filp, page);
132 page_cache_release(page);
134 ret = 0;
136 out:
137 blk_finish_plug(&plug);
139 return ret;
143 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
150 static int
151 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152 pgoff_t offset, unsigned long nr_to_read,
153 unsigned long lookahead_size)
155 struct inode *inode = mapping->host;
156 struct page *page;
157 unsigned long end_index; /* The last page we want to read */
158 LIST_HEAD(page_pool);
159 int page_idx;
160 int ret = 0;
161 loff_t isize = i_size_read(inode);
163 if (isize == 0)
164 goto out;
166 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
169 * Preallocate as many pages as we will need.
171 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172 pgoff_t page_offset = offset + page_idx;
174 if (page_offset > end_index)
175 break;
177 rcu_read_lock();
178 page = radix_tree_lookup(&mapping->page_tree, page_offset);
179 rcu_read_unlock();
180 if (page)
181 continue;
183 page = page_cache_alloc_readahead(mapping);
184 if (!page)
185 break;
186 page->index = page_offset;
187 list_add(&page->lru, &page_pool);
188 if (page_idx == nr_to_read - lookahead_size)
189 SetPageReadahead(page);
190 ret++;
194 * Now start the IO. We ignore I/O errors - if the page is not
195 * uptodate then the caller will launch readpage again, and
196 * will then handle the error.
198 if (ret)
199 read_pages(mapping, filp, &page_pool, ret);
200 BUG_ON(!list_empty(&page_pool));
201 out:
202 return ret;
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210 pgoff_t offset, unsigned long nr_to_read)
212 int ret = 0;
214 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
215 return -EINVAL;
217 nr_to_read = max_sane_readahead(nr_to_read);
218 while (nr_to_read) {
219 int err;
221 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
223 if (this_chunk > nr_to_read)
224 this_chunk = nr_to_read;
225 err = __do_page_cache_readahead(mapping, filp,
226 offset, this_chunk, 0);
227 if (err < 0) {
228 ret = err;
229 break;
231 ret += err;
232 offset += this_chunk;
233 nr_to_read -= this_chunk;
235 return ret;
239 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
240 * sensible upper limit.
242 unsigned long max_sane_readahead(unsigned long nr)
244 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
245 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
249 * Submit IO for the read-ahead request in file_ra_state.
251 unsigned long ra_submit(struct file_ra_state *ra,
252 struct address_space *mapping, struct file *filp)
254 int actual;
256 actual = __do_page_cache_readahead(mapping, filp,
257 ra->start, ra->size, ra->async_size);
259 return actual;
263 * Set the initial window size, round to next power of 2 and square
264 * for small size, x 4 for medium, and x 2 for large
265 * for 128k (32 page) max ra
266 * 1-8 page = 32k initial, > 8 page = 128k initial
268 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
270 unsigned long newsize = roundup_pow_of_two(size);
272 if (newsize <= max / 32)
273 newsize = newsize * 4;
274 else if (newsize <= max / 4)
275 newsize = newsize * 2;
276 else
277 newsize = max;
279 return newsize;
283 * Get the previous window size, ramp it up, and
284 * return it as the new window size.
286 static unsigned long get_next_ra_size(struct file_ra_state *ra,
287 unsigned long max)
289 unsigned long cur = ra->size;
290 unsigned long newsize;
292 if (cur < max / 16)
293 newsize = 4 * cur;
294 else
295 newsize = 2 * cur;
297 return min(newsize, max);
301 * On-demand readahead design.
303 * The fields in struct file_ra_state represent the most-recently-executed
304 * readahead attempt:
306 * |<----- async_size ---------|
307 * |------------------- size -------------------->|
308 * |==================#===========================|
309 * ^start ^page marked with PG_readahead
311 * To overlap application thinking time and disk I/O time, we do
312 * `readahead pipelining': Do not wait until the application consumed all
313 * readahead pages and stalled on the missing page at readahead_index;
314 * Instead, submit an asynchronous readahead I/O as soon as there are
315 * only async_size pages left in the readahead window. Normally async_size
316 * will be equal to size, for maximum pipelining.
318 * In interleaved sequential reads, concurrent streams on the same fd can
319 * be invalidating each other's readahead state. So we flag the new readahead
320 * page at (start+size-async_size) with PG_readahead, and use it as readahead
321 * indicator. The flag won't be set on already cached pages, to avoid the
322 * readahead-for-nothing fuss, saving pointless page cache lookups.
324 * prev_pos tracks the last visited byte in the _previous_ read request.
325 * It should be maintained by the caller, and will be used for detecting
326 * small random reads. Note that the readahead algorithm checks loosely
327 * for sequential patterns. Hence interleaved reads might be served as
328 * sequential ones.
330 * There is a special-case: if the first page which the application tries to
331 * read happens to be the first page of the file, it is assumed that a linear
332 * read is about to happen and the window is immediately set to the initial size
333 * based on I/O request size and the max_readahead.
335 * The code ramps up the readahead size aggressively at first, but slow down as
336 * it approaches max_readhead.
340 * Count contiguously cached pages from @offset-1 to @offset-@max,
341 * this count is a conservative estimation of
342 * - length of the sequential read sequence, or
343 * - thrashing threshold in memory tight systems
345 static pgoff_t count_history_pages(struct address_space *mapping,
346 struct file_ra_state *ra,
347 pgoff_t offset, unsigned long max)
349 pgoff_t head;
351 rcu_read_lock();
352 head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
353 rcu_read_unlock();
355 return offset - 1 - head;
359 * page cache context based read-ahead
361 static int try_context_readahead(struct address_space *mapping,
362 struct file_ra_state *ra,
363 pgoff_t offset,
364 unsigned long req_size,
365 unsigned long max)
367 pgoff_t size;
369 size = count_history_pages(mapping, ra, offset, max);
372 * no history pages:
373 * it could be a random read
375 if (!size)
376 return 0;
379 * starts from beginning of file:
380 * it is a strong indication of long-run stream (or whole-file-read)
382 if (size >= offset)
383 size *= 2;
385 ra->start = offset;
386 ra->size = get_init_ra_size(size + req_size, max);
387 ra->async_size = ra->size;
389 return 1;
393 * A minimal readahead algorithm for trivial sequential/random reads.
395 static unsigned long
396 ondemand_readahead(struct address_space *mapping,
397 struct file_ra_state *ra, struct file *filp,
398 bool hit_readahead_marker, pgoff_t offset,
399 unsigned long req_size)
401 unsigned long max = max_sane_readahead(ra->ra_pages);
404 * start of file
406 if (!offset)
407 goto initial_readahead;
410 * It's the expected callback offset, assume sequential access.
411 * Ramp up sizes, and push forward the readahead window.
413 if ((offset == (ra->start + ra->size - ra->async_size) ||
414 offset == (ra->start + ra->size))) {
415 ra->start += ra->size;
416 ra->size = get_next_ra_size(ra, max);
417 ra->async_size = ra->size;
418 goto readit;
422 * Hit a marked page without valid readahead state.
423 * E.g. interleaved reads.
424 * Query the pagecache for async_size, which normally equals to
425 * readahead size. Ramp it up and use it as the new readahead size.
427 if (hit_readahead_marker) {
428 pgoff_t start;
430 rcu_read_lock();
431 start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
432 rcu_read_unlock();
434 if (!start || start - offset > max)
435 return 0;
437 ra->start = start;
438 ra->size = start - offset; /* old async_size */
439 ra->size += req_size;
440 ra->size = get_next_ra_size(ra, max);
441 ra->async_size = ra->size;
442 goto readit;
446 * oversize read
448 if (req_size > max)
449 goto initial_readahead;
452 * sequential cache miss
454 if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
455 goto initial_readahead;
458 * Query the page cache and look for the traces(cached history pages)
459 * that a sequential stream would leave behind.
461 if (try_context_readahead(mapping, ra, offset, req_size, max))
462 goto readit;
465 * standalone, small random read
466 * Read as is, and do not pollute the readahead state.
468 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
470 initial_readahead:
471 ra->start = offset;
472 ra->size = get_init_ra_size(req_size, max);
473 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
475 readit:
477 * Will this read hit the readahead marker made by itself?
478 * If so, trigger the readahead marker hit now, and merge
479 * the resulted next readahead window into the current one.
481 if (offset == ra->start && ra->size == ra->async_size) {
482 ra->async_size = get_next_ra_size(ra, max);
483 ra->size += ra->async_size;
486 return ra_submit(ra, mapping, filp);
490 * page_cache_sync_readahead - generic file readahead
491 * @mapping: address_space which holds the pagecache and I/O vectors
492 * @ra: file_ra_state which holds the readahead state
493 * @filp: passed on to ->readpage() and ->readpages()
494 * @offset: start offset into @mapping, in pagecache page-sized units
495 * @req_size: hint: total size of the read which the caller is performing in
496 * pagecache pages
498 * page_cache_sync_readahead() should be called when a cache miss happened:
499 * it will submit the read. The readahead logic may decide to piggyback more
500 * pages onto the read request if access patterns suggest it will improve
501 * performance.
503 void page_cache_sync_readahead(struct address_space *mapping,
504 struct file_ra_state *ra, struct file *filp,
505 pgoff_t offset, unsigned long req_size)
507 /* no read-ahead */
508 if (!ra->ra_pages)
509 return;
511 /* be dumb */
512 if (filp && (filp->f_mode & FMODE_RANDOM)) {
513 force_page_cache_readahead(mapping, filp, offset, req_size);
514 return;
517 /* do read-ahead */
518 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
520 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
523 * page_cache_async_readahead - file readahead for marked pages
524 * @mapping: address_space which holds the pagecache and I/O vectors
525 * @ra: file_ra_state which holds the readahead state
526 * @filp: passed on to ->readpage() and ->readpages()
527 * @page: the page at @offset which has the PG_readahead flag set
528 * @offset: start offset into @mapping, in pagecache page-sized units
529 * @req_size: hint: total size of the read which the caller is performing in
530 * pagecache pages
532 * page_cache_async_readahead() should be called when a page is used which
533 * has the PG_readahead flag; this is a marker to suggest that the application
534 * has used up enough of the readahead window that we should start pulling in
535 * more pages.
537 void
538 page_cache_async_readahead(struct address_space *mapping,
539 struct file_ra_state *ra, struct file *filp,
540 struct page *page, pgoff_t offset,
541 unsigned long req_size)
543 /* no read-ahead */
544 if (!ra->ra_pages)
545 return;
548 * Same bit is used for PG_readahead and PG_reclaim.
550 if (PageWriteback(page))
551 return;
553 ClearPageReadahead(page);
556 * Defer asynchronous read-ahead on IO congestion.
558 if (bdi_read_congested(mapping->backing_dev_info))
559 return;
561 /* do read-ahead */
562 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
564 EXPORT_SYMBOL_GPL(page_cache_async_readahead);