Linux 4.8.3
[linux/fpc-iii.git] / fs / xfs / libxfs / xfs_inode_buf.c
blob4b9769e23c834278eabe70ea429dacabd2d934f2
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_defer.h"
26 #include "xfs_inode.h"
27 #include "xfs_error.h"
28 #include "xfs_cksum.h"
29 #include "xfs_icache.h"
30 #include "xfs_trans.h"
31 #include "xfs_ialloc.h"
34 * Check that none of the inode's in the buffer have a next
35 * unlinked field of 0.
37 #if defined(DEBUG)
38 void
39 xfs_inobp_check(
40 xfs_mount_t *mp,
41 xfs_buf_t *bp)
43 int i;
44 int j;
45 xfs_dinode_t *dip;
47 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
49 for (i = 0; i < j; i++) {
50 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize);
51 if (!dip->di_next_unlinked) {
52 xfs_alert(mp,
53 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
54 i, (long long)bp->b_bn);
58 #endif
61 * If we are doing readahead on an inode buffer, we might be in log recovery
62 * reading an inode allocation buffer that hasn't yet been replayed, and hence
63 * has not had the inode cores stamped into it. Hence for readahead, the buffer
64 * may be potentially invalid.
66 * If the readahead buffer is invalid, we need to mark it with an error and
67 * clear the DONE status of the buffer so that a followup read will re-read it
68 * from disk. We don't report the error otherwise to avoid warnings during log
69 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
70 * because all we want to do is say readahead failed; there is no-one to report
71 * the error to, so this will distinguish it from a non-ra verifier failure.
72 * Changes to this readahead error behavour also need to be reflected in
73 * xfs_dquot_buf_readahead_verify().
75 static void
76 xfs_inode_buf_verify(
77 struct xfs_buf *bp,
78 bool readahead)
80 struct xfs_mount *mp = bp->b_target->bt_mount;
81 int i;
82 int ni;
85 * Validate the magic number and version of every inode in the buffer
87 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
88 for (i = 0; i < ni; i++) {
89 int di_ok;
90 xfs_dinode_t *dip;
92 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
93 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
94 XFS_DINODE_GOOD_VERSION(dip->di_version);
95 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
96 XFS_ERRTAG_ITOBP_INOTOBP,
97 XFS_RANDOM_ITOBP_INOTOBP))) {
98 if (readahead) {
99 bp->b_flags &= ~XBF_DONE;
100 xfs_buf_ioerror(bp, -EIO);
101 return;
104 xfs_buf_ioerror(bp, -EFSCORRUPTED);
105 xfs_verifier_error(bp);
106 #ifdef DEBUG
107 xfs_alert(mp,
108 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
109 (unsigned long long)bp->b_bn, i,
110 be16_to_cpu(dip->di_magic));
111 #endif
114 xfs_inobp_check(mp, bp);
118 static void
119 xfs_inode_buf_read_verify(
120 struct xfs_buf *bp)
122 xfs_inode_buf_verify(bp, false);
125 static void
126 xfs_inode_buf_readahead_verify(
127 struct xfs_buf *bp)
129 xfs_inode_buf_verify(bp, true);
132 static void
133 xfs_inode_buf_write_verify(
134 struct xfs_buf *bp)
136 xfs_inode_buf_verify(bp, false);
139 const struct xfs_buf_ops xfs_inode_buf_ops = {
140 .name = "xfs_inode",
141 .verify_read = xfs_inode_buf_read_verify,
142 .verify_write = xfs_inode_buf_write_verify,
145 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
146 .name = "xxfs_inode_ra",
147 .verify_read = xfs_inode_buf_readahead_verify,
148 .verify_write = xfs_inode_buf_write_verify,
153 * This routine is called to map an inode to the buffer containing the on-disk
154 * version of the inode. It returns a pointer to the buffer containing the
155 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
156 * pointer to the on-disk inode within that buffer.
158 * If a non-zero error is returned, then the contents of bpp and dipp are
159 * undefined.
162 xfs_imap_to_bp(
163 struct xfs_mount *mp,
164 struct xfs_trans *tp,
165 struct xfs_imap *imap,
166 struct xfs_dinode **dipp,
167 struct xfs_buf **bpp,
168 uint buf_flags,
169 uint iget_flags)
171 struct xfs_buf *bp;
172 int error;
174 buf_flags |= XBF_UNMAPPED;
175 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
176 (int)imap->im_len, buf_flags, &bp,
177 &xfs_inode_buf_ops);
178 if (error) {
179 if (error == -EAGAIN) {
180 ASSERT(buf_flags & XBF_TRYLOCK);
181 return error;
184 if (error == -EFSCORRUPTED &&
185 (iget_flags & XFS_IGET_UNTRUSTED))
186 return -EINVAL;
188 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
189 __func__, error);
190 return error;
193 *bpp = bp;
194 *dipp = xfs_buf_offset(bp, imap->im_boffset);
195 return 0;
198 void
199 xfs_inode_from_disk(
200 struct xfs_inode *ip,
201 struct xfs_dinode *from)
203 struct xfs_icdinode *to = &ip->i_d;
204 struct inode *inode = VFS_I(ip);
208 * Convert v1 inodes immediately to v2 inode format as this is the
209 * minimum inode version format we support in the rest of the code.
211 to->di_version = from->di_version;
212 if (to->di_version == 1) {
213 set_nlink(inode, be16_to_cpu(from->di_onlink));
214 to->di_projid_lo = 0;
215 to->di_projid_hi = 0;
216 to->di_version = 2;
217 } else {
218 set_nlink(inode, be32_to_cpu(from->di_nlink));
219 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
220 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
223 to->di_format = from->di_format;
224 to->di_uid = be32_to_cpu(from->di_uid);
225 to->di_gid = be32_to_cpu(from->di_gid);
226 to->di_flushiter = be16_to_cpu(from->di_flushiter);
229 * Time is signed, so need to convert to signed 32 bit before
230 * storing in inode timestamp which may be 64 bit. Otherwise
231 * a time before epoch is converted to a time long after epoch
232 * on 64 bit systems.
234 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec);
235 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec);
236 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec);
237 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
238 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
239 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
240 inode->i_generation = be32_to_cpu(from->di_gen);
241 inode->i_mode = be16_to_cpu(from->di_mode);
243 to->di_size = be64_to_cpu(from->di_size);
244 to->di_nblocks = be64_to_cpu(from->di_nblocks);
245 to->di_extsize = be32_to_cpu(from->di_extsize);
246 to->di_nextents = be32_to_cpu(from->di_nextents);
247 to->di_anextents = be16_to_cpu(from->di_anextents);
248 to->di_forkoff = from->di_forkoff;
249 to->di_aformat = from->di_aformat;
250 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
251 to->di_dmstate = be16_to_cpu(from->di_dmstate);
252 to->di_flags = be16_to_cpu(from->di_flags);
254 if (to->di_version == 3) {
255 inode->i_version = be64_to_cpu(from->di_changecount);
256 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
257 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
258 to->di_flags2 = be64_to_cpu(from->di_flags2);
262 void
263 xfs_inode_to_disk(
264 struct xfs_inode *ip,
265 struct xfs_dinode *to,
266 xfs_lsn_t lsn)
268 struct xfs_icdinode *from = &ip->i_d;
269 struct inode *inode = VFS_I(ip);
271 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
272 to->di_onlink = 0;
274 to->di_version = from->di_version;
275 to->di_format = from->di_format;
276 to->di_uid = cpu_to_be32(from->di_uid);
277 to->di_gid = cpu_to_be32(from->di_gid);
278 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
279 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
281 memset(to->di_pad, 0, sizeof(to->di_pad));
282 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec);
283 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec);
284 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec);
285 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
286 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
287 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
288 to->di_nlink = cpu_to_be32(inode->i_nlink);
289 to->di_gen = cpu_to_be32(inode->i_generation);
290 to->di_mode = cpu_to_be16(inode->i_mode);
292 to->di_size = cpu_to_be64(from->di_size);
293 to->di_nblocks = cpu_to_be64(from->di_nblocks);
294 to->di_extsize = cpu_to_be32(from->di_extsize);
295 to->di_nextents = cpu_to_be32(from->di_nextents);
296 to->di_anextents = cpu_to_be16(from->di_anextents);
297 to->di_forkoff = from->di_forkoff;
298 to->di_aformat = from->di_aformat;
299 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
300 to->di_dmstate = cpu_to_be16(from->di_dmstate);
301 to->di_flags = cpu_to_be16(from->di_flags);
303 if (from->di_version == 3) {
304 to->di_changecount = cpu_to_be64(inode->i_version);
305 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
306 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
307 to->di_flags2 = cpu_to_be64(from->di_flags2);
309 to->di_ino = cpu_to_be64(ip->i_ino);
310 to->di_lsn = cpu_to_be64(lsn);
311 memset(to->di_pad2, 0, sizeof(to->di_pad2));
312 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
313 to->di_flushiter = 0;
314 } else {
315 to->di_flushiter = cpu_to_be16(from->di_flushiter);
319 void
320 xfs_log_dinode_to_disk(
321 struct xfs_log_dinode *from,
322 struct xfs_dinode *to)
324 to->di_magic = cpu_to_be16(from->di_magic);
325 to->di_mode = cpu_to_be16(from->di_mode);
326 to->di_version = from->di_version;
327 to->di_format = from->di_format;
328 to->di_onlink = 0;
329 to->di_uid = cpu_to_be32(from->di_uid);
330 to->di_gid = cpu_to_be32(from->di_gid);
331 to->di_nlink = cpu_to_be32(from->di_nlink);
332 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
333 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
334 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
336 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
337 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
338 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
339 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
340 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
341 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
343 to->di_size = cpu_to_be64(from->di_size);
344 to->di_nblocks = cpu_to_be64(from->di_nblocks);
345 to->di_extsize = cpu_to_be32(from->di_extsize);
346 to->di_nextents = cpu_to_be32(from->di_nextents);
347 to->di_anextents = cpu_to_be16(from->di_anextents);
348 to->di_forkoff = from->di_forkoff;
349 to->di_aformat = from->di_aformat;
350 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
351 to->di_dmstate = cpu_to_be16(from->di_dmstate);
352 to->di_flags = cpu_to_be16(from->di_flags);
353 to->di_gen = cpu_to_be32(from->di_gen);
355 if (from->di_version == 3) {
356 to->di_changecount = cpu_to_be64(from->di_changecount);
357 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
358 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
359 to->di_flags2 = cpu_to_be64(from->di_flags2);
360 to->di_ino = cpu_to_be64(from->di_ino);
361 to->di_lsn = cpu_to_be64(from->di_lsn);
362 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
363 uuid_copy(&to->di_uuid, &from->di_uuid);
364 to->di_flushiter = 0;
365 } else {
366 to->di_flushiter = cpu_to_be16(from->di_flushiter);
370 static bool
371 xfs_dinode_verify(
372 struct xfs_mount *mp,
373 struct xfs_inode *ip,
374 struct xfs_dinode *dip)
376 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
377 return false;
379 /* only version 3 or greater inodes are extensively verified here */
380 if (dip->di_version < 3)
381 return true;
383 if (!xfs_sb_version_hascrc(&mp->m_sb))
384 return false;
385 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
386 XFS_DINODE_CRC_OFF))
387 return false;
388 if (be64_to_cpu(dip->di_ino) != ip->i_ino)
389 return false;
390 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
391 return false;
392 return true;
395 void
396 xfs_dinode_calc_crc(
397 struct xfs_mount *mp,
398 struct xfs_dinode *dip)
400 __uint32_t crc;
402 if (dip->di_version < 3)
403 return;
405 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
406 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
407 XFS_DINODE_CRC_OFF);
408 dip->di_crc = xfs_end_cksum(crc);
412 * Read the disk inode attributes into the in-core inode structure.
414 * For version 5 superblocks, if we are initialising a new inode and we are not
415 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
416 * inode core with a random generation number. If we are keeping inodes around,
417 * we need to read the inode cluster to get the existing generation number off
418 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
419 * format) then log recovery is dependent on the di_flushiter field being
420 * initialised from the current on-disk value and hence we must also read the
421 * inode off disk.
424 xfs_iread(
425 xfs_mount_t *mp,
426 xfs_trans_t *tp,
427 xfs_inode_t *ip,
428 uint iget_flags)
430 xfs_buf_t *bp;
431 xfs_dinode_t *dip;
432 int error;
435 * Fill in the location information in the in-core inode.
437 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
438 if (error)
439 return error;
441 /* shortcut IO on inode allocation if possible */
442 if ((iget_flags & XFS_IGET_CREATE) &&
443 xfs_sb_version_hascrc(&mp->m_sb) &&
444 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
445 /* initialise the on-disk inode core */
446 memset(&ip->i_d, 0, sizeof(ip->i_d));
447 VFS_I(ip)->i_generation = prandom_u32();
448 if (xfs_sb_version_hascrc(&mp->m_sb))
449 ip->i_d.di_version = 3;
450 else
451 ip->i_d.di_version = 2;
452 return 0;
456 * Get pointers to the on-disk inode and the buffer containing it.
458 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
459 if (error)
460 return error;
462 /* even unallocated inodes are verified */
463 if (!xfs_dinode_verify(mp, ip, dip)) {
464 xfs_alert(mp, "%s: validation failed for inode %lld failed",
465 __func__, ip->i_ino);
467 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
468 error = -EFSCORRUPTED;
469 goto out_brelse;
473 * If the on-disk inode is already linked to a directory
474 * entry, copy all of the inode into the in-core inode.
475 * xfs_iformat_fork() handles copying in the inode format
476 * specific information.
477 * Otherwise, just get the truly permanent information.
479 if (dip->di_mode) {
480 xfs_inode_from_disk(ip, dip);
481 error = xfs_iformat_fork(ip, dip);
482 if (error) {
483 #ifdef DEBUG
484 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
485 __func__, error);
486 #endif /* DEBUG */
487 goto out_brelse;
489 } else {
491 * Partial initialisation of the in-core inode. Just the bits
492 * that xfs_ialloc won't overwrite or relies on being correct.
494 ip->i_d.di_version = dip->di_version;
495 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen);
496 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
499 * Make sure to pull in the mode here as well in
500 * case the inode is released without being used.
501 * This ensures that xfs_inactive() will see that
502 * the inode is already free and not try to mess
503 * with the uninitialized part of it.
505 VFS_I(ip)->i_mode = 0;
508 ASSERT(ip->i_d.di_version >= 2);
509 ip->i_delayed_blks = 0;
512 * Mark the buffer containing the inode as something to keep
513 * around for a while. This helps to keep recently accessed
514 * meta-data in-core longer.
516 xfs_buf_set_ref(bp, XFS_INO_REF);
519 * Use xfs_trans_brelse() to release the buffer containing the on-disk
520 * inode, because it was acquired with xfs_trans_read_buf() in
521 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
522 * brelse(). If we're within a transaction, then xfs_trans_brelse()
523 * will only release the buffer if it is not dirty within the
524 * transaction. It will be OK to release the buffer in this case,
525 * because inodes on disk are never destroyed and we will be locking the
526 * new in-core inode before putting it in the cache where other
527 * processes can find it. Thus we don't have to worry about the inode
528 * being changed just because we released the buffer.
530 out_brelse:
531 xfs_trans_brelse(tp, bp);
532 return error;