2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
47 * Allocation group level functions.
50 xfs_ialloc_cluster_alignment(
53 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
54 mp
->m_sb
.sb_inoalignmt
>=
55 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
56 return mp
->m_sb
.sb_inoalignmt
;
61 * Lookup a record by ino in the btree given by cur.
65 struct xfs_btree_cur
*cur
, /* btree cursor */
66 xfs_agino_t ino
, /* starting inode of chunk */
67 xfs_lookup_t dir
, /* <=, >=, == */
68 int *stat
) /* success/failure */
70 cur
->bc_rec
.i
.ir_startino
= ino
;
71 cur
->bc_rec
.i
.ir_holemask
= 0;
72 cur
->bc_rec
.i
.ir_count
= 0;
73 cur
->bc_rec
.i
.ir_freecount
= 0;
74 cur
->bc_rec
.i
.ir_free
= 0;
75 return xfs_btree_lookup(cur
, dir
, stat
);
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
82 STATIC
int /* error */
84 struct xfs_btree_cur
*cur
, /* btree cursor */
85 xfs_inobt_rec_incore_t
*irec
) /* btree record */
87 union xfs_btree_rec rec
;
89 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
90 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
91 rec
.inobt
.ir_u
.sp
.ir_holemask
= cpu_to_be16(irec
->ir_holemask
);
92 rec
.inobt
.ir_u
.sp
.ir_count
= irec
->ir_count
;
93 rec
.inobt
.ir_u
.sp
.ir_freecount
= irec
->ir_freecount
;
95 /* ir_holemask/ir_count not supported on-disk */
96 rec
.inobt
.ir_u
.f
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
98 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
99 return xfs_btree_update(cur
, &rec
);
103 * Get the data from the pointed-to record.
107 struct xfs_btree_cur
*cur
, /* btree cursor */
108 xfs_inobt_rec_incore_t
*irec
, /* btree record */
109 int *stat
) /* output: success/failure */
111 union xfs_btree_rec
*rec
;
114 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
115 if (error
|| *stat
== 0)
118 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
119 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
120 irec
->ir_holemask
= be16_to_cpu(rec
->inobt
.ir_u
.sp
.ir_holemask
);
121 irec
->ir_count
= rec
->inobt
.ir_u
.sp
.ir_count
;
122 irec
->ir_freecount
= rec
->inobt
.ir_u
.sp
.ir_freecount
;
125 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
126 * values for full inode chunks.
128 irec
->ir_holemask
= XFS_INOBT_HOLEMASK_FULL
;
129 irec
->ir_count
= XFS_INODES_PER_CHUNK
;
131 be32_to_cpu(rec
->inobt
.ir_u
.f
.ir_freecount
);
133 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
139 * Insert a single inobt record. Cursor must already point to desired location.
142 xfs_inobt_insert_rec(
143 struct xfs_btree_cur
*cur
,
150 cur
->bc_rec
.i
.ir_holemask
= holemask
;
151 cur
->bc_rec
.i
.ir_count
= count
;
152 cur
->bc_rec
.i
.ir_freecount
= freecount
;
153 cur
->bc_rec
.i
.ir_free
= free
;
154 return xfs_btree_insert(cur
, stat
);
158 * Insert records describing a newly allocated inode chunk into the inobt.
162 struct xfs_mount
*mp
,
163 struct xfs_trans
*tp
,
164 struct xfs_buf
*agbp
,
169 struct xfs_btree_cur
*cur
;
170 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
171 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
176 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
178 for (thisino
= newino
;
179 thisino
< newino
+ newlen
;
180 thisino
+= XFS_INODES_PER_CHUNK
) {
181 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
183 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
188 error
= xfs_inobt_insert_rec(cur
, XFS_INOBT_HOLEMASK_FULL
,
189 XFS_INODES_PER_CHUNK
,
190 XFS_INODES_PER_CHUNK
,
191 XFS_INOBT_ALL_FREE
, &i
);
193 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
199 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
205 * Verify that the number of free inodes in the AGI is correct.
209 xfs_check_agi_freecount(
210 struct xfs_btree_cur
*cur
,
213 if (cur
->bc_nlevels
== 1) {
214 xfs_inobt_rec_incore_t rec
;
219 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
224 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
229 freecount
+= rec
.ir_freecount
;
230 error
= xfs_btree_increment(cur
, 0, &i
);
236 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
237 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
242 #define xfs_check_agi_freecount(cur, agi) 0
246 * Initialise a new set of inodes. When called without a transaction context
247 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
248 * than logging them (which in a transaction context puts them into the AIL
249 * for writeback rather than the xfsbufd queue).
252 xfs_ialloc_inode_init(
253 struct xfs_mount
*mp
,
254 struct xfs_trans
*tp
,
255 struct list_head
*buffer_list
,
259 xfs_agblock_t length
,
262 struct xfs_buf
*fbuf
;
263 struct xfs_dinode
*free
;
264 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
271 * Loop over the new block(s), filling in the inodes. For small block
272 * sizes, manipulate the inodes in buffers which are multiples of the
275 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
276 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
277 nbufs
= length
/ blks_per_cluster
;
280 * Figure out what version number to use in the inodes we create. If
281 * the superblock version has caught up to the one that supports the new
282 * inode format, then use the new inode version. Otherwise use the old
283 * version so that old kernels will continue to be able to use the file
286 * For v3 inodes, we also need to write the inode number into the inode,
287 * so calculate the first inode number of the chunk here as
288 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
289 * across multiple filesystem blocks (such as a cluster) and so cannot
290 * be used in the cluster buffer loop below.
292 * Further, because we are writing the inode directly into the buffer
293 * and calculating a CRC on the entire inode, we have ot log the entire
294 * inode so that the entire range the CRC covers is present in the log.
295 * That means for v3 inode we log the entire buffer rather than just the
298 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
300 ino
= XFS_AGINO_TO_INO(mp
, agno
,
301 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
304 * log the initialisation that is about to take place as an
305 * logical operation. This means the transaction does not
306 * need to log the physical changes to the inode buffers as log
307 * recovery will know what initialisation is actually needed.
308 * Hence we only need to log the buffers as "ordered" buffers so
309 * they track in the AIL as if they were physically logged.
312 xfs_icreate_log(tp
, agno
, agbno
, icount
,
313 mp
->m_sb
.sb_inodesize
, length
, gen
);
317 for (j
= 0; j
< nbufs
; j
++) {
321 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
322 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
323 mp
->m_bsize
* blks_per_cluster
,
328 /* Initialize the inode buffers and log them appropriately. */
329 fbuf
->b_ops
= &xfs_inode_buf_ops
;
330 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
331 for (i
= 0; i
< inodes_per_cluster
; i
++) {
332 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
333 uint isize
= xfs_dinode_size(version
);
335 free
= xfs_make_iptr(mp
, fbuf
, i
);
336 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
337 free
->di_version
= version
;
338 free
->di_gen
= cpu_to_be32(gen
);
339 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
342 free
->di_ino
= cpu_to_be64(ino
);
344 uuid_copy(&free
->di_uuid
,
345 &mp
->m_sb
.sb_meta_uuid
);
346 xfs_dinode_calc_crc(mp
, free
);
348 /* just log the inode core */
349 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
350 ioffset
+ isize
- 1);
356 * Mark the buffer as an inode allocation buffer so it
357 * sticks in AIL at the point of this allocation
358 * transaction. This ensures the they are on disk before
359 * the tail of the log can be moved past this
360 * transaction (i.e. by preventing relogging from moving
361 * it forward in the log).
363 xfs_trans_inode_alloc_buf(tp
, fbuf
);
366 * Mark the buffer as ordered so that they are
367 * not physically logged in the transaction but
368 * still tracked in the AIL as part of the
369 * transaction and pin the log appropriately.
371 xfs_trans_ordered_buf(tp
, fbuf
);
372 xfs_trans_log_buf(tp
, fbuf
, 0,
373 BBTOB(fbuf
->b_length
) - 1);
376 fbuf
->b_flags
|= XBF_DONE
;
377 xfs_buf_delwri_queue(fbuf
, buffer_list
);
385 * Align startino and allocmask for a recently allocated sparse chunk such that
386 * they are fit for insertion (or merge) into the on-disk inode btrees.
390 * When enabled, sparse inode support increases the inode alignment from cluster
391 * size to inode chunk size. This means that the minimum range between two
392 * non-adjacent inode records in the inobt is large enough for a full inode
393 * record. This allows for cluster sized, cluster aligned block allocation
394 * without need to worry about whether the resulting inode record overlaps with
395 * another record in the tree. Without this basic rule, we would have to deal
396 * with the consequences of overlap by potentially undoing recent allocations in
397 * the inode allocation codepath.
399 * Because of this alignment rule (which is enforced on mount), there are two
400 * inobt possibilities for newly allocated sparse chunks. One is that the
401 * aligned inode record for the chunk covers a range of inodes not already
402 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
403 * other is that a record already exists at the aligned startino that considers
404 * the newly allocated range as sparse. In the latter case, record content is
405 * merged in hope that sparse inode chunks fill to full chunks over time.
408 xfs_align_sparse_ino(
409 struct xfs_mount
*mp
,
410 xfs_agino_t
*startino
,
417 agbno
= XFS_AGINO_TO_AGBNO(mp
, *startino
);
418 mod
= agbno
% mp
->m_sb
.sb_inoalignmt
;
422 /* calculate the inode offset and align startino */
423 offset
= mod
<< mp
->m_sb
.sb_inopblog
;
427 * Since startino has been aligned down, left shift allocmask such that
428 * it continues to represent the same physical inodes relative to the
431 *allocmask
<<= offset
/ XFS_INODES_PER_HOLEMASK_BIT
;
435 * Determine whether the source inode record can merge into the target. Both
436 * records must be sparse, the inode ranges must match and there must be no
437 * allocation overlap between the records.
440 __xfs_inobt_can_merge(
441 struct xfs_inobt_rec_incore
*trec
, /* tgt record */
442 struct xfs_inobt_rec_incore
*srec
) /* src record */
447 /* records must cover the same inode range */
448 if (trec
->ir_startino
!= srec
->ir_startino
)
451 /* both records must be sparse */
452 if (!xfs_inobt_issparse(trec
->ir_holemask
) ||
453 !xfs_inobt_issparse(srec
->ir_holemask
))
456 /* both records must track some inodes */
457 if (!trec
->ir_count
|| !srec
->ir_count
)
460 /* can't exceed capacity of a full record */
461 if (trec
->ir_count
+ srec
->ir_count
> XFS_INODES_PER_CHUNK
)
464 /* verify there is no allocation overlap */
465 talloc
= xfs_inobt_irec_to_allocmask(trec
);
466 salloc
= xfs_inobt_irec_to_allocmask(srec
);
474 * Merge the source inode record into the target. The caller must call
475 * __xfs_inobt_can_merge() to ensure the merge is valid.
478 __xfs_inobt_rec_merge(
479 struct xfs_inobt_rec_incore
*trec
, /* target */
480 struct xfs_inobt_rec_incore
*srec
) /* src */
482 ASSERT(trec
->ir_startino
== srec
->ir_startino
);
484 /* combine the counts */
485 trec
->ir_count
+= srec
->ir_count
;
486 trec
->ir_freecount
+= srec
->ir_freecount
;
489 * Merge the holemask and free mask. For both fields, 0 bits refer to
490 * allocated inodes. We combine the allocated ranges with bitwise AND.
492 trec
->ir_holemask
&= srec
->ir_holemask
;
493 trec
->ir_free
&= srec
->ir_free
;
497 * Insert a new sparse inode chunk into the associated inode btree. The inode
498 * record for the sparse chunk is pre-aligned to a startino that should match
499 * any pre-existing sparse inode record in the tree. This allows sparse chunks
502 * This function supports two modes of handling preexisting records depending on
503 * the merge flag. If merge is true, the provided record is merged with the
504 * existing record and updated in place. The merged record is returned in nrec.
505 * If merge is false, an existing record is replaced with the provided record.
506 * If no preexisting record exists, the provided record is always inserted.
508 * It is considered corruption if a merge is requested and not possible. Given
509 * the sparse inode alignment constraints, this should never happen.
512 xfs_inobt_insert_sprec(
513 struct xfs_mount
*mp
,
514 struct xfs_trans
*tp
,
515 struct xfs_buf
*agbp
,
517 struct xfs_inobt_rec_incore
*nrec
, /* in/out: new/merged rec. */
518 bool merge
) /* merge or replace */
520 struct xfs_btree_cur
*cur
;
521 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
522 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
525 struct xfs_inobt_rec_incore rec
;
527 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
529 /* the new record is pre-aligned so we know where to look */
530 error
= xfs_inobt_lookup(cur
, nrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
533 /* if nothing there, insert a new record and return */
535 error
= xfs_inobt_insert_rec(cur
, nrec
->ir_holemask
,
536 nrec
->ir_count
, nrec
->ir_freecount
,
540 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
546 * A record exists at this startino. Merge or replace the record
547 * depending on what we've been asked to do.
550 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
553 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
554 XFS_WANT_CORRUPTED_GOTO(mp
,
555 rec
.ir_startino
== nrec
->ir_startino
,
559 * This should never fail. If we have coexisting records that
560 * cannot merge, something is seriously wrong.
562 XFS_WANT_CORRUPTED_GOTO(mp
, __xfs_inobt_can_merge(nrec
, &rec
),
565 trace_xfs_irec_merge_pre(mp
, agno
, rec
.ir_startino
,
566 rec
.ir_holemask
, nrec
->ir_startino
,
569 /* merge to nrec to output the updated record */
570 __xfs_inobt_rec_merge(nrec
, &rec
);
572 trace_xfs_irec_merge_post(mp
, agno
, nrec
->ir_startino
,
575 error
= xfs_inobt_rec_check_count(mp
, nrec
);
580 error
= xfs_inobt_update(cur
, nrec
);
585 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
588 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
593 * Allocate new inodes in the allocation group specified by agbp.
594 * Return 0 for success, else error code.
596 STATIC
int /* error code or 0 */
598 xfs_trans_t
*tp
, /* transaction pointer */
599 xfs_buf_t
*agbp
, /* alloc group buffer */
602 xfs_agi_t
*agi
; /* allocation group header */
603 xfs_alloc_arg_t args
; /* allocation argument structure */
606 xfs_agino_t newino
; /* new first inode's number */
607 xfs_agino_t newlen
; /* new number of inodes */
608 int isaligned
= 0; /* inode allocation at stripe unit */
610 uint16_t allocmask
= (uint16_t) -1; /* init. to full chunk */
611 struct xfs_inobt_rec_incore rec
;
612 struct xfs_perag
*pag
;
615 memset(&args
, 0, sizeof(args
));
617 args
.mp
= tp
->t_mountp
;
618 args
.fsbno
= NULLFSBLOCK
;
619 xfs_rmap_ag_owner(&args
.oinfo
, XFS_RMAP_OWN_INODES
);
622 /* randomly do sparse inode allocations */
623 if (xfs_sb_version_hassparseinodes(&tp
->t_mountp
->m_sb
) &&
624 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
)
625 do_sparse
= prandom_u32() & 1;
629 * Locking will ensure that we don't have two callers in here
632 newlen
= args
.mp
->m_ialloc_inos
;
633 if (args
.mp
->m_maxicount
&&
634 percpu_counter_read_positive(&args
.mp
->m_icount
) + newlen
>
635 args
.mp
->m_maxicount
)
637 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
639 * First try to allocate inodes contiguous with the last-allocated
640 * chunk of inodes. If the filesystem is striped, this will fill
641 * an entire stripe unit with inodes.
643 agi
= XFS_BUF_TO_AGI(agbp
);
644 newino
= be32_to_cpu(agi
->agi_newino
);
645 agno
= be32_to_cpu(agi
->agi_seqno
);
646 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
647 args
.mp
->m_ialloc_blks
;
650 if (likely(newino
!= NULLAGINO
&&
651 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
652 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
653 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
657 * We need to take into account alignment here to ensure that
658 * we don't modify the free list if we fail to have an exact
659 * block. If we don't have an exact match, and every oher
660 * attempt allocation attempt fails, we'll end up cancelling
661 * a dirty transaction and shutting down.
663 * For an exact allocation, alignment must be 1,
664 * however we need to take cluster alignment into account when
665 * fixing up the freelist. Use the minalignslop field to
666 * indicate that extra blocks might be required for alignment,
667 * but not to use them in the actual exact allocation.
670 args
.minalignslop
= xfs_ialloc_cluster_alignment(args
.mp
) - 1;
672 /* Allow space for the inode btree to split. */
673 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
674 if ((error
= xfs_alloc_vextent(&args
)))
678 * This request might have dirtied the transaction if the AG can
679 * satisfy the request, but the exact block was not available.
680 * If the allocation did fail, subsequent requests will relax
681 * the exact agbno requirement and increase the alignment
682 * instead. It is critical that the total size of the request
683 * (len + alignment + slop) does not increase from this point
684 * on, so reset minalignslop to ensure it is not included in
685 * subsequent requests.
687 args
.minalignslop
= 0;
690 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
692 * Set the alignment for the allocation.
693 * If stripe alignment is turned on then align at stripe unit
695 * If the cluster size is smaller than a filesystem block
696 * then we're doing I/O for inodes in filesystem block size
697 * pieces, so don't need alignment anyway.
700 if (args
.mp
->m_sinoalign
) {
701 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
702 args
.alignment
= args
.mp
->m_dalign
;
705 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
707 * Need to figure out where to allocate the inode blocks.
708 * Ideally they should be spaced out through the a.g.
709 * For now, just allocate blocks up front.
711 args
.agbno
= be32_to_cpu(agi
->agi_root
);
712 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
714 * Allocate a fixed-size extent of inodes.
716 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
719 * Allow space for the inode btree to split.
721 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
722 if ((error
= xfs_alloc_vextent(&args
)))
727 * If stripe alignment is turned on, then try again with cluster
730 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
731 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
732 args
.agbno
= be32_to_cpu(agi
->agi_root
);
733 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
734 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
735 if ((error
= xfs_alloc_vextent(&args
)))
740 * Finally, try a sparse allocation if the filesystem supports it and
741 * the sparse allocation length is smaller than a full chunk.
743 if (xfs_sb_version_hassparseinodes(&args
.mp
->m_sb
) &&
744 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
&&
745 args
.fsbno
== NULLFSBLOCK
) {
747 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
748 args
.agbno
= be32_to_cpu(agi
->agi_root
);
749 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
750 args
.alignment
= args
.mp
->m_sb
.sb_spino_align
;
753 args
.minlen
= args
.mp
->m_ialloc_min_blks
;
754 args
.maxlen
= args
.minlen
;
757 * The inode record will be aligned to full chunk size. We must
758 * prevent sparse allocation from AG boundaries that result in
759 * invalid inode records, such as records that start at agbno 0
760 * or extend beyond the AG.
762 * Set min agbno to the first aligned, non-zero agbno and max to
763 * the last aligned agbno that is at least one full chunk from
766 args
.min_agbno
= args
.mp
->m_sb
.sb_inoalignmt
;
767 args
.max_agbno
= round_down(args
.mp
->m_sb
.sb_agblocks
,
768 args
.mp
->m_sb
.sb_inoalignmt
) -
769 args
.mp
->m_ialloc_blks
;
771 error
= xfs_alloc_vextent(&args
);
775 newlen
= args
.len
<< args
.mp
->m_sb
.sb_inopblog
;
776 ASSERT(newlen
<= XFS_INODES_PER_CHUNK
);
777 allocmask
= (1 << (newlen
/ XFS_INODES_PER_HOLEMASK_BIT
)) - 1;
780 if (args
.fsbno
== NULLFSBLOCK
) {
784 ASSERT(args
.len
== args
.minlen
);
787 * Stamp and write the inode buffers.
789 * Seed the new inode cluster with a random generation number. This
790 * prevents short-term reuse of generation numbers if a chunk is
791 * freed and then immediately reallocated. We use random numbers
792 * rather than a linear progression to prevent the next generation
793 * number from being easily guessable.
795 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, newlen
, agno
,
796 args
.agbno
, args
.len
, prandom_u32());
801 * Convert the results.
803 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
805 if (xfs_inobt_issparse(~allocmask
)) {
807 * We've allocated a sparse chunk. Align the startino and mask.
809 xfs_align_sparse_ino(args
.mp
, &newino
, &allocmask
);
811 rec
.ir_startino
= newino
;
812 rec
.ir_holemask
= ~allocmask
;
813 rec
.ir_count
= newlen
;
814 rec
.ir_freecount
= newlen
;
815 rec
.ir_free
= XFS_INOBT_ALL_FREE
;
818 * Insert the sparse record into the inobt and allow for a merge
819 * if necessary. If a merge does occur, rec is updated to the
822 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
, XFS_BTNUM_INO
,
824 if (error
== -EFSCORRUPTED
) {
826 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
827 XFS_AGINO_TO_INO(args
.mp
, agno
,
829 rec
.ir_holemask
, rec
.ir_count
);
830 xfs_force_shutdown(args
.mp
, SHUTDOWN_CORRUPT_INCORE
);
836 * We can't merge the part we've just allocated as for the inobt
837 * due to finobt semantics. The original record may or may not
838 * exist independent of whether physical inodes exist in this
841 * We must update the finobt record based on the inobt record.
842 * rec contains the fully merged and up to date inobt record
843 * from the previous call. Set merge false to replace any
844 * existing record with this one.
846 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
847 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
,
848 XFS_BTNUM_FINO
, &rec
,
854 /* full chunk - insert new records to both btrees */
855 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
860 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
861 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
,
862 newlen
, XFS_BTNUM_FINO
);
869 * Update AGI counts and newino.
871 be32_add_cpu(&agi
->agi_count
, newlen
);
872 be32_add_cpu(&agi
->agi_freecount
, newlen
);
873 pag
= xfs_perag_get(args
.mp
, agno
);
874 pag
->pagi_freecount
+= newlen
;
876 agi
->agi_newino
= cpu_to_be32(newino
);
879 * Log allocation group header fields
881 xfs_ialloc_log_agi(tp
, agbp
,
882 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
884 * Modify/log superblock values for inode count and inode free count.
886 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
887 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
892 STATIC xfs_agnumber_t
898 spin_lock(&mp
->m_agirotor_lock
);
899 agno
= mp
->m_agirotor
;
900 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
902 spin_unlock(&mp
->m_agirotor_lock
);
908 * Select an allocation group to look for a free inode in, based on the parent
909 * inode and the mode. Return the allocation group buffer.
911 STATIC xfs_agnumber_t
912 xfs_ialloc_ag_select(
913 xfs_trans_t
*tp
, /* transaction pointer */
914 xfs_ino_t parent
, /* parent directory inode number */
915 umode_t mode
, /* bits set to indicate file type */
916 int okalloc
) /* ok to allocate more space */
918 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
919 xfs_agnumber_t agno
; /* current ag number */
920 int flags
; /* alloc buffer locking flags */
921 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
922 xfs_extlen_t longest
= 0; /* longest extent available */
923 xfs_mount_t
*mp
; /* mount point structure */
924 int needspace
; /* file mode implies space allocated */
925 xfs_perag_t
*pag
; /* per allocation group data */
926 xfs_agnumber_t pagno
; /* parent (starting) ag number */
930 * Files of these types need at least one block if length > 0
931 * (and they won't fit in the inode, but that's hard to figure out).
933 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
935 agcount
= mp
->m_maxagi
;
937 pagno
= xfs_ialloc_next_ag(mp
);
939 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
940 if (pagno
>= agcount
)
944 ASSERT(pagno
< agcount
);
947 * Loop through allocation groups, looking for one with a little
948 * free space in it. Note we don't look for free inodes, exactly.
949 * Instead, we include whether there is a need to allocate inodes
950 * to mean that blocks must be allocated for them,
951 * if none are currently free.
954 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
956 pag
= xfs_perag_get(mp
, agno
);
957 if (!pag
->pagi_inodeok
) {
958 xfs_ialloc_next_ag(mp
);
962 if (!pag
->pagi_init
) {
963 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
968 if (pag
->pagi_freecount
) {
976 if (!pag
->pagf_init
) {
977 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
983 * Check that there is enough free space for the file plus a
984 * chunk of inodes if we need to allocate some. If this is the
985 * first pass across the AGs, take into account the potential
986 * space needed for alignment of inode chunks when checking the
987 * longest contiguous free space in the AG - this prevents us
988 * from getting ENOSPC because we have free space larger than
989 * m_ialloc_blks but alignment constraints prevent us from using
992 * If we can't find an AG with space for full alignment slack to
993 * be taken into account, we must be near ENOSPC in all AGs.
994 * Hence we don't include alignment for the second pass and so
995 * if we fail allocation due to alignment issues then it is most
996 * likely a real ENOSPC condition.
998 ineed
= mp
->m_ialloc_min_blks
;
999 if (flags
&& ineed
> 1)
1000 ineed
+= xfs_ialloc_cluster_alignment(mp
);
1001 longest
= pag
->pagf_longest
;
1003 longest
= pag
->pagf_flcount
> 0;
1005 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
1013 * No point in iterating over the rest, if we're shutting
1016 if (XFS_FORCED_SHUTDOWN(mp
))
1017 return NULLAGNUMBER
;
1019 if (agno
>= agcount
)
1021 if (agno
== pagno
) {
1023 return NULLAGNUMBER
;
1030 * Try to retrieve the next record to the left/right from the current one.
1033 xfs_ialloc_next_rec(
1034 struct xfs_btree_cur
*cur
,
1035 xfs_inobt_rec_incore_t
*rec
,
1043 error
= xfs_btree_decrement(cur
, 0, &i
);
1045 error
= xfs_btree_increment(cur
, 0, &i
);
1051 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1054 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1062 struct xfs_btree_cur
*cur
,
1064 xfs_inobt_rec_incore_t
*rec
,
1070 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
1075 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1078 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1085 * Return the offset of the first free inode in the record. If the inode chunk
1086 * is sparsely allocated, we convert the record holemask to inode granularity
1087 * and mask off the unallocated regions from the inode free mask.
1090 xfs_inobt_first_free_inode(
1091 struct xfs_inobt_rec_incore
*rec
)
1093 xfs_inofree_t realfree
;
1095 /* if there are no holes, return the first available offset */
1096 if (!xfs_inobt_issparse(rec
->ir_holemask
))
1097 return xfs_lowbit64(rec
->ir_free
);
1099 realfree
= xfs_inobt_irec_to_allocmask(rec
);
1100 realfree
&= rec
->ir_free
;
1102 return xfs_lowbit64(realfree
);
1106 * Allocate an inode using the inobt-only algorithm.
1109 xfs_dialloc_ag_inobt(
1110 struct xfs_trans
*tp
,
1111 struct xfs_buf
*agbp
,
1115 struct xfs_mount
*mp
= tp
->t_mountp
;
1116 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1117 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1118 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1119 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1120 struct xfs_perag
*pag
;
1121 struct xfs_btree_cur
*cur
, *tcur
;
1122 struct xfs_inobt_rec_incore rec
, trec
;
1128 pag
= xfs_perag_get(mp
, agno
);
1130 ASSERT(pag
->pagi_init
);
1131 ASSERT(pag
->pagi_inodeok
);
1132 ASSERT(pag
->pagi_freecount
> 0);
1135 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1137 * If pagino is 0 (this is the root inode allocation) use newino.
1138 * This must work because we've just allocated some.
1141 pagino
= be32_to_cpu(agi
->agi_newino
);
1143 error
= xfs_check_agi_freecount(cur
, agi
);
1148 * If in the same AG as the parent, try to get near the parent.
1150 if (pagno
== agno
) {
1151 int doneleft
; /* done, to the left */
1152 int doneright
; /* done, to the right */
1153 int searchdistance
= 10;
1155 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
1158 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1160 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1163 XFS_WANT_CORRUPTED_GOTO(mp
, j
== 1, error0
);
1165 if (rec
.ir_freecount
> 0) {
1167 * Found a free inode in the same chunk
1168 * as the parent, done.
1175 * In the same AG as parent, but parent's chunk is full.
1178 /* duplicate the cursor, search left & right simultaneously */
1179 error
= xfs_btree_dup_cursor(cur
, &tcur
);
1184 * Skip to last blocks looked up if same parent inode.
1186 if (pagino
!= NULLAGINO
&&
1187 pag
->pagl_pagino
== pagino
&&
1188 pag
->pagl_leftrec
!= NULLAGINO
&&
1189 pag
->pagl_rightrec
!= NULLAGINO
) {
1190 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
1195 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
1200 /* search left with tcur, back up 1 record */
1201 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
1205 /* search right with cur, go forward 1 record. */
1206 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
1212 * Loop until we find an inode chunk with a free inode.
1214 while (!doneleft
|| !doneright
) {
1215 int useleft
; /* using left inode chunk this time */
1217 if (!--searchdistance
) {
1219 * Not in range - save last search
1220 * location and allocate a new inode
1222 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1223 pag
->pagl_leftrec
= trec
.ir_startino
;
1224 pag
->pagl_rightrec
= rec
.ir_startino
;
1225 pag
->pagl_pagino
= pagino
;
1229 /* figure out the closer block if both are valid. */
1230 if (!doneleft
&& !doneright
) {
1232 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
1233 rec
.ir_startino
- pagino
;
1235 useleft
= !doneleft
;
1238 /* free inodes to the left? */
1239 if (useleft
&& trec
.ir_freecount
) {
1241 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1244 pag
->pagl_leftrec
= trec
.ir_startino
;
1245 pag
->pagl_rightrec
= rec
.ir_startino
;
1246 pag
->pagl_pagino
= pagino
;
1250 /* free inodes to the right? */
1251 if (!useleft
&& rec
.ir_freecount
) {
1252 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1254 pag
->pagl_leftrec
= trec
.ir_startino
;
1255 pag
->pagl_rightrec
= rec
.ir_startino
;
1256 pag
->pagl_pagino
= pagino
;
1260 /* get next record to check */
1262 error
= xfs_ialloc_next_rec(tcur
, &trec
,
1265 error
= xfs_ialloc_next_rec(cur
, &rec
,
1273 * We've reached the end of the btree. because
1274 * we are only searching a small chunk of the
1275 * btree each search, there is obviously free
1276 * inodes closer to the parent inode than we
1277 * are now. restart the search again.
1279 pag
->pagl_pagino
= NULLAGINO
;
1280 pag
->pagl_leftrec
= NULLAGINO
;
1281 pag
->pagl_rightrec
= NULLAGINO
;
1282 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1283 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1288 * In a different AG from the parent.
1289 * See if the most recently allocated block has any free.
1292 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1293 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1299 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1303 if (j
== 1 && rec
.ir_freecount
> 0) {
1305 * The last chunk allocated in the group
1306 * still has a free inode.
1314 * None left in the last group, search the whole AG
1316 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1319 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1322 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1325 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1326 if (rec
.ir_freecount
> 0)
1328 error
= xfs_btree_increment(cur
, 0, &i
);
1331 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1335 offset
= xfs_inobt_first_free_inode(&rec
);
1336 ASSERT(offset
>= 0);
1337 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1338 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1339 XFS_INODES_PER_CHUNK
) == 0);
1340 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1341 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1343 error
= xfs_inobt_update(cur
, &rec
);
1346 be32_add_cpu(&agi
->agi_freecount
, -1);
1347 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1348 pag
->pagi_freecount
--;
1350 error
= xfs_check_agi_freecount(cur
, agi
);
1354 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1355 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1360 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
1362 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1368 * Use the free inode btree to allocate an inode based on distance from the
1369 * parent. Note that the provided cursor may be deleted and replaced.
1372 xfs_dialloc_ag_finobt_near(
1374 struct xfs_btree_cur
**ocur
,
1375 struct xfs_inobt_rec_incore
*rec
)
1377 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
1378 struct xfs_btree_cur
*rcur
; /* right search cursor */
1379 struct xfs_inobt_rec_incore rrec
;
1383 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1388 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1391 XFS_WANT_CORRUPTED_RETURN(lcur
->bc_mp
, i
== 1);
1394 * See if we've landed in the parent inode record. The finobt
1395 * only tracks chunks with at least one free inode, so record
1396 * existence is enough.
1398 if (pagino
>= rec
->ir_startino
&&
1399 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1403 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1407 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1411 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1414 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, j
== 1, error_rcur
);
1417 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, i
== 1 || j
== 1, error_rcur
);
1418 if (i
== 1 && j
== 1) {
1420 * Both the left and right records are valid. Choose the closer
1421 * inode chunk to the target.
1423 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1424 (rrec
.ir_startino
- pagino
)) {
1426 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1429 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1431 } else if (j
== 1) {
1432 /* only the right record is valid */
1434 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1436 } else if (i
== 1) {
1437 /* only the left record is valid */
1438 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1444 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1449 * Use the free inode btree to find a free inode based on a newino hint. If
1450 * the hint is NULL, find the first free inode in the AG.
1453 xfs_dialloc_ag_finobt_newino(
1454 struct xfs_agi
*agi
,
1455 struct xfs_btree_cur
*cur
,
1456 struct xfs_inobt_rec_incore
*rec
)
1461 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1462 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1467 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1470 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1476 * Find the first inode available in the AG.
1478 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1481 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1483 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1486 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1492 * Update the inobt based on a modification made to the finobt. Also ensure that
1493 * the records from both trees are equivalent post-modification.
1496 xfs_dialloc_ag_update_inobt(
1497 struct xfs_btree_cur
*cur
, /* inobt cursor */
1498 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1499 int offset
) /* inode offset */
1501 struct xfs_inobt_rec_incore rec
;
1505 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1508 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1510 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1513 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1514 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1515 XFS_INODES_PER_CHUNK
) == 0);
1517 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1520 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, (rec
.ir_free
== frec
->ir_free
) &&
1521 (rec
.ir_freecount
== frec
->ir_freecount
));
1523 return xfs_inobt_update(cur
, &rec
);
1527 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1528 * back to the inobt search algorithm.
1530 * The caller selected an AG for us, and made sure that free inodes are
1535 struct xfs_trans
*tp
,
1536 struct xfs_buf
*agbp
,
1540 struct xfs_mount
*mp
= tp
->t_mountp
;
1541 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1542 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1543 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1544 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1545 struct xfs_perag
*pag
;
1546 struct xfs_btree_cur
*cur
; /* finobt cursor */
1547 struct xfs_btree_cur
*icur
; /* inobt cursor */
1548 struct xfs_inobt_rec_incore rec
;
1554 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1555 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1557 pag
= xfs_perag_get(mp
, agno
);
1560 * If pagino is 0 (this is the root inode allocation) use newino.
1561 * This must work because we've just allocated some.
1564 pagino
= be32_to_cpu(agi
->agi_newino
);
1566 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1568 error
= xfs_check_agi_freecount(cur
, agi
);
1573 * The search algorithm depends on whether we're in the same AG as the
1574 * parent. If so, find the closest available inode to the parent. If
1575 * not, consider the agi hint or find the first free inode in the AG.
1578 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1580 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1584 offset
= xfs_inobt_first_free_inode(&rec
);
1585 ASSERT(offset
>= 0);
1586 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1587 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1588 XFS_INODES_PER_CHUNK
) == 0);
1589 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1592 * Modify or remove the finobt record.
1594 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1596 if (rec
.ir_freecount
)
1597 error
= xfs_inobt_update(cur
, &rec
);
1599 error
= xfs_btree_delete(cur
, &i
);
1604 * The finobt has now been updated appropriately. We haven't updated the
1605 * agi and superblock yet, so we can create an inobt cursor and validate
1606 * the original freecount. If all is well, make the equivalent update to
1607 * the inobt using the finobt record and offset information.
1609 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1611 error
= xfs_check_agi_freecount(icur
, agi
);
1615 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1620 * Both trees have now been updated. We must update the perag and
1621 * superblock before we can check the freecount for each btree.
1623 be32_add_cpu(&agi
->agi_freecount
, -1);
1624 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1625 pag
->pagi_freecount
--;
1627 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1629 error
= xfs_check_agi_freecount(icur
, agi
);
1632 error
= xfs_check_agi_freecount(cur
, agi
);
1636 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1637 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1643 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1645 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1651 * Allocate an inode on disk.
1653 * Mode is used to tell whether the new inode will need space, and whether it
1656 * This function is designed to be called twice if it has to do an allocation
1657 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1658 * If an inode is available without having to performn an allocation, an inode
1659 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1660 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1661 * The caller should then commit the current transaction, allocate a
1662 * new transaction, and call xfs_dialloc() again, passing in the previous value
1663 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1664 * buffer is locked across the two calls, the second call is guaranteed to have
1665 * a free inode available.
1667 * Once we successfully pick an inode its number is returned and the on-disk
1668 * data structures are updated. The inode itself is not read in, since doing so
1669 * would break ordering constraints with xfs_reclaim.
1673 struct xfs_trans
*tp
,
1677 struct xfs_buf
**IO_agbp
,
1680 struct xfs_mount
*mp
= tp
->t_mountp
;
1681 struct xfs_buf
*agbp
;
1682 xfs_agnumber_t agno
;
1686 xfs_agnumber_t start_agno
;
1687 struct xfs_perag
*pag
;
1691 * If the caller passes in a pointer to the AGI buffer,
1692 * continue where we left off before. In this case, we
1693 * know that the allocation group has free inodes.
1700 * We do not have an agbp, so select an initial allocation
1701 * group for inode allocation.
1703 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
, okalloc
);
1704 if (start_agno
== NULLAGNUMBER
) {
1710 * If we have already hit the ceiling of inode blocks then clear
1711 * okalloc so we scan all available agi structures for a free
1714 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1715 * which will sacrifice the preciseness but improve the performance.
1717 if (mp
->m_maxicount
&&
1718 percpu_counter_read_positive(&mp
->m_icount
) + mp
->m_ialloc_inos
1719 > mp
->m_maxicount
) {
1725 * Loop until we find an allocation group that either has free inodes
1726 * or in which we can allocate some inodes. Iterate through the
1727 * allocation groups upward, wrapping at the end.
1731 pag
= xfs_perag_get(mp
, agno
);
1732 if (!pag
->pagi_inodeok
) {
1733 xfs_ialloc_next_ag(mp
);
1737 if (!pag
->pagi_init
) {
1738 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1744 * Do a first racy fast path check if this AG is usable.
1746 if (!pag
->pagi_freecount
&& !okalloc
)
1750 * Then read in the AGI buffer and recheck with the AGI buffer
1753 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1757 if (pag
->pagi_freecount
) {
1763 goto nextag_relse_buffer
;
1766 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1768 xfs_trans_brelse(tp
, agbp
);
1770 if (error
!= -ENOSPC
)
1780 * We successfully allocated some inodes, return
1781 * the current context to the caller so that it
1782 * can commit the current transaction and call
1783 * us again where we left off.
1785 ASSERT(pag
->pagi_freecount
> 0);
1793 nextag_relse_buffer
:
1794 xfs_trans_brelse(tp
, agbp
);
1797 if (++agno
== mp
->m_sb
.sb_agcount
)
1799 if (agno
== start_agno
) {
1801 return noroom
? -ENOSPC
: 0;
1807 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1814 * Free the blocks of an inode chunk. We must consider that the inode chunk
1815 * might be sparse and only free the regions that are allocated as part of the
1819 xfs_difree_inode_chunk(
1820 struct xfs_mount
*mp
,
1821 xfs_agnumber_t agno
,
1822 struct xfs_inobt_rec_incore
*rec
,
1823 struct xfs_defer_ops
*dfops
)
1825 xfs_agblock_t sagbno
= XFS_AGINO_TO_AGBNO(mp
, rec
->ir_startino
);
1826 int startidx
, endidx
;
1828 xfs_agblock_t agbno
;
1830 struct xfs_owner_info oinfo
;
1831 DECLARE_BITMAP(holemask
, XFS_INOBT_HOLEMASK_BITS
);
1832 xfs_rmap_ag_owner(&oinfo
, XFS_RMAP_OWN_INODES
);
1834 if (!xfs_inobt_issparse(rec
->ir_holemask
)) {
1835 /* not sparse, calculate extent info directly */
1836 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, sagbno
),
1837 mp
->m_ialloc_blks
, &oinfo
);
1841 /* holemask is only 16-bits (fits in an unsigned long) */
1842 ASSERT(sizeof(rec
->ir_holemask
) <= sizeof(holemask
[0]));
1843 holemask
[0] = rec
->ir_holemask
;
1846 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1847 * holemask and convert the start/end index of each range to an extent.
1848 * We start with the start and end index both pointing at the first 0 in
1851 startidx
= endidx
= find_first_zero_bit(holemask
,
1852 XFS_INOBT_HOLEMASK_BITS
);
1853 nextbit
= startidx
+ 1;
1854 while (startidx
< XFS_INOBT_HOLEMASK_BITS
) {
1855 nextbit
= find_next_zero_bit(holemask
, XFS_INOBT_HOLEMASK_BITS
,
1858 * If the next zero bit is contiguous, update the end index of
1859 * the current range and continue.
1861 if (nextbit
!= XFS_INOBT_HOLEMASK_BITS
&&
1862 nextbit
== endidx
+ 1) {
1868 * nextbit is not contiguous with the current end index. Convert
1869 * the current start/end to an extent and add it to the free
1872 agbno
= sagbno
+ (startidx
* XFS_INODES_PER_HOLEMASK_BIT
) /
1873 mp
->m_sb
.sb_inopblock
;
1874 contigblk
= ((endidx
- startidx
+ 1) *
1875 XFS_INODES_PER_HOLEMASK_BIT
) /
1876 mp
->m_sb
.sb_inopblock
;
1878 ASSERT(agbno
% mp
->m_sb
.sb_spino_align
== 0);
1879 ASSERT(contigblk
% mp
->m_sb
.sb_spino_align
== 0);
1880 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, agbno
),
1883 /* reset range to current bit and carry on... */
1884 startidx
= endidx
= nextbit
;
1893 struct xfs_mount
*mp
,
1894 struct xfs_trans
*tp
,
1895 struct xfs_buf
*agbp
,
1897 struct xfs_defer_ops
*dfops
,
1898 struct xfs_icluster
*xic
,
1899 struct xfs_inobt_rec_incore
*orec
)
1901 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1902 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1903 struct xfs_perag
*pag
;
1904 struct xfs_btree_cur
*cur
;
1905 struct xfs_inobt_rec_incore rec
;
1911 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1912 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1915 * Initialize the cursor.
1917 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1919 error
= xfs_check_agi_freecount(cur
, agi
);
1924 * Look for the entry describing this inode.
1926 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1927 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1931 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1932 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1934 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1938 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1940 * Get the offset in the inode chunk.
1942 off
= agino
- rec
.ir_startino
;
1943 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1944 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1946 * Mark the inode free & increment the count.
1948 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1952 * When an inode chunk is free, it becomes eligible for removal. Don't
1953 * remove the chunk if the block size is large enough for multiple inode
1954 * chunks (that might not be free).
1956 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1957 rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
1958 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
) {
1960 xic
->first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1961 xic
->alloc
= xfs_inobt_irec_to_allocmask(&rec
);
1964 * Remove the inode cluster from the AGI B+Tree, adjust the
1965 * AGI and Superblock inode counts, and mark the disk space
1966 * to be freed when the transaction is committed.
1968 ilen
= rec
.ir_freecount
;
1969 be32_add_cpu(&agi
->agi_count
, -ilen
);
1970 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1971 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1972 pag
= xfs_perag_get(mp
, agno
);
1973 pag
->pagi_freecount
-= ilen
- 1;
1975 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1976 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
1978 if ((error
= xfs_btree_delete(cur
, &i
))) {
1979 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
1984 xfs_difree_inode_chunk(mp
, agno
, &rec
, dfops
);
1988 error
= xfs_inobt_update(cur
, &rec
);
1990 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
1996 * Change the inode free counts and log the ag/sb changes.
1998 be32_add_cpu(&agi
->agi_freecount
, 1);
1999 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
2000 pag
= xfs_perag_get(mp
, agno
);
2001 pag
->pagi_freecount
++;
2003 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
2006 error
= xfs_check_agi_freecount(cur
, agi
);
2011 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2015 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2020 * Free an inode in the free inode btree.
2024 struct xfs_mount
*mp
,
2025 struct xfs_trans
*tp
,
2026 struct xfs_buf
*agbp
,
2028 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
2030 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
2031 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
2032 struct xfs_btree_cur
*cur
;
2033 struct xfs_inobt_rec_incore rec
;
2034 int offset
= agino
- ibtrec
->ir_startino
;
2038 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
2040 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
2045 * If the record does not exist in the finobt, we must have just
2046 * freed an inode in a previously fully allocated chunk. If not,
2047 * something is out of sync.
2049 XFS_WANT_CORRUPTED_GOTO(mp
, ibtrec
->ir_freecount
== 1, error
);
2051 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_holemask
,
2053 ibtrec
->ir_freecount
,
2054 ibtrec
->ir_free
, &i
);
2063 * Read and update the existing record. We could just copy the ibtrec
2064 * across here, but that would defeat the purpose of having redundant
2065 * metadata. By making the modifications independently, we can catch
2066 * corruptions that we wouldn't see if we just copied from one record
2069 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2072 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
2074 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
2077 XFS_WANT_CORRUPTED_GOTO(mp
, (rec
.ir_free
== ibtrec
->ir_free
) &&
2078 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
2082 * The content of inobt records should always match between the inobt
2083 * and finobt. The lifecycle of records in the finobt is different from
2084 * the inobt in that the finobt only tracks records with at least one
2085 * free inode. Hence, if all of the inodes are free and we aren't
2086 * keeping inode chunks permanently on disk, remove the record.
2087 * Otherwise, update the record with the new information.
2089 * Note that we currently can't free chunks when the block size is large
2090 * enough for multiple chunks. Leave the finobt record to remain in sync
2093 if (rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
2094 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
&&
2095 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
2096 error
= xfs_btree_delete(cur
, &i
);
2101 error
= xfs_inobt_update(cur
, &rec
);
2107 error
= xfs_check_agi_freecount(cur
, agi
);
2111 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2115 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2120 * Free disk inode. Carefully avoids touching the incore inode, all
2121 * manipulations incore are the caller's responsibility.
2122 * The on-disk inode is not changed by this operation, only the
2123 * btree (free inode mask) is changed.
2127 struct xfs_trans
*tp
, /* transaction pointer */
2128 xfs_ino_t inode
, /* inode to be freed */
2129 struct xfs_defer_ops
*dfops
, /* extents to free */
2130 struct xfs_icluster
*xic
) /* cluster info if deleted */
2133 xfs_agblock_t agbno
; /* block number containing inode */
2134 struct xfs_buf
*agbp
; /* buffer for allocation group header */
2135 xfs_agino_t agino
; /* allocation group inode number */
2136 xfs_agnumber_t agno
; /* allocation group number */
2137 int error
; /* error return value */
2138 struct xfs_mount
*mp
; /* mount structure for filesystem */
2139 struct xfs_inobt_rec_incore rec
;/* btree record */
2144 * Break up inode number into its components.
2146 agno
= XFS_INO_TO_AGNO(mp
, inode
);
2147 if (agno
>= mp
->m_sb
.sb_agcount
) {
2148 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2149 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2153 agino
= XFS_INO_TO_AGINO(mp
, inode
);
2154 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2155 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2156 __func__
, (unsigned long long)inode
,
2157 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
2161 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2162 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2163 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2164 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
2169 * Get the allocation group header.
2171 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2173 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
2179 * Fix up the inode allocation btree.
2181 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, dfops
, xic
, &rec
);
2186 * Fix up the free inode btree.
2188 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
2189 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
2202 struct xfs_mount
*mp
,
2203 struct xfs_trans
*tp
,
2204 xfs_agnumber_t agno
,
2206 xfs_agblock_t agbno
,
2207 xfs_agblock_t
*chunk_agbno
,
2208 xfs_agblock_t
*offset_agbno
,
2211 struct xfs_inobt_rec_incore rec
;
2212 struct xfs_btree_cur
*cur
;
2213 struct xfs_buf
*agbp
;
2217 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2220 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2221 __func__
, error
, agno
);
2226 * Lookup the inode record for the given agino. If the record cannot be
2227 * found, then it's an invalid inode number and we should abort. Once
2228 * we have a record, we need to ensure it contains the inode number
2229 * we are looking up.
2231 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
2232 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
2235 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2236 if (!error
&& i
== 0)
2240 xfs_trans_brelse(tp
, agbp
);
2241 xfs_btree_del_cursor(cur
, error
? XFS_BTREE_ERROR
: XFS_BTREE_NOERROR
);
2245 /* check that the returned record contains the required inode */
2246 if (rec
.ir_startino
> agino
||
2247 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
2250 /* for untrusted inodes check it is allocated first */
2251 if ((flags
& XFS_IGET_UNTRUSTED
) &&
2252 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
2255 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
2256 *offset_agbno
= agbno
- *chunk_agbno
;
2261 * Return the location of the inode in imap, for mapping it into a buffer.
2265 xfs_mount_t
*mp
, /* file system mount structure */
2266 xfs_trans_t
*tp
, /* transaction pointer */
2267 xfs_ino_t ino
, /* inode to locate */
2268 struct xfs_imap
*imap
, /* location map structure */
2269 uint flags
) /* flags for inode btree lookup */
2271 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
2272 xfs_agino_t agino
; /* inode number within alloc group */
2273 xfs_agnumber_t agno
; /* allocation group number */
2274 int blks_per_cluster
; /* num blocks per inode cluster */
2275 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
2276 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
2277 int error
; /* error code */
2278 int offset
; /* index of inode in its buffer */
2279 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
2281 ASSERT(ino
!= NULLFSINO
);
2284 * Split up the inode number into its parts.
2286 agno
= XFS_INO_TO_AGNO(mp
, ino
);
2287 agino
= XFS_INO_TO_AGINO(mp
, ino
);
2288 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2289 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
2290 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2293 * Don't output diagnostic information for untrusted inodes
2294 * as they can be invalid without implying corruption.
2296 if (flags
& XFS_IGET_UNTRUSTED
)
2298 if (agno
>= mp
->m_sb
.sb_agcount
) {
2300 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2301 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2303 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2305 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2306 __func__
, (unsigned long long)agbno
,
2307 (unsigned long)mp
->m_sb
.sb_agblocks
);
2309 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2311 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2313 XFS_AGINO_TO_INO(mp
, agno
, agino
));
2320 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2323 * For bulkstat and handle lookups, we have an untrusted inode number
2324 * that we have to verify is valid. We cannot do this just by reading
2325 * the inode buffer as it may have been unlinked and removed leaving
2326 * inodes in stale state on disk. Hence we have to do a btree lookup
2327 * in all cases where an untrusted inode number is passed.
2329 if (flags
& XFS_IGET_UNTRUSTED
) {
2330 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2331 &chunk_agbno
, &offset_agbno
, flags
);
2338 * If the inode cluster size is the same as the blocksize or
2339 * smaller we get to the buffer by simple arithmetics.
2341 if (blks_per_cluster
== 1) {
2342 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
2343 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
2345 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
2346 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
2347 imap
->im_boffset
= (ushort
)(offset
<< mp
->m_sb
.sb_inodelog
);
2352 * If the inode chunks are aligned then use simple maths to
2353 * find the location. Otherwise we have to do a btree
2354 * lookup to find the location.
2356 if (mp
->m_inoalign_mask
) {
2357 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
2358 chunk_agbno
= agbno
- offset_agbno
;
2360 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2361 &chunk_agbno
, &offset_agbno
, flags
);
2367 ASSERT(agbno
>= chunk_agbno
);
2368 cluster_agbno
= chunk_agbno
+
2369 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
2370 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
2371 XFS_INO_TO_OFFSET(mp
, ino
);
2373 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
2374 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
2375 imap
->im_boffset
= (ushort
)(offset
<< mp
->m_sb
.sb_inodelog
);
2378 * If the inode number maps to a block outside the bounds
2379 * of the file system then return NULL rather than calling
2380 * read_buf and panicing when we get an error from the
2383 if ((imap
->im_blkno
+ imap
->im_len
) >
2384 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2386 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2387 __func__
, (unsigned long long) imap
->im_blkno
,
2388 (unsigned long long) imap
->im_len
,
2389 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2396 * Compute and fill in value of m_in_maxlevels.
2399 xfs_ialloc_compute_maxlevels(
2400 xfs_mount_t
*mp
) /* file system mount structure */
2404 inodes
= (1LL << XFS_INO_AGINO_BITS(mp
)) >> XFS_INODES_PER_CHUNK_LOG
;
2405 mp
->m_in_maxlevels
= xfs_btree_compute_maxlevels(mp
, mp
->m_inobt_mnr
,
2410 * Log specified fields for the ag hdr (inode section). The growth of the agi
2411 * structure over time requires that we interpret the buffer as two logical
2412 * regions delineated by the end of the unlinked list. This is due to the size
2413 * of the hash table and its location in the middle of the agi.
2415 * For example, a request to log a field before agi_unlinked and a field after
2416 * agi_unlinked could cause us to log the entire hash table and use an excessive
2417 * amount of log space. To avoid this behavior, log the region up through
2418 * agi_unlinked in one call and the region after agi_unlinked through the end of
2419 * the structure in another.
2423 xfs_trans_t
*tp
, /* transaction pointer */
2424 xfs_buf_t
*bp
, /* allocation group header buffer */
2425 int fields
) /* bitmask of fields to log */
2427 int first
; /* first byte number */
2428 int last
; /* last byte number */
2429 static const short offsets
[] = { /* field starting offsets */
2430 /* keep in sync with bit definitions */
2431 offsetof(xfs_agi_t
, agi_magicnum
),
2432 offsetof(xfs_agi_t
, agi_versionnum
),
2433 offsetof(xfs_agi_t
, agi_seqno
),
2434 offsetof(xfs_agi_t
, agi_length
),
2435 offsetof(xfs_agi_t
, agi_count
),
2436 offsetof(xfs_agi_t
, agi_root
),
2437 offsetof(xfs_agi_t
, agi_level
),
2438 offsetof(xfs_agi_t
, agi_freecount
),
2439 offsetof(xfs_agi_t
, agi_newino
),
2440 offsetof(xfs_agi_t
, agi_dirino
),
2441 offsetof(xfs_agi_t
, agi_unlinked
),
2442 offsetof(xfs_agi_t
, agi_free_root
),
2443 offsetof(xfs_agi_t
, agi_free_level
),
2447 xfs_agi_t
*agi
; /* allocation group header */
2449 agi
= XFS_BUF_TO_AGI(bp
);
2450 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
2453 xfs_trans_buf_set_type(tp
, bp
, XFS_BLFT_AGI_BUF
);
2456 * Compute byte offsets for the first and last fields in the first
2457 * region and log the agi buffer. This only logs up through
2460 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2461 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2463 xfs_trans_log_buf(tp
, bp
, first
, last
);
2467 * Mask off the bits in the first region and calculate the first and
2468 * last field offsets for any bits in the second region.
2470 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2472 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2474 xfs_trans_log_buf(tp
, bp
, first
, last
);
2480 xfs_check_agi_unlinked(
2481 struct xfs_agi
*agi
)
2485 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++)
2486 ASSERT(agi
->agi_unlinked
[i
]);
2489 #define xfs_check_agi_unlinked(agi)
2496 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2497 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2499 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2500 if (!uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_meta_uuid
))
2502 if (!xfs_log_check_lsn(mp
,
2503 be64_to_cpu(XFS_BUF_TO_AGI(bp
)->agi_lsn
)))
2508 * Validate the magic number of the agi block.
2510 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2512 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2515 if (be32_to_cpu(agi
->agi_level
) > XFS_BTREE_MAXLEVELS
)
2518 * during growfs operations, the perag is not fully initialised,
2519 * so we can't use it for any useful checking. growfs ensures we can't
2520 * use it by using uncached buffers that don't have the perag attached
2521 * so we can detect and avoid this problem.
2523 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2526 xfs_check_agi_unlinked(agi
);
2531 xfs_agi_read_verify(
2534 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2536 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2537 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2538 xfs_buf_ioerror(bp
, -EFSBADCRC
);
2539 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp
), mp
,
2540 XFS_ERRTAG_IALLOC_READ_AGI
,
2541 XFS_RANDOM_IALLOC_READ_AGI
))
2542 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2545 xfs_verifier_error(bp
);
2549 xfs_agi_write_verify(
2552 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2553 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
2555 if (!xfs_agi_verify(bp
)) {
2556 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2557 xfs_verifier_error(bp
);
2561 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2565 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2566 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2569 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2571 .verify_read
= xfs_agi_read_verify
,
2572 .verify_write
= xfs_agi_write_verify
,
2576 * Read in the allocation group header (inode allocation section)
2580 struct xfs_mount
*mp
, /* file system mount structure */
2581 struct xfs_trans
*tp
, /* transaction pointer */
2582 xfs_agnumber_t agno
, /* allocation group number */
2583 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2587 trace_xfs_read_agi(mp
, agno
);
2589 ASSERT(agno
!= NULLAGNUMBER
);
2590 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2591 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2592 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2596 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2601 xfs_ialloc_read_agi(
2602 struct xfs_mount
*mp
, /* file system mount structure */
2603 struct xfs_trans
*tp
, /* transaction pointer */
2604 xfs_agnumber_t agno
, /* allocation group number */
2605 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2607 struct xfs_agi
*agi
; /* allocation group header */
2608 struct xfs_perag
*pag
; /* per allocation group data */
2611 trace_xfs_ialloc_read_agi(mp
, agno
);
2613 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2617 agi
= XFS_BUF_TO_AGI(*bpp
);
2618 pag
= xfs_perag_get(mp
, agno
);
2619 if (!pag
->pagi_init
) {
2620 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2621 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2626 * It's possible for these to be out of sync if
2627 * we are in the middle of a forced shutdown.
2629 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2630 XFS_FORCED_SHUTDOWN(mp
));
2636 * Read in the agi to initialise the per-ag data in the mount structure
2639 xfs_ialloc_pagi_init(
2640 xfs_mount_t
*mp
, /* file system mount structure */
2641 xfs_trans_t
*tp
, /* transaction pointer */
2642 xfs_agnumber_t agno
) /* allocation group number */
2644 xfs_buf_t
*bp
= NULL
;
2647 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2651 xfs_trans_brelse(tp
, bp
);