2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_defer.h"
26 #include "xfs_inode.h"
27 #include "xfs_error.h"
28 #include "xfs_cksum.h"
29 #include "xfs_icache.h"
30 #include "xfs_trans.h"
31 #include "xfs_ialloc.h"
34 * Check that none of the inode's in the buffer have a next
35 * unlinked field of 0.
47 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
49 for (i
= 0; i
< j
; i
++) {
50 dip
= xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
);
51 if (!dip
->di_next_unlinked
) {
53 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
54 i
, (long long)bp
->b_bn
);
61 * If we are doing readahead on an inode buffer, we might be in log recovery
62 * reading an inode allocation buffer that hasn't yet been replayed, and hence
63 * has not had the inode cores stamped into it. Hence for readahead, the buffer
64 * may be potentially invalid.
66 * If the readahead buffer is invalid, we need to mark it with an error and
67 * clear the DONE status of the buffer so that a followup read will re-read it
68 * from disk. We don't report the error otherwise to avoid warnings during log
69 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
70 * because all we want to do is say readahead failed; there is no-one to report
71 * the error to, so this will distinguish it from a non-ra verifier failure.
72 * Changes to this readahead error behavour also need to be reflected in
73 * xfs_dquot_buf_readahead_verify().
80 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
85 * Validate the magic number and version of every inode in the buffer
87 ni
= XFS_BB_TO_FSB(mp
, bp
->b_length
) * mp
->m_sb
.sb_inopblock
;
88 for (i
= 0; i
< ni
; i
++) {
92 dip
= xfs_buf_offset(bp
, (i
<< mp
->m_sb
.sb_inodelog
));
93 di_ok
= dip
->di_magic
== cpu_to_be16(XFS_DINODE_MAGIC
) &&
94 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
95 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
96 XFS_ERRTAG_ITOBP_INOTOBP
,
97 XFS_RANDOM_ITOBP_INOTOBP
))) {
99 bp
->b_flags
&= ~XBF_DONE
;
100 xfs_buf_ioerror(bp
, -EIO
);
104 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
105 xfs_verifier_error(bp
);
108 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
109 (unsigned long long)bp
->b_bn
, i
,
110 be16_to_cpu(dip
->di_magic
));
114 xfs_inobp_check(mp
, bp
);
119 xfs_inode_buf_read_verify(
122 xfs_inode_buf_verify(bp
, false);
126 xfs_inode_buf_readahead_verify(
129 xfs_inode_buf_verify(bp
, true);
133 xfs_inode_buf_write_verify(
136 xfs_inode_buf_verify(bp
, false);
139 const struct xfs_buf_ops xfs_inode_buf_ops
= {
141 .verify_read
= xfs_inode_buf_read_verify
,
142 .verify_write
= xfs_inode_buf_write_verify
,
145 const struct xfs_buf_ops xfs_inode_buf_ra_ops
= {
146 .name
= "xxfs_inode_ra",
147 .verify_read
= xfs_inode_buf_readahead_verify
,
148 .verify_write
= xfs_inode_buf_write_verify
,
153 * This routine is called to map an inode to the buffer containing the on-disk
154 * version of the inode. It returns a pointer to the buffer containing the
155 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
156 * pointer to the on-disk inode within that buffer.
158 * If a non-zero error is returned, then the contents of bpp and dipp are
163 struct xfs_mount
*mp
,
164 struct xfs_trans
*tp
,
165 struct xfs_imap
*imap
,
166 struct xfs_dinode
**dipp
,
167 struct xfs_buf
**bpp
,
174 buf_flags
|= XBF_UNMAPPED
;
175 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
176 (int)imap
->im_len
, buf_flags
, &bp
,
179 if (error
== -EAGAIN
) {
180 ASSERT(buf_flags
& XBF_TRYLOCK
);
184 if (error
== -EFSCORRUPTED
&&
185 (iget_flags
& XFS_IGET_UNTRUSTED
))
188 xfs_warn(mp
, "%s: xfs_trans_read_buf() returned error %d.",
194 *dipp
= xfs_buf_offset(bp
, imap
->im_boffset
);
200 struct xfs_inode
*ip
,
201 struct xfs_dinode
*from
)
203 struct xfs_icdinode
*to
= &ip
->i_d
;
204 struct inode
*inode
= VFS_I(ip
);
208 * Convert v1 inodes immediately to v2 inode format as this is the
209 * minimum inode version format we support in the rest of the code.
211 to
->di_version
= from
->di_version
;
212 if (to
->di_version
== 1) {
213 set_nlink(inode
, be16_to_cpu(from
->di_onlink
));
214 to
->di_projid_lo
= 0;
215 to
->di_projid_hi
= 0;
218 set_nlink(inode
, be32_to_cpu(from
->di_nlink
));
219 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
220 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
223 to
->di_format
= from
->di_format
;
224 to
->di_uid
= be32_to_cpu(from
->di_uid
);
225 to
->di_gid
= be32_to_cpu(from
->di_gid
);
226 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
229 * Time is signed, so need to convert to signed 32 bit before
230 * storing in inode timestamp which may be 64 bit. Otherwise
231 * a time before epoch is converted to a time long after epoch
234 inode
->i_atime
.tv_sec
= (int)be32_to_cpu(from
->di_atime
.t_sec
);
235 inode
->i_atime
.tv_nsec
= (int)be32_to_cpu(from
->di_atime
.t_nsec
);
236 inode
->i_mtime
.tv_sec
= (int)be32_to_cpu(from
->di_mtime
.t_sec
);
237 inode
->i_mtime
.tv_nsec
= (int)be32_to_cpu(from
->di_mtime
.t_nsec
);
238 inode
->i_ctime
.tv_sec
= (int)be32_to_cpu(from
->di_ctime
.t_sec
);
239 inode
->i_ctime
.tv_nsec
= (int)be32_to_cpu(from
->di_ctime
.t_nsec
);
240 inode
->i_generation
= be32_to_cpu(from
->di_gen
);
241 inode
->i_mode
= be16_to_cpu(from
->di_mode
);
243 to
->di_size
= be64_to_cpu(from
->di_size
);
244 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
245 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
246 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
247 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
248 to
->di_forkoff
= from
->di_forkoff
;
249 to
->di_aformat
= from
->di_aformat
;
250 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
251 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
252 to
->di_flags
= be16_to_cpu(from
->di_flags
);
254 if (to
->di_version
== 3) {
255 inode
->i_version
= be64_to_cpu(from
->di_changecount
);
256 to
->di_crtime
.t_sec
= be32_to_cpu(from
->di_crtime
.t_sec
);
257 to
->di_crtime
.t_nsec
= be32_to_cpu(from
->di_crtime
.t_nsec
);
258 to
->di_flags2
= be64_to_cpu(from
->di_flags2
);
264 struct xfs_inode
*ip
,
265 struct xfs_dinode
*to
,
268 struct xfs_icdinode
*from
= &ip
->i_d
;
269 struct inode
*inode
= VFS_I(ip
);
271 to
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
274 to
->di_version
= from
->di_version
;
275 to
->di_format
= from
->di_format
;
276 to
->di_uid
= cpu_to_be32(from
->di_uid
);
277 to
->di_gid
= cpu_to_be32(from
->di_gid
);
278 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
279 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
281 memset(to
->di_pad
, 0, sizeof(to
->di_pad
));
282 to
->di_atime
.t_sec
= cpu_to_be32(inode
->i_atime
.tv_sec
);
283 to
->di_atime
.t_nsec
= cpu_to_be32(inode
->i_atime
.tv_nsec
);
284 to
->di_mtime
.t_sec
= cpu_to_be32(inode
->i_mtime
.tv_sec
);
285 to
->di_mtime
.t_nsec
= cpu_to_be32(inode
->i_mtime
.tv_nsec
);
286 to
->di_ctime
.t_sec
= cpu_to_be32(inode
->i_ctime
.tv_sec
);
287 to
->di_ctime
.t_nsec
= cpu_to_be32(inode
->i_ctime
.tv_nsec
);
288 to
->di_nlink
= cpu_to_be32(inode
->i_nlink
);
289 to
->di_gen
= cpu_to_be32(inode
->i_generation
);
290 to
->di_mode
= cpu_to_be16(inode
->i_mode
);
292 to
->di_size
= cpu_to_be64(from
->di_size
);
293 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
294 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
295 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
296 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
297 to
->di_forkoff
= from
->di_forkoff
;
298 to
->di_aformat
= from
->di_aformat
;
299 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
300 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
301 to
->di_flags
= cpu_to_be16(from
->di_flags
);
303 if (from
->di_version
== 3) {
304 to
->di_changecount
= cpu_to_be64(inode
->i_version
);
305 to
->di_crtime
.t_sec
= cpu_to_be32(from
->di_crtime
.t_sec
);
306 to
->di_crtime
.t_nsec
= cpu_to_be32(from
->di_crtime
.t_nsec
);
307 to
->di_flags2
= cpu_to_be64(from
->di_flags2
);
309 to
->di_ino
= cpu_to_be64(ip
->i_ino
);
310 to
->di_lsn
= cpu_to_be64(lsn
);
311 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
312 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
313 to
->di_flushiter
= 0;
315 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
320 xfs_log_dinode_to_disk(
321 struct xfs_log_dinode
*from
,
322 struct xfs_dinode
*to
)
324 to
->di_magic
= cpu_to_be16(from
->di_magic
);
325 to
->di_mode
= cpu_to_be16(from
->di_mode
);
326 to
->di_version
= from
->di_version
;
327 to
->di_format
= from
->di_format
;
329 to
->di_uid
= cpu_to_be32(from
->di_uid
);
330 to
->di_gid
= cpu_to_be32(from
->di_gid
);
331 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
332 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
333 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
334 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
336 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
337 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
338 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
339 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
340 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
341 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
343 to
->di_size
= cpu_to_be64(from
->di_size
);
344 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
345 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
346 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
347 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
348 to
->di_forkoff
= from
->di_forkoff
;
349 to
->di_aformat
= from
->di_aformat
;
350 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
351 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
352 to
->di_flags
= cpu_to_be16(from
->di_flags
);
353 to
->di_gen
= cpu_to_be32(from
->di_gen
);
355 if (from
->di_version
== 3) {
356 to
->di_changecount
= cpu_to_be64(from
->di_changecount
);
357 to
->di_crtime
.t_sec
= cpu_to_be32(from
->di_crtime
.t_sec
);
358 to
->di_crtime
.t_nsec
= cpu_to_be32(from
->di_crtime
.t_nsec
);
359 to
->di_flags2
= cpu_to_be64(from
->di_flags2
);
360 to
->di_ino
= cpu_to_be64(from
->di_ino
);
361 to
->di_lsn
= cpu_to_be64(from
->di_lsn
);
362 memcpy(to
->di_pad2
, from
->di_pad2
, sizeof(to
->di_pad2
));
363 uuid_copy(&to
->di_uuid
, &from
->di_uuid
);
364 to
->di_flushiter
= 0;
366 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
372 struct xfs_mount
*mp
,
373 struct xfs_inode
*ip
,
374 struct xfs_dinode
*dip
)
376 if (dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))
379 /* only version 3 or greater inodes are extensively verified here */
380 if (dip
->di_version
< 3)
383 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
385 if (!xfs_verify_cksum((char *)dip
, mp
->m_sb
.sb_inodesize
,
388 if (be64_to_cpu(dip
->di_ino
) != ip
->i_ino
)
390 if (!uuid_equal(&dip
->di_uuid
, &mp
->m_sb
.sb_meta_uuid
))
397 struct xfs_mount
*mp
,
398 struct xfs_dinode
*dip
)
402 if (dip
->di_version
< 3)
405 ASSERT(xfs_sb_version_hascrc(&mp
->m_sb
));
406 crc
= xfs_start_cksum((char *)dip
, mp
->m_sb
.sb_inodesize
,
408 dip
->di_crc
= xfs_end_cksum(crc
);
412 * Read the disk inode attributes into the in-core inode structure.
414 * For version 5 superblocks, if we are initialising a new inode and we are not
415 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
416 * inode core with a random generation number. If we are keeping inodes around,
417 * we need to read the inode cluster to get the existing generation number off
418 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
419 * format) then log recovery is dependent on the di_flushiter field being
420 * initialised from the current on-disk value and hence we must also read the
435 * Fill in the location information in the in-core inode.
437 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
441 /* shortcut IO on inode allocation if possible */
442 if ((iget_flags
& XFS_IGET_CREATE
) &&
443 xfs_sb_version_hascrc(&mp
->m_sb
) &&
444 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
445 /* initialise the on-disk inode core */
446 memset(&ip
->i_d
, 0, sizeof(ip
->i_d
));
447 VFS_I(ip
)->i_generation
= prandom_u32();
448 if (xfs_sb_version_hascrc(&mp
->m_sb
))
449 ip
->i_d
.di_version
= 3;
451 ip
->i_d
.di_version
= 2;
456 * Get pointers to the on-disk inode and the buffer containing it.
458 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &bp
, 0, iget_flags
);
462 /* even unallocated inodes are verified */
463 if (!xfs_dinode_verify(mp
, ip
, dip
)) {
464 xfs_alert(mp
, "%s: validation failed for inode %lld failed",
465 __func__
, ip
->i_ino
);
467 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
, dip
);
468 error
= -EFSCORRUPTED
;
473 * If the on-disk inode is already linked to a directory
474 * entry, copy all of the inode into the in-core inode.
475 * xfs_iformat_fork() handles copying in the inode format
476 * specific information.
477 * Otherwise, just get the truly permanent information.
480 xfs_inode_from_disk(ip
, dip
);
481 error
= xfs_iformat_fork(ip
, dip
);
484 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
491 * Partial initialisation of the in-core inode. Just the bits
492 * that xfs_ialloc won't overwrite or relies on being correct.
494 ip
->i_d
.di_version
= dip
->di_version
;
495 VFS_I(ip
)->i_generation
= be32_to_cpu(dip
->di_gen
);
496 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
499 * Make sure to pull in the mode here as well in
500 * case the inode is released without being used.
501 * This ensures that xfs_inactive() will see that
502 * the inode is already free and not try to mess
503 * with the uninitialized part of it.
505 VFS_I(ip
)->i_mode
= 0;
508 ASSERT(ip
->i_d
.di_version
>= 2);
509 ip
->i_delayed_blks
= 0;
512 * Mark the buffer containing the inode as something to keep
513 * around for a while. This helps to keep recently accessed
514 * meta-data in-core longer.
516 xfs_buf_set_ref(bp
, XFS_INO_REF
);
519 * Use xfs_trans_brelse() to release the buffer containing the on-disk
520 * inode, because it was acquired with xfs_trans_read_buf() in
521 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
522 * brelse(). If we're within a transaction, then xfs_trans_brelse()
523 * will only release the buffer if it is not dirty within the
524 * transaction. It will be OK to release the buffer in this case,
525 * because inodes on disk are never destroyed and we will be locking the
526 * new in-core inode before putting it in the cache where other
527 * processes can find it. Thus we don't have to worry about the inode
528 * being changed just because we released the buffer.
531 xfs_trans_brelse(tp
, bp
);