Linux 4.8.3
[linux/fpc-iii.git] / fs / ubifs / tnc_commit.c
blob51157da3f76ed87a2a0c7f34c7c2240db116ed00
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
23 /* This file implements TNC functions for committing */
25 #include <linux/random.h>
26 #include "ubifs.h"
28 /**
29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
30 * @c: UBIFS file-system description object
31 * @idx: buffer in which to place new index node
32 * @znode: znode from which to make new index node
33 * @lnum: LEB number where new index node will be written
34 * @offs: offset where new index node will be written
35 * @len: length of new index node
37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
38 struct ubifs_znode *znode, int lnum, int offs, int len)
40 struct ubifs_znode *zp;
41 int i, err;
43 /* Make index node */
44 idx->ch.node_type = UBIFS_IDX_NODE;
45 idx->child_cnt = cpu_to_le16(znode->child_cnt);
46 idx->level = cpu_to_le16(znode->level);
47 for (i = 0; i < znode->child_cnt; i++) {
48 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
49 struct ubifs_zbranch *zbr = &znode->zbranch[i];
51 key_write_idx(c, &zbr->key, &br->key);
52 br->lnum = cpu_to_le32(zbr->lnum);
53 br->offs = cpu_to_le32(zbr->offs);
54 br->len = cpu_to_le32(zbr->len);
55 if (!zbr->lnum || !zbr->len) {
56 ubifs_err(c, "bad ref in znode");
57 ubifs_dump_znode(c, znode);
58 if (zbr->znode)
59 ubifs_dump_znode(c, zbr->znode);
62 ubifs_prepare_node(c, idx, len, 0);
64 znode->lnum = lnum;
65 znode->offs = offs;
66 znode->len = len;
68 err = insert_old_idx_znode(c, znode);
70 /* Update the parent */
71 zp = znode->parent;
72 if (zp) {
73 struct ubifs_zbranch *zbr;
75 zbr = &zp->zbranch[znode->iip];
76 zbr->lnum = lnum;
77 zbr->offs = offs;
78 zbr->len = len;
79 } else {
80 c->zroot.lnum = lnum;
81 c->zroot.offs = offs;
82 c->zroot.len = len;
84 c->calc_idx_sz += ALIGN(len, 8);
86 atomic_long_dec(&c->dirty_zn_cnt);
88 ubifs_assert(ubifs_zn_dirty(znode));
89 ubifs_assert(ubifs_zn_cow(znode));
92 * Note, unlike 'write_index()' we do not add memory barriers here
93 * because this function is called with @c->tnc_mutex locked.
95 __clear_bit(DIRTY_ZNODE, &znode->flags);
96 __clear_bit(COW_ZNODE, &znode->flags);
98 return err;
102 * fill_gap - make index nodes in gaps in dirty index LEBs.
103 * @c: UBIFS file-system description object
104 * @lnum: LEB number that gap appears in
105 * @gap_start: offset of start of gap
106 * @gap_end: offset of end of gap
107 * @dirt: adds dirty space to this
109 * This function returns the number of index nodes written into the gap.
111 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
112 int *dirt)
114 int len, gap_remains, gap_pos, written, pad_len;
116 ubifs_assert((gap_start & 7) == 0);
117 ubifs_assert((gap_end & 7) == 0);
118 ubifs_assert(gap_end >= gap_start);
120 gap_remains = gap_end - gap_start;
121 if (!gap_remains)
122 return 0;
123 gap_pos = gap_start;
124 written = 0;
125 while (c->enext) {
126 len = ubifs_idx_node_sz(c, c->enext->child_cnt);
127 if (len < gap_remains) {
128 struct ubifs_znode *znode = c->enext;
129 const int alen = ALIGN(len, 8);
130 int err;
132 ubifs_assert(alen <= gap_remains);
133 err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
134 lnum, gap_pos, len);
135 if (err)
136 return err;
137 gap_remains -= alen;
138 gap_pos += alen;
139 c->enext = znode->cnext;
140 if (c->enext == c->cnext)
141 c->enext = NULL;
142 written += 1;
143 } else
144 break;
146 if (gap_end == c->leb_size) {
147 c->ileb_len = ALIGN(gap_pos, c->min_io_size);
148 /* Pad to end of min_io_size */
149 pad_len = c->ileb_len - gap_pos;
150 } else
151 /* Pad to end of gap */
152 pad_len = gap_remains;
153 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
154 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
155 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
156 *dirt += pad_len;
157 return written;
161 * find_old_idx - find an index node obsoleted since the last commit start.
162 * @c: UBIFS file-system description object
163 * @lnum: LEB number of obsoleted index node
164 * @offs: offset of obsoleted index node
166 * Returns %1 if found and %0 otherwise.
168 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
170 struct ubifs_old_idx *o;
171 struct rb_node *p;
173 p = c->old_idx.rb_node;
174 while (p) {
175 o = rb_entry(p, struct ubifs_old_idx, rb);
176 if (lnum < o->lnum)
177 p = p->rb_left;
178 else if (lnum > o->lnum)
179 p = p->rb_right;
180 else if (offs < o->offs)
181 p = p->rb_left;
182 else if (offs > o->offs)
183 p = p->rb_right;
184 else
185 return 1;
187 return 0;
191 * is_idx_node_in_use - determine if an index node can be overwritten.
192 * @c: UBIFS file-system description object
193 * @key: key of index node
194 * @level: index node level
195 * @lnum: LEB number of index node
196 * @offs: offset of index node
198 * If @key / @lnum / @offs identify an index node that was not part of the old
199 * index, then this function returns %0 (obsolete). Else if the index node was
200 * part of the old index but is now dirty %1 is returned, else if it is clean %2
201 * is returned. A negative error code is returned on failure.
203 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
204 int level, int lnum, int offs)
206 int ret;
208 ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
209 if (ret < 0)
210 return ret; /* Error code */
211 if (ret == 0)
212 if (find_old_idx(c, lnum, offs))
213 return 1;
214 return ret;
218 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
219 * @c: UBIFS file-system description object
220 * @p: return LEB number here
222 * This function lays out new index nodes for dirty znodes using in-the-gaps
223 * method of TNC commit.
224 * This function merely puts the next znode into the next gap, making no attempt
225 * to try to maximise the number of znodes that fit.
226 * This function returns the number of index nodes written into the gaps, or a
227 * negative error code on failure.
229 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
231 struct ubifs_scan_leb *sleb;
232 struct ubifs_scan_node *snod;
233 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
235 tot_written = 0;
236 /* Get an index LEB with lots of obsolete index nodes */
237 lnum = ubifs_find_dirty_idx_leb(c);
238 if (lnum < 0)
240 * There also may be dirt in the index head that could be
241 * filled, however we do not check there at present.
243 return lnum; /* Error code */
244 *p = lnum;
245 dbg_gc("LEB %d", lnum);
247 * Scan the index LEB. We use the generic scan for this even though
248 * it is more comprehensive and less efficient than is needed for this
249 * purpose.
251 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
252 c->ileb_len = 0;
253 if (IS_ERR(sleb))
254 return PTR_ERR(sleb);
255 gap_start = 0;
256 list_for_each_entry(snod, &sleb->nodes, list) {
257 struct ubifs_idx_node *idx;
258 int in_use, level;
260 ubifs_assert(snod->type == UBIFS_IDX_NODE);
261 idx = snod->node;
262 key_read(c, ubifs_idx_key(c, idx), &snod->key);
263 level = le16_to_cpu(idx->level);
264 /* Determine if the index node is in use (not obsolete) */
265 in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
266 snod->offs);
267 if (in_use < 0) {
268 ubifs_scan_destroy(sleb);
269 return in_use; /* Error code */
271 if (in_use) {
272 if (in_use == 1)
273 dirt += ALIGN(snod->len, 8);
275 * The obsolete index nodes form gaps that can be
276 * overwritten. This gap has ended because we have
277 * found an index node that is still in use
278 * i.e. not obsolete
280 gap_end = snod->offs;
281 /* Try to fill gap */
282 written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
283 if (written < 0) {
284 ubifs_scan_destroy(sleb);
285 return written; /* Error code */
287 tot_written += written;
288 gap_start = ALIGN(snod->offs + snod->len, 8);
291 ubifs_scan_destroy(sleb);
292 c->ileb_len = c->leb_size;
293 gap_end = c->leb_size;
294 /* Try to fill gap */
295 written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
296 if (written < 0)
297 return written; /* Error code */
298 tot_written += written;
299 if (tot_written == 0) {
300 struct ubifs_lprops lp;
302 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
303 err = ubifs_read_one_lp(c, lnum, &lp);
304 if (err)
305 return err;
306 if (lp.free == c->leb_size) {
308 * We must have snatched this LEB from the idx_gc list
309 * so we need to correct the free and dirty space.
311 err = ubifs_change_one_lp(c, lnum,
312 c->leb_size - c->ileb_len,
313 dirt, 0, 0, 0);
314 if (err)
315 return err;
317 return 0;
319 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
320 0, 0, 0);
321 if (err)
322 return err;
323 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
324 if (err)
325 return err;
326 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
327 return tot_written;
331 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
332 * @c: UBIFS file-system description object
333 * @cnt: number of znodes to commit
335 * This function returns the number of empty LEBs needed to commit @cnt znodes
336 * to the current index head. The number is not exact and may be more than
337 * needed.
339 static int get_leb_cnt(struct ubifs_info *c, int cnt)
341 int d;
343 /* Assume maximum index node size (i.e. overestimate space needed) */
344 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
345 if (cnt < 0)
346 cnt = 0;
347 d = c->leb_size / c->max_idx_node_sz;
348 return DIV_ROUND_UP(cnt, d);
352 * layout_in_gaps - in-the-gaps method of committing TNC.
353 * @c: UBIFS file-system description object
354 * @cnt: number of dirty znodes to commit.
356 * This function lays out new index nodes for dirty znodes using in-the-gaps
357 * method of TNC commit.
359 * This function returns %0 on success and a negative error code on failure.
361 static int layout_in_gaps(struct ubifs_info *c, int cnt)
363 int err, leb_needed_cnt, written, *p;
365 dbg_gc("%d znodes to write", cnt);
367 c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
368 if (!c->gap_lebs)
369 return -ENOMEM;
371 p = c->gap_lebs;
372 do {
373 ubifs_assert(p < c->gap_lebs + c->lst.idx_lebs);
374 written = layout_leb_in_gaps(c, p);
375 if (written < 0) {
376 err = written;
377 if (err != -ENOSPC) {
378 kfree(c->gap_lebs);
379 c->gap_lebs = NULL;
380 return err;
382 if (!dbg_is_chk_index(c)) {
384 * Do not print scary warnings if the debugging
385 * option which forces in-the-gaps is enabled.
387 ubifs_warn(c, "out of space");
388 ubifs_dump_budg(c, &c->bi);
389 ubifs_dump_lprops(c);
391 /* Try to commit anyway */
392 break;
394 p++;
395 cnt -= written;
396 leb_needed_cnt = get_leb_cnt(c, cnt);
397 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
398 leb_needed_cnt, c->ileb_cnt);
399 } while (leb_needed_cnt > c->ileb_cnt);
401 *p = -1;
402 return 0;
406 * layout_in_empty_space - layout index nodes in empty space.
407 * @c: UBIFS file-system description object
409 * This function lays out new index nodes for dirty znodes using empty LEBs.
411 * This function returns %0 on success and a negative error code on failure.
413 static int layout_in_empty_space(struct ubifs_info *c)
415 struct ubifs_znode *znode, *cnext, *zp;
416 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
417 int wlen, blen, err;
419 cnext = c->enext;
420 if (!cnext)
421 return 0;
423 lnum = c->ihead_lnum;
424 buf_offs = c->ihead_offs;
426 buf_len = ubifs_idx_node_sz(c, c->fanout);
427 buf_len = ALIGN(buf_len, c->min_io_size);
428 used = 0;
429 avail = buf_len;
431 /* Ensure there is enough room for first write */
432 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
433 if (buf_offs + next_len > c->leb_size)
434 lnum = -1;
436 while (1) {
437 znode = cnext;
439 len = ubifs_idx_node_sz(c, znode->child_cnt);
441 /* Determine the index node position */
442 if (lnum == -1) {
443 if (c->ileb_nxt >= c->ileb_cnt) {
444 ubifs_err(c, "out of space");
445 return -ENOSPC;
447 lnum = c->ilebs[c->ileb_nxt++];
448 buf_offs = 0;
449 used = 0;
450 avail = buf_len;
453 offs = buf_offs + used;
455 znode->lnum = lnum;
456 znode->offs = offs;
457 znode->len = len;
459 /* Update the parent */
460 zp = znode->parent;
461 if (zp) {
462 struct ubifs_zbranch *zbr;
463 int i;
465 i = znode->iip;
466 zbr = &zp->zbranch[i];
467 zbr->lnum = lnum;
468 zbr->offs = offs;
469 zbr->len = len;
470 } else {
471 c->zroot.lnum = lnum;
472 c->zroot.offs = offs;
473 c->zroot.len = len;
475 c->calc_idx_sz += ALIGN(len, 8);
478 * Once lprops is updated, we can decrease the dirty znode count
479 * but it is easier to just do it here.
481 atomic_long_dec(&c->dirty_zn_cnt);
484 * Calculate the next index node length to see if there is
485 * enough room for it
487 cnext = znode->cnext;
488 if (cnext == c->cnext)
489 next_len = 0;
490 else
491 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
493 /* Update buffer positions */
494 wlen = used + len;
495 used += ALIGN(len, 8);
496 avail -= ALIGN(len, 8);
498 if (next_len != 0 &&
499 buf_offs + used + next_len <= c->leb_size &&
500 avail > 0)
501 continue;
503 if (avail <= 0 && next_len &&
504 buf_offs + used + next_len <= c->leb_size)
505 blen = buf_len;
506 else
507 blen = ALIGN(wlen, c->min_io_size);
509 /* The buffer is full or there are no more znodes to do */
510 buf_offs += blen;
511 if (next_len) {
512 if (buf_offs + next_len > c->leb_size) {
513 err = ubifs_update_one_lp(c, lnum,
514 c->leb_size - buf_offs, blen - used,
515 0, 0);
516 if (err)
517 return err;
518 lnum = -1;
520 used -= blen;
521 if (used < 0)
522 used = 0;
523 avail = buf_len - used;
524 continue;
526 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
527 blen - used, 0, 0);
528 if (err)
529 return err;
530 break;
533 c->dbg->new_ihead_lnum = lnum;
534 c->dbg->new_ihead_offs = buf_offs;
536 return 0;
540 * layout_commit - determine positions of index nodes to commit.
541 * @c: UBIFS file-system description object
542 * @no_space: indicates that insufficient empty LEBs were allocated
543 * @cnt: number of znodes to commit
545 * Calculate and update the positions of index nodes to commit. If there were
546 * an insufficient number of empty LEBs allocated, then index nodes are placed
547 * into the gaps created by obsolete index nodes in non-empty index LEBs. For
548 * this purpose, an obsolete index node is one that was not in the index as at
549 * the end of the last commit. To write "in-the-gaps" requires that those index
550 * LEBs are updated atomically in-place.
552 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
554 int err;
556 if (no_space) {
557 err = layout_in_gaps(c, cnt);
558 if (err)
559 return err;
561 err = layout_in_empty_space(c);
562 return err;
566 * find_first_dirty - find first dirty znode.
567 * @znode: znode to begin searching from
569 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
571 int i, cont;
573 if (!znode)
574 return NULL;
576 while (1) {
577 if (znode->level == 0) {
578 if (ubifs_zn_dirty(znode))
579 return znode;
580 return NULL;
582 cont = 0;
583 for (i = 0; i < znode->child_cnt; i++) {
584 struct ubifs_zbranch *zbr = &znode->zbranch[i];
586 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
587 znode = zbr->znode;
588 cont = 1;
589 break;
592 if (!cont) {
593 if (ubifs_zn_dirty(znode))
594 return znode;
595 return NULL;
601 * find_next_dirty - find next dirty znode.
602 * @znode: znode to begin searching from
604 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
606 int n = znode->iip + 1;
608 znode = znode->parent;
609 if (!znode)
610 return NULL;
611 for (; n < znode->child_cnt; n++) {
612 struct ubifs_zbranch *zbr = &znode->zbranch[n];
614 if (zbr->znode && ubifs_zn_dirty(zbr->znode))
615 return find_first_dirty(zbr->znode);
617 return znode;
621 * get_znodes_to_commit - create list of dirty znodes to commit.
622 * @c: UBIFS file-system description object
624 * This function returns the number of znodes to commit.
626 static int get_znodes_to_commit(struct ubifs_info *c)
628 struct ubifs_znode *znode, *cnext;
629 int cnt = 0;
631 c->cnext = find_first_dirty(c->zroot.znode);
632 znode = c->enext = c->cnext;
633 if (!znode) {
634 dbg_cmt("no znodes to commit");
635 return 0;
637 cnt += 1;
638 while (1) {
639 ubifs_assert(!ubifs_zn_cow(znode));
640 __set_bit(COW_ZNODE, &znode->flags);
641 znode->alt = 0;
642 cnext = find_next_dirty(znode);
643 if (!cnext) {
644 znode->cnext = c->cnext;
645 break;
647 znode->cnext = cnext;
648 znode = cnext;
649 cnt += 1;
651 dbg_cmt("committing %d znodes", cnt);
652 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
653 return cnt;
657 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
658 * @c: UBIFS file-system description object
659 * @cnt: number of znodes to commit
661 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
662 * empty LEBs. %0 is returned on success, otherwise a negative error code
663 * is returned.
665 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
667 int i, leb_cnt, lnum;
669 c->ileb_cnt = 0;
670 c->ileb_nxt = 0;
671 leb_cnt = get_leb_cnt(c, cnt);
672 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
673 if (!leb_cnt)
674 return 0;
675 c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
676 if (!c->ilebs)
677 return -ENOMEM;
678 for (i = 0; i < leb_cnt; i++) {
679 lnum = ubifs_find_free_leb_for_idx(c);
680 if (lnum < 0)
681 return lnum;
682 c->ilebs[c->ileb_cnt++] = lnum;
683 dbg_cmt("LEB %d", lnum);
685 if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
686 return -ENOSPC;
687 return 0;
691 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
692 * @c: UBIFS file-system description object
694 * It is possible that we allocate more empty LEBs for the commit than we need.
695 * This functions frees the surplus.
697 * This function returns %0 on success and a negative error code on failure.
699 static int free_unused_idx_lebs(struct ubifs_info *c)
701 int i, err = 0, lnum, er;
703 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
704 lnum = c->ilebs[i];
705 dbg_cmt("LEB %d", lnum);
706 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
707 LPROPS_INDEX | LPROPS_TAKEN, 0);
708 if (!err)
709 err = er;
711 return err;
715 * free_idx_lebs - free unused LEBs after commit end.
716 * @c: UBIFS file-system description object
718 * This function returns %0 on success and a negative error code on failure.
720 static int free_idx_lebs(struct ubifs_info *c)
722 int err;
724 err = free_unused_idx_lebs(c);
725 kfree(c->ilebs);
726 c->ilebs = NULL;
727 return err;
731 * ubifs_tnc_start_commit - start TNC commit.
732 * @c: UBIFS file-system description object
733 * @zroot: new index root position is returned here
735 * This function prepares the list of indexing nodes to commit and lays out
736 * their positions on flash. If there is not enough free space it uses the
737 * in-gap commit method. Returns zero in case of success and a negative error
738 * code in case of failure.
740 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
742 int err = 0, cnt;
744 mutex_lock(&c->tnc_mutex);
745 err = dbg_check_tnc(c, 1);
746 if (err)
747 goto out;
748 cnt = get_znodes_to_commit(c);
749 if (cnt != 0) {
750 int no_space = 0;
752 err = alloc_idx_lebs(c, cnt);
753 if (err == -ENOSPC)
754 no_space = 1;
755 else if (err)
756 goto out_free;
757 err = layout_commit(c, no_space, cnt);
758 if (err)
759 goto out_free;
760 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
761 err = free_unused_idx_lebs(c);
762 if (err)
763 goto out;
765 destroy_old_idx(c);
766 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
768 err = ubifs_save_dirty_idx_lnums(c);
769 if (err)
770 goto out;
772 spin_lock(&c->space_lock);
774 * Although we have not finished committing yet, update size of the
775 * committed index ('c->bi.old_idx_sz') and zero out the index growth
776 * budget. It is OK to do this now, because we've reserved all the
777 * space which is needed to commit the index, and it is save for the
778 * budgeting subsystem to assume the index is already committed,
779 * even though it is not.
781 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
782 c->bi.old_idx_sz = c->calc_idx_sz;
783 c->bi.uncommitted_idx = 0;
784 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
785 spin_unlock(&c->space_lock);
786 mutex_unlock(&c->tnc_mutex);
788 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
789 dbg_cmt("size of index %llu", c->calc_idx_sz);
790 return err;
792 out_free:
793 free_idx_lebs(c);
794 out:
795 mutex_unlock(&c->tnc_mutex);
796 return err;
800 * write_index - write index nodes.
801 * @c: UBIFS file-system description object
803 * This function writes the index nodes whose positions were laid out in the
804 * layout_in_empty_space function.
806 static int write_index(struct ubifs_info *c)
808 struct ubifs_idx_node *idx;
809 struct ubifs_znode *znode, *cnext;
810 int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
811 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
813 cnext = c->enext;
814 if (!cnext)
815 return 0;
818 * Always write index nodes to the index head so that index nodes and
819 * other types of nodes are never mixed in the same erase block.
821 lnum = c->ihead_lnum;
822 buf_offs = c->ihead_offs;
824 /* Allocate commit buffer */
825 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
826 used = 0;
827 avail = buf_len;
829 /* Ensure there is enough room for first write */
830 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
831 if (buf_offs + next_len > c->leb_size) {
832 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
833 LPROPS_TAKEN);
834 if (err)
835 return err;
836 lnum = -1;
839 while (1) {
840 cond_resched();
842 znode = cnext;
843 idx = c->cbuf + used;
845 /* Make index node */
846 idx->ch.node_type = UBIFS_IDX_NODE;
847 idx->child_cnt = cpu_to_le16(znode->child_cnt);
848 idx->level = cpu_to_le16(znode->level);
849 for (i = 0; i < znode->child_cnt; i++) {
850 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
851 struct ubifs_zbranch *zbr = &znode->zbranch[i];
853 key_write_idx(c, &zbr->key, &br->key);
854 br->lnum = cpu_to_le32(zbr->lnum);
855 br->offs = cpu_to_le32(zbr->offs);
856 br->len = cpu_to_le32(zbr->len);
857 if (!zbr->lnum || !zbr->len) {
858 ubifs_err(c, "bad ref in znode");
859 ubifs_dump_znode(c, znode);
860 if (zbr->znode)
861 ubifs_dump_znode(c, zbr->znode);
864 len = ubifs_idx_node_sz(c, znode->child_cnt);
865 ubifs_prepare_node(c, idx, len, 0);
867 /* Determine the index node position */
868 if (lnum == -1) {
869 lnum = c->ilebs[lnum_pos++];
870 buf_offs = 0;
871 used = 0;
872 avail = buf_len;
874 offs = buf_offs + used;
876 if (lnum != znode->lnum || offs != znode->offs ||
877 len != znode->len) {
878 ubifs_err(c, "inconsistent znode posn");
879 return -EINVAL;
882 /* Grab some stuff from znode while we still can */
883 cnext = znode->cnext;
885 ubifs_assert(ubifs_zn_dirty(znode));
886 ubifs_assert(ubifs_zn_cow(znode));
889 * It is important that other threads should see %DIRTY_ZNODE
890 * flag cleared before %COW_ZNODE. Specifically, it matters in
891 * the 'dirty_cow_znode()' function. This is the reason for the
892 * first barrier. Also, we want the bit changes to be seen to
893 * other threads ASAP, to avoid unnecesarry copying, which is
894 * the reason for the second barrier.
896 clear_bit(DIRTY_ZNODE, &znode->flags);
897 smp_mb__before_atomic();
898 clear_bit(COW_ZNODE, &znode->flags);
899 smp_mb__after_atomic();
902 * We have marked the znode as clean but have not updated the
903 * @c->clean_zn_cnt counter. If this znode becomes dirty again
904 * before 'free_obsolete_znodes()' is called, then
905 * @c->clean_zn_cnt will be decremented before it gets
906 * incremented (resulting in 2 decrements for the same znode).
907 * This means that @c->clean_zn_cnt may become negative for a
908 * while.
910 * Q: why we cannot increment @c->clean_zn_cnt?
911 * A: because we do not have the @c->tnc_mutex locked, and the
912 * following code would be racy and buggy:
914 * if (!ubifs_zn_obsolete(znode)) {
915 * atomic_long_inc(&c->clean_zn_cnt);
916 * atomic_long_inc(&ubifs_clean_zn_cnt);
919 * Thus, we just delay the @c->clean_zn_cnt update until we
920 * have the mutex locked.
923 /* Do not access znode from this point on */
925 /* Update buffer positions */
926 wlen = used + len;
927 used += ALIGN(len, 8);
928 avail -= ALIGN(len, 8);
931 * Calculate the next index node length to see if there is
932 * enough room for it
934 if (cnext == c->cnext)
935 next_len = 0;
936 else
937 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
939 nxt_offs = buf_offs + used + next_len;
940 if (next_len && nxt_offs <= c->leb_size) {
941 if (avail > 0)
942 continue;
943 else
944 blen = buf_len;
945 } else {
946 wlen = ALIGN(wlen, 8);
947 blen = ALIGN(wlen, c->min_io_size);
948 ubifs_pad(c, c->cbuf + wlen, blen - wlen);
951 /* The buffer is full or there are no more znodes to do */
952 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
953 if (err)
954 return err;
955 buf_offs += blen;
956 if (next_len) {
957 if (nxt_offs > c->leb_size) {
958 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
959 0, LPROPS_TAKEN);
960 if (err)
961 return err;
962 lnum = -1;
964 used -= blen;
965 if (used < 0)
966 used = 0;
967 avail = buf_len - used;
968 memmove(c->cbuf, c->cbuf + blen, used);
969 continue;
971 break;
974 if (lnum != c->dbg->new_ihead_lnum ||
975 buf_offs != c->dbg->new_ihead_offs) {
976 ubifs_err(c, "inconsistent ihead");
977 return -EINVAL;
980 c->ihead_lnum = lnum;
981 c->ihead_offs = buf_offs;
983 return 0;
987 * free_obsolete_znodes - free obsolete znodes.
988 * @c: UBIFS file-system description object
990 * At the end of commit end, obsolete znodes are freed.
992 static void free_obsolete_znodes(struct ubifs_info *c)
994 struct ubifs_znode *znode, *cnext;
996 cnext = c->cnext;
997 do {
998 znode = cnext;
999 cnext = znode->cnext;
1000 if (ubifs_zn_obsolete(znode))
1001 kfree(znode);
1002 else {
1003 znode->cnext = NULL;
1004 atomic_long_inc(&c->clean_zn_cnt);
1005 atomic_long_inc(&ubifs_clean_zn_cnt);
1007 } while (cnext != c->cnext);
1011 * return_gap_lebs - return LEBs used by the in-gap commit method.
1012 * @c: UBIFS file-system description object
1014 * This function clears the "taken" flag for the LEBs which were used by the
1015 * "commit in-the-gaps" method.
1017 static int return_gap_lebs(struct ubifs_info *c)
1019 int *p, err;
1021 if (!c->gap_lebs)
1022 return 0;
1024 dbg_cmt("");
1025 for (p = c->gap_lebs; *p != -1; p++) {
1026 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1027 LPROPS_TAKEN, 0);
1028 if (err)
1029 return err;
1032 kfree(c->gap_lebs);
1033 c->gap_lebs = NULL;
1034 return 0;
1038 * ubifs_tnc_end_commit - update the TNC for commit end.
1039 * @c: UBIFS file-system description object
1041 * Write the dirty znodes.
1043 int ubifs_tnc_end_commit(struct ubifs_info *c)
1045 int err;
1047 if (!c->cnext)
1048 return 0;
1050 err = return_gap_lebs(c);
1051 if (err)
1052 return err;
1054 err = write_index(c);
1055 if (err)
1056 return err;
1058 mutex_lock(&c->tnc_mutex);
1060 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1062 free_obsolete_znodes(c);
1064 c->cnext = NULL;
1065 kfree(c->ilebs);
1066 c->ilebs = NULL;
1068 mutex_unlock(&c->tnc_mutex);
1070 return 0;