2 * Copyright (c) 2014 Red Hat, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_error.h"
37 #include "xfs_extent_busy.h"
42 * This is a per-ag tree used to track the owner(s) of a given extent. With
43 * reflink it is possible for there to be multiple owners, which is a departure
44 * from classic XFS. Owner records for data extents are inserted when the
45 * extent is mapped and removed when an extent is unmapped. Owner records for
46 * all other block types (i.e. metadata) are inserted when an extent is
47 * allocated and removed when an extent is freed. There can only be one owner
48 * of a metadata extent, usually an inode or some other metadata structure like
51 * The rmap btree is part of the free space management, so blocks for the tree
52 * are sourced from the agfl. Hence we need transaction reservation support for
53 * this tree so that the freelist is always large enough. This also impacts on
54 * the minimum space we need to leave free in the AG.
56 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
57 * but it is the only way to enforce unique keys when a block can be owned by
58 * multiple files at any offset. There's no need to order/search by extent
59 * size for online updating/management of the tree. It is intended that most
60 * reverse lookups will be to find the owner(s) of a particular block, or to
61 * try to recover tree and file data from corrupt primary metadata.
64 static struct xfs_btree_cur
*
65 xfs_rmapbt_dup_cursor(
66 struct xfs_btree_cur
*cur
)
68 return xfs_rmapbt_init_cursor(cur
->bc_mp
, cur
->bc_tp
,
69 cur
->bc_private
.a
.agbp
, cur
->bc_private
.a
.agno
);
74 struct xfs_btree_cur
*cur
,
75 union xfs_btree_ptr
*ptr
,
78 struct xfs_buf
*agbp
= cur
->bc_private
.a
.agbp
;
79 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
80 xfs_agnumber_t seqno
= be32_to_cpu(agf
->agf_seqno
);
81 int btnum
= cur
->bc_btnum
;
82 struct xfs_perag
*pag
= xfs_perag_get(cur
->bc_mp
, seqno
);
86 agf
->agf_roots
[btnum
] = ptr
->s
;
87 be32_add_cpu(&agf
->agf_levels
[btnum
], inc
);
88 pag
->pagf_levels
[btnum
] += inc
;
91 xfs_alloc_log_agf(cur
->bc_tp
, agbp
, XFS_AGF_ROOTS
| XFS_AGF_LEVELS
);
95 xfs_rmapbt_alloc_block(
96 struct xfs_btree_cur
*cur
,
97 union xfs_btree_ptr
*start
,
98 union xfs_btree_ptr
*new,
101 struct xfs_buf
*agbp
= cur
->bc_private
.a
.agbp
;
102 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
106 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
108 /* Allocate the new block from the freelist. If we can't, give up. */
109 error
= xfs_alloc_get_freelist(cur
->bc_tp
, cur
->bc_private
.a
.agbp
,
112 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
116 trace_xfs_rmapbt_alloc_block(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
118 if (bno
== NULLAGBLOCK
) {
119 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
124 xfs_extent_busy_reuse(cur
->bc_mp
, cur
->bc_private
.a
.agno
, bno
, 1,
127 xfs_trans_agbtree_delta(cur
->bc_tp
, 1);
128 new->s
= cpu_to_be32(bno
);
129 be32_add_cpu(&agf
->agf_rmap_blocks
, 1);
130 xfs_alloc_log_agf(cur
->bc_tp
, agbp
, XFS_AGF_RMAP_BLOCKS
);
132 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
138 xfs_rmapbt_free_block(
139 struct xfs_btree_cur
*cur
,
142 struct xfs_buf
*agbp
= cur
->bc_private
.a
.agbp
;
143 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
147 bno
= xfs_daddr_to_agbno(cur
->bc_mp
, XFS_BUF_ADDR(bp
));
148 trace_xfs_rmapbt_free_block(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
150 be32_add_cpu(&agf
->agf_rmap_blocks
, -1);
151 xfs_alloc_log_agf(cur
->bc_tp
, agbp
, XFS_AGF_RMAP_BLOCKS
);
152 error
= xfs_alloc_put_freelist(cur
->bc_tp
, agbp
, NULL
, bno
, 1);
156 xfs_extent_busy_insert(cur
->bc_tp
, be32_to_cpu(agf
->agf_seqno
), bno
, 1,
157 XFS_EXTENT_BUSY_SKIP_DISCARD
);
158 xfs_trans_agbtree_delta(cur
->bc_tp
, -1);
164 xfs_rmapbt_get_minrecs(
165 struct xfs_btree_cur
*cur
,
168 return cur
->bc_mp
->m_rmap_mnr
[level
!= 0];
172 xfs_rmapbt_get_maxrecs(
173 struct xfs_btree_cur
*cur
,
176 return cur
->bc_mp
->m_rmap_mxr
[level
!= 0];
180 xfs_rmapbt_init_key_from_rec(
181 union xfs_btree_key
*key
,
182 union xfs_btree_rec
*rec
)
184 key
->rmap
.rm_startblock
= rec
->rmap
.rm_startblock
;
185 key
->rmap
.rm_owner
= rec
->rmap
.rm_owner
;
186 key
->rmap
.rm_offset
= rec
->rmap
.rm_offset
;
190 * The high key for a reverse mapping record can be computed by shifting
191 * the startblock and offset to the highest value that would still map
192 * to that record. In practice this means that we add blockcount-1 to
193 * the startblock for all records, and if the record is for a data/attr
194 * fork mapping, we add blockcount-1 to the offset too.
197 xfs_rmapbt_init_high_key_from_rec(
198 union xfs_btree_key
*key
,
199 union xfs_btree_rec
*rec
)
204 adj
= be32_to_cpu(rec
->rmap
.rm_blockcount
) - 1;
206 key
->rmap
.rm_startblock
= rec
->rmap
.rm_startblock
;
207 be32_add_cpu(&key
->rmap
.rm_startblock
, adj
);
208 key
->rmap
.rm_owner
= rec
->rmap
.rm_owner
;
209 key
->rmap
.rm_offset
= rec
->rmap
.rm_offset
;
210 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec
->rmap
.rm_owner
)) ||
211 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec
->rmap
.rm_offset
)))
213 off
= be64_to_cpu(key
->rmap
.rm_offset
);
214 off
= (XFS_RMAP_OFF(off
) + adj
) | (off
& ~XFS_RMAP_OFF_MASK
);
215 key
->rmap
.rm_offset
= cpu_to_be64(off
);
219 xfs_rmapbt_init_rec_from_cur(
220 struct xfs_btree_cur
*cur
,
221 union xfs_btree_rec
*rec
)
223 rec
->rmap
.rm_startblock
= cpu_to_be32(cur
->bc_rec
.r
.rm_startblock
);
224 rec
->rmap
.rm_blockcount
= cpu_to_be32(cur
->bc_rec
.r
.rm_blockcount
);
225 rec
->rmap
.rm_owner
= cpu_to_be64(cur
->bc_rec
.r
.rm_owner
);
226 rec
->rmap
.rm_offset
= cpu_to_be64(
227 xfs_rmap_irec_offset_pack(&cur
->bc_rec
.r
));
231 xfs_rmapbt_init_ptr_from_cur(
232 struct xfs_btree_cur
*cur
,
233 union xfs_btree_ptr
*ptr
)
235 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(cur
->bc_private
.a
.agbp
);
237 ASSERT(cur
->bc_private
.a
.agno
== be32_to_cpu(agf
->agf_seqno
));
238 ASSERT(agf
->agf_roots
[cur
->bc_btnum
] != 0);
240 ptr
->s
= agf
->agf_roots
[cur
->bc_btnum
];
245 struct xfs_btree_cur
*cur
,
246 union xfs_btree_key
*key
)
248 struct xfs_rmap_irec
*rec
= &cur
->bc_rec
.r
;
249 struct xfs_rmap_key
*kp
= &key
->rmap
;
253 d
= (__int64_t
)be32_to_cpu(kp
->rm_startblock
) - rec
->rm_startblock
;
257 x
= be64_to_cpu(kp
->rm_owner
);
264 x
= XFS_RMAP_OFF(be64_to_cpu(kp
->rm_offset
));
274 xfs_rmapbt_diff_two_keys(
275 struct xfs_btree_cur
*cur
,
276 union xfs_btree_key
*k1
,
277 union xfs_btree_key
*k2
)
279 struct xfs_rmap_key
*kp1
= &k1
->rmap
;
280 struct xfs_rmap_key
*kp2
= &k2
->rmap
;
284 d
= (__int64_t
)be32_to_cpu(kp1
->rm_startblock
) -
285 be32_to_cpu(kp2
->rm_startblock
);
289 x
= be64_to_cpu(kp1
->rm_owner
);
290 y
= be64_to_cpu(kp2
->rm_owner
);
296 x
= XFS_RMAP_OFF(be64_to_cpu(kp1
->rm_offset
));
297 y
= XFS_RMAP_OFF(be64_to_cpu(kp2
->rm_offset
));
309 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
310 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
311 struct xfs_perag
*pag
= bp
->b_pag
;
315 * magic number and level verification
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
326 if (block
->bb_magic
!= cpu_to_be32(XFS_RMAP_CRC_MAGIC
))
329 if (!xfs_sb_version_hasrmapbt(&mp
->m_sb
))
331 if (!xfs_btree_sblock_v5hdr_verify(bp
))
334 level
= be16_to_cpu(block
->bb_level
);
335 if (pag
&& pag
->pagf_init
) {
336 if (level
>= pag
->pagf_levels
[XFS_BTNUM_RMAPi
])
338 } else if (level
>= mp
->m_rmap_maxlevels
)
341 return xfs_btree_sblock_verify(bp
, mp
->m_rmap_mxr
[level
!= 0]);
345 xfs_rmapbt_read_verify(
348 if (!xfs_btree_sblock_verify_crc(bp
))
349 xfs_buf_ioerror(bp
, -EFSBADCRC
);
350 else if (!xfs_rmapbt_verify(bp
))
351 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
354 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
355 xfs_verifier_error(bp
);
360 xfs_rmapbt_write_verify(
363 if (!xfs_rmapbt_verify(bp
)) {
364 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
365 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
366 xfs_verifier_error(bp
);
369 xfs_btree_sblock_calc_crc(bp
);
373 const struct xfs_buf_ops xfs_rmapbt_buf_ops
= {
374 .name
= "xfs_rmapbt",
375 .verify_read
= xfs_rmapbt_read_verify
,
376 .verify_write
= xfs_rmapbt_write_verify
,
379 #if defined(DEBUG) || defined(XFS_WARN)
381 xfs_rmapbt_keys_inorder(
382 struct xfs_btree_cur
*cur
,
383 union xfs_btree_key
*k1
,
384 union xfs_btree_key
*k2
)
391 x
= be32_to_cpu(k1
->rmap
.rm_startblock
);
392 y
= be32_to_cpu(k2
->rmap
.rm_startblock
);
397 a
= be64_to_cpu(k1
->rmap
.rm_owner
);
398 b
= be64_to_cpu(k2
->rmap
.rm_owner
);
403 a
= XFS_RMAP_OFF(be64_to_cpu(k1
->rmap
.rm_offset
));
404 b
= XFS_RMAP_OFF(be64_to_cpu(k2
->rmap
.rm_offset
));
411 xfs_rmapbt_recs_inorder(
412 struct xfs_btree_cur
*cur
,
413 union xfs_btree_rec
*r1
,
414 union xfs_btree_rec
*r2
)
421 x
= be32_to_cpu(r1
->rmap
.rm_startblock
);
422 y
= be32_to_cpu(r2
->rmap
.rm_startblock
);
427 a
= be64_to_cpu(r1
->rmap
.rm_owner
);
428 b
= be64_to_cpu(r2
->rmap
.rm_owner
);
433 a
= XFS_RMAP_OFF(be64_to_cpu(r1
->rmap
.rm_offset
));
434 b
= XFS_RMAP_OFF(be64_to_cpu(r2
->rmap
.rm_offset
));
441 static const struct xfs_btree_ops xfs_rmapbt_ops
= {
442 .rec_len
= sizeof(struct xfs_rmap_rec
),
443 .key_len
= 2 * sizeof(struct xfs_rmap_key
),
445 .dup_cursor
= xfs_rmapbt_dup_cursor
,
446 .set_root
= xfs_rmapbt_set_root
,
447 .alloc_block
= xfs_rmapbt_alloc_block
,
448 .free_block
= xfs_rmapbt_free_block
,
449 .get_minrecs
= xfs_rmapbt_get_minrecs
,
450 .get_maxrecs
= xfs_rmapbt_get_maxrecs
,
451 .init_key_from_rec
= xfs_rmapbt_init_key_from_rec
,
452 .init_high_key_from_rec
= xfs_rmapbt_init_high_key_from_rec
,
453 .init_rec_from_cur
= xfs_rmapbt_init_rec_from_cur
,
454 .init_ptr_from_cur
= xfs_rmapbt_init_ptr_from_cur
,
455 .key_diff
= xfs_rmapbt_key_diff
,
456 .buf_ops
= &xfs_rmapbt_buf_ops
,
457 .diff_two_keys
= xfs_rmapbt_diff_two_keys
,
458 #if defined(DEBUG) || defined(XFS_WARN)
459 .keys_inorder
= xfs_rmapbt_keys_inorder
,
460 .recs_inorder
= xfs_rmapbt_recs_inorder
,
465 * Allocate a new allocation btree cursor.
467 struct xfs_btree_cur
*
468 xfs_rmapbt_init_cursor(
469 struct xfs_mount
*mp
,
470 struct xfs_trans
*tp
,
471 struct xfs_buf
*agbp
,
474 struct xfs_agf
*agf
= XFS_BUF_TO_AGF(agbp
);
475 struct xfs_btree_cur
*cur
;
477 cur
= kmem_zone_zalloc(xfs_btree_cur_zone
, KM_NOFS
);
480 /* Overlapping btree; 2 keys per pointer. */
481 cur
->bc_btnum
= XFS_BTNUM_RMAP
;
482 cur
->bc_flags
= XFS_BTREE_CRC_BLOCKS
| XFS_BTREE_OVERLAPPING
;
483 cur
->bc_blocklog
= mp
->m_sb
.sb_blocklog
;
484 cur
->bc_ops
= &xfs_rmapbt_ops
;
485 cur
->bc_nlevels
= be32_to_cpu(agf
->agf_levels
[XFS_BTNUM_RMAP
]);
487 cur
->bc_private
.a
.agbp
= agbp
;
488 cur
->bc_private
.a
.agno
= agno
;
494 * Calculate number of records in an rmap btree block.
498 struct xfs_mount
*mp
,
502 blocklen
-= XFS_RMAP_BLOCK_LEN
;
505 return blocklen
/ sizeof(struct xfs_rmap_rec
);
507 (2 * sizeof(struct xfs_rmap_key
) + sizeof(xfs_rmap_ptr_t
));
510 /* Compute the maximum height of an rmap btree. */
512 xfs_rmapbt_compute_maxlevels(
513 struct xfs_mount
*mp
)
515 mp
->m_rmap_maxlevels
= xfs_btree_compute_maxlevels(mp
,
516 mp
->m_rmap_mnr
, mp
->m_sb
.sb_agblocks
);