Linux 4.8.3
[linux/fpc-iii.git] / fs / aio.c
blob4fe81d1c60f962b53392a6b4b0d047f129509c87
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
76 struct kioctx_cpu {
77 unsigned reqs_available;
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
89 struct percpu_ref reqs;
91 unsigned long user_id;
93 struct __percpu kioctx_cpu *cpu;
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
99 unsigned req_batch;
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
107 unsigned max_reqs;
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
112 unsigned long mmap_base;
113 unsigned long mmap_size;
115 struct page **ring_pages;
116 long nr_pages;
118 struct work_struct free_work;
121 * signals when all in-flight requests are done
123 struct ctx_rq_wait *rq_wait;
125 struct {
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
132 * We batch accesses to it with a percpu version.
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
156 unsigned id;
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 #define KIOCB_CANCELLED ((void *) (~0ULL))
172 struct aio_kiocb {
173 struct kiocb common;
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
188 struct eventfd_ctx *ki_eventfd;
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr; /* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
197 static struct kmem_cache *kiocb_cachep;
198 static struct kmem_cache *kioctx_cachep;
200 static struct vfsmount *aio_mnt;
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
223 path.mnt = mntget(aio_mnt);
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
232 file->f_flags = O_RDWR;
233 return file;
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
250 /* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
254 static int __init aio_setup(void)
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270 return 0;
272 __initcall(aio_setup);
274 static void put_aio_ring_file(struct kioctx *ctx)
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 if (aio_ring_file) {
278 truncate_setsize(aio_ring_file->f_inode, 0);
280 /* Prevent further access to the kioctx from migratepages */
281 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
282 aio_ring_file->f_inode->i_mapping->private_data = NULL;
283 ctx->aio_ring_file = NULL;
284 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
286 fput(aio_ring_file);
290 static void aio_free_ring(struct kioctx *ctx)
292 int i;
294 /* Disconnect the kiotx from the ring file. This prevents future
295 * accesses to the kioctx from page migration.
297 put_aio_ring_file(ctx);
299 for (i = 0; i < ctx->nr_pages; i++) {
300 struct page *page;
301 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
302 page_count(ctx->ring_pages[i]));
303 page = ctx->ring_pages[i];
304 if (!page)
305 continue;
306 ctx->ring_pages[i] = NULL;
307 put_page(page);
310 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
311 kfree(ctx->ring_pages);
312 ctx->ring_pages = NULL;
316 static int aio_ring_mremap(struct vm_area_struct *vma)
318 struct file *file = vma->vm_file;
319 struct mm_struct *mm = vma->vm_mm;
320 struct kioctx_table *table;
321 int i, res = -EINVAL;
323 spin_lock(&mm->ioctx_lock);
324 rcu_read_lock();
325 table = rcu_dereference(mm->ioctx_table);
326 for (i = 0; i < table->nr; i++) {
327 struct kioctx *ctx;
329 ctx = table->table[i];
330 if (ctx && ctx->aio_ring_file == file) {
331 if (!atomic_read(&ctx->dead)) {
332 ctx->user_id = ctx->mmap_base = vma->vm_start;
333 res = 0;
335 break;
339 rcu_read_unlock();
340 spin_unlock(&mm->ioctx_lock);
341 return res;
344 static const struct vm_operations_struct aio_ring_vm_ops = {
345 .mremap = aio_ring_mremap,
346 #if IS_ENABLED(CONFIG_MMU)
347 .fault = filemap_fault,
348 .map_pages = filemap_map_pages,
349 .page_mkwrite = filemap_page_mkwrite,
350 #endif
353 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
355 vma->vm_flags |= VM_DONTEXPAND;
356 vma->vm_ops = &aio_ring_vm_ops;
357 return 0;
360 static const struct file_operations aio_ring_fops = {
361 .mmap = aio_ring_mmap,
364 #if IS_ENABLED(CONFIG_MIGRATION)
365 static int aio_migratepage(struct address_space *mapping, struct page *new,
366 struct page *old, enum migrate_mode mode)
368 struct kioctx *ctx;
369 unsigned long flags;
370 pgoff_t idx;
371 int rc;
373 rc = 0;
375 /* mapping->private_lock here protects against the kioctx teardown. */
376 spin_lock(&mapping->private_lock);
377 ctx = mapping->private_data;
378 if (!ctx) {
379 rc = -EINVAL;
380 goto out;
383 /* The ring_lock mutex. The prevents aio_read_events() from writing
384 * to the ring's head, and prevents page migration from mucking in
385 * a partially initialized kiotx.
387 if (!mutex_trylock(&ctx->ring_lock)) {
388 rc = -EAGAIN;
389 goto out;
392 idx = old->index;
393 if (idx < (pgoff_t)ctx->nr_pages) {
394 /* Make sure the old page hasn't already been changed */
395 if (ctx->ring_pages[idx] != old)
396 rc = -EAGAIN;
397 } else
398 rc = -EINVAL;
400 if (rc != 0)
401 goto out_unlock;
403 /* Writeback must be complete */
404 BUG_ON(PageWriteback(old));
405 get_page(new);
407 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
408 if (rc != MIGRATEPAGE_SUCCESS) {
409 put_page(new);
410 goto out_unlock;
413 /* Take completion_lock to prevent other writes to the ring buffer
414 * while the old page is copied to the new. This prevents new
415 * events from being lost.
417 spin_lock_irqsave(&ctx->completion_lock, flags);
418 migrate_page_copy(new, old);
419 BUG_ON(ctx->ring_pages[idx] != old);
420 ctx->ring_pages[idx] = new;
421 spin_unlock_irqrestore(&ctx->completion_lock, flags);
423 /* The old page is no longer accessible. */
424 put_page(old);
426 out_unlock:
427 mutex_unlock(&ctx->ring_lock);
428 out:
429 spin_unlock(&mapping->private_lock);
430 return rc;
432 #endif
434 static const struct address_space_operations aio_ctx_aops = {
435 .set_page_dirty = __set_page_dirty_no_writeback,
436 #if IS_ENABLED(CONFIG_MIGRATION)
437 .migratepage = aio_migratepage,
438 #endif
441 static int aio_setup_ring(struct kioctx *ctx)
443 struct aio_ring *ring;
444 unsigned nr_events = ctx->max_reqs;
445 struct mm_struct *mm = current->mm;
446 unsigned long size, unused;
447 int nr_pages;
448 int i;
449 struct file *file;
451 /* Compensate for the ring buffer's head/tail overlap entry */
452 nr_events += 2; /* 1 is required, 2 for good luck */
454 size = sizeof(struct aio_ring);
455 size += sizeof(struct io_event) * nr_events;
457 nr_pages = PFN_UP(size);
458 if (nr_pages < 0)
459 return -EINVAL;
461 file = aio_private_file(ctx, nr_pages);
462 if (IS_ERR(file)) {
463 ctx->aio_ring_file = NULL;
464 return -ENOMEM;
467 ctx->aio_ring_file = file;
468 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
469 / sizeof(struct io_event);
471 ctx->ring_pages = ctx->internal_pages;
472 if (nr_pages > AIO_RING_PAGES) {
473 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
474 GFP_KERNEL);
475 if (!ctx->ring_pages) {
476 put_aio_ring_file(ctx);
477 return -ENOMEM;
481 for (i = 0; i < nr_pages; i++) {
482 struct page *page;
483 page = find_or_create_page(file->f_inode->i_mapping,
484 i, GFP_HIGHUSER | __GFP_ZERO);
485 if (!page)
486 break;
487 pr_debug("pid(%d) page[%d]->count=%d\n",
488 current->pid, i, page_count(page));
489 SetPageUptodate(page);
490 unlock_page(page);
492 ctx->ring_pages[i] = page;
494 ctx->nr_pages = i;
496 if (unlikely(i != nr_pages)) {
497 aio_free_ring(ctx);
498 return -ENOMEM;
501 ctx->mmap_size = nr_pages * PAGE_SIZE;
502 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
504 if (down_write_killable(&mm->mmap_sem)) {
505 ctx->mmap_size = 0;
506 aio_free_ring(ctx);
507 return -EINTR;
510 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
511 PROT_READ | PROT_WRITE,
512 MAP_SHARED, 0, &unused);
513 up_write(&mm->mmap_sem);
514 if (IS_ERR((void *)ctx->mmap_base)) {
515 ctx->mmap_size = 0;
516 aio_free_ring(ctx);
517 return -ENOMEM;
520 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
522 ctx->user_id = ctx->mmap_base;
523 ctx->nr_events = nr_events; /* trusted copy */
525 ring = kmap_atomic(ctx->ring_pages[0]);
526 ring->nr = nr_events; /* user copy */
527 ring->id = ~0U;
528 ring->head = ring->tail = 0;
529 ring->magic = AIO_RING_MAGIC;
530 ring->compat_features = AIO_RING_COMPAT_FEATURES;
531 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
532 ring->header_length = sizeof(struct aio_ring);
533 kunmap_atomic(ring);
534 flush_dcache_page(ctx->ring_pages[0]);
536 return 0;
539 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
540 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
541 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
543 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
545 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
546 struct kioctx *ctx = req->ki_ctx;
547 unsigned long flags;
549 spin_lock_irqsave(&ctx->ctx_lock, flags);
551 if (!req->ki_list.next)
552 list_add(&req->ki_list, &ctx->active_reqs);
554 req->ki_cancel = cancel;
556 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
558 EXPORT_SYMBOL(kiocb_set_cancel_fn);
560 static int kiocb_cancel(struct aio_kiocb *kiocb)
562 kiocb_cancel_fn *old, *cancel;
565 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
566 * actually has a cancel function, hence the cmpxchg()
569 cancel = ACCESS_ONCE(kiocb->ki_cancel);
570 do {
571 if (!cancel || cancel == KIOCB_CANCELLED)
572 return -EINVAL;
574 old = cancel;
575 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
576 } while (cancel != old);
578 return cancel(&kiocb->common);
581 static void free_ioctx(struct work_struct *work)
583 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
585 pr_debug("freeing %p\n", ctx);
587 aio_free_ring(ctx);
588 free_percpu(ctx->cpu);
589 percpu_ref_exit(&ctx->reqs);
590 percpu_ref_exit(&ctx->users);
591 kmem_cache_free(kioctx_cachep, ctx);
594 static void free_ioctx_reqs(struct percpu_ref *ref)
596 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598 /* At this point we know that there are no any in-flight requests */
599 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
600 complete(&ctx->rq_wait->comp);
602 INIT_WORK(&ctx->free_work, free_ioctx);
603 schedule_work(&ctx->free_work);
607 * When this function runs, the kioctx has been removed from the "hash table"
608 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
609 * now it's safe to cancel any that need to be.
611 static void free_ioctx_users(struct percpu_ref *ref)
613 struct kioctx *ctx = container_of(ref, struct kioctx, users);
614 struct aio_kiocb *req;
616 spin_lock_irq(&ctx->ctx_lock);
618 while (!list_empty(&ctx->active_reqs)) {
619 req = list_first_entry(&ctx->active_reqs,
620 struct aio_kiocb, ki_list);
622 list_del_init(&req->ki_list);
623 kiocb_cancel(req);
626 spin_unlock_irq(&ctx->ctx_lock);
628 percpu_ref_kill(&ctx->reqs);
629 percpu_ref_put(&ctx->reqs);
632 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634 unsigned i, new_nr;
635 struct kioctx_table *table, *old;
636 struct aio_ring *ring;
638 spin_lock(&mm->ioctx_lock);
639 table = rcu_dereference_raw(mm->ioctx_table);
641 while (1) {
642 if (table)
643 for (i = 0; i < table->nr; i++)
644 if (!table->table[i]) {
645 ctx->id = i;
646 table->table[i] = ctx;
647 spin_unlock(&mm->ioctx_lock);
649 /* While kioctx setup is in progress,
650 * we are protected from page migration
651 * changes ring_pages by ->ring_lock.
653 ring = kmap_atomic(ctx->ring_pages[0]);
654 ring->id = ctx->id;
655 kunmap_atomic(ring);
656 return 0;
659 new_nr = (table ? table->nr : 1) * 4;
660 spin_unlock(&mm->ioctx_lock);
662 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
663 new_nr, GFP_KERNEL);
664 if (!table)
665 return -ENOMEM;
667 table->nr = new_nr;
669 spin_lock(&mm->ioctx_lock);
670 old = rcu_dereference_raw(mm->ioctx_table);
672 if (!old) {
673 rcu_assign_pointer(mm->ioctx_table, table);
674 } else if (table->nr > old->nr) {
675 memcpy(table->table, old->table,
676 old->nr * sizeof(struct kioctx *));
678 rcu_assign_pointer(mm->ioctx_table, table);
679 kfree_rcu(old, rcu);
680 } else {
681 kfree(table);
682 table = old;
687 static void aio_nr_sub(unsigned nr)
689 spin_lock(&aio_nr_lock);
690 if (WARN_ON(aio_nr - nr > aio_nr))
691 aio_nr = 0;
692 else
693 aio_nr -= nr;
694 spin_unlock(&aio_nr_lock);
697 /* ioctx_alloc
698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 static struct kioctx *ioctx_alloc(unsigned nr_events)
702 struct mm_struct *mm = current->mm;
703 struct kioctx *ctx;
704 int err = -ENOMEM;
707 * We keep track of the number of available ringbuffer slots, to prevent
708 * overflow (reqs_available), and we also use percpu counters for this.
710 * So since up to half the slots might be on other cpu's percpu counters
711 * and unavailable, double nr_events so userspace sees what they
712 * expected: additionally, we move req_batch slots to/from percpu
713 * counters at a time, so make sure that isn't 0:
715 nr_events = max(nr_events, num_possible_cpus() * 4);
716 nr_events *= 2;
718 /* Prevent overflows */
719 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
720 pr_debug("ENOMEM: nr_events too high\n");
721 return ERR_PTR(-EINVAL);
724 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
725 return ERR_PTR(-EAGAIN);
727 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
728 if (!ctx)
729 return ERR_PTR(-ENOMEM);
731 ctx->max_reqs = nr_events;
733 spin_lock_init(&ctx->ctx_lock);
734 spin_lock_init(&ctx->completion_lock);
735 mutex_init(&ctx->ring_lock);
736 /* Protect against page migration throughout kiotx setup by keeping
737 * the ring_lock mutex held until setup is complete. */
738 mutex_lock(&ctx->ring_lock);
739 init_waitqueue_head(&ctx->wait);
741 INIT_LIST_HEAD(&ctx->active_reqs);
743 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
744 goto err;
746 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
747 goto err;
749 ctx->cpu = alloc_percpu(struct kioctx_cpu);
750 if (!ctx->cpu)
751 goto err;
753 err = aio_setup_ring(ctx);
754 if (err < 0)
755 goto err;
757 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
758 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
759 if (ctx->req_batch < 1)
760 ctx->req_batch = 1;
762 /* limit the number of system wide aios */
763 spin_lock(&aio_nr_lock);
764 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
765 aio_nr + nr_events < aio_nr) {
766 spin_unlock(&aio_nr_lock);
767 err = -EAGAIN;
768 goto err_ctx;
770 aio_nr += ctx->max_reqs;
771 spin_unlock(&aio_nr_lock);
773 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
774 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
776 err = ioctx_add_table(ctx, mm);
777 if (err)
778 goto err_cleanup;
780 /* Release the ring_lock mutex now that all setup is complete. */
781 mutex_unlock(&ctx->ring_lock);
783 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
784 ctx, ctx->user_id, mm, ctx->nr_events);
785 return ctx;
787 err_cleanup:
788 aio_nr_sub(ctx->max_reqs);
789 err_ctx:
790 atomic_set(&ctx->dead, 1);
791 if (ctx->mmap_size)
792 vm_munmap(ctx->mmap_base, ctx->mmap_size);
793 aio_free_ring(ctx);
794 err:
795 mutex_unlock(&ctx->ring_lock);
796 free_percpu(ctx->cpu);
797 percpu_ref_exit(&ctx->reqs);
798 percpu_ref_exit(&ctx->users);
799 kmem_cache_free(kioctx_cachep, ctx);
800 pr_debug("error allocating ioctx %d\n", err);
801 return ERR_PTR(err);
804 /* kill_ioctx
805 * Cancels all outstanding aio requests on an aio context. Used
806 * when the processes owning a context have all exited to encourage
807 * the rapid destruction of the kioctx.
809 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
810 struct ctx_rq_wait *wait)
812 struct kioctx_table *table;
814 spin_lock(&mm->ioctx_lock);
815 if (atomic_xchg(&ctx->dead, 1)) {
816 spin_unlock(&mm->ioctx_lock);
817 return -EINVAL;
820 table = rcu_dereference_raw(mm->ioctx_table);
821 WARN_ON(ctx != table->table[ctx->id]);
822 table->table[ctx->id] = NULL;
823 spin_unlock(&mm->ioctx_lock);
825 /* percpu_ref_kill() will do the necessary call_rcu() */
826 wake_up_all(&ctx->wait);
829 * It'd be more correct to do this in free_ioctx(), after all
830 * the outstanding kiocbs have finished - but by then io_destroy
831 * has already returned, so io_setup() could potentially return
832 * -EAGAIN with no ioctxs actually in use (as far as userspace
833 * could tell).
835 aio_nr_sub(ctx->max_reqs);
837 if (ctx->mmap_size)
838 vm_munmap(ctx->mmap_base, ctx->mmap_size);
840 ctx->rq_wait = wait;
841 percpu_ref_kill(&ctx->users);
842 return 0;
846 * exit_aio: called when the last user of mm goes away. At this point, there is
847 * no way for any new requests to be submited or any of the io_* syscalls to be
848 * called on the context.
850 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
851 * them.
853 void exit_aio(struct mm_struct *mm)
855 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
856 struct ctx_rq_wait wait;
857 int i, skipped;
859 if (!table)
860 return;
862 atomic_set(&wait.count, table->nr);
863 init_completion(&wait.comp);
865 skipped = 0;
866 for (i = 0; i < table->nr; ++i) {
867 struct kioctx *ctx = table->table[i];
869 if (!ctx) {
870 skipped++;
871 continue;
875 * We don't need to bother with munmap() here - exit_mmap(mm)
876 * is coming and it'll unmap everything. And we simply can't,
877 * this is not necessarily our ->mm.
878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
879 * that it needs to unmap the area, just set it to 0.
881 ctx->mmap_size = 0;
882 kill_ioctx(mm, ctx, &wait);
885 if (!atomic_sub_and_test(skipped, &wait.count)) {
886 /* Wait until all IO for the context are done. */
887 wait_for_completion(&wait.comp);
890 RCU_INIT_POINTER(mm->ioctx_table, NULL);
891 kfree(table);
894 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
896 struct kioctx_cpu *kcpu;
897 unsigned long flags;
899 local_irq_save(flags);
900 kcpu = this_cpu_ptr(ctx->cpu);
901 kcpu->reqs_available += nr;
903 while (kcpu->reqs_available >= ctx->req_batch * 2) {
904 kcpu->reqs_available -= ctx->req_batch;
905 atomic_add(ctx->req_batch, &ctx->reqs_available);
908 local_irq_restore(flags);
911 static bool get_reqs_available(struct kioctx *ctx)
913 struct kioctx_cpu *kcpu;
914 bool ret = false;
915 unsigned long flags;
917 local_irq_save(flags);
918 kcpu = this_cpu_ptr(ctx->cpu);
919 if (!kcpu->reqs_available) {
920 int old, avail = atomic_read(&ctx->reqs_available);
922 do {
923 if (avail < ctx->req_batch)
924 goto out;
926 old = avail;
927 avail = atomic_cmpxchg(&ctx->reqs_available,
928 avail, avail - ctx->req_batch);
929 } while (avail != old);
931 kcpu->reqs_available += ctx->req_batch;
934 ret = true;
935 kcpu->reqs_available--;
936 out:
937 local_irq_restore(flags);
938 return ret;
941 /* refill_reqs_available
942 * Updates the reqs_available reference counts used for tracking the
943 * number of free slots in the completion ring. This can be called
944 * from aio_complete() (to optimistically update reqs_available) or
945 * from aio_get_req() (the we're out of events case). It must be
946 * called holding ctx->completion_lock.
948 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
949 unsigned tail)
951 unsigned events_in_ring, completed;
953 /* Clamp head since userland can write to it. */
954 head %= ctx->nr_events;
955 if (head <= tail)
956 events_in_ring = tail - head;
957 else
958 events_in_ring = ctx->nr_events - (head - tail);
960 completed = ctx->completed_events;
961 if (events_in_ring < completed)
962 completed -= events_in_ring;
963 else
964 completed = 0;
966 if (!completed)
967 return;
969 ctx->completed_events -= completed;
970 put_reqs_available(ctx, completed);
973 /* user_refill_reqs_available
974 * Called to refill reqs_available when aio_get_req() encounters an
975 * out of space in the completion ring.
977 static void user_refill_reqs_available(struct kioctx *ctx)
979 spin_lock_irq(&ctx->completion_lock);
980 if (ctx->completed_events) {
981 struct aio_ring *ring;
982 unsigned head;
984 /* Access of ring->head may race with aio_read_events_ring()
985 * here, but that's okay since whether we read the old version
986 * or the new version, and either will be valid. The important
987 * part is that head cannot pass tail since we prevent
988 * aio_complete() from updating tail by holding
989 * ctx->completion_lock. Even if head is invalid, the check
990 * against ctx->completed_events below will make sure we do the
991 * safe/right thing.
993 ring = kmap_atomic(ctx->ring_pages[0]);
994 head = ring->head;
995 kunmap_atomic(ring);
997 refill_reqs_available(ctx, head, ctx->tail);
1000 spin_unlock_irq(&ctx->completion_lock);
1003 /* aio_get_req
1004 * Allocate a slot for an aio request.
1005 * Returns NULL if no requests are free.
1007 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1009 struct aio_kiocb *req;
1011 if (!get_reqs_available(ctx)) {
1012 user_refill_reqs_available(ctx);
1013 if (!get_reqs_available(ctx))
1014 return NULL;
1017 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1018 if (unlikely(!req))
1019 goto out_put;
1021 percpu_ref_get(&ctx->reqs);
1023 req->ki_ctx = ctx;
1024 return req;
1025 out_put:
1026 put_reqs_available(ctx, 1);
1027 return NULL;
1030 static void kiocb_free(struct aio_kiocb *req)
1032 if (req->common.ki_filp)
1033 fput(req->common.ki_filp);
1034 if (req->ki_eventfd != NULL)
1035 eventfd_ctx_put(req->ki_eventfd);
1036 kmem_cache_free(kiocb_cachep, req);
1039 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1041 struct aio_ring __user *ring = (void __user *)ctx_id;
1042 struct mm_struct *mm = current->mm;
1043 struct kioctx *ctx, *ret = NULL;
1044 struct kioctx_table *table;
1045 unsigned id;
1047 if (get_user(id, &ring->id))
1048 return NULL;
1050 rcu_read_lock();
1051 table = rcu_dereference(mm->ioctx_table);
1053 if (!table || id >= table->nr)
1054 goto out;
1056 ctx = table->table[id];
1057 if (ctx && ctx->user_id == ctx_id) {
1058 percpu_ref_get(&ctx->users);
1059 ret = ctx;
1061 out:
1062 rcu_read_unlock();
1063 return ret;
1066 /* aio_complete
1067 * Called when the io request on the given iocb is complete.
1069 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1071 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1072 struct kioctx *ctx = iocb->ki_ctx;
1073 struct aio_ring *ring;
1074 struct io_event *ev_page, *event;
1075 unsigned tail, pos, head;
1076 unsigned long flags;
1079 * Special case handling for sync iocbs:
1080 * - events go directly into the iocb for fast handling
1081 * - the sync task with the iocb in its stack holds the single iocb
1082 * ref, no other paths have a way to get another ref
1083 * - the sync task helpfully left a reference to itself in the iocb
1085 BUG_ON(is_sync_kiocb(kiocb));
1087 if (iocb->ki_list.next) {
1088 unsigned long flags;
1090 spin_lock_irqsave(&ctx->ctx_lock, flags);
1091 list_del(&iocb->ki_list);
1092 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1096 * Add a completion event to the ring buffer. Must be done holding
1097 * ctx->completion_lock to prevent other code from messing with the tail
1098 * pointer since we might be called from irq context.
1100 spin_lock_irqsave(&ctx->completion_lock, flags);
1102 tail = ctx->tail;
1103 pos = tail + AIO_EVENTS_OFFSET;
1105 if (++tail >= ctx->nr_events)
1106 tail = 0;
1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1112 event->data = iocb->ki_user_data;
1113 event->res = res;
1114 event->res2 = res2;
1116 kunmap_atomic(ev_page);
1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1119 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1120 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1121 res, res2);
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1126 smp_wmb(); /* make event visible before updating tail */
1128 ctx->tail = tail;
1130 ring = kmap_atomic(ctx->ring_pages[0]);
1131 head = ring->head;
1132 ring->tail = tail;
1133 kunmap_atomic(ring);
1134 flush_dcache_page(ctx->ring_pages[0]);
1136 ctx->completed_events++;
1137 if (ctx->completed_events > 1)
1138 refill_reqs_available(ctx, head, tail);
1139 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1141 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1146 * from IRQ context.
1148 if (iocb->ki_eventfd != NULL)
1149 eventfd_signal(iocb->ki_eventfd, 1);
1151 /* everything turned out well, dispose of the aiocb. */
1152 kiocb_free(iocb);
1155 * We have to order our ring_info tail store above and test
1156 * of the wait list below outside the wait lock. This is
1157 * like in wake_up_bit() where clearing a bit has to be
1158 * ordered with the unlocked test.
1160 smp_mb();
1162 if (waitqueue_active(&ctx->wait))
1163 wake_up(&ctx->wait);
1165 percpu_ref_put(&ctx->reqs);
1168 /* aio_read_events_ring
1169 * Pull an event off of the ioctx's event ring. Returns the number of
1170 * events fetched
1172 static long aio_read_events_ring(struct kioctx *ctx,
1173 struct io_event __user *event, long nr)
1175 struct aio_ring *ring;
1176 unsigned head, tail, pos;
1177 long ret = 0;
1178 int copy_ret;
1181 * The mutex can block and wake us up and that will cause
1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 * and repeat. This should be rare enough that it doesn't cause
1184 * peformance issues. See the comment in read_events() for more detail.
1186 sched_annotate_sleep();
1187 mutex_lock(&ctx->ring_lock);
1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190 ring = kmap_atomic(ctx->ring_pages[0]);
1191 head = ring->head;
1192 tail = ring->tail;
1193 kunmap_atomic(ring);
1196 * Ensure that once we've read the current tail pointer, that
1197 * we also see the events that were stored up to the tail.
1199 smp_rmb();
1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1203 if (head == tail)
1204 goto out;
1206 head %= ctx->nr_events;
1207 tail %= ctx->nr_events;
1209 while (ret < nr) {
1210 long avail;
1211 struct io_event *ev;
1212 struct page *page;
1214 avail = (head <= tail ? tail : ctx->nr_events) - head;
1215 if (head == tail)
1216 break;
1218 avail = min(avail, nr - ret);
1219 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1220 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1222 pos = head + AIO_EVENTS_OFFSET;
1223 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1224 pos %= AIO_EVENTS_PER_PAGE;
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1236 ret += avail;
1237 head += avail;
1238 head %= ctx->nr_events;
1241 ring = kmap_atomic(ctx->ring_pages[0]);
1242 ring->head = head;
1243 kunmap_atomic(ring);
1244 flush_dcache_page(ctx->ring_pages[0]);
1246 pr_debug("%li h%u t%u\n", ret, head, tail);
1247 out:
1248 mutex_unlock(&ctx->ring_lock);
1250 return ret;
1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1258 if (ret > 0)
1259 *i += ret;
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1264 if (!*i)
1265 *i = ret;
1267 return ret < 0 || *i >= min_nr;
1270 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271 struct io_event __user *event,
1272 struct timespec __user *timeout)
1274 ktime_t until = { .tv64 = KTIME_MAX };
1275 long ret = 0;
1277 if (timeout) {
1278 struct timespec ts;
1280 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1281 return -EFAULT;
1283 until = timespec_to_ktime(ts);
1287 * Note that aio_read_events() is being called as the conditional - i.e.
1288 * we're calling it after prepare_to_wait() has set task state to
1289 * TASK_INTERRUPTIBLE.
1291 * But aio_read_events() can block, and if it blocks it's going to flip
1292 * the task state back to TASK_RUNNING.
1294 * This should be ok, provided it doesn't flip the state back to
1295 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1296 * will only happen if the mutex_lock() call blocks, and we then find
1297 * the ringbuffer empty. So in practice we should be ok, but it's
1298 * something to be aware of when touching this code.
1300 if (until.tv64 == 0)
1301 aio_read_events(ctx, min_nr, nr, event, &ret);
1302 else
1303 wait_event_interruptible_hrtimeout(ctx->wait,
1304 aio_read_events(ctx, min_nr, nr, event, &ret),
1305 until);
1307 if (!ret && signal_pending(current))
1308 ret = -EINTR;
1310 return ret;
1313 /* sys_io_setup:
1314 * Create an aio_context capable of receiving at least nr_events.
1315 * ctxp must not point to an aio_context that already exists, and
1316 * must be initialized to 0 prior to the call. On successful
1317 * creation of the aio_context, *ctxp is filled in with the resulting
1318 * handle. May fail with -EINVAL if *ctxp is not initialized,
1319 * if the specified nr_events exceeds internal limits. May fail
1320 * with -EAGAIN if the specified nr_events exceeds the user's limit
1321 * of available events. May fail with -ENOMEM if insufficient kernel
1322 * resources are available. May fail with -EFAULT if an invalid
1323 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1324 * implemented.
1326 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1328 struct kioctx *ioctx = NULL;
1329 unsigned long ctx;
1330 long ret;
1332 ret = get_user(ctx, ctxp);
1333 if (unlikely(ret))
1334 goto out;
1336 ret = -EINVAL;
1337 if (unlikely(ctx || nr_events == 0)) {
1338 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1339 ctx, nr_events);
1340 goto out;
1343 ioctx = ioctx_alloc(nr_events);
1344 ret = PTR_ERR(ioctx);
1345 if (!IS_ERR(ioctx)) {
1346 ret = put_user(ioctx->user_id, ctxp);
1347 if (ret)
1348 kill_ioctx(current->mm, ioctx, NULL);
1349 percpu_ref_put(&ioctx->users);
1352 out:
1353 return ret;
1356 /* sys_io_destroy:
1357 * Destroy the aio_context specified. May cancel any outstanding
1358 * AIOs and block on completion. Will fail with -ENOSYS if not
1359 * implemented. May fail with -EINVAL if the context pointed to
1360 * is invalid.
1362 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1364 struct kioctx *ioctx = lookup_ioctx(ctx);
1365 if (likely(NULL != ioctx)) {
1366 struct ctx_rq_wait wait;
1367 int ret;
1369 init_completion(&wait.comp);
1370 atomic_set(&wait.count, 1);
1372 /* Pass requests_done to kill_ioctx() where it can be set
1373 * in a thread-safe way. If we try to set it here then we have
1374 * a race condition if two io_destroy() called simultaneously.
1376 ret = kill_ioctx(current->mm, ioctx, &wait);
1377 percpu_ref_put(&ioctx->users);
1379 /* Wait until all IO for the context are done. Otherwise kernel
1380 * keep using user-space buffers even if user thinks the context
1381 * is destroyed.
1383 if (!ret)
1384 wait_for_completion(&wait.comp);
1386 return ret;
1388 pr_debug("EINVAL: invalid context id\n");
1389 return -EINVAL;
1392 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1394 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1395 struct iovec **iovec,
1396 bool compat,
1397 struct iov_iter *iter)
1399 #ifdef CONFIG_COMPAT
1400 if (compat)
1401 return compat_import_iovec(rw,
1402 (struct compat_iovec __user *)buf,
1403 len, UIO_FASTIOV, iovec, iter);
1404 #endif
1405 return import_iovec(rw, (struct iovec __user *)buf,
1406 len, UIO_FASTIOV, iovec, iter);
1410 * aio_run_iocb:
1411 * Performs the initial checks and io submission.
1413 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1414 char __user *buf, size_t len, bool compat)
1416 struct file *file = req->ki_filp;
1417 ssize_t ret;
1418 int rw;
1419 fmode_t mode;
1420 rw_iter_op *iter_op;
1421 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1422 struct iov_iter iter;
1424 switch (opcode) {
1425 case IOCB_CMD_PREAD:
1426 case IOCB_CMD_PREADV:
1427 mode = FMODE_READ;
1428 rw = READ;
1429 iter_op = file->f_op->read_iter;
1430 goto rw_common;
1432 case IOCB_CMD_PWRITE:
1433 case IOCB_CMD_PWRITEV:
1434 mode = FMODE_WRITE;
1435 rw = WRITE;
1436 iter_op = file->f_op->write_iter;
1437 goto rw_common;
1438 rw_common:
1439 if (unlikely(!(file->f_mode & mode)))
1440 return -EBADF;
1442 if (!iter_op)
1443 return -EINVAL;
1445 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1446 ret = aio_setup_vectored_rw(rw, buf, len,
1447 &iovec, compat, &iter);
1448 else {
1449 ret = import_single_range(rw, buf, len, iovec, &iter);
1450 iovec = NULL;
1452 if (!ret)
1453 ret = rw_verify_area(rw, file, &req->ki_pos,
1454 iov_iter_count(&iter));
1455 if (ret < 0) {
1456 kfree(iovec);
1457 return ret;
1460 if (rw == WRITE)
1461 file_start_write(file);
1463 ret = iter_op(req, &iter);
1465 if (rw == WRITE)
1466 file_end_write(file);
1467 kfree(iovec);
1468 break;
1470 case IOCB_CMD_FDSYNC:
1471 if (!file->f_op->aio_fsync)
1472 return -EINVAL;
1474 ret = file->f_op->aio_fsync(req, 1);
1475 break;
1477 case IOCB_CMD_FSYNC:
1478 if (!file->f_op->aio_fsync)
1479 return -EINVAL;
1481 ret = file->f_op->aio_fsync(req, 0);
1482 break;
1484 default:
1485 pr_debug("EINVAL: no operation provided\n");
1486 return -EINVAL;
1489 if (ret != -EIOCBQUEUED) {
1491 * There's no easy way to restart the syscall since other AIO's
1492 * may be already running. Just fail this IO with EINTR.
1494 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1495 ret == -ERESTARTNOHAND ||
1496 ret == -ERESTART_RESTARTBLOCK))
1497 ret = -EINTR;
1498 aio_complete(req, ret, 0);
1501 return 0;
1504 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1505 struct iocb *iocb, bool compat)
1507 struct aio_kiocb *req;
1508 ssize_t ret;
1510 /* enforce forwards compatibility on users */
1511 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1512 pr_debug("EINVAL: reserve field set\n");
1513 return -EINVAL;
1516 /* prevent overflows */
1517 if (unlikely(
1518 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1519 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1520 ((ssize_t)iocb->aio_nbytes < 0)
1521 )) {
1522 pr_debug("EINVAL: overflow check\n");
1523 return -EINVAL;
1526 req = aio_get_req(ctx);
1527 if (unlikely(!req))
1528 return -EAGAIN;
1530 req->common.ki_filp = fget(iocb->aio_fildes);
1531 if (unlikely(!req->common.ki_filp)) {
1532 ret = -EBADF;
1533 goto out_put_req;
1535 req->common.ki_pos = iocb->aio_offset;
1536 req->common.ki_complete = aio_complete;
1537 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1539 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1541 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1542 * instance of the file* now. The file descriptor must be
1543 * an eventfd() fd, and will be signaled for each completed
1544 * event using the eventfd_signal() function.
1546 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1547 if (IS_ERR(req->ki_eventfd)) {
1548 ret = PTR_ERR(req->ki_eventfd);
1549 req->ki_eventfd = NULL;
1550 goto out_put_req;
1553 req->common.ki_flags |= IOCB_EVENTFD;
1556 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1557 if (unlikely(ret)) {
1558 pr_debug("EFAULT: aio_key\n");
1559 goto out_put_req;
1562 req->ki_user_iocb = user_iocb;
1563 req->ki_user_data = iocb->aio_data;
1565 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1566 (char __user *)(unsigned long)iocb->aio_buf,
1567 iocb->aio_nbytes,
1568 compat);
1569 if (ret)
1570 goto out_put_req;
1572 return 0;
1573 out_put_req:
1574 put_reqs_available(ctx, 1);
1575 percpu_ref_put(&ctx->reqs);
1576 kiocb_free(req);
1577 return ret;
1580 long do_io_submit(aio_context_t ctx_id, long nr,
1581 struct iocb __user *__user *iocbpp, bool compat)
1583 struct kioctx *ctx;
1584 long ret = 0;
1585 int i = 0;
1586 struct blk_plug plug;
1588 if (unlikely(nr < 0))
1589 return -EINVAL;
1591 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1592 nr = LONG_MAX/sizeof(*iocbpp);
1594 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1595 return -EFAULT;
1597 ctx = lookup_ioctx(ctx_id);
1598 if (unlikely(!ctx)) {
1599 pr_debug("EINVAL: invalid context id\n");
1600 return -EINVAL;
1603 blk_start_plug(&plug);
1606 * AKPM: should this return a partial result if some of the IOs were
1607 * successfully submitted?
1609 for (i=0; i<nr; i++) {
1610 struct iocb __user *user_iocb;
1611 struct iocb tmp;
1613 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1614 ret = -EFAULT;
1615 break;
1618 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1619 ret = -EFAULT;
1620 break;
1623 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1624 if (ret)
1625 break;
1627 blk_finish_plug(&plug);
1629 percpu_ref_put(&ctx->users);
1630 return i ? i : ret;
1633 /* sys_io_submit:
1634 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1635 * the number of iocbs queued. May return -EINVAL if the aio_context
1636 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637 * *iocbpp[0] is not properly initialized, if the operation specified
1638 * is invalid for the file descriptor in the iocb. May fail with
1639 * -EFAULT if any of the data structures point to invalid data. May
1640 * fail with -EBADF if the file descriptor specified in the first
1641 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1642 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1643 * fail with -ENOSYS if not implemented.
1645 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1646 struct iocb __user * __user *, iocbpp)
1648 return do_io_submit(ctx_id, nr, iocbpp, 0);
1651 /* lookup_kiocb
1652 * Finds a given iocb for cancellation.
1654 static struct aio_kiocb *
1655 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1657 struct aio_kiocb *kiocb;
1659 assert_spin_locked(&ctx->ctx_lock);
1661 if (key != KIOCB_KEY)
1662 return NULL;
1664 /* TODO: use a hash or array, this sucks. */
1665 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1666 if (kiocb->ki_user_iocb == iocb)
1667 return kiocb;
1669 return NULL;
1672 /* sys_io_cancel:
1673 * Attempts to cancel an iocb previously passed to io_submit. If
1674 * the operation is successfully cancelled, the resulting event is
1675 * copied into the memory pointed to by result without being placed
1676 * into the completion queue and 0 is returned. May fail with
1677 * -EFAULT if any of the data structures pointed to are invalid.
1678 * May fail with -EINVAL if aio_context specified by ctx_id is
1679 * invalid. May fail with -EAGAIN if the iocb specified was not
1680 * cancelled. Will fail with -ENOSYS if not implemented.
1682 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1683 struct io_event __user *, result)
1685 struct kioctx *ctx;
1686 struct aio_kiocb *kiocb;
1687 u32 key;
1688 int ret;
1690 ret = get_user(key, &iocb->aio_key);
1691 if (unlikely(ret))
1692 return -EFAULT;
1694 ctx = lookup_ioctx(ctx_id);
1695 if (unlikely(!ctx))
1696 return -EINVAL;
1698 spin_lock_irq(&ctx->ctx_lock);
1700 kiocb = lookup_kiocb(ctx, iocb, key);
1701 if (kiocb)
1702 ret = kiocb_cancel(kiocb);
1703 else
1704 ret = -EINVAL;
1706 spin_unlock_irq(&ctx->ctx_lock);
1708 if (!ret) {
1710 * The result argument is no longer used - the io_event is
1711 * always delivered via the ring buffer. -EINPROGRESS indicates
1712 * cancellation is progress:
1714 ret = -EINPROGRESS;
1717 percpu_ref_put(&ctx->users);
1719 return ret;
1722 /* io_getevents:
1723 * Attempts to read at least min_nr events and up to nr events from
1724 * the completion queue for the aio_context specified by ctx_id. If
1725 * it succeeds, the number of read events is returned. May fail with
1726 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1727 * out of range, if timeout is out of range. May fail with -EFAULT
1728 * if any of the memory specified is invalid. May return 0 or
1729 * < min_nr if the timeout specified by timeout has elapsed
1730 * before sufficient events are available, where timeout == NULL
1731 * specifies an infinite timeout. Note that the timeout pointed to by
1732 * timeout is relative. Will fail with -ENOSYS if not implemented.
1734 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1735 long, min_nr,
1736 long, nr,
1737 struct io_event __user *, events,
1738 struct timespec __user *, timeout)
1740 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1741 long ret = -EINVAL;
1743 if (likely(ioctx)) {
1744 if (likely(min_nr <= nr && min_nr >= 0))
1745 ret = read_events(ioctx, min_nr, nr, events, timeout);
1746 percpu_ref_put(&ioctx->users);
1748 return ret;