Linux 4.8.3
[linux/fpc-iii.git] / fs / dax.c
blob993dc6fe0416e17e8a0ca5c8a432b8daf574df86
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
36 * We use lowest available bit in exceptional entry for locking, other two
37 * bits to determine entry type. In total 3 special bits.
39 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
40 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
41 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
42 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
43 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
44 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
45 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
46 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
47 RADIX_TREE_EXCEPTIONAL_ENTRY))
49 /* We choose 4096 entries - same as per-zone page wait tables */
50 #define DAX_WAIT_TABLE_BITS 12
51 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
53 wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
55 static int __init init_dax_wait_table(void)
57 int i;
59 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
60 init_waitqueue_head(wait_table + i);
61 return 0;
63 fs_initcall(init_dax_wait_table);
65 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
66 pgoff_t index)
68 unsigned long hash = hash_long((unsigned long)mapping ^ index,
69 DAX_WAIT_TABLE_BITS);
70 return wait_table + hash;
73 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
75 struct request_queue *q = bdev->bd_queue;
76 long rc = -EIO;
78 dax->addr = ERR_PTR(-EIO);
79 if (blk_queue_enter(q, true) != 0)
80 return rc;
82 rc = bdev_direct_access(bdev, dax);
83 if (rc < 0) {
84 dax->addr = ERR_PTR(rc);
85 blk_queue_exit(q);
86 return rc;
88 return rc;
91 static void dax_unmap_atomic(struct block_device *bdev,
92 const struct blk_dax_ctl *dax)
94 if (IS_ERR(dax->addr))
95 return;
96 blk_queue_exit(bdev->bd_queue);
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
101 struct page *page = alloc_pages(GFP_KERNEL, 0);
102 struct blk_dax_ctl dax = {
103 .size = PAGE_SIZE,
104 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
106 long rc;
108 if (!page)
109 return ERR_PTR(-ENOMEM);
111 rc = dax_map_atomic(bdev, &dax);
112 if (rc < 0)
113 return ERR_PTR(rc);
114 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 dax_unmap_atomic(bdev, &dax);
116 return page;
119 static bool buffer_written(struct buffer_head *bh)
121 return buffer_mapped(bh) && !buffer_unwritten(bh);
125 * When ext4 encounters a hole, it returns without modifying the buffer_head
126 * which means that we can't trust b_size. To cope with this, we set b_state
127 * to 0 before calling get_block and, if any bit is set, we know we can trust
128 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
129 * and would save us time calling get_block repeatedly.
131 static bool buffer_size_valid(struct buffer_head *bh)
133 return bh->b_state != 0;
137 static sector_t to_sector(const struct buffer_head *bh,
138 const struct inode *inode)
140 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
142 return sector;
145 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
146 loff_t start, loff_t end, get_block_t get_block,
147 struct buffer_head *bh)
149 loff_t pos = start, max = start, bh_max = start;
150 bool hole = false;
151 struct block_device *bdev = NULL;
152 int rw = iov_iter_rw(iter), rc;
153 long map_len = 0;
154 struct blk_dax_ctl dax = {
155 .addr = ERR_PTR(-EIO),
157 unsigned blkbits = inode->i_blkbits;
158 sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
159 >> blkbits;
161 if (rw == READ)
162 end = min(end, i_size_read(inode));
164 while (pos < end) {
165 size_t len;
166 if (pos == max) {
167 long page = pos >> PAGE_SHIFT;
168 sector_t block = page << (PAGE_SHIFT - blkbits);
169 unsigned first = pos - (block << blkbits);
170 long size;
172 if (pos == bh_max) {
173 bh->b_size = PAGE_ALIGN(end - pos);
174 bh->b_state = 0;
175 rc = get_block(inode, block, bh, rw == WRITE);
176 if (rc)
177 break;
178 if (!buffer_size_valid(bh))
179 bh->b_size = 1 << blkbits;
180 bh_max = pos - first + bh->b_size;
181 bdev = bh->b_bdev;
183 * We allow uninitialized buffers for writes
184 * beyond EOF as those cannot race with faults
186 WARN_ON_ONCE(
187 (buffer_new(bh) && block < file_blks) ||
188 (rw == WRITE && buffer_unwritten(bh)));
189 } else {
190 unsigned done = bh->b_size -
191 (bh_max - (pos - first));
192 bh->b_blocknr += done >> blkbits;
193 bh->b_size -= done;
196 hole = rw == READ && !buffer_written(bh);
197 if (hole) {
198 size = bh->b_size - first;
199 } else {
200 dax_unmap_atomic(bdev, &dax);
201 dax.sector = to_sector(bh, inode);
202 dax.size = bh->b_size;
203 map_len = dax_map_atomic(bdev, &dax);
204 if (map_len < 0) {
205 rc = map_len;
206 break;
208 dax.addr += first;
209 size = map_len - first;
212 * pos + size is one past the last offset for IO,
213 * so pos + size can overflow loff_t at extreme offsets.
214 * Cast to u64 to catch this and get the true minimum.
216 max = min_t(u64, pos + size, end);
219 if (iov_iter_rw(iter) == WRITE) {
220 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
221 } else if (!hole)
222 len = copy_to_iter((void __force *) dax.addr, max - pos,
223 iter);
224 else
225 len = iov_iter_zero(max - pos, iter);
227 if (!len) {
228 rc = -EFAULT;
229 break;
232 pos += len;
233 if (!IS_ERR(dax.addr))
234 dax.addr += len;
237 dax_unmap_atomic(bdev, &dax);
239 return (pos == start) ? rc : pos - start;
243 * dax_do_io - Perform I/O to a DAX file
244 * @iocb: The control block for this I/O
245 * @inode: The file which the I/O is directed at
246 * @iter: The addresses to do I/O from or to
247 * @get_block: The filesystem method used to translate file offsets to blocks
248 * @end_io: A filesystem callback for I/O completion
249 * @flags: See below
251 * This function uses the same locking scheme as do_blockdev_direct_IO:
252 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
253 * caller for writes. For reads, we take and release the i_mutex ourselves.
254 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
255 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
256 * is in progress.
258 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
259 struct iov_iter *iter, get_block_t get_block,
260 dio_iodone_t end_io, int flags)
262 struct buffer_head bh;
263 ssize_t retval = -EINVAL;
264 loff_t pos = iocb->ki_pos;
265 loff_t end = pos + iov_iter_count(iter);
267 memset(&bh, 0, sizeof(bh));
268 bh.b_bdev = inode->i_sb->s_bdev;
270 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
271 inode_lock(inode);
273 /* Protects against truncate */
274 if (!(flags & DIO_SKIP_DIO_COUNT))
275 inode_dio_begin(inode);
277 retval = dax_io(inode, iter, pos, end, get_block, &bh);
279 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
280 inode_unlock(inode);
282 if (end_io) {
283 int err;
285 err = end_io(iocb, pos, retval, bh.b_private);
286 if (err)
287 retval = err;
290 if (!(flags & DIO_SKIP_DIO_COUNT))
291 inode_dio_end(inode);
292 return retval;
294 EXPORT_SYMBOL_GPL(dax_do_io);
297 * DAX radix tree locking
299 struct exceptional_entry_key {
300 struct address_space *mapping;
301 unsigned long index;
304 struct wait_exceptional_entry_queue {
305 wait_queue_t wait;
306 struct exceptional_entry_key key;
309 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
310 int sync, void *keyp)
312 struct exceptional_entry_key *key = keyp;
313 struct wait_exceptional_entry_queue *ewait =
314 container_of(wait, struct wait_exceptional_entry_queue, wait);
316 if (key->mapping != ewait->key.mapping ||
317 key->index != ewait->key.index)
318 return 0;
319 return autoremove_wake_function(wait, mode, sync, NULL);
323 * Check whether the given slot is locked. The function must be called with
324 * mapping->tree_lock held
326 static inline int slot_locked(struct address_space *mapping, void **slot)
328 unsigned long entry = (unsigned long)
329 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
330 return entry & RADIX_DAX_ENTRY_LOCK;
334 * Mark the given slot is locked. The function must be called with
335 * mapping->tree_lock held
337 static inline void *lock_slot(struct address_space *mapping, void **slot)
339 unsigned long entry = (unsigned long)
340 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
342 entry |= RADIX_DAX_ENTRY_LOCK;
343 radix_tree_replace_slot(slot, (void *)entry);
344 return (void *)entry;
348 * Mark the given slot is unlocked. The function must be called with
349 * mapping->tree_lock held
351 static inline void *unlock_slot(struct address_space *mapping, void **slot)
353 unsigned long entry = (unsigned long)
354 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
356 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
357 radix_tree_replace_slot(slot, (void *)entry);
358 return (void *)entry;
362 * Lookup entry in radix tree, wait for it to become unlocked if it is
363 * exceptional entry and return it. The caller must call
364 * put_unlocked_mapping_entry() when he decided not to lock the entry or
365 * put_locked_mapping_entry() when he locked the entry and now wants to
366 * unlock it.
368 * The function must be called with mapping->tree_lock held.
370 static void *get_unlocked_mapping_entry(struct address_space *mapping,
371 pgoff_t index, void ***slotp)
373 void *ret, **slot;
374 struct wait_exceptional_entry_queue ewait;
375 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
377 init_wait(&ewait.wait);
378 ewait.wait.func = wake_exceptional_entry_func;
379 ewait.key.mapping = mapping;
380 ewait.key.index = index;
382 for (;;) {
383 ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
384 &slot);
385 if (!ret || !radix_tree_exceptional_entry(ret) ||
386 !slot_locked(mapping, slot)) {
387 if (slotp)
388 *slotp = slot;
389 return ret;
391 prepare_to_wait_exclusive(wq, &ewait.wait,
392 TASK_UNINTERRUPTIBLE);
393 spin_unlock_irq(&mapping->tree_lock);
394 schedule();
395 finish_wait(wq, &ewait.wait);
396 spin_lock_irq(&mapping->tree_lock);
401 * Find radix tree entry at given index. If it points to a page, return with
402 * the page locked. If it points to the exceptional entry, return with the
403 * radix tree entry locked. If the radix tree doesn't contain given index,
404 * create empty exceptional entry for the index and return with it locked.
406 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
407 * persistent memory the benefit is doubtful. We can add that later if we can
408 * show it helps.
410 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
412 void *ret, **slot;
414 restart:
415 spin_lock_irq(&mapping->tree_lock);
416 ret = get_unlocked_mapping_entry(mapping, index, &slot);
417 /* No entry for given index? Make sure radix tree is big enough. */
418 if (!ret) {
419 int err;
421 spin_unlock_irq(&mapping->tree_lock);
422 err = radix_tree_preload(
423 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
424 if (err)
425 return ERR_PTR(err);
426 ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
427 RADIX_DAX_ENTRY_LOCK);
428 spin_lock_irq(&mapping->tree_lock);
429 err = radix_tree_insert(&mapping->page_tree, index, ret);
430 radix_tree_preload_end();
431 if (err) {
432 spin_unlock_irq(&mapping->tree_lock);
433 /* Someone already created the entry? */
434 if (err == -EEXIST)
435 goto restart;
436 return ERR_PTR(err);
438 /* Good, we have inserted empty locked entry into the tree. */
439 mapping->nrexceptional++;
440 spin_unlock_irq(&mapping->tree_lock);
441 return ret;
443 /* Normal page in radix tree? */
444 if (!radix_tree_exceptional_entry(ret)) {
445 struct page *page = ret;
447 get_page(page);
448 spin_unlock_irq(&mapping->tree_lock);
449 lock_page(page);
450 /* Page got truncated? Retry... */
451 if (unlikely(page->mapping != mapping)) {
452 unlock_page(page);
453 put_page(page);
454 goto restart;
456 return page;
458 ret = lock_slot(mapping, slot);
459 spin_unlock_irq(&mapping->tree_lock);
460 return ret;
463 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
464 pgoff_t index, bool wake_all)
466 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
469 * Checking for locked entry and prepare_to_wait_exclusive() happens
470 * under mapping->tree_lock, ditto for entry handling in our callers.
471 * So at this point all tasks that could have seen our entry locked
472 * must be in the waitqueue and the following check will see them.
474 if (waitqueue_active(wq)) {
475 struct exceptional_entry_key key;
477 key.mapping = mapping;
478 key.index = index;
479 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
483 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
485 void *ret, **slot;
487 spin_lock_irq(&mapping->tree_lock);
488 ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
489 if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
490 !slot_locked(mapping, slot))) {
491 spin_unlock_irq(&mapping->tree_lock);
492 return;
494 unlock_slot(mapping, slot);
495 spin_unlock_irq(&mapping->tree_lock);
496 dax_wake_mapping_entry_waiter(mapping, index, false);
499 static void put_locked_mapping_entry(struct address_space *mapping,
500 pgoff_t index, void *entry)
502 if (!radix_tree_exceptional_entry(entry)) {
503 unlock_page(entry);
504 put_page(entry);
505 } else {
506 dax_unlock_mapping_entry(mapping, index);
511 * Called when we are done with radix tree entry we looked up via
512 * get_unlocked_mapping_entry() and which we didn't lock in the end.
514 static void put_unlocked_mapping_entry(struct address_space *mapping,
515 pgoff_t index, void *entry)
517 if (!radix_tree_exceptional_entry(entry))
518 return;
520 /* We have to wake up next waiter for the radix tree entry lock */
521 dax_wake_mapping_entry_waiter(mapping, index, false);
525 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
526 * entry to get unlocked before deleting it.
528 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
530 void *entry;
532 spin_lock_irq(&mapping->tree_lock);
533 entry = get_unlocked_mapping_entry(mapping, index, NULL);
535 * This gets called from truncate / punch_hole path. As such, the caller
536 * must hold locks protecting against concurrent modifications of the
537 * radix tree (usually fs-private i_mmap_sem for writing). Since the
538 * caller has seen exceptional entry for this index, we better find it
539 * at that index as well...
541 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
542 spin_unlock_irq(&mapping->tree_lock);
543 return 0;
545 radix_tree_delete(&mapping->page_tree, index);
546 mapping->nrexceptional--;
547 spin_unlock_irq(&mapping->tree_lock);
548 dax_wake_mapping_entry_waiter(mapping, index, true);
550 return 1;
554 * The user has performed a load from a hole in the file. Allocating
555 * a new page in the file would cause excessive storage usage for
556 * workloads with sparse files. We allocate a page cache page instead.
557 * We'll kick it out of the page cache if it's ever written to,
558 * otherwise it will simply fall out of the page cache under memory
559 * pressure without ever having been dirtied.
561 static int dax_load_hole(struct address_space *mapping, void *entry,
562 struct vm_fault *vmf)
564 struct page *page;
566 /* Hole page already exists? Return it... */
567 if (!radix_tree_exceptional_entry(entry)) {
568 vmf->page = entry;
569 return VM_FAULT_LOCKED;
572 /* This will replace locked radix tree entry with a hole page */
573 page = find_or_create_page(mapping, vmf->pgoff,
574 vmf->gfp_mask | __GFP_ZERO);
575 if (!page) {
576 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
577 return VM_FAULT_OOM;
579 vmf->page = page;
580 return VM_FAULT_LOCKED;
583 static int copy_user_bh(struct page *to, struct inode *inode,
584 struct buffer_head *bh, unsigned long vaddr)
586 struct blk_dax_ctl dax = {
587 .sector = to_sector(bh, inode),
588 .size = bh->b_size,
590 struct block_device *bdev = bh->b_bdev;
591 void *vto;
593 if (dax_map_atomic(bdev, &dax) < 0)
594 return PTR_ERR(dax.addr);
595 vto = kmap_atomic(to);
596 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
597 kunmap_atomic(vto);
598 dax_unmap_atomic(bdev, &dax);
599 return 0;
602 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
604 static void *dax_insert_mapping_entry(struct address_space *mapping,
605 struct vm_fault *vmf,
606 void *entry, sector_t sector)
608 struct radix_tree_root *page_tree = &mapping->page_tree;
609 int error = 0;
610 bool hole_fill = false;
611 void *new_entry;
612 pgoff_t index = vmf->pgoff;
614 if (vmf->flags & FAULT_FLAG_WRITE)
615 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
617 /* Replacing hole page with block mapping? */
618 if (!radix_tree_exceptional_entry(entry)) {
619 hole_fill = true;
621 * Unmap the page now before we remove it from page cache below.
622 * The page is locked so it cannot be faulted in again.
624 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
625 PAGE_SIZE, 0);
626 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
627 if (error)
628 return ERR_PTR(error);
631 spin_lock_irq(&mapping->tree_lock);
632 new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
633 RADIX_DAX_ENTRY_LOCK);
634 if (hole_fill) {
635 __delete_from_page_cache(entry, NULL);
636 /* Drop pagecache reference */
637 put_page(entry);
638 error = radix_tree_insert(page_tree, index, new_entry);
639 if (error) {
640 new_entry = ERR_PTR(error);
641 goto unlock;
643 mapping->nrexceptional++;
644 } else {
645 void **slot;
646 void *ret;
648 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
649 WARN_ON_ONCE(ret != entry);
650 radix_tree_replace_slot(slot, new_entry);
652 if (vmf->flags & FAULT_FLAG_WRITE)
653 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
654 unlock:
655 spin_unlock_irq(&mapping->tree_lock);
656 if (hole_fill) {
657 radix_tree_preload_end();
659 * We don't need hole page anymore, it has been replaced with
660 * locked radix tree entry now.
662 if (mapping->a_ops->freepage)
663 mapping->a_ops->freepage(entry);
664 unlock_page(entry);
665 put_page(entry);
667 return new_entry;
670 static int dax_writeback_one(struct block_device *bdev,
671 struct address_space *mapping, pgoff_t index, void *entry)
673 struct radix_tree_root *page_tree = &mapping->page_tree;
674 int type = RADIX_DAX_TYPE(entry);
675 struct radix_tree_node *node;
676 struct blk_dax_ctl dax;
677 void **slot;
678 int ret = 0;
680 spin_lock_irq(&mapping->tree_lock);
682 * Regular page slots are stabilized by the page lock even
683 * without the tree itself locked. These unlocked entries
684 * need verification under the tree lock.
686 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
687 goto unlock;
688 if (*slot != entry)
689 goto unlock;
691 /* another fsync thread may have already written back this entry */
692 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
693 goto unlock;
695 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
696 ret = -EIO;
697 goto unlock;
700 dax.sector = RADIX_DAX_SECTOR(entry);
701 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
702 spin_unlock_irq(&mapping->tree_lock);
705 * We cannot hold tree_lock while calling dax_map_atomic() because it
706 * eventually calls cond_resched().
708 ret = dax_map_atomic(bdev, &dax);
709 if (ret < 0)
710 return ret;
712 if (WARN_ON_ONCE(ret < dax.size)) {
713 ret = -EIO;
714 goto unmap;
717 wb_cache_pmem(dax.addr, dax.size);
719 spin_lock_irq(&mapping->tree_lock);
720 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
721 spin_unlock_irq(&mapping->tree_lock);
722 unmap:
723 dax_unmap_atomic(bdev, &dax);
724 return ret;
726 unlock:
727 spin_unlock_irq(&mapping->tree_lock);
728 return ret;
732 * Flush the mapping to the persistent domain within the byte range of [start,
733 * end]. This is required by data integrity operations to ensure file data is
734 * on persistent storage prior to completion of the operation.
736 int dax_writeback_mapping_range(struct address_space *mapping,
737 struct block_device *bdev, struct writeback_control *wbc)
739 struct inode *inode = mapping->host;
740 pgoff_t start_index, end_index, pmd_index;
741 pgoff_t indices[PAGEVEC_SIZE];
742 struct pagevec pvec;
743 bool done = false;
744 int i, ret = 0;
745 void *entry;
747 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
748 return -EIO;
750 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
751 return 0;
753 start_index = wbc->range_start >> PAGE_SHIFT;
754 end_index = wbc->range_end >> PAGE_SHIFT;
755 pmd_index = DAX_PMD_INDEX(start_index);
757 rcu_read_lock();
758 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
759 rcu_read_unlock();
761 /* see if the start of our range is covered by a PMD entry */
762 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
763 start_index = pmd_index;
765 tag_pages_for_writeback(mapping, start_index, end_index);
767 pagevec_init(&pvec, 0);
768 while (!done) {
769 pvec.nr = find_get_entries_tag(mapping, start_index,
770 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
771 pvec.pages, indices);
773 if (pvec.nr == 0)
774 break;
776 for (i = 0; i < pvec.nr; i++) {
777 if (indices[i] > end_index) {
778 done = true;
779 break;
782 ret = dax_writeback_one(bdev, mapping, indices[i],
783 pvec.pages[i]);
784 if (ret < 0)
785 return ret;
788 return 0;
790 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
792 static int dax_insert_mapping(struct address_space *mapping,
793 struct buffer_head *bh, void **entryp,
794 struct vm_area_struct *vma, struct vm_fault *vmf)
796 unsigned long vaddr = (unsigned long)vmf->virtual_address;
797 struct block_device *bdev = bh->b_bdev;
798 struct blk_dax_ctl dax = {
799 .sector = to_sector(bh, mapping->host),
800 .size = bh->b_size,
802 void *ret;
803 void *entry = *entryp;
805 if (dax_map_atomic(bdev, &dax) < 0)
806 return PTR_ERR(dax.addr);
807 dax_unmap_atomic(bdev, &dax);
809 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
810 if (IS_ERR(ret))
811 return PTR_ERR(ret);
812 *entryp = ret;
814 return vm_insert_mixed(vma, vaddr, dax.pfn);
818 * dax_fault - handle a page fault on a DAX file
819 * @vma: The virtual memory area where the fault occurred
820 * @vmf: The description of the fault
821 * @get_block: The filesystem method used to translate file offsets to blocks
823 * When a page fault occurs, filesystems may call this helper in their
824 * fault handler for DAX files. dax_fault() assumes the caller has done all
825 * the necessary locking for the page fault to proceed successfully.
827 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
828 get_block_t get_block)
830 struct file *file = vma->vm_file;
831 struct address_space *mapping = file->f_mapping;
832 struct inode *inode = mapping->host;
833 void *entry;
834 struct buffer_head bh;
835 unsigned long vaddr = (unsigned long)vmf->virtual_address;
836 unsigned blkbits = inode->i_blkbits;
837 sector_t block;
838 pgoff_t size;
839 int error;
840 int major = 0;
843 * Check whether offset isn't beyond end of file now. Caller is supposed
844 * to hold locks serializing us with truncate / punch hole so this is
845 * a reliable test.
847 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 if (vmf->pgoff >= size)
849 return VM_FAULT_SIGBUS;
851 memset(&bh, 0, sizeof(bh));
852 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
853 bh.b_bdev = inode->i_sb->s_bdev;
854 bh.b_size = PAGE_SIZE;
856 entry = grab_mapping_entry(mapping, vmf->pgoff);
857 if (IS_ERR(entry)) {
858 error = PTR_ERR(entry);
859 goto out;
862 error = get_block(inode, block, &bh, 0);
863 if (!error && (bh.b_size < PAGE_SIZE))
864 error = -EIO; /* fs corruption? */
865 if (error)
866 goto unlock_entry;
868 if (vmf->cow_page) {
869 struct page *new_page = vmf->cow_page;
870 if (buffer_written(&bh))
871 error = copy_user_bh(new_page, inode, &bh, vaddr);
872 else
873 clear_user_highpage(new_page, vaddr);
874 if (error)
875 goto unlock_entry;
876 if (!radix_tree_exceptional_entry(entry)) {
877 vmf->page = entry;
878 return VM_FAULT_LOCKED;
880 vmf->entry = entry;
881 return VM_FAULT_DAX_LOCKED;
884 if (!buffer_mapped(&bh)) {
885 if (vmf->flags & FAULT_FLAG_WRITE) {
886 error = get_block(inode, block, &bh, 1);
887 count_vm_event(PGMAJFAULT);
888 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
889 major = VM_FAULT_MAJOR;
890 if (!error && (bh.b_size < PAGE_SIZE))
891 error = -EIO;
892 if (error)
893 goto unlock_entry;
894 } else {
895 return dax_load_hole(mapping, entry, vmf);
899 /* Filesystem should not return unwritten buffers to us! */
900 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
901 error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf);
902 unlock_entry:
903 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
904 out:
905 if (error == -ENOMEM)
906 return VM_FAULT_OOM | major;
907 /* -EBUSY is fine, somebody else faulted on the same PTE */
908 if ((error < 0) && (error != -EBUSY))
909 return VM_FAULT_SIGBUS | major;
910 return VM_FAULT_NOPAGE | major;
912 EXPORT_SYMBOL_GPL(dax_fault);
914 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
916 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
917 * more often than one might expect in the below function.
919 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
921 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
922 const char *reason, const char *fn)
924 if (bh) {
925 char bname[BDEVNAME_SIZE];
926 bdevname(bh->b_bdev, bname);
927 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
928 "length %zd fallback: %s\n", fn, current->comm,
929 address, bname, bh->b_state, (u64)bh->b_blocknr,
930 bh->b_size, reason);
931 } else {
932 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
933 current->comm, address, reason);
937 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
940 * dax_pmd_fault - handle a PMD fault on a DAX file
941 * @vma: The virtual memory area where the fault occurred
942 * @vmf: The description of the fault
943 * @get_block: The filesystem method used to translate file offsets to blocks
945 * When a page fault occurs, filesystems may call this helper in their
946 * pmd_fault handler for DAX files.
948 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
949 pmd_t *pmd, unsigned int flags, get_block_t get_block)
951 struct file *file = vma->vm_file;
952 struct address_space *mapping = file->f_mapping;
953 struct inode *inode = mapping->host;
954 struct buffer_head bh;
955 unsigned blkbits = inode->i_blkbits;
956 unsigned long pmd_addr = address & PMD_MASK;
957 bool write = flags & FAULT_FLAG_WRITE;
958 struct block_device *bdev;
959 pgoff_t size, pgoff;
960 sector_t block;
961 int result = 0;
962 bool alloc = false;
964 /* dax pmd mappings require pfn_t_devmap() */
965 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
966 return VM_FAULT_FALLBACK;
968 /* Fall back to PTEs if we're going to COW */
969 if (write && !(vma->vm_flags & VM_SHARED)) {
970 split_huge_pmd(vma, pmd, address);
971 dax_pmd_dbg(NULL, address, "cow write");
972 return VM_FAULT_FALLBACK;
974 /* If the PMD would extend outside the VMA */
975 if (pmd_addr < vma->vm_start) {
976 dax_pmd_dbg(NULL, address, "vma start unaligned");
977 return VM_FAULT_FALLBACK;
979 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
980 dax_pmd_dbg(NULL, address, "vma end unaligned");
981 return VM_FAULT_FALLBACK;
984 pgoff = linear_page_index(vma, pmd_addr);
985 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
986 if (pgoff >= size)
987 return VM_FAULT_SIGBUS;
988 /* If the PMD would cover blocks out of the file */
989 if ((pgoff | PG_PMD_COLOUR) >= size) {
990 dax_pmd_dbg(NULL, address,
991 "offset + huge page size > file size");
992 return VM_FAULT_FALLBACK;
995 memset(&bh, 0, sizeof(bh));
996 bh.b_bdev = inode->i_sb->s_bdev;
997 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
999 bh.b_size = PMD_SIZE;
1001 if (get_block(inode, block, &bh, 0) != 0)
1002 return VM_FAULT_SIGBUS;
1004 if (!buffer_mapped(&bh) && write) {
1005 if (get_block(inode, block, &bh, 1) != 0)
1006 return VM_FAULT_SIGBUS;
1007 alloc = true;
1008 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1011 bdev = bh.b_bdev;
1014 * If the filesystem isn't willing to tell us the length of a hole,
1015 * just fall back to PTEs. Calling get_block 512 times in a loop
1016 * would be silly.
1018 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
1019 dax_pmd_dbg(&bh, address, "allocated block too small");
1020 return VM_FAULT_FALLBACK;
1024 * If we allocated new storage, make sure no process has any
1025 * zero pages covering this hole
1027 if (alloc) {
1028 loff_t lstart = pgoff << PAGE_SHIFT;
1029 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
1031 truncate_pagecache_range(inode, lstart, lend);
1034 if (!write && !buffer_mapped(&bh)) {
1035 spinlock_t *ptl;
1036 pmd_t entry;
1037 struct page *zero_page = get_huge_zero_page();
1039 if (unlikely(!zero_page)) {
1040 dax_pmd_dbg(&bh, address, "no zero page");
1041 goto fallback;
1044 ptl = pmd_lock(vma->vm_mm, pmd);
1045 if (!pmd_none(*pmd)) {
1046 spin_unlock(ptl);
1047 dax_pmd_dbg(&bh, address, "pmd already present");
1048 goto fallback;
1051 dev_dbg(part_to_dev(bdev->bd_part),
1052 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1053 __func__, current->comm, address,
1054 (unsigned long long) to_sector(&bh, inode));
1056 entry = mk_pmd(zero_page, vma->vm_page_prot);
1057 entry = pmd_mkhuge(entry);
1058 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
1059 result = VM_FAULT_NOPAGE;
1060 spin_unlock(ptl);
1061 } else {
1062 struct blk_dax_ctl dax = {
1063 .sector = to_sector(&bh, inode),
1064 .size = PMD_SIZE,
1066 long length = dax_map_atomic(bdev, &dax);
1068 if (length < 0) {
1069 dax_pmd_dbg(&bh, address, "dax-error fallback");
1070 goto fallback;
1072 if (length < PMD_SIZE) {
1073 dax_pmd_dbg(&bh, address, "dax-length too small");
1074 dax_unmap_atomic(bdev, &dax);
1075 goto fallback;
1077 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
1078 dax_pmd_dbg(&bh, address, "pfn unaligned");
1079 dax_unmap_atomic(bdev, &dax);
1080 goto fallback;
1083 if (!pfn_t_devmap(dax.pfn)) {
1084 dax_unmap_atomic(bdev, &dax);
1085 dax_pmd_dbg(&bh, address, "pfn not in memmap");
1086 goto fallback;
1088 dax_unmap_atomic(bdev, &dax);
1091 * For PTE faults we insert a radix tree entry for reads, and
1092 * leave it clean. Then on the first write we dirty the radix
1093 * tree entry via the dax_pfn_mkwrite() path. This sequence
1094 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1095 * call into get_block() to translate the pgoff to a sector in
1096 * order to be able to create a new radix tree entry.
1098 * The PMD path doesn't have an equivalent to
1099 * dax_pfn_mkwrite(), though, so for a read followed by a
1100 * write we traverse all the way through dax_pmd_fault()
1101 * twice. This means we can just skip inserting a radix tree
1102 * entry completely on the initial read and just wait until
1103 * the write to insert a dirty entry.
1105 if (write) {
1107 * We should insert radix-tree entry and dirty it here.
1108 * For now this is broken...
1112 dev_dbg(part_to_dev(bdev->bd_part),
1113 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1114 __func__, current->comm, address,
1115 pfn_t_to_pfn(dax.pfn),
1116 (unsigned long long) dax.sector);
1117 result |= vmf_insert_pfn_pmd(vma, address, pmd,
1118 dax.pfn, write);
1121 out:
1122 return result;
1124 fallback:
1125 count_vm_event(THP_FAULT_FALLBACK);
1126 result = VM_FAULT_FALLBACK;
1127 goto out;
1129 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1133 * dax_pfn_mkwrite - handle first write to DAX page
1134 * @vma: The virtual memory area where the fault occurred
1135 * @vmf: The description of the fault
1137 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1139 struct file *file = vma->vm_file;
1140 struct address_space *mapping = file->f_mapping;
1141 void *entry;
1142 pgoff_t index = vmf->pgoff;
1144 spin_lock_irq(&mapping->tree_lock);
1145 entry = get_unlocked_mapping_entry(mapping, index, NULL);
1146 if (!entry || !radix_tree_exceptional_entry(entry))
1147 goto out;
1148 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1149 put_unlocked_mapping_entry(mapping, index, entry);
1150 out:
1151 spin_unlock_irq(&mapping->tree_lock);
1152 return VM_FAULT_NOPAGE;
1154 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1156 static bool dax_range_is_aligned(struct block_device *bdev,
1157 unsigned int offset, unsigned int length)
1159 unsigned short sector_size = bdev_logical_block_size(bdev);
1161 if (!IS_ALIGNED(offset, sector_size))
1162 return false;
1163 if (!IS_ALIGNED(length, sector_size))
1164 return false;
1166 return true;
1169 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1170 unsigned int offset, unsigned int length)
1172 struct blk_dax_ctl dax = {
1173 .sector = sector,
1174 .size = PAGE_SIZE,
1177 if (dax_range_is_aligned(bdev, offset, length)) {
1178 sector_t start_sector = dax.sector + (offset >> 9);
1180 return blkdev_issue_zeroout(bdev, start_sector,
1181 length >> 9, GFP_NOFS, true);
1182 } else {
1183 if (dax_map_atomic(bdev, &dax) < 0)
1184 return PTR_ERR(dax.addr);
1185 clear_pmem(dax.addr + offset, length);
1186 dax_unmap_atomic(bdev, &dax);
1188 return 0;
1190 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1193 * dax_zero_page_range - zero a range within a page of a DAX file
1194 * @inode: The file being truncated
1195 * @from: The file offset that is being truncated to
1196 * @length: The number of bytes to zero
1197 * @get_block: The filesystem method used to translate file offsets to blocks
1199 * This function can be called by a filesystem when it is zeroing part of a
1200 * page in a DAX file. This is intended for hole-punch operations. If
1201 * you are truncating a file, the helper function dax_truncate_page() may be
1202 * more convenient.
1204 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1205 get_block_t get_block)
1207 struct buffer_head bh;
1208 pgoff_t index = from >> PAGE_SHIFT;
1209 unsigned offset = from & (PAGE_SIZE-1);
1210 int err;
1212 /* Block boundary? Nothing to do */
1213 if (!length)
1214 return 0;
1215 BUG_ON((offset + length) > PAGE_SIZE);
1217 memset(&bh, 0, sizeof(bh));
1218 bh.b_bdev = inode->i_sb->s_bdev;
1219 bh.b_size = PAGE_SIZE;
1220 err = get_block(inode, index, &bh, 0);
1221 if (err < 0 || !buffer_written(&bh))
1222 return err;
1224 return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1225 offset, length);
1227 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1230 * dax_truncate_page - handle a partial page being truncated in a DAX file
1231 * @inode: The file being truncated
1232 * @from: The file offset that is being truncated to
1233 * @get_block: The filesystem method used to translate file offsets to blocks
1235 * Similar to block_truncate_page(), this function can be called by a
1236 * filesystem when it is truncating a DAX file to handle the partial page.
1238 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1240 unsigned length = PAGE_ALIGN(from) - from;
1241 return dax_zero_page_range(inode, from, length, get_block);
1243 EXPORT_SYMBOL_GPL(dax_truncate_page);