4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/writeback.h>
19 #include <trace/events/f2fs.h>
21 void f2fs_mark_inode_dirty_sync(struct inode
*inode
)
23 if (f2fs_inode_dirtied(inode
))
25 mark_inode_dirty_sync(inode
);
28 void f2fs_set_inode_flags(struct inode
*inode
)
30 unsigned int flags
= F2FS_I(inode
)->i_flags
;
31 unsigned int new_fl
= 0;
33 if (flags
& FS_SYNC_FL
)
35 if (flags
& FS_APPEND_FL
)
37 if (flags
& FS_IMMUTABLE_FL
)
38 new_fl
|= S_IMMUTABLE
;
39 if (flags
& FS_NOATIME_FL
)
41 if (flags
& FS_DIRSYNC_FL
)
43 inode_set_flags(inode
, new_fl
,
44 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
45 f2fs_mark_inode_dirty_sync(inode
);
48 static void __get_inode_rdev(struct inode
*inode
, struct f2fs_inode
*ri
)
50 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
51 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
54 old_decode_dev(le32_to_cpu(ri
->i_addr
[0]));
57 new_decode_dev(le32_to_cpu(ri
->i_addr
[1]));
61 static bool __written_first_block(struct f2fs_inode
*ri
)
63 block_t addr
= le32_to_cpu(ri
->i_addr
[0]);
65 if (addr
!= NEW_ADDR
&& addr
!= NULL_ADDR
)
70 static void __set_inode_rdev(struct inode
*inode
, struct f2fs_inode
*ri
)
72 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
73 if (old_valid_dev(inode
->i_rdev
)) {
75 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
80 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
86 static void __recover_inline_status(struct inode
*inode
, struct page
*ipage
)
88 void *inline_data
= inline_data_addr(ipage
);
89 __le32
*start
= inline_data
;
90 __le32
*end
= start
+ MAX_INLINE_DATA
/ sizeof(__le32
);
94 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
96 set_inode_flag(inode
, FI_DATA_EXIST
);
97 set_raw_inline(inode
, F2FS_INODE(ipage
));
98 set_page_dirty(ipage
);
105 static int do_read_inode(struct inode
*inode
)
107 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
108 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
109 struct page
*node_page
;
110 struct f2fs_inode
*ri
;
112 /* Check if ino is within scope */
113 if (check_nid_range(sbi
, inode
->i_ino
)) {
114 f2fs_msg(inode
->i_sb
, KERN_ERR
, "bad inode number: %lu",
115 (unsigned long) inode
->i_ino
);
120 node_page
= get_node_page(sbi
, inode
->i_ino
);
121 if (IS_ERR(node_page
))
122 return PTR_ERR(node_page
);
124 ri
= F2FS_INODE(node_page
);
126 inode
->i_mode
= le16_to_cpu(ri
->i_mode
);
127 i_uid_write(inode
, le32_to_cpu(ri
->i_uid
));
128 i_gid_write(inode
, le32_to_cpu(ri
->i_gid
));
129 set_nlink(inode
, le32_to_cpu(ri
->i_links
));
130 inode
->i_size
= le64_to_cpu(ri
->i_size
);
131 inode
->i_blocks
= le64_to_cpu(ri
->i_blocks
);
133 inode
->i_atime
.tv_sec
= le64_to_cpu(ri
->i_atime
);
134 inode
->i_ctime
.tv_sec
= le64_to_cpu(ri
->i_ctime
);
135 inode
->i_mtime
.tv_sec
= le64_to_cpu(ri
->i_mtime
);
136 inode
->i_atime
.tv_nsec
= le32_to_cpu(ri
->i_atime_nsec
);
137 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ri
->i_ctime_nsec
);
138 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ri
->i_mtime_nsec
);
139 inode
->i_generation
= le32_to_cpu(ri
->i_generation
);
141 fi
->i_current_depth
= le32_to_cpu(ri
->i_current_depth
);
142 fi
->i_xattr_nid
= le32_to_cpu(ri
->i_xattr_nid
);
143 fi
->i_flags
= le32_to_cpu(ri
->i_flags
);
145 fi
->i_advise
= ri
->i_advise
;
146 fi
->i_pino
= le32_to_cpu(ri
->i_pino
);
147 fi
->i_dir_level
= ri
->i_dir_level
;
149 if (f2fs_init_extent_tree(inode
, &ri
->i_ext
))
150 set_page_dirty(node_page
);
152 get_inline_info(inode
, ri
);
154 /* check data exist */
155 if (f2fs_has_inline_data(inode
) && !f2fs_exist_data(inode
))
156 __recover_inline_status(inode
, node_page
);
158 /* get rdev by using inline_info */
159 __get_inode_rdev(inode
, ri
);
161 if (__written_first_block(ri
))
162 set_inode_flag(inode
, FI_FIRST_BLOCK_WRITTEN
);
164 if (!need_inode_block_update(sbi
, inode
->i_ino
))
165 fi
->last_disk_size
= inode
->i_size
;
167 f2fs_put_page(node_page
, 1);
169 stat_inc_inline_xattr(inode
);
170 stat_inc_inline_inode(inode
);
171 stat_inc_inline_dir(inode
);
176 struct inode
*f2fs_iget(struct super_block
*sb
, unsigned long ino
)
178 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
182 inode
= iget_locked(sb
, ino
);
184 return ERR_PTR(-ENOMEM
);
186 if (!(inode
->i_state
& I_NEW
)) {
187 trace_f2fs_iget(inode
);
190 if (ino
== F2FS_NODE_INO(sbi
) || ino
== F2FS_META_INO(sbi
))
193 ret
= do_read_inode(inode
);
197 if (ino
== F2FS_NODE_INO(sbi
)) {
198 inode
->i_mapping
->a_ops
= &f2fs_node_aops
;
199 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_ZERO
);
200 } else if (ino
== F2FS_META_INO(sbi
)) {
201 inode
->i_mapping
->a_ops
= &f2fs_meta_aops
;
202 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_ZERO
);
203 } else if (S_ISREG(inode
->i_mode
)) {
204 inode
->i_op
= &f2fs_file_inode_operations
;
205 inode
->i_fop
= &f2fs_file_operations
;
206 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
207 } else if (S_ISDIR(inode
->i_mode
)) {
208 inode
->i_op
= &f2fs_dir_inode_operations
;
209 inode
->i_fop
= &f2fs_dir_operations
;
210 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
211 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_HIGH_ZERO
);
212 } else if (S_ISLNK(inode
->i_mode
)) {
213 if (f2fs_encrypted_inode(inode
))
214 inode
->i_op
= &f2fs_encrypted_symlink_inode_operations
;
216 inode
->i_op
= &f2fs_symlink_inode_operations
;
217 inode_nohighmem(inode
);
218 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
219 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
220 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
221 inode
->i_op
= &f2fs_special_inode_operations
;
222 init_special_inode(inode
, inode
->i_mode
, inode
->i_rdev
);
227 unlock_new_inode(inode
);
228 trace_f2fs_iget(inode
);
233 trace_f2fs_iget_exit(inode
, ret
);
237 int update_inode(struct inode
*inode
, struct page
*node_page
)
239 struct f2fs_inode
*ri
;
241 f2fs_inode_synced(inode
);
243 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
245 ri
= F2FS_INODE(node_page
);
247 ri
->i_mode
= cpu_to_le16(inode
->i_mode
);
248 ri
->i_advise
= F2FS_I(inode
)->i_advise
;
249 ri
->i_uid
= cpu_to_le32(i_uid_read(inode
));
250 ri
->i_gid
= cpu_to_le32(i_gid_read(inode
));
251 ri
->i_links
= cpu_to_le32(inode
->i_nlink
);
252 ri
->i_size
= cpu_to_le64(i_size_read(inode
));
253 ri
->i_blocks
= cpu_to_le64(inode
->i_blocks
);
255 if (F2FS_I(inode
)->extent_tree
)
256 set_raw_extent(&F2FS_I(inode
)->extent_tree
->largest
,
259 memset(&ri
->i_ext
, 0, sizeof(ri
->i_ext
));
260 set_raw_inline(inode
, ri
);
262 ri
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
263 ri
->i_ctime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
264 ri
->i_mtime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
265 ri
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
266 ri
->i_ctime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
267 ri
->i_mtime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
268 ri
->i_current_depth
= cpu_to_le32(F2FS_I(inode
)->i_current_depth
);
269 ri
->i_xattr_nid
= cpu_to_le32(F2FS_I(inode
)->i_xattr_nid
);
270 ri
->i_flags
= cpu_to_le32(F2FS_I(inode
)->i_flags
);
271 ri
->i_pino
= cpu_to_le32(F2FS_I(inode
)->i_pino
);
272 ri
->i_generation
= cpu_to_le32(inode
->i_generation
);
273 ri
->i_dir_level
= F2FS_I(inode
)->i_dir_level
;
275 __set_inode_rdev(inode
, ri
);
276 set_cold_node(inode
, node_page
);
279 if (inode
->i_nlink
== 0)
280 clear_inline_node(node_page
);
282 return set_page_dirty(node_page
);
285 int update_inode_page(struct inode
*inode
)
287 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
288 struct page
*node_page
;
291 node_page
= get_node_page(sbi
, inode
->i_ino
);
292 if (IS_ERR(node_page
)) {
293 int err
= PTR_ERR(node_page
);
294 if (err
== -ENOMEM
) {
297 } else if (err
!= -ENOENT
) {
298 f2fs_stop_checkpoint(sbi
, false);
300 f2fs_inode_synced(inode
);
303 ret
= update_inode(inode
, node_page
);
304 f2fs_put_page(node_page
, 1);
308 int f2fs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
310 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
312 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
313 inode
->i_ino
== F2FS_META_INO(sbi
))
316 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
))
320 * We need to balance fs here to prevent from producing dirty node pages
321 * during the urgent cleaning time when runing out of free sections.
323 if (update_inode_page(inode
))
324 f2fs_balance_fs(sbi
, true);
329 * Called at the last iput() if i_nlink is zero
331 void f2fs_evict_inode(struct inode
*inode
)
333 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
334 nid_t xnid
= F2FS_I(inode
)->i_xattr_nid
;
337 /* some remained atomic pages should discarded */
338 if (f2fs_is_atomic_file(inode
))
339 drop_inmem_pages(inode
);
341 trace_f2fs_evict_inode(inode
);
342 truncate_inode_pages_final(&inode
->i_data
);
344 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
345 inode
->i_ino
== F2FS_META_INO(sbi
))
348 f2fs_bug_on(sbi
, get_dirty_pages(inode
));
349 remove_dirty_inode(inode
);
351 f2fs_destroy_extent_tree(inode
);
353 if (inode
->i_nlink
|| is_bad_inode(inode
))
356 #ifdef CONFIG_F2FS_FAULT_INJECTION
357 if (time_to_inject(FAULT_EVICT_INODE
))
361 sb_start_intwrite(inode
->i_sb
);
362 set_inode_flag(inode
, FI_NO_ALLOC
);
363 i_size_write(inode
, 0);
365 if (F2FS_HAS_BLOCKS(inode
))
366 err
= f2fs_truncate(inode
);
370 err
= remove_inode_page(inode
);
374 /* give more chances, if ENOMEM case */
375 if (err
== -ENOMEM
) {
381 update_inode_page(inode
);
382 sb_end_intwrite(inode
->i_sb
);
384 stat_dec_inline_xattr(inode
);
385 stat_dec_inline_dir(inode
);
386 stat_dec_inline_inode(inode
);
388 invalidate_mapping_pages(NODE_MAPPING(sbi
), inode
->i_ino
, inode
->i_ino
);
390 invalidate_mapping_pages(NODE_MAPPING(sbi
), xnid
, xnid
);
391 if (is_inode_flag_set(inode
, FI_APPEND_WRITE
))
392 add_ino_entry(sbi
, inode
->i_ino
, APPEND_INO
);
393 if (is_inode_flag_set(inode
, FI_UPDATE_WRITE
))
394 add_ino_entry(sbi
, inode
->i_ino
, UPDATE_INO
);
395 if (is_inode_flag_set(inode
, FI_FREE_NID
)) {
396 alloc_nid_failed(sbi
, inode
->i_ino
);
397 clear_inode_flag(inode
, FI_FREE_NID
);
399 f2fs_bug_on(sbi
, err
&&
400 !exist_written_data(sbi
, inode
->i_ino
, ORPHAN_INO
));
402 fscrypt_put_encryption_info(inode
, NULL
);
406 /* caller should call f2fs_lock_op() */
407 void handle_failed_inode(struct inode
*inode
)
409 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
412 /* don't make bad inode, since it becomes a regular file. */
413 unlock_new_inode(inode
);
416 * Note: we should add inode to orphan list before f2fs_unlock_op()
417 * so we can prevent losing this orphan when encoutering checkpoint
418 * and following suddenly power-off.
420 get_node_info(sbi
, inode
->i_ino
, &ni
);
422 if (ni
.blk_addr
!= NULL_ADDR
) {
423 int err
= acquire_orphan_inode(sbi
);
425 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
426 f2fs_msg(sbi
->sb
, KERN_WARNING
,
427 "Too many orphan inodes, run fsck to fix.");
429 add_orphan_inode(inode
);
431 alloc_nid_done(sbi
, inode
->i_ino
);
433 set_inode_flag(inode
, FI_FREE_NID
);
438 /* iput will drop the inode object */