4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate_shared
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_inode
*nfsi
= NFS_I(dir
);
73 struct nfs_open_dir_context
*ctx
;
74 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
77 ctx
->attr_gencount
= nfsi
->attr_gencount
;
80 ctx
->cred
= get_rpccred(cred
);
81 spin_lock(&dir
->i_lock
);
82 list_add(&ctx
->list
, &nfsi
->open_files
);
83 spin_unlock(&dir
->i_lock
);
86 return ERR_PTR(-ENOMEM
);
89 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
91 spin_lock(&dir
->i_lock
);
93 spin_unlock(&dir
->i_lock
);
94 put_rpccred(ctx
->cred
);
102 nfs_opendir(struct inode
*inode
, struct file
*filp
)
105 struct nfs_open_dir_context
*ctx
;
106 struct rpc_cred
*cred
;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
110 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
112 cred
= rpc_lookup_cred();
114 return PTR_ERR(cred
);
115 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
120 filp
->private_data
= ctx
;
121 if (filp
->f_path
.dentry
== filp
->f_path
.mnt
->mnt_root
) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
126 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
134 nfs_closedir(struct inode
*inode
, struct file
*filp
)
136 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
140 struct nfs_cache_array_entry
{
144 unsigned char d_type
;
147 struct nfs_cache_array
{
152 struct nfs_cache_array_entry array
[0];
155 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, int);
159 struct dir_context
*ctx
;
160 unsigned long page_index
;
163 loff_t current_index
;
164 decode_dirent_t decode
;
166 unsigned long timestamp
;
167 unsigned long gencount
;
168 unsigned int cache_entry_index
;
171 } nfs_readdir_descriptor_t
;
174 * The caller is responsible for calling nfs_readdir_release_array(page)
177 struct nfs_cache_array
*nfs_readdir_get_array(struct page
*page
)
181 return ERR_PTR(-EIO
);
184 return ERR_PTR(-ENOMEM
);
189 void nfs_readdir_release_array(struct page
*page
)
195 * we are freeing strings created by nfs_add_to_readdir_array()
198 void nfs_readdir_clear_array(struct page
*page
)
200 struct nfs_cache_array
*array
;
203 array
= kmap_atomic(page
);
204 if (atomic_dec_and_test(&array
->refcount
))
205 for (i
= 0; i
< array
->size
; i
++)
206 kfree(array
->array
[i
].string
.name
);
207 kunmap_atomic(array
);
210 static bool grab_page(struct page
*page
)
212 struct nfs_cache_array
*array
= kmap_atomic(page
);
213 bool res
= atomic_inc_not_zero(&array
->refcount
);
214 kunmap_atomic(array
);
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
224 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
227 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
228 if (string
->name
== NULL
)
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
234 kmemleak_not_leak(string
->name
);
235 string
->hash
= full_name_hash(NULL
, name
, len
);
240 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
242 struct nfs_cache_array
*array
= nfs_readdir_get_array(page
);
243 struct nfs_cache_array_entry
*cache_entry
;
247 return PTR_ERR(array
);
249 cache_entry
= &array
->array
[array
->size
];
251 /* Check that this entry lies within the page bounds */
253 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
256 cache_entry
->cookie
= entry
->prev_cookie
;
257 cache_entry
->ino
= entry
->ino
;
258 cache_entry
->d_type
= entry
->d_type
;
259 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
262 array
->last_cookie
= entry
->cookie
;
265 array
->eof_index
= array
->size
;
267 nfs_readdir_release_array(page
);
272 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
274 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
279 if (diff
>= array
->size
) {
280 if (array
->eof_index
>= 0)
285 index
= (unsigned int)diff
;
286 *desc
->dir_cookie
= array
->array
[index
].cookie
;
287 desc
->cache_entry_index
= index
;
295 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
297 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
300 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
308 int status
= -EAGAIN
;
310 for (i
= 0; i
< array
->size
; i
++) {
311 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
312 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
313 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
315 new_pos
= desc
->current_index
+ i
;
316 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
317 !nfs_readdir_inode_mapping_valid(nfsi
)) {
319 ctx
->attr_gencount
= nfsi
->attr_gencount
;
320 } else if (new_pos
< desc
->ctx
->pos
) {
322 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc
->file
, array
->array
[i
].string
.len
,
328 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
333 ctx
->dup_cookie
= *desc
->dir_cookie
;
336 desc
->ctx
->pos
= new_pos
;
337 desc
->cache_entry_index
= i
;
341 if (array
->eof_index
>= 0) {
342 status
= -EBADCOOKIE
;
343 if (*desc
->dir_cookie
== array
->last_cookie
)
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
353 struct nfs_cache_array
*array
;
356 array
= nfs_readdir_get_array(desc
->page
);
358 status
= PTR_ERR(array
);
362 if (*desc
->dir_cookie
== 0)
363 status
= nfs_readdir_search_for_pos(array
, desc
);
365 status
= nfs_readdir_search_for_cookie(array
, desc
);
367 if (status
== -EAGAIN
) {
368 desc
->last_cookie
= array
->last_cookie
;
369 desc
->current_index
+= array
->size
;
372 nfs_readdir_release_array(desc
->page
);
377 /* Fill a page with xdr information before transferring to the cache page */
379 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
380 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
382 struct nfs_open_dir_context
*ctx
= file
->private_data
;
383 struct rpc_cred
*cred
= ctx
->cred
;
384 unsigned long timestamp
, gencount
;
389 gencount
= nfs_inc_attr_generation_counter();
390 error
= NFS_PROTO(inode
)->readdir(file_dentry(file
), cred
, entry
->cookie
, pages
,
391 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error
== -ENOTSUPP
&& desc
->plus
) {
395 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
396 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
402 desc
->timestamp
= timestamp
;
403 desc
->gencount
= gencount
;
408 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
409 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
413 error
= desc
->decode(xdr
, entry
, desc
->plus
);
416 entry
->fattr
->time_start
= desc
->timestamp
;
417 entry
->fattr
->gencount
= desc
->gencount
;
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
425 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
428 struct nfs_inode
*nfsi
;
430 if (d_really_is_negative(dentry
))
433 inode
= d_inode(dentry
);
434 if (is_bad_inode(inode
) || NFS_STALE(inode
))
438 if (entry
->fattr
->fileid
== nfsi
->fileid
)
440 if (nfs_compare_fh(entry
->fh
, &nfsi
->fh
) == 0)
446 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
448 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
458 * This function is called by the lookup code to request the use of
459 * readdirplus to accelerate any future lookups in the same
463 void nfs_advise_use_readdirplus(struct inode
*dir
)
465 set_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
);
469 * This function is mainly for use by nfs_getattr().
471 * If this is an 'ls -l', we want to force use of readdirplus.
472 * Do this by checking if there is an active file descriptor
473 * and calling nfs_advise_use_readdirplus, then forcing a
476 void nfs_force_use_readdirplus(struct inode
*dir
)
478 if (!list_empty(&NFS_I(dir
)->open_files
)) {
479 nfs_advise_use_readdirplus(dir
);
480 nfs_zap_mapping(dir
, dir
->i_mapping
);
485 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
487 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
488 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
489 struct dentry
*dentry
;
490 struct dentry
*alias
;
491 struct inode
*dir
= d_inode(parent
);
495 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
497 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
499 if (filename
.name
[0] == '.') {
500 if (filename
.len
== 1)
502 if (filename
.len
== 2 && filename
.name
[1] == '.')
505 filename
.hash
= full_name_hash(parent
, filename
.name
, filename
.len
);
507 dentry
= d_lookup(parent
, &filename
);
510 dentry
= d_alloc_parallel(parent
, &filename
, &wq
);
514 if (!d_in_lookup(dentry
)) {
515 /* Is there a mountpoint here? If so, just exit */
516 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
517 &entry
->fattr
->fsid
))
519 if (nfs_same_file(dentry
, entry
)) {
520 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
521 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
523 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
526 d_invalidate(dentry
);
533 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
534 alias
= d_splice_alias(inode
, dentry
);
535 d_lookup_done(dentry
);
542 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
547 /* Perform conversion from xdr to cache array */
549 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
550 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
552 struct xdr_stream stream
;
554 struct page
*scratch
;
555 struct nfs_cache_array
*array
;
556 unsigned int count
= 0;
559 scratch
= alloc_page(GFP_KERNEL
);
566 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
567 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
570 status
= xdr_decode(desc
, entry
, &stream
);
572 if (status
== -EAGAIN
)
580 nfs_prime_dcache(file_dentry(desc
->file
), entry
);
582 status
= nfs_readdir_add_to_array(entry
, page
);
585 } while (!entry
->eof
);
588 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
589 array
= nfs_readdir_get_array(page
);
590 if (!IS_ERR(array
)) {
591 array
->eof_index
= array
->size
;
593 nfs_readdir_release_array(page
);
595 status
= PTR_ERR(array
);
603 void nfs_readdir_free_pages(struct page
**pages
, unsigned int npages
)
606 for (i
= 0; i
< npages
; i
++)
611 * nfs_readdir_large_page will allocate pages that must be freed with a call
612 * to nfs_readdir_free_pagearray
615 int nfs_readdir_alloc_pages(struct page
**pages
, unsigned int npages
)
619 for (i
= 0; i
< npages
; i
++) {
620 struct page
*page
= alloc_page(GFP_KERNEL
);
628 nfs_readdir_free_pages(pages
, i
);
633 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
635 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
636 struct nfs_entry entry
;
637 struct file
*file
= desc
->file
;
638 struct nfs_cache_array
*array
;
639 int status
= -ENOMEM
;
640 unsigned int array_size
= ARRAY_SIZE(pages
);
642 entry
.prev_cookie
= 0;
643 entry
.cookie
= desc
->last_cookie
;
645 entry
.fh
= nfs_alloc_fhandle();
646 entry
.fattr
= nfs_alloc_fattr();
647 entry
.server
= NFS_SERVER(inode
);
648 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
651 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
652 if (IS_ERR(entry
.label
)) {
653 status
= PTR_ERR(entry
.label
);
657 array
= nfs_readdir_get_array(page
);
659 status
= PTR_ERR(array
);
662 memset(array
, 0, sizeof(struct nfs_cache_array
));
663 atomic_set(&array
->refcount
, 1);
664 array
->eof_index
= -1;
666 status
= nfs_readdir_alloc_pages(pages
, array_size
);
668 goto out_release_array
;
671 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
676 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
678 if (status
== -ENOSPC
)
682 } while (array
->eof_index
< 0);
684 nfs_readdir_free_pages(pages
, array_size
);
686 nfs_readdir_release_array(page
);
688 nfs4_label_free(entry
.label
);
690 nfs_free_fattr(entry
.fattr
);
691 nfs_free_fhandle(entry
.fh
);
696 * Now we cache directories properly, by converting xdr information
697 * to an array that can be used for lookups later. This results in
698 * fewer cache pages, since we can store more information on each page.
699 * We only need to convert from xdr once so future lookups are much simpler
702 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
704 struct inode
*inode
= file_inode(desc
->file
);
707 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
710 SetPageUptodate(page
);
712 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
713 /* Should never happen */
714 nfs_zap_mapping(inode
, inode
->i_mapping
);
724 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
726 nfs_readdir_clear_array(desc
->page
);
727 put_page(desc
->page
);
732 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
737 page
= read_cache_page(desc
->file
->f_mapping
,
738 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
739 if (IS_ERR(page
) || grab_page(page
))
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
750 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
754 desc
->page
= get_cache_page(desc
);
755 if (IS_ERR(desc
->page
))
756 return PTR_ERR(desc
->page
);
758 res
= nfs_readdir_search_array(desc
);
760 cache_page_release(desc
);
764 /* Search for desc->dir_cookie from the beginning of the page cache */
766 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
770 if (desc
->page_index
== 0) {
771 desc
->current_index
= 0;
772 desc
->last_cookie
= 0;
775 res
= find_cache_page(desc
);
776 } while (res
== -EAGAIN
);
781 * Once we've found the start of the dirent within a page: fill 'er up...
784 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
786 struct file
*file
= desc
->file
;
789 struct nfs_cache_array
*array
= NULL
;
790 struct nfs_open_dir_context
*ctx
= file
->private_data
;
792 array
= nfs_readdir_get_array(desc
->page
);
794 res
= PTR_ERR(array
);
798 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
799 struct nfs_cache_array_entry
*ent
;
801 ent
= &array
->array
[i
];
802 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
803 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
808 if (i
< (array
->size
-1))
809 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
811 *desc
->dir_cookie
= array
->last_cookie
;
815 if (array
->eof_index
>= 0)
818 nfs_readdir_release_array(desc
->page
);
820 cache_page_release(desc
);
821 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
822 (unsigned long long)*desc
->dir_cookie
, res
);
827 * If we cannot find a cookie in our cache, we suspect that this is
828 * because it points to a deleted file, so we ask the server to return
829 * whatever it thinks is the next entry. We then feed this to filldir.
830 * If all goes well, we should then be able to find our way round the
831 * cache on the next call to readdir_search_pagecache();
833 * NOTE: we cannot add the anonymous page to the pagecache because
834 * the data it contains might not be page aligned. Besides,
835 * we should already have a complete representation of the
836 * directory in the page cache by the time we get here.
839 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
841 struct page
*page
= NULL
;
843 struct inode
*inode
= file_inode(desc
->file
);
844 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
846 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
847 (unsigned long long)*desc
->dir_cookie
);
849 page
= alloc_page(GFP_HIGHUSER
);
855 desc
->page_index
= 0;
856 desc
->last_cookie
= *desc
->dir_cookie
;
860 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
864 status
= nfs_do_filldir(desc
);
867 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
871 cache_page_release(desc
);
875 static bool nfs_dir_mapping_need_revalidate(struct inode
*dir
)
877 struct nfs_inode
*nfsi
= NFS_I(dir
);
879 if (nfs_attribute_cache_expired(dir
))
881 if (nfsi
->cache_validity
& NFS_INO_INVALID_DATA
)
886 /* The file offset position represents the dirent entry number. A
887 last cookie cache takes care of the common case of reading the
890 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
892 struct dentry
*dentry
= file_dentry(file
);
893 struct inode
*inode
= d_inode(dentry
);
894 nfs_readdir_descriptor_t my_desc
,
896 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
899 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
900 file
, (long long)ctx
->pos
);
901 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
904 * ctx->pos points to the dirent entry number.
905 * *desc->dir_cookie has the cookie for the next entry. We have
906 * to either find the entry with the appropriate number or
907 * revalidate the cookie.
909 memset(desc
, 0, sizeof(*desc
));
913 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
914 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
915 desc
->plus
= nfs_use_readdirplus(inode
, ctx
) ? 1 : 0;
917 if (ctx
->pos
== 0 || nfs_dir_mapping_need_revalidate(inode
))
918 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
923 res
= readdir_search_pagecache(desc
);
925 if (res
== -EBADCOOKIE
) {
927 /* This means either end of directory */
928 if (*desc
->dir_cookie
&& desc
->eof
== 0) {
929 /* Or that the server has 'lost' a cookie */
930 res
= uncached_readdir(desc
);
936 if (res
== -ETOOSMALL
&& desc
->plus
) {
937 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
938 nfs_zap_caches(inode
);
939 desc
->page_index
= 0;
947 res
= nfs_do_filldir(desc
);
950 } while (!desc
->eof
);
954 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
958 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
960 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
962 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
963 filp
, offset
, whence
);
967 offset
+= filp
->f_pos
;
974 if (offset
!= filp
->f_pos
) {
975 filp
->f_pos
= offset
;
976 dir_ctx
->dir_cookie
= 0;
983 * All directory operations under NFS are synchronous, so fsync()
984 * is a dummy operation.
986 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
989 struct inode
*inode
= file_inode(filp
);
991 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
994 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
1000 * nfs_force_lookup_revalidate - Mark the directory as having changed
1001 * @dir - pointer to directory inode
1003 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1004 * full lookup on all child dentries of 'dir' whenever a change occurs
1005 * on the server that might have invalidated our dcache.
1007 * The caller should be holding dir->i_lock
1009 void nfs_force_lookup_revalidate(struct inode
*dir
)
1011 NFS_I(dir
)->cache_change_attribute
++;
1013 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
1016 * A check for whether or not the parent directory has changed.
1017 * In the case it has, we assume that the dentries are untrustworthy
1018 * and may need to be looked up again.
1019 * If rcu_walk prevents us from performing a full check, return 0.
1021 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
1026 if (IS_ROOT(dentry
))
1028 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
1030 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1032 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1034 ret
= nfs_revalidate_inode_rcu(NFS_SERVER(dir
), dir
);
1036 ret
= nfs_revalidate_inode(NFS_SERVER(dir
), dir
);
1039 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1045 * Use intent information to check whether or not we're going to do
1046 * an O_EXCL create using this path component.
1048 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
1050 if (NFS_PROTO(dir
)->version
== 2)
1052 return flags
& LOOKUP_EXCL
;
1056 * Inode and filehandle revalidation for lookups.
1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059 * or if the intent information indicates that we're about to open this
1060 * particular file and the "nocto" mount flag is not set.
1064 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1066 struct nfs_server
*server
= NFS_SERVER(inode
);
1069 if (IS_AUTOMOUNT(inode
))
1071 /* VFS wants an on-the-wire revalidation */
1072 if (flags
& LOOKUP_REVAL
)
1074 /* This is an open(2) */
1075 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
1076 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1079 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1081 if (flags
& LOOKUP_RCU
)
1083 ret
= __nfs_revalidate_inode(server
, inode
);
1090 * We judge how long we want to trust negative
1091 * dentries by looking at the parent inode mtime.
1093 * If parent mtime has changed, we revalidate, else we wait for a
1094 * period corresponding to the parent's attribute cache timeout value.
1096 * If LOOKUP_RCU prevents us from performing a full check, return 1
1097 * suggesting a reval is needed.
1100 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1103 /* Don't revalidate a negative dentry if we're creating a new file */
1104 if (flags
& LOOKUP_CREATE
)
1106 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1108 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1112 * This is called every time the dcache has a lookup hit,
1113 * and we should check whether we can really trust that
1116 * NOTE! The hit can be a negative hit too, don't assume
1119 * If the parent directory is seen to have changed, we throw out the
1120 * cached dentry and do a new lookup.
1122 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1125 struct inode
*inode
;
1126 struct dentry
*parent
;
1127 struct nfs_fh
*fhandle
= NULL
;
1128 struct nfs_fattr
*fattr
= NULL
;
1129 struct nfs4_label
*label
= NULL
;
1132 if (flags
& LOOKUP_RCU
) {
1133 parent
= ACCESS_ONCE(dentry
->d_parent
);
1134 dir
= d_inode_rcu(parent
);
1138 parent
= dget_parent(dentry
);
1139 dir
= d_inode(parent
);
1141 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1142 inode
= d_inode(dentry
);
1145 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1146 if (flags
& LOOKUP_RCU
)
1150 goto out_valid_noent
;
1153 if (is_bad_inode(inode
)) {
1154 if (flags
& LOOKUP_RCU
)
1156 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1161 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1162 goto out_set_verifier
;
1164 /* Force a full look up iff the parent directory has changed */
1165 if (!nfs_is_exclusive_create(dir
, flags
) &&
1166 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1168 if (nfs_lookup_verify_inode(inode
, flags
)) {
1169 if (flags
& LOOKUP_RCU
)
1171 goto out_zap_parent
;
1176 if (flags
& LOOKUP_RCU
)
1179 if (NFS_STALE(inode
))
1183 fhandle
= nfs_alloc_fhandle();
1184 fattr
= nfs_alloc_fattr();
1185 if (fhandle
== NULL
|| fattr
== NULL
)
1188 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1192 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1193 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1194 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1197 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1199 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1202 nfs_setsecurity(inode
, fattr
, label
);
1204 nfs_free_fattr(fattr
);
1205 nfs_free_fhandle(fhandle
);
1206 nfs4_label_free(label
);
1209 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1211 /* Success: notify readdir to use READDIRPLUS */
1212 nfs_advise_use_readdirplus(dir
);
1214 if (flags
& LOOKUP_RCU
) {
1215 if (parent
!= ACCESS_ONCE(dentry
->d_parent
))
1219 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1223 nfs_zap_caches(dir
);
1225 WARN_ON(flags
& LOOKUP_RCU
);
1226 nfs_free_fattr(fattr
);
1227 nfs_free_fhandle(fhandle
);
1228 nfs4_label_free(label
);
1229 nfs_mark_for_revalidate(dir
);
1230 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1231 /* Purge readdir caches. */
1232 nfs_zap_caches(inode
);
1234 * We can't d_drop the root of a disconnected tree:
1235 * its d_hash is on the s_anon list and d_drop() would hide
1236 * it from shrink_dcache_for_unmount(), leading to busy
1237 * inodes on unmount and further oopses.
1239 if (IS_ROOT(dentry
))
1243 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1247 WARN_ON(flags
& LOOKUP_RCU
);
1248 nfs_free_fattr(fattr
);
1249 nfs_free_fhandle(fhandle
);
1250 nfs4_label_free(label
);
1252 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1253 __func__
, dentry
, error
);
1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259 * when we don't really care about the dentry name. This is called when a
1260 * pathwalk ends on a dentry that was not found via a normal lookup in the
1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1263 * In this situation, we just want to verify that the inode itself is OK
1264 * since the dentry might have changed on the server.
1266 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1269 struct inode
*inode
= d_inode(dentry
);
1272 * I believe we can only get a negative dentry here in the case of a
1273 * procfs-style symlink. Just assume it's correct for now, but we may
1274 * eventually need to do something more here.
1277 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1282 if (is_bad_inode(inode
)) {
1283 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1288 error
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1289 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1290 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1295 * This is called from dput() when d_count is going to 0.
1297 static int nfs_dentry_delete(const struct dentry
*dentry
)
1299 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1300 dentry
, dentry
->d_flags
);
1302 /* Unhash any dentry with a stale inode */
1303 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1306 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1307 /* Unhash it, so that ->d_iput() would be called */
1310 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
1311 /* Unhash it, so that ancestors of killed async unlink
1312 * files will be cleaned up during umount */
1319 /* Ensure that we revalidate inode->i_nlink */
1320 static void nfs_drop_nlink(struct inode
*inode
)
1322 spin_lock(&inode
->i_lock
);
1323 /* drop the inode if we're reasonably sure this is the last link */
1324 if (inode
->i_nlink
== 1)
1326 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1327 spin_unlock(&inode
->i_lock
);
1331 * Called when the dentry loses inode.
1332 * We use it to clean up silly-renamed files.
1334 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1336 if (S_ISDIR(inode
->i_mode
))
1337 /* drop any readdir cache as it could easily be old */
1338 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1340 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1341 nfs_complete_unlink(dentry
, inode
);
1342 nfs_drop_nlink(inode
);
1347 static void nfs_d_release(struct dentry
*dentry
)
1349 /* free cached devname value, if it survived that far */
1350 if (unlikely(dentry
->d_fsdata
)) {
1351 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1354 kfree(dentry
->d_fsdata
);
1358 const struct dentry_operations nfs_dentry_operations
= {
1359 .d_revalidate
= nfs_lookup_revalidate
,
1360 .d_weak_revalidate
= nfs_weak_revalidate
,
1361 .d_delete
= nfs_dentry_delete
,
1362 .d_iput
= nfs_dentry_iput
,
1363 .d_automount
= nfs_d_automount
,
1364 .d_release
= nfs_d_release
,
1366 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1368 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1371 struct inode
*inode
= NULL
;
1372 struct nfs_fh
*fhandle
= NULL
;
1373 struct nfs_fattr
*fattr
= NULL
;
1374 struct nfs4_label
*label
= NULL
;
1377 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1378 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1380 if (unlikely(dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
))
1381 return ERR_PTR(-ENAMETOOLONG
);
1384 * If we're doing an exclusive create, optimize away the lookup
1385 * but don't hash the dentry.
1387 if (nfs_is_exclusive_create(dir
, flags
))
1390 res
= ERR_PTR(-ENOMEM
);
1391 fhandle
= nfs_alloc_fhandle();
1392 fattr
= nfs_alloc_fattr();
1393 if (fhandle
== NULL
|| fattr
== NULL
)
1396 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1400 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1401 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1402 if (error
== -ENOENT
)
1405 res
= ERR_PTR(error
);
1408 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1409 res
= ERR_CAST(inode
);
1413 /* Success: notify readdir to use READDIRPLUS */
1414 nfs_advise_use_readdirplus(dir
);
1417 res
= d_splice_alias(inode
, dentry
);
1423 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1425 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1426 nfs4_label_free(label
);
1428 nfs_free_fattr(fattr
);
1429 nfs_free_fhandle(fhandle
);
1432 EXPORT_SYMBOL_GPL(nfs_lookup
);
1434 #if IS_ENABLED(CONFIG_NFS_V4)
1435 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1437 const struct dentry_operations nfs4_dentry_operations
= {
1438 .d_revalidate
= nfs4_lookup_revalidate
,
1439 .d_delete
= nfs_dentry_delete
,
1440 .d_iput
= nfs_dentry_iput
,
1441 .d_automount
= nfs_d_automount
,
1442 .d_release
= nfs_d_release
,
1444 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1446 static fmode_t
flags_to_mode(int flags
)
1448 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1449 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1451 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1456 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
)
1458 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
));
1461 static int do_open(struct inode
*inode
, struct file
*filp
)
1463 nfs_fscache_open_file(inode
, filp
);
1467 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1468 struct dentry
*dentry
,
1469 struct file
*file
, unsigned open_flags
,
1474 err
= finish_open(file
, dentry
, do_open
, opened
);
1477 nfs_file_set_open_context(file
, ctx
);
1483 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1484 struct file
*file
, unsigned open_flags
,
1485 umode_t mode
, int *opened
)
1487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1488 struct nfs_open_context
*ctx
;
1490 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1491 struct inode
*inode
;
1492 unsigned int lookup_flags
= 0;
1493 bool switched
= false;
1496 /* Expect a negative dentry */
1497 BUG_ON(d_inode(dentry
));
1499 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1500 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1502 err
= nfs_check_flags(open_flags
);
1506 /* NFS only supports OPEN on regular files */
1507 if ((open_flags
& O_DIRECTORY
)) {
1508 if (!d_in_lookup(dentry
)) {
1510 * Hashed negative dentry with O_DIRECTORY: dentry was
1511 * revalidated and is fine, no need to perform lookup
1516 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1520 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1521 return -ENAMETOOLONG
;
1523 if (open_flags
& O_CREAT
) {
1524 attr
.ia_valid
|= ATTR_MODE
;
1525 attr
.ia_mode
= mode
& ~current_umask();
1527 if (open_flags
& O_TRUNC
) {
1528 attr
.ia_valid
|= ATTR_SIZE
;
1532 if (!(open_flags
& O_CREAT
) && !d_in_lookup(dentry
)) {
1535 dentry
= d_alloc_parallel(dentry
->d_parent
,
1536 &dentry
->d_name
, &wq
);
1538 return PTR_ERR(dentry
);
1539 if (unlikely(!d_in_lookup(dentry
)))
1540 return finish_no_open(file
, dentry
);
1543 ctx
= create_nfs_open_context(dentry
, open_flags
);
1548 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1549 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1550 if (IS_ERR(inode
)) {
1551 err
= PTR_ERR(inode
);
1552 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1553 put_nfs_open_context(ctx
);
1557 d_add(dentry
, NULL
);
1558 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1564 if (!(open_flags
& O_NOFOLLOW
))
1574 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1575 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1576 put_nfs_open_context(ctx
);
1578 if (unlikely(switched
)) {
1579 d_lookup_done(dentry
);
1585 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1587 d_lookup_done(dentry
);
1594 return PTR_ERR(res
);
1595 return finish_no_open(file
, res
);
1597 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1599 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1601 struct inode
*inode
;
1604 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1606 if (d_mountpoint(dentry
))
1608 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1611 inode
= d_inode(dentry
);
1613 /* We can't create new files in nfs_open_revalidate(), so we
1614 * optimize away revalidation of negative dentries.
1616 if (inode
== NULL
) {
1617 struct dentry
*parent
;
1620 if (flags
& LOOKUP_RCU
) {
1621 parent
= ACCESS_ONCE(dentry
->d_parent
);
1622 dir
= d_inode_rcu(parent
);
1626 parent
= dget_parent(dentry
);
1627 dir
= d_inode(parent
);
1629 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1631 else if (flags
& LOOKUP_RCU
)
1633 if (!(flags
& LOOKUP_RCU
))
1635 else if (parent
!= ACCESS_ONCE(dentry
->d_parent
))
1640 /* NFS only supports OPEN on regular files */
1641 if (!S_ISREG(inode
->i_mode
))
1643 /* We cannot do exclusive creation on a positive dentry */
1644 if (flags
& LOOKUP_EXCL
)
1647 /* Let f_op->open() actually open (and revalidate) the file */
1654 return nfs_lookup_revalidate(dentry
, flags
);
1657 #endif /* CONFIG_NFSV4 */
1660 * Code common to create, mkdir, and mknod.
1662 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1663 struct nfs_fattr
*fattr
,
1664 struct nfs4_label
*label
)
1666 struct dentry
*parent
= dget_parent(dentry
);
1667 struct inode
*dir
= d_inode(parent
);
1668 struct inode
*inode
;
1669 int error
= -EACCES
;
1673 /* We may have been initialized further down */
1674 if (d_really_is_positive(dentry
))
1676 if (fhandle
->size
== 0) {
1677 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1681 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1682 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1683 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1684 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1688 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1689 error
= PTR_ERR(inode
);
1692 d_add(dentry
, inode
);
1697 nfs_mark_for_revalidate(dir
);
1701 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1704 * Following a failed create operation, we drop the dentry rather
1705 * than retain a negative dentry. This avoids a problem in the event
1706 * that the operation succeeded on the server, but an error in the
1707 * reply path made it appear to have failed.
1709 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1710 umode_t mode
, bool excl
)
1713 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1716 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1717 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1719 attr
.ia_mode
= mode
;
1720 attr
.ia_valid
= ATTR_MODE
;
1722 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1723 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1724 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1732 EXPORT_SYMBOL_GPL(nfs_create
);
1735 * See comments for nfs_proc_create regarding failed operations.
1738 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1743 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1744 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1746 attr
.ia_mode
= mode
;
1747 attr
.ia_valid
= ATTR_MODE
;
1749 trace_nfs_mknod_enter(dir
, dentry
);
1750 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1751 trace_nfs_mknod_exit(dir
, dentry
, status
);
1759 EXPORT_SYMBOL_GPL(nfs_mknod
);
1762 * See comments for nfs_proc_create regarding failed operations.
1764 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1769 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1770 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1772 attr
.ia_valid
= ATTR_MODE
;
1773 attr
.ia_mode
= mode
| S_IFDIR
;
1775 trace_nfs_mkdir_enter(dir
, dentry
);
1776 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1777 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1785 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1787 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1789 if (simple_positive(dentry
))
1793 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1797 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1798 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1800 trace_nfs_rmdir_enter(dir
, dentry
);
1801 if (d_really_is_positive(dentry
)) {
1802 down_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1803 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1804 /* Ensure the VFS deletes this inode */
1807 clear_nlink(d_inode(dentry
));
1810 nfs_dentry_handle_enoent(dentry
);
1812 up_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1814 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1815 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1819 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1822 * Remove a file after making sure there are no pending writes,
1823 * and after checking that the file has only one user.
1825 * We invalidate the attribute cache and free the inode prior to the operation
1826 * to avoid possible races if the server reuses the inode.
1828 static int nfs_safe_remove(struct dentry
*dentry
)
1830 struct inode
*dir
= d_inode(dentry
->d_parent
);
1831 struct inode
*inode
= d_inode(dentry
);
1834 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1836 /* If the dentry was sillyrenamed, we simply call d_delete() */
1837 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1842 trace_nfs_remove_enter(dir
, dentry
);
1843 if (inode
!= NULL
) {
1844 NFS_PROTO(inode
)->return_delegation(inode
);
1845 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1847 nfs_drop_nlink(inode
);
1849 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1850 if (error
== -ENOENT
)
1851 nfs_dentry_handle_enoent(dentry
);
1852 trace_nfs_remove_exit(dir
, dentry
, error
);
1857 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1858 * belongs to an active ".nfs..." file and we return -EBUSY.
1860 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1862 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1865 int need_rehash
= 0;
1867 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1868 dir
->i_ino
, dentry
);
1870 trace_nfs_unlink_enter(dir
, dentry
);
1871 spin_lock(&dentry
->d_lock
);
1872 if (d_count(dentry
) > 1) {
1873 spin_unlock(&dentry
->d_lock
);
1874 /* Start asynchronous writeout of the inode */
1875 write_inode_now(d_inode(dentry
), 0);
1876 error
= nfs_sillyrename(dir
, dentry
);
1879 if (!d_unhashed(dentry
)) {
1883 spin_unlock(&dentry
->d_lock
);
1884 error
= nfs_safe_remove(dentry
);
1885 if (!error
|| error
== -ENOENT
) {
1886 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1887 } else if (need_rehash
)
1890 trace_nfs_unlink_exit(dir
, dentry
, error
);
1893 EXPORT_SYMBOL_GPL(nfs_unlink
);
1896 * To create a symbolic link, most file systems instantiate a new inode,
1897 * add a page to it containing the path, then write it out to the disk
1898 * using prepare_write/commit_write.
1900 * Unfortunately the NFS client can't create the in-core inode first
1901 * because it needs a file handle to create an in-core inode (see
1902 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1903 * symlink request has completed on the server.
1905 * So instead we allocate a raw page, copy the symname into it, then do
1906 * the SYMLINK request with the page as the buffer. If it succeeds, we
1907 * now have a new file handle and can instantiate an in-core NFS inode
1908 * and move the raw page into its mapping.
1910 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1915 unsigned int pathlen
= strlen(symname
);
1918 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1919 dir
->i_ino
, dentry
, symname
);
1921 if (pathlen
> PAGE_SIZE
)
1922 return -ENAMETOOLONG
;
1924 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1925 attr
.ia_valid
= ATTR_MODE
;
1927 page
= alloc_page(GFP_USER
);
1931 kaddr
= page_address(page
);
1932 memcpy(kaddr
, symname
, pathlen
);
1933 if (pathlen
< PAGE_SIZE
)
1934 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1936 trace_nfs_symlink_enter(dir
, dentry
);
1937 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1938 trace_nfs_symlink_exit(dir
, dentry
, error
);
1940 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1941 dir
->i_sb
->s_id
, dir
->i_ino
,
1942 dentry
, symname
, error
);
1949 * No big deal if we can't add this page to the page cache here.
1950 * READLINK will get the missing page from the server if needed.
1952 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
1954 SetPageUptodate(page
);
1957 * add_to_page_cache_lru() grabs an extra page refcount.
1958 * Drop it here to avoid leaking this page later.
1966 EXPORT_SYMBOL_GPL(nfs_symlink
);
1969 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1971 struct inode
*inode
= d_inode(old_dentry
);
1974 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1975 old_dentry
, dentry
);
1977 trace_nfs_link_enter(inode
, dir
, dentry
);
1978 NFS_PROTO(inode
)->return_delegation(inode
);
1981 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1984 d_add(dentry
, inode
);
1986 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1989 EXPORT_SYMBOL_GPL(nfs_link
);
1993 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1994 * different file handle for the same inode after a rename (e.g. when
1995 * moving to a different directory). A fail-safe method to do so would
1996 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1997 * rename the old file using the sillyrename stuff. This way, the original
1998 * file in old_dir will go away when the last process iput()s the inode.
2002 * It actually works quite well. One needs to have the possibility for
2003 * at least one ".nfs..." file in each directory the file ever gets
2004 * moved or linked to which happens automagically with the new
2005 * implementation that only depends on the dcache stuff instead of
2006 * using the inode layer
2008 * Unfortunately, things are a little more complicated than indicated
2009 * above. For a cross-directory move, we want to make sure we can get
2010 * rid of the old inode after the operation. This means there must be
2011 * no pending writes (if it's a file), and the use count must be 1.
2012 * If these conditions are met, we can drop the dentries before doing
2015 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2016 struct inode
*new_dir
, struct dentry
*new_dentry
)
2018 struct inode
*old_inode
= d_inode(old_dentry
);
2019 struct inode
*new_inode
= d_inode(new_dentry
);
2020 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
2021 struct rpc_task
*task
;
2024 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2025 old_dentry
, new_dentry
,
2026 d_count(new_dentry
));
2028 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
2030 * For non-directories, check whether the target is busy and if so,
2031 * make a copy of the dentry and then do a silly-rename. If the
2032 * silly-rename succeeds, the copied dentry is hashed and becomes
2035 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
2037 * To prevent any new references to the target during the
2038 * rename, we unhash the dentry in advance.
2040 if (!d_unhashed(new_dentry
)) {
2042 rehash
= new_dentry
;
2045 if (d_count(new_dentry
) > 2) {
2048 /* copy the target dentry's name */
2049 dentry
= d_alloc(new_dentry
->d_parent
,
2050 &new_dentry
->d_name
);
2054 /* silly-rename the existing target ... */
2055 err
= nfs_sillyrename(new_dir
, new_dentry
);
2059 new_dentry
= dentry
;
2065 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
2066 if (new_inode
!= NULL
)
2067 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
2069 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2071 error
= PTR_ERR(task
);
2075 error
= rpc_wait_for_completion_task(task
);
2077 error
= task
->tk_status
;
2079 nfs_mark_for_revalidate(old_inode
);
2083 trace_nfs_rename_exit(old_dir
, old_dentry
,
2084 new_dir
, new_dentry
, error
);
2086 if (new_inode
!= NULL
)
2087 nfs_drop_nlink(new_inode
);
2088 d_move(old_dentry
, new_dentry
);
2089 nfs_set_verifier(new_dentry
,
2090 nfs_save_change_attribute(new_dir
));
2091 } else if (error
== -ENOENT
)
2092 nfs_dentry_handle_enoent(old_dentry
);
2094 /* new dentry created? */
2099 EXPORT_SYMBOL_GPL(nfs_rename
);
2101 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2102 static LIST_HEAD(nfs_access_lru_list
);
2103 static atomic_long_t nfs_access_nr_entries
;
2105 static unsigned long nfs_access_max_cachesize
= ULONG_MAX
;
2106 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2107 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2109 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2111 put_rpccred(entry
->cred
);
2112 kfree_rcu(entry
, rcu_head
);
2113 smp_mb__before_atomic();
2114 atomic_long_dec(&nfs_access_nr_entries
);
2115 smp_mb__after_atomic();
2118 static void nfs_access_free_list(struct list_head
*head
)
2120 struct nfs_access_entry
*cache
;
2122 while (!list_empty(head
)) {
2123 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2124 list_del(&cache
->lru
);
2125 nfs_access_free_entry(cache
);
2129 static unsigned long
2130 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2133 struct nfs_inode
*nfsi
, *next
;
2134 struct nfs_access_entry
*cache
;
2137 spin_lock(&nfs_access_lru_lock
);
2138 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2139 struct inode
*inode
;
2141 if (nr_to_scan
-- == 0)
2143 inode
= &nfsi
->vfs_inode
;
2144 spin_lock(&inode
->i_lock
);
2145 if (list_empty(&nfsi
->access_cache_entry_lru
))
2146 goto remove_lru_entry
;
2147 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2148 struct nfs_access_entry
, lru
);
2149 list_move(&cache
->lru
, &head
);
2150 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2152 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2153 list_move_tail(&nfsi
->access_cache_inode_lru
,
2154 &nfs_access_lru_list
);
2157 list_del_init(&nfsi
->access_cache_inode_lru
);
2158 smp_mb__before_atomic();
2159 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2160 smp_mb__after_atomic();
2162 spin_unlock(&inode
->i_lock
);
2164 spin_unlock(&nfs_access_lru_lock
);
2165 nfs_access_free_list(&head
);
2170 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2172 int nr_to_scan
= sc
->nr_to_scan
;
2173 gfp_t gfp_mask
= sc
->gfp_mask
;
2175 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2177 return nfs_do_access_cache_scan(nr_to_scan
);
2182 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2184 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2188 nfs_access_cache_enforce_limit(void)
2190 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2192 unsigned int nr_to_scan
;
2194 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2197 diff
= nr_entries
- nfs_access_max_cachesize
;
2198 if (diff
< nr_to_scan
)
2200 nfs_do_access_cache_scan(nr_to_scan
);
2203 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2205 struct rb_root
*root_node
= &nfsi
->access_cache
;
2207 struct nfs_access_entry
*entry
;
2209 /* Unhook entries from the cache */
2210 while ((n
= rb_first(root_node
)) != NULL
) {
2211 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2212 rb_erase(n
, root_node
);
2213 list_move(&entry
->lru
, head
);
2215 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2218 void nfs_access_zap_cache(struct inode
*inode
)
2222 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2224 /* Remove from global LRU init */
2225 spin_lock(&nfs_access_lru_lock
);
2226 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2227 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2229 spin_lock(&inode
->i_lock
);
2230 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2231 spin_unlock(&inode
->i_lock
);
2232 spin_unlock(&nfs_access_lru_lock
);
2233 nfs_access_free_list(&head
);
2235 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2237 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2239 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2240 struct nfs_access_entry
*entry
;
2243 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2245 if (cred
< entry
->cred
)
2247 else if (cred
> entry
->cred
)
2255 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
, bool may_block
)
2257 struct nfs_inode
*nfsi
= NFS_I(inode
);
2258 struct nfs_access_entry
*cache
;
2262 spin_lock(&inode
->i_lock
);
2264 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2266 cache
= nfs_access_search_rbtree(inode
, cred
);
2270 /* Found an entry, is our attribute cache valid? */
2271 if (!nfs_attribute_cache_expired(inode
) &&
2272 !(nfsi
->cache_validity
& NFS_INO_INVALID_ATTR
))
2279 spin_unlock(&inode
->i_lock
);
2280 err
= __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2283 spin_lock(&inode
->i_lock
);
2286 res
->jiffies
= cache
->jiffies
;
2287 res
->cred
= cache
->cred
;
2288 res
->mask
= cache
->mask
;
2289 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2292 spin_unlock(&inode
->i_lock
);
2295 spin_unlock(&inode
->i_lock
);
2296 nfs_access_zap_cache(inode
);
2300 static int nfs_access_get_cached_rcu(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2302 /* Only check the most recently returned cache entry,
2303 * but do it without locking.
2305 struct nfs_inode
*nfsi
= NFS_I(inode
);
2306 struct nfs_access_entry
*cache
;
2308 struct list_head
*lh
;
2311 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2313 lh
= rcu_dereference(nfsi
->access_cache_entry_lru
.prev
);
2314 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2315 if (lh
== &nfsi
->access_cache_entry_lru
||
2316 cred
!= cache
->cred
)
2320 err
= nfs_revalidate_inode_rcu(NFS_SERVER(inode
), inode
);
2323 res
->jiffies
= cache
->jiffies
;
2324 res
->cred
= cache
->cred
;
2325 res
->mask
= cache
->mask
;
2331 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2333 struct nfs_inode
*nfsi
= NFS_I(inode
);
2334 struct rb_root
*root_node
= &nfsi
->access_cache
;
2335 struct rb_node
**p
= &root_node
->rb_node
;
2336 struct rb_node
*parent
= NULL
;
2337 struct nfs_access_entry
*entry
;
2339 spin_lock(&inode
->i_lock
);
2340 while (*p
!= NULL
) {
2342 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2344 if (set
->cred
< entry
->cred
)
2345 p
= &parent
->rb_left
;
2346 else if (set
->cred
> entry
->cred
)
2347 p
= &parent
->rb_right
;
2351 rb_link_node(&set
->rb_node
, parent
, p
);
2352 rb_insert_color(&set
->rb_node
, root_node
);
2353 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2354 spin_unlock(&inode
->i_lock
);
2357 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2358 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2359 list_del(&entry
->lru
);
2360 spin_unlock(&inode
->i_lock
);
2361 nfs_access_free_entry(entry
);
2364 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2366 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2369 RB_CLEAR_NODE(&cache
->rb_node
);
2370 cache
->jiffies
= set
->jiffies
;
2371 cache
->cred
= get_rpccred(set
->cred
);
2372 cache
->mask
= set
->mask
;
2374 /* The above field assignments must be visible
2375 * before this item appears on the lru. We cannot easily
2376 * use rcu_assign_pointer, so just force the memory barrier.
2379 nfs_access_add_rbtree(inode
, cache
);
2381 /* Update accounting */
2382 smp_mb__before_atomic();
2383 atomic_long_inc(&nfs_access_nr_entries
);
2384 smp_mb__after_atomic();
2386 /* Add inode to global LRU list */
2387 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2388 spin_lock(&nfs_access_lru_lock
);
2389 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2390 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2391 &nfs_access_lru_list
);
2392 spin_unlock(&nfs_access_lru_lock
);
2394 nfs_access_cache_enforce_limit();
2396 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2398 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2401 if (access_result
& NFS4_ACCESS_READ
)
2402 entry
->mask
|= MAY_READ
;
2404 (NFS4_ACCESS_MODIFY
| NFS4_ACCESS_EXTEND
| NFS4_ACCESS_DELETE
))
2405 entry
->mask
|= MAY_WRITE
;
2406 if (access_result
& (NFS4_ACCESS_LOOKUP
|NFS4_ACCESS_EXECUTE
))
2407 entry
->mask
|= MAY_EXEC
;
2409 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2411 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2413 struct nfs_access_entry cache
;
2414 bool may_block
= (mask
& MAY_NOT_BLOCK
) == 0;
2417 trace_nfs_access_enter(inode
);
2419 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2421 status
= nfs_access_get_cached(inode
, cred
, &cache
, may_block
);
2429 /* Be clever: ask server to check for all possible rights */
2430 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
2432 cache
.jiffies
= jiffies
;
2433 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2435 if (status
== -ESTALE
) {
2436 nfs_zap_caches(inode
);
2437 if (!S_ISDIR(inode
->i_mode
))
2438 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2442 nfs_access_add_cache(inode
, &cache
);
2444 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2447 trace_nfs_access_exit(inode
, status
);
2451 static int nfs_open_permission_mask(int openflags
)
2455 if (openflags
& __FMODE_EXEC
) {
2456 /* ONLY check exec rights */
2459 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2461 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2468 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2470 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2472 EXPORT_SYMBOL_GPL(nfs_may_open
);
2474 static int nfs_execute_ok(struct inode
*inode
, int mask
)
2476 struct nfs_server
*server
= NFS_SERVER(inode
);
2479 if (mask
& MAY_NOT_BLOCK
)
2480 ret
= nfs_revalidate_inode_rcu(server
, inode
);
2482 ret
= nfs_revalidate_inode(server
, inode
);
2483 if (ret
== 0 && !execute_ok(inode
))
2488 int nfs_permission(struct inode
*inode
, int mask
)
2490 struct rpc_cred
*cred
;
2493 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2495 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2497 /* Is this sys_access() ? */
2498 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2501 switch (inode
->i_mode
& S_IFMT
) {
2505 if ((mask
& MAY_OPEN
) &&
2506 nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
))
2511 * Optimize away all write operations, since the server
2512 * will check permissions when we perform the op.
2514 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2519 if (!NFS_PROTO(inode
)->access
)
2522 /* Always try fast lookups first */
2524 cred
= rpc_lookup_cred_nonblock();
2526 res
= nfs_do_access(inode
, cred
, mask
|MAY_NOT_BLOCK
);
2528 res
= PTR_ERR(cred
);
2530 if (res
== -ECHILD
&& !(mask
& MAY_NOT_BLOCK
)) {
2531 /* Fast lookup failed, try the slow way */
2532 cred
= rpc_lookup_cred();
2533 if (!IS_ERR(cred
)) {
2534 res
= nfs_do_access(inode
, cred
, mask
);
2537 res
= PTR_ERR(cred
);
2540 if (!res
&& (mask
& MAY_EXEC
))
2541 res
= nfs_execute_ok(inode
, mask
);
2543 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2544 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2547 if (mask
& MAY_NOT_BLOCK
)
2550 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2552 res
= generic_permission(inode
, mask
);
2555 EXPORT_SYMBOL_GPL(nfs_permission
);
2559 * version-control: t
2560 * kept-new-versions: 5