2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
33 #include "xfs_attr_sf.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
51 #include "xfs_bmap_btree.h"
53 kmem_zone_t
*xfs_inode_zone
;
56 * Used in xfs_itruncate_extents(). This is the maximum number of extents
57 * freed from a file in a single transaction.
59 #define XFS_ITRUNC_MAX_EXTENTS 2
61 STATIC
int xfs_iflush_int(struct xfs_inode
*, struct xfs_buf
*);
62 STATIC
int xfs_iunlink(struct xfs_trans
*, struct xfs_inode
*);
63 STATIC
int xfs_iunlink_remove(struct xfs_trans
*, struct xfs_inode
*);
66 * helper function to extract extent size hint from inode
72 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
73 return ip
->i_d
.di_extsize
;
74 if (XFS_IS_REALTIME_INODE(ip
))
75 return ip
->i_mount
->m_sb
.sb_rextsize
;
80 * These two are wrapper routines around the xfs_ilock() routine used to
81 * centralize some grungy code. They are used in places that wish to lock the
82 * inode solely for reading the extents. The reason these places can't just
83 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
84 * bringing in of the extents from disk for a file in b-tree format. If the
85 * inode is in b-tree format, then we need to lock the inode exclusively until
86 * the extents are read in. Locking it exclusively all the time would limit
87 * our parallelism unnecessarily, though. What we do instead is check to see
88 * if the extents have been read in yet, and only lock the inode exclusively
91 * The functions return a value which should be given to the corresponding
95 xfs_ilock_data_map_shared(
98 uint lock_mode
= XFS_ILOCK_SHARED
;
100 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
101 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
102 lock_mode
= XFS_ILOCK_EXCL
;
103 xfs_ilock(ip
, lock_mode
);
108 xfs_ilock_attr_map_shared(
109 struct xfs_inode
*ip
)
111 uint lock_mode
= XFS_ILOCK_SHARED
;
113 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
114 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
115 lock_mode
= XFS_ILOCK_EXCL
;
116 xfs_ilock(ip
, lock_mode
);
121 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
122 * the i_lock. This routine allows various combinations of the locks to be
125 * The 3 locks should always be ordered so that the IO lock is obtained first,
126 * the mmap lock second and the ilock last in order to prevent deadlock.
128 * Basic locking order:
130 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
132 * mmap_sem locking order:
134 * i_iolock -> page lock -> mmap_sem
135 * mmap_sem -> i_mmap_lock -> page_lock
137 * The difference in mmap_sem locking order mean that we cannot hold the
138 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
139 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
140 * in get_user_pages() to map the user pages into the kernel address space for
141 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
142 * page faults already hold the mmap_sem.
144 * Hence to serialise fully against both syscall and mmap based IO, we need to
145 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
146 * taken in places where we need to invalidate the page cache in a race
147 * free manner (e.g. truncate, hole punch and other extent manipulation
155 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
158 * You can't set both SHARED and EXCL for the same lock,
159 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
160 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
162 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
163 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
164 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
165 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
166 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
167 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
168 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
170 if (lock_flags
& XFS_IOLOCK_EXCL
)
171 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
172 else if (lock_flags
& XFS_IOLOCK_SHARED
)
173 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
175 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
176 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
177 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
178 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
180 if (lock_flags
& XFS_ILOCK_EXCL
)
181 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
182 else if (lock_flags
& XFS_ILOCK_SHARED
)
183 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
187 * This is just like xfs_ilock(), except that the caller
188 * is guaranteed not to sleep. It returns 1 if it gets
189 * the requested locks and 0 otherwise. If the IO lock is
190 * obtained but the inode lock cannot be, then the IO lock
191 * is dropped before returning.
193 * ip -- the inode being locked
194 * lock_flags -- this parameter indicates the inode's locks to be
195 * to be locked. See the comment for xfs_ilock() for a list
203 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
206 * You can't set both SHARED and EXCL for the same lock,
207 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
208 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
210 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
211 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
212 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
213 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
214 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
215 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
216 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
218 if (lock_flags
& XFS_IOLOCK_EXCL
) {
219 if (!mrtryupdate(&ip
->i_iolock
))
221 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
222 if (!mrtryaccess(&ip
->i_iolock
))
226 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
227 if (!mrtryupdate(&ip
->i_mmaplock
))
228 goto out_undo_iolock
;
229 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
230 if (!mrtryaccess(&ip
->i_mmaplock
))
231 goto out_undo_iolock
;
234 if (lock_flags
& XFS_ILOCK_EXCL
) {
235 if (!mrtryupdate(&ip
->i_lock
))
236 goto out_undo_mmaplock
;
237 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
238 if (!mrtryaccess(&ip
->i_lock
))
239 goto out_undo_mmaplock
;
244 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
245 mrunlock_excl(&ip
->i_mmaplock
);
246 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
247 mrunlock_shared(&ip
->i_mmaplock
);
249 if (lock_flags
& XFS_IOLOCK_EXCL
)
250 mrunlock_excl(&ip
->i_iolock
);
251 else if (lock_flags
& XFS_IOLOCK_SHARED
)
252 mrunlock_shared(&ip
->i_iolock
);
258 * xfs_iunlock() is used to drop the inode locks acquired with
259 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
260 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
261 * that we know which locks to drop.
263 * ip -- the inode being unlocked
264 * lock_flags -- this parameter indicates the inode's locks to be
265 * to be unlocked. See the comment for xfs_ilock() for a list
266 * of valid values for this parameter.
275 * You can't set both SHARED and EXCL for the same lock,
276 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
277 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
279 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
280 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
281 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
282 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
283 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
284 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
285 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
286 ASSERT(lock_flags
!= 0);
288 if (lock_flags
& XFS_IOLOCK_EXCL
)
289 mrunlock_excl(&ip
->i_iolock
);
290 else if (lock_flags
& XFS_IOLOCK_SHARED
)
291 mrunlock_shared(&ip
->i_iolock
);
293 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
294 mrunlock_excl(&ip
->i_mmaplock
);
295 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
296 mrunlock_shared(&ip
->i_mmaplock
);
298 if (lock_flags
& XFS_ILOCK_EXCL
)
299 mrunlock_excl(&ip
->i_lock
);
300 else if (lock_flags
& XFS_ILOCK_SHARED
)
301 mrunlock_shared(&ip
->i_lock
);
303 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
307 * give up write locks. the i/o lock cannot be held nested
308 * if it is being demoted.
315 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
317 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
319 if (lock_flags
& XFS_ILOCK_EXCL
)
320 mrdemote(&ip
->i_lock
);
321 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
322 mrdemote(&ip
->i_mmaplock
);
323 if (lock_flags
& XFS_IOLOCK_EXCL
)
324 mrdemote(&ip
->i_iolock
);
326 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
329 #if defined(DEBUG) || defined(XFS_WARN)
335 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
336 if (!(lock_flags
& XFS_ILOCK_SHARED
))
337 return !!ip
->i_lock
.mr_writer
;
338 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
341 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
342 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
343 return !!ip
->i_mmaplock
.mr_writer
;
344 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
347 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
348 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
349 return !!ip
->i_iolock
.mr_writer
;
350 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
360 int xfs_small_retries
;
361 int xfs_middle_retries
;
362 int xfs_lots_retries
;
367 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
368 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
369 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
370 * errors and warnings.
372 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
374 xfs_lockdep_subclass_ok(
377 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
380 #define xfs_lockdep_subclass_ok(subclass) (true)
384 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
385 * value. This can be called for any type of inode lock combination, including
386 * parent locking. Care must be taken to ensure we don't overrun the subclass
387 * storage fields in the class mask we build.
390 xfs_lock_inumorder(int lock_mode
, int subclass
)
394 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
396 ASSERT(xfs_lockdep_subclass_ok(subclass
));
398 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
399 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
400 ASSERT(xfs_lockdep_subclass_ok(subclass
+
401 XFS_IOLOCK_PARENT_VAL
));
402 class += subclass
<< XFS_IOLOCK_SHIFT
;
403 if (lock_mode
& XFS_IOLOCK_PARENT
)
404 class += XFS_IOLOCK_PARENT_VAL
<< XFS_IOLOCK_SHIFT
;
407 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
408 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
409 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
412 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
413 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
414 class += subclass
<< XFS_ILOCK_SHIFT
;
417 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
421 * The following routine will lock n inodes in exclusive mode. We assume the
422 * caller calls us with the inodes in i_ino order.
424 * We need to detect deadlock where an inode that we lock is in the AIL and we
425 * start waiting for another inode that is locked by a thread in a long running
426 * transaction (such as truncate). This can result in deadlock since the long
427 * running trans might need to wait for the inode we just locked in order to
428 * push the tail and free space in the log.
430 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
431 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
432 * lock more than one at a time, lockdep will report false positives saying we
433 * have violated locking orders.
441 int attempts
= 0, i
, j
, try_lock
;
445 * Currently supports between 2 and 5 inodes with exclusive locking. We
446 * support an arbitrary depth of locking here, but absolute limits on
447 * inodes depend on the the type of locking and the limits placed by
448 * lockdep annotations in xfs_lock_inumorder. These are all checked by
451 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
452 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
454 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
456 ASSERT(!(lock_mode
& XFS_IOLOCK_EXCL
) ||
457 inodes
<= XFS_IOLOCK_MAX_SUBCLASS
+ 1);
458 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
459 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
460 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
461 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
463 if (lock_mode
& XFS_IOLOCK_EXCL
) {
464 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
465 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
466 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
471 for (; i
< inodes
; i
++) {
474 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
478 * If try_lock is not set yet, make sure all locked inodes are
479 * not in the AIL. If any are, set try_lock to be used later.
482 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
483 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
484 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
))
490 * If any of the previous locks we have locked is in the AIL,
491 * we must TRY to get the second and subsequent locks. If
492 * we can't get any, we must release all we have
496 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
500 /* try_lock means we have an inode locked that is in the AIL. */
502 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
506 * Unlock all previous guys and try again. xfs_iunlock will try
507 * to push the tail if the inode is in the AIL.
510 for (j
= i
- 1; j
>= 0; j
--) {
512 * Check to see if we've already unlocked this one. Not
513 * the first one going back, and the inode ptr is the
516 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
519 xfs_iunlock(ips
[j
], lock_mode
);
522 if ((attempts
% 5) == 0) {
523 delay(1); /* Don't just spin the CPU */
535 if (attempts
< 5) xfs_small_retries
++;
536 else if (attempts
< 100) xfs_middle_retries
++;
537 else xfs_lots_retries
++;
545 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
546 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
547 * lock more than one at a time, lockdep will report false positives saying we
548 * have violated locking orders.
560 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
561 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)));
562 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
563 } else if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
))
564 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
566 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
568 if (ip0
->i_ino
> ip1
->i_ino
) {
575 xfs_ilock(ip0
, xfs_lock_inumorder(lock_mode
, 0));
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
582 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
583 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
584 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(lock_mode
, 1))) {
585 xfs_iunlock(ip0
, lock_mode
);
586 if ((++attempts
% 5) == 0)
587 delay(1); /* Don't just spin the CPU */
591 xfs_ilock(ip1
, xfs_lock_inumorder(lock_mode
, 1));
598 struct xfs_inode
*ip
)
600 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
601 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
604 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
605 if (xfs_isiflocked(ip
))
607 } while (!xfs_iflock_nowait(ip
));
609 finish_wait(wq
, &wait
.wait
);
620 if (di_flags
& XFS_DIFLAG_ANY
) {
621 if (di_flags
& XFS_DIFLAG_REALTIME
)
622 flags
|= FS_XFLAG_REALTIME
;
623 if (di_flags
& XFS_DIFLAG_PREALLOC
)
624 flags
|= FS_XFLAG_PREALLOC
;
625 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
626 flags
|= FS_XFLAG_IMMUTABLE
;
627 if (di_flags
& XFS_DIFLAG_APPEND
)
628 flags
|= FS_XFLAG_APPEND
;
629 if (di_flags
& XFS_DIFLAG_SYNC
)
630 flags
|= FS_XFLAG_SYNC
;
631 if (di_flags
& XFS_DIFLAG_NOATIME
)
632 flags
|= FS_XFLAG_NOATIME
;
633 if (di_flags
& XFS_DIFLAG_NODUMP
)
634 flags
|= FS_XFLAG_NODUMP
;
635 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
636 flags
|= FS_XFLAG_RTINHERIT
;
637 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
638 flags
|= FS_XFLAG_PROJINHERIT
;
639 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
640 flags
|= FS_XFLAG_NOSYMLINKS
;
641 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
642 flags
|= FS_XFLAG_EXTSIZE
;
643 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
644 flags
|= FS_XFLAG_EXTSZINHERIT
;
645 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
646 flags
|= FS_XFLAG_NODEFRAG
;
647 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
648 flags
|= FS_XFLAG_FILESTREAM
;
651 if (di_flags2
& XFS_DIFLAG2_ANY
) {
652 if (di_flags2
& XFS_DIFLAG2_DAX
)
653 flags
|= FS_XFLAG_DAX
;
657 flags
|= FS_XFLAG_HASATTR
;
664 struct xfs_inode
*ip
)
666 struct xfs_icdinode
*dic
= &ip
->i_d
;
668 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
672 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
673 * is allowed, otherwise it has to be an exact match. If a CI match is found,
674 * ci_name->name will point to a the actual name (caller must free) or
675 * will be set to NULL if an exact match is found.
680 struct xfs_name
*name
,
682 struct xfs_name
*ci_name
)
687 trace_xfs_lookup(dp
, name
);
689 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
692 xfs_ilock(dp
, XFS_IOLOCK_SHARED
);
693 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
697 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
701 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
706 kmem_free(ci_name
->name
);
708 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
714 * Allocate an inode on disk and return a copy of its in-core version.
715 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
716 * appropriately within the inode. The uid and gid for the inode are
717 * set according to the contents of the given cred structure.
719 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
720 * has a free inode available, call xfs_iget() to obtain the in-core
721 * version of the allocated inode. Finally, fill in the inode and
722 * log its initial contents. In this case, ialloc_context would be
725 * If xfs_dialloc() does not have an available inode, it will replenish
726 * its supply by doing an allocation. Since we can only do one
727 * allocation within a transaction without deadlocks, we must commit
728 * the current transaction before returning the inode itself.
729 * In this case, therefore, we will set ialloc_context and return.
730 * The caller should then commit the current transaction, start a new
731 * transaction, and call xfs_ialloc() again to actually get the inode.
733 * To ensure that some other process does not grab the inode that
734 * was allocated during the first call to xfs_ialloc(), this routine
735 * also returns the [locked] bp pointing to the head of the freelist
736 * as ialloc_context. The caller should hold this buffer across
737 * the commit and pass it back into this routine on the second call.
739 * If we are allocating quota inodes, we do not have a parent inode
740 * to attach to or associate with (i.e. pip == NULL) because they
741 * are not linked into the directory structure - they are attached
742 * directly to the superblock - and so have no parent.
753 xfs_buf_t
**ialloc_context
,
756 struct xfs_mount
*mp
= tp
->t_mountp
;
765 * Call the space management code to pick
766 * the on-disk inode to be allocated.
768 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
769 ialloc_context
, &ino
);
772 if (*ialloc_context
|| ino
== NULLFSINO
) {
776 ASSERT(*ialloc_context
== NULL
);
779 * Get the in-core inode with the lock held exclusively.
780 * This is because we're setting fields here we need
781 * to prevent others from looking at until we're done.
783 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
784 XFS_ILOCK_EXCL
, &ip
);
791 * We always convert v1 inodes to v2 now - we only support filesystems
792 * with >= v2 inode capability, so there is no reason for ever leaving
793 * an inode in v1 format.
795 if (ip
->i_d
.di_version
== 1)
796 ip
->i_d
.di_version
= 2;
798 inode
->i_mode
= mode
;
799 set_nlink(inode
, nlink
);
800 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
801 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
802 xfs_set_projid(ip
, prid
);
804 if (pip
&& XFS_INHERIT_GID(pip
)) {
805 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
806 if ((VFS_I(pip
)->i_mode
& S_ISGID
) && S_ISDIR(mode
))
807 inode
->i_mode
|= S_ISGID
;
811 * If the group ID of the new file does not match the effective group
812 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 * (and only if the irix_sgid_inherit compatibility variable is set).
815 if ((irix_sgid_inherit
) &&
816 (inode
->i_mode
& S_ISGID
) &&
817 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
))))
818 inode
->i_mode
&= ~S_ISGID
;
821 ip
->i_d
.di_nextents
= 0;
822 ASSERT(ip
->i_d
.di_nblocks
== 0);
824 tv
= current_fs_time(mp
->m_super
);
829 ip
->i_d
.di_extsize
= 0;
830 ip
->i_d
.di_dmevmask
= 0;
831 ip
->i_d
.di_dmstate
= 0;
832 ip
->i_d
.di_flags
= 0;
834 if (ip
->i_d
.di_version
== 3) {
835 inode
->i_version
= 1;
836 ip
->i_d
.di_flags2
= 0;
837 ip
->i_d
.di_crtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
838 ip
->i_d
.di_crtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
842 flags
= XFS_ILOG_CORE
;
843 switch (mode
& S_IFMT
) {
848 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
849 ip
->i_df
.if_u2
.if_rdev
= rdev
;
850 ip
->i_df
.if_flags
= 0;
851 flags
|= XFS_ILOG_DEV
;
855 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
856 uint64_t di_flags2
= 0;
860 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
861 di_flags
|= XFS_DIFLAG_RTINHERIT
;
862 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
863 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
864 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
866 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
867 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
868 } else if (S_ISREG(mode
)) {
869 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
870 di_flags
|= XFS_DIFLAG_REALTIME
;
871 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
872 di_flags
|= XFS_DIFLAG_EXTSIZE
;
873 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
876 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
878 di_flags
|= XFS_DIFLAG_NOATIME
;
879 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
881 di_flags
|= XFS_DIFLAG_NODUMP
;
882 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
884 di_flags
|= XFS_DIFLAG_SYNC
;
885 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
886 xfs_inherit_nosymlinks
)
887 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
888 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
889 xfs_inherit_nodefrag
)
890 di_flags
|= XFS_DIFLAG_NODEFRAG
;
891 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
892 di_flags
|= XFS_DIFLAG_FILESTREAM
;
893 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
894 di_flags2
|= XFS_DIFLAG2_DAX
;
896 ip
->i_d
.di_flags
|= di_flags
;
897 ip
->i_d
.di_flags2
|= di_flags2
;
901 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
902 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
903 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
904 ip
->i_df
.if_u1
.if_extents
= NULL
;
910 * Attribute fork settings for new inode.
912 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
913 ip
->i_d
.di_anextents
= 0;
916 * Log the new values stuffed into the inode.
918 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
919 xfs_trans_log_inode(tp
, ip
, flags
);
921 /* now that we have an i_mode we can setup the inode structure */
929 * Allocates a new inode from disk and return a pointer to the
930 * incore copy. This routine will internally commit the current
931 * transaction and allocate a new one if the Space Manager needed
932 * to do an allocation to replenish the inode free-list.
934 * This routine is designed to be called from xfs_create and
940 xfs_trans_t
**tpp
, /* input: current transaction;
941 output: may be a new transaction. */
942 xfs_inode_t
*dp
, /* directory within whose allocate
947 prid_t prid
, /* project id */
948 int okalloc
, /* ok to allocate new space */
949 xfs_inode_t
**ipp
, /* pointer to inode; it will be
956 xfs_buf_t
*ialloc_context
= NULL
;
962 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
965 * xfs_ialloc will return a pointer to an incore inode if
966 * the Space Manager has an available inode on the free
967 * list. Otherwise, it will do an allocation and replenish
968 * the freelist. Since we can only do one allocation per
969 * transaction without deadlocks, we will need to commit the
970 * current transaction and start a new one. We will then
971 * need to call xfs_ialloc again to get the inode.
973 * If xfs_ialloc did an allocation to replenish the freelist,
974 * it returns the bp containing the head of the freelist as
975 * ialloc_context. We will hold a lock on it across the
976 * transaction commit so that no other process can steal
977 * the inode(s) that we've just allocated.
979 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, okalloc
,
980 &ialloc_context
, &ip
);
983 * Return an error if we were unable to allocate a new inode.
984 * This should only happen if we run out of space on disk or
985 * encounter a disk error.
991 if (!ialloc_context
&& !ip
) {
997 * If the AGI buffer is non-NULL, then we were unable to get an
998 * inode in one operation. We need to commit the current
999 * transaction and call xfs_ialloc() again. It is guaranteed
1000 * to succeed the second time.
1002 if (ialloc_context
) {
1004 * Normally, xfs_trans_commit releases all the locks.
1005 * We call bhold to hang on to the ialloc_context across
1006 * the commit. Holding this buffer prevents any other
1007 * processes from doing any allocations in this
1010 xfs_trans_bhold(tp
, ialloc_context
);
1013 * We want the quota changes to be associated with the next
1014 * transaction, NOT this one. So, detach the dqinfo from this
1015 * and attach it to the next transaction.
1020 dqinfo
= (void *)tp
->t_dqinfo
;
1021 tp
->t_dqinfo
= NULL
;
1022 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1023 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1026 code
= xfs_trans_roll(&tp
, NULL
);
1027 if (committed
!= NULL
)
1031 * Re-attach the quota info that we detached from prev trx.
1034 tp
->t_dqinfo
= dqinfo
;
1035 tp
->t_flags
|= tflags
;
1039 xfs_buf_relse(ialloc_context
);
1044 xfs_trans_bjoin(tp
, ialloc_context
);
1047 * Call ialloc again. Since we've locked out all
1048 * other allocations in this allocation group,
1049 * this call should always succeed.
1051 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1052 okalloc
, &ialloc_context
, &ip
);
1055 * If we get an error at this point, return to the caller
1056 * so that the current transaction can be aborted.
1063 ASSERT(!ialloc_context
&& ip
);
1066 if (committed
!= NULL
)
1077 * Decrement the link count on an inode & log the change. If this causes the
1078 * link count to go to zero, move the inode to AGI unlinked list so that it can
1079 * be freed when the last active reference goes away via xfs_inactive().
1081 static int /* error */
1086 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1088 drop_nlink(VFS_I(ip
));
1089 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1091 if (VFS_I(ip
)->i_nlink
)
1094 return xfs_iunlink(tp
, ip
);
1098 * Increment the link count on an inode & log the change.
1105 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1107 ASSERT(ip
->i_d
.di_version
> 1);
1108 inc_nlink(VFS_I(ip
));
1109 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1116 struct xfs_name
*name
,
1121 int is_dir
= S_ISDIR(mode
);
1122 struct xfs_mount
*mp
= dp
->i_mount
;
1123 struct xfs_inode
*ip
= NULL
;
1124 struct xfs_trans
*tp
= NULL
;
1126 struct xfs_defer_ops dfops
;
1127 xfs_fsblock_t first_block
;
1128 bool unlock_dp_on_error
= false;
1130 struct xfs_dquot
*udqp
= NULL
;
1131 struct xfs_dquot
*gdqp
= NULL
;
1132 struct xfs_dquot
*pdqp
= NULL
;
1133 struct xfs_trans_res
*tres
;
1136 trace_xfs_create(dp
, name
);
1138 if (XFS_FORCED_SHUTDOWN(mp
))
1141 prid
= xfs_get_initial_prid(dp
);
1144 * Make sure that we have allocated dquot(s) on disk.
1146 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1147 xfs_kgid_to_gid(current_fsgid()), prid
,
1148 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1149 &udqp
, &gdqp
, &pdqp
);
1155 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1156 tres
= &M_RES(mp
)->tr_mkdir
;
1158 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1159 tres
= &M_RES(mp
)->tr_create
;
1163 * Initially assume that the file does not exist and
1164 * reserve the resources for that case. If that is not
1165 * the case we'll drop the one we have and get a more
1166 * appropriate transaction later.
1168 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1169 if (error
== -ENOSPC
) {
1170 /* flush outstanding delalloc blocks and retry */
1171 xfs_flush_inodes(mp
);
1172 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1174 if (error
== -ENOSPC
) {
1175 /* No space at all so try a "no-allocation" reservation */
1177 error
= xfs_trans_alloc(mp
, tres
, 0, 0, 0, &tp
);
1180 goto out_release_inode
;
1182 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
|
1183 XFS_IOLOCK_PARENT
| XFS_ILOCK_PARENT
);
1184 unlock_dp_on_error
= true;
1186 xfs_defer_init(&dfops
, &first_block
);
1189 * Reserve disk quota and the inode.
1191 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1192 pdqp
, resblks
, 1, 0);
1194 goto out_trans_cancel
;
1197 error
= xfs_dir_canenter(tp
, dp
, name
);
1199 goto out_trans_cancel
;
1203 * A newly created regular or special file just has one directory
1204 * entry pointing to them, but a directory also the "." entry
1205 * pointing to itself.
1207 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
,
1208 prid
, resblks
> 0, &ip
, NULL
);
1210 goto out_trans_cancel
;
1213 * Now we join the directory inode to the transaction. We do not do it
1214 * earlier because xfs_dir_ialloc might commit the previous transaction
1215 * (and release all the locks). An error from here on will result in
1216 * the transaction cancel unlocking dp so don't do it explicitly in the
1219 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1220 unlock_dp_on_error
= false;
1222 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1223 &first_block
, &dfops
, resblks
?
1224 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1226 ASSERT(error
!= -ENOSPC
);
1227 goto out_trans_cancel
;
1229 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1230 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1233 error
= xfs_dir_init(tp
, ip
, dp
);
1235 goto out_bmap_cancel
;
1237 error
= xfs_bumplink(tp
, dp
);
1239 goto out_bmap_cancel
;
1243 * If this is a synchronous mount, make sure that the
1244 * create transaction goes to disk before returning to
1247 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1248 xfs_trans_set_sync(tp
);
1251 * Attach the dquot(s) to the inodes and modify them incore.
1252 * These ids of the inode couldn't have changed since the new
1253 * inode has been locked ever since it was created.
1255 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1257 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1259 goto out_bmap_cancel
;
1261 error
= xfs_trans_commit(tp
);
1263 goto out_release_inode
;
1265 xfs_qm_dqrele(udqp
);
1266 xfs_qm_dqrele(gdqp
);
1267 xfs_qm_dqrele(pdqp
);
1273 xfs_defer_cancel(&dfops
);
1275 xfs_trans_cancel(tp
);
1278 * Wait until after the current transaction is aborted to finish the
1279 * setup of the inode and release the inode. This prevents recursive
1280 * transactions and deadlocks from xfs_inactive.
1283 xfs_finish_inode_setup(ip
);
1287 xfs_qm_dqrele(udqp
);
1288 xfs_qm_dqrele(gdqp
);
1289 xfs_qm_dqrele(pdqp
);
1291 if (unlock_dp_on_error
)
1292 xfs_iunlock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1298 struct xfs_inode
*dp
,
1299 struct dentry
*dentry
,
1301 struct xfs_inode
**ipp
)
1303 struct xfs_mount
*mp
= dp
->i_mount
;
1304 struct xfs_inode
*ip
= NULL
;
1305 struct xfs_trans
*tp
= NULL
;
1308 struct xfs_dquot
*udqp
= NULL
;
1309 struct xfs_dquot
*gdqp
= NULL
;
1310 struct xfs_dquot
*pdqp
= NULL
;
1311 struct xfs_trans_res
*tres
;
1314 if (XFS_FORCED_SHUTDOWN(mp
))
1317 prid
= xfs_get_initial_prid(dp
);
1320 * Make sure that we have allocated dquot(s) on disk.
1322 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1323 xfs_kgid_to_gid(current_fsgid()), prid
,
1324 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1325 &udqp
, &gdqp
, &pdqp
);
1329 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1330 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1332 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1333 if (error
== -ENOSPC
) {
1334 /* No space at all so try a "no-allocation" reservation */
1336 error
= xfs_trans_alloc(mp
, tres
, 0, 0, 0, &tp
);
1339 goto out_release_inode
;
1341 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1342 pdqp
, resblks
, 1, 0);
1344 goto out_trans_cancel
;
1346 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0,
1347 prid
, resblks
> 0, &ip
, NULL
);
1349 goto out_trans_cancel
;
1351 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1352 xfs_trans_set_sync(tp
);
1355 * Attach the dquot(s) to the inodes and modify them incore.
1356 * These ids of the inode couldn't have changed since the new
1357 * inode has been locked ever since it was created.
1359 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1361 error
= xfs_iunlink(tp
, ip
);
1363 goto out_trans_cancel
;
1365 error
= xfs_trans_commit(tp
);
1367 goto out_release_inode
;
1369 xfs_qm_dqrele(udqp
);
1370 xfs_qm_dqrele(gdqp
);
1371 xfs_qm_dqrele(pdqp
);
1377 xfs_trans_cancel(tp
);
1380 * Wait until after the current transaction is aborted to finish the
1381 * setup of the inode and release the inode. This prevents recursive
1382 * transactions and deadlocks from xfs_inactive.
1385 xfs_finish_inode_setup(ip
);
1389 xfs_qm_dqrele(udqp
);
1390 xfs_qm_dqrele(gdqp
);
1391 xfs_qm_dqrele(pdqp
);
1400 struct xfs_name
*target_name
)
1402 xfs_mount_t
*mp
= tdp
->i_mount
;
1405 struct xfs_defer_ops dfops
;
1406 xfs_fsblock_t first_block
;
1409 trace_xfs_link(tdp
, target_name
);
1411 ASSERT(!S_ISDIR(VFS_I(sip
)->i_mode
));
1413 if (XFS_FORCED_SHUTDOWN(mp
))
1416 error
= xfs_qm_dqattach(sip
, 0);
1420 error
= xfs_qm_dqattach(tdp
, 0);
1424 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1425 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, resblks
, 0, 0, &tp
);
1426 if (error
== -ENOSPC
) {
1428 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, 0, 0, 0, &tp
);
1433 xfs_ilock(tdp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
1434 xfs_lock_two_inodes(sip
, tdp
, XFS_ILOCK_EXCL
);
1436 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1437 xfs_trans_ijoin(tp
, tdp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1440 * If we are using project inheritance, we only allow hard link
1441 * creation in our tree when the project IDs are the same; else
1442 * the tree quota mechanism could be circumvented.
1444 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1445 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1451 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1456 xfs_defer_init(&dfops
, &first_block
);
1459 * Handle initial link state of O_TMPFILE inode
1461 if (VFS_I(sip
)->i_nlink
== 0) {
1462 error
= xfs_iunlink_remove(tp
, sip
);
1467 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1468 &first_block
, &dfops
, resblks
);
1471 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1472 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1474 error
= xfs_bumplink(tp
, sip
);
1479 * If this is a synchronous mount, make sure that the
1480 * link transaction goes to disk before returning to
1483 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1484 xfs_trans_set_sync(tp
);
1486 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1488 xfs_defer_cancel(&dfops
);
1492 return xfs_trans_commit(tp
);
1495 xfs_trans_cancel(tp
);
1501 * Free up the underlying blocks past new_size. The new size must be smaller
1502 * than the current size. This routine can be used both for the attribute and
1503 * data fork, and does not modify the inode size, which is left to the caller.
1505 * The transaction passed to this routine must have made a permanent log
1506 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1507 * given transaction and start new ones, so make sure everything involved in
1508 * the transaction is tidy before calling here. Some transaction will be
1509 * returned to the caller to be committed. The incoming transaction must
1510 * already include the inode, and both inode locks must be held exclusively.
1511 * The inode must also be "held" within the transaction. On return the inode
1512 * will be "held" within the returned transaction. This routine does NOT
1513 * require any disk space to be reserved for it within the transaction.
1515 * If we get an error, we must return with the inode locked and linked into the
1516 * current transaction. This keeps things simple for the higher level code,
1517 * because it always knows that the inode is locked and held in the transaction
1518 * that returns to it whether errors occur or not. We don't mark the inode
1519 * dirty on error so that transactions can be easily aborted if possible.
1522 xfs_itruncate_extents(
1523 struct xfs_trans
**tpp
,
1524 struct xfs_inode
*ip
,
1526 xfs_fsize_t new_size
)
1528 struct xfs_mount
*mp
= ip
->i_mount
;
1529 struct xfs_trans
*tp
= *tpp
;
1530 struct xfs_defer_ops dfops
;
1531 xfs_fsblock_t first_block
;
1532 xfs_fileoff_t first_unmap_block
;
1533 xfs_fileoff_t last_block
;
1534 xfs_filblks_t unmap_len
;
1538 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1539 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1540 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1541 ASSERT(new_size
<= XFS_ISIZE(ip
));
1542 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1543 ASSERT(ip
->i_itemp
!= NULL
);
1544 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1545 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1547 trace_xfs_itruncate_extents_start(ip
, new_size
);
1550 * Since it is possible for space to become allocated beyond
1551 * the end of the file (in a crash where the space is allocated
1552 * but the inode size is not yet updated), simply remove any
1553 * blocks which show up between the new EOF and the maximum
1554 * possible file size. If the first block to be removed is
1555 * beyond the maximum file size (ie it is the same as last_block),
1556 * then there is nothing to do.
1558 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1559 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1560 if (first_unmap_block
== last_block
)
1563 ASSERT(first_unmap_block
< last_block
);
1564 unmap_len
= last_block
- first_unmap_block
+ 1;
1566 xfs_defer_init(&dfops
, &first_block
);
1567 error
= xfs_bunmapi(tp
, ip
,
1568 first_unmap_block
, unmap_len
,
1569 xfs_bmapi_aflag(whichfork
),
1570 XFS_ITRUNC_MAX_EXTENTS
,
1571 &first_block
, &dfops
,
1574 goto out_bmap_cancel
;
1577 * Duplicate the transaction that has the permanent
1578 * reservation and commit the old transaction.
1580 error
= xfs_defer_finish(&tp
, &dfops
, ip
);
1582 goto out_bmap_cancel
;
1584 error
= xfs_trans_roll(&tp
, ip
);
1590 * Always re-log the inode so that our permanent transaction can keep
1591 * on rolling it forward in the log.
1593 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1595 trace_xfs_itruncate_extents_end(ip
, new_size
);
1602 * If the bunmapi call encounters an error, return to the caller where
1603 * the transaction can be properly aborted. We just need to make sure
1604 * we're not holding any resources that we were not when we came in.
1606 xfs_defer_cancel(&dfops
);
1614 xfs_mount_t
*mp
= ip
->i_mount
;
1617 if (!S_ISREG(VFS_I(ip
)->i_mode
) || (VFS_I(ip
)->i_mode
== 0))
1620 /* If this is a read-only mount, don't do this (would generate I/O) */
1621 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1624 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1628 * If we previously truncated this file and removed old data
1629 * in the process, we want to initiate "early" writeout on
1630 * the last close. This is an attempt to combat the notorious
1631 * NULL files problem which is particularly noticeable from a
1632 * truncate down, buffered (re-)write (delalloc), followed by
1633 * a crash. What we are effectively doing here is
1634 * significantly reducing the time window where we'd otherwise
1635 * be exposed to that problem.
1637 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1639 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1640 if (ip
->i_delayed_blks
> 0) {
1641 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1648 if (VFS_I(ip
)->i_nlink
== 0)
1651 if (xfs_can_free_eofblocks(ip
, false)) {
1654 * If we can't get the iolock just skip truncating the blocks
1655 * past EOF because we could deadlock with the mmap_sem
1656 * otherwise. We'll get another chance to drop them once the
1657 * last reference to the inode is dropped, so we'll never leak
1658 * blocks permanently.
1660 * Further, check if the inode is being opened, written and
1661 * closed frequently and we have delayed allocation blocks
1662 * outstanding (e.g. streaming writes from the NFS server),
1663 * truncating the blocks past EOF will cause fragmentation to
1666 * In this case don't do the truncation, either, but we have to
1667 * be careful how we detect this case. Blocks beyond EOF show
1668 * up as i_delayed_blks even when the inode is clean, so we
1669 * need to truncate them away first before checking for a dirty
1670 * release. Hence on the first dirty close we will still remove
1671 * the speculative allocation, but after that we will leave it
1674 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1677 error
= xfs_free_eofblocks(mp
, ip
, true);
1678 if (error
&& error
!= -EAGAIN
)
1681 /* delalloc blocks after truncation means it really is dirty */
1682 if (ip
->i_delayed_blks
)
1683 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1689 * xfs_inactive_truncate
1691 * Called to perform a truncate when an inode becomes unlinked.
1694 xfs_inactive_truncate(
1695 struct xfs_inode
*ip
)
1697 struct xfs_mount
*mp
= ip
->i_mount
;
1698 struct xfs_trans
*tp
;
1701 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
1703 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1707 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1708 xfs_trans_ijoin(tp
, ip
, 0);
1711 * Log the inode size first to prevent stale data exposure in the event
1712 * of a system crash before the truncate completes. See the related
1713 * comment in xfs_setattr_size() for details.
1715 ip
->i_d
.di_size
= 0;
1716 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1718 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1720 goto error_trans_cancel
;
1722 ASSERT(ip
->i_d
.di_nextents
== 0);
1724 error
= xfs_trans_commit(tp
);
1728 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1732 xfs_trans_cancel(tp
);
1734 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1739 * xfs_inactive_ifree()
1741 * Perform the inode free when an inode is unlinked.
1745 struct xfs_inode
*ip
)
1747 struct xfs_defer_ops dfops
;
1748 xfs_fsblock_t first_block
;
1749 struct xfs_mount
*mp
= ip
->i_mount
;
1750 struct xfs_trans
*tp
;
1754 * The ifree transaction might need to allocate blocks for record
1755 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1756 * allow ifree to dip into the reserved block pool if necessary.
1758 * Freeing large sets of inodes generally means freeing inode chunks,
1759 * directory and file data blocks, so this should be relatively safe.
1760 * Only under severe circumstances should it be possible to free enough
1761 * inodes to exhaust the reserve block pool via finobt expansion while
1762 * at the same time not creating free space in the filesystem.
1764 * Send a warning if the reservation does happen to fail, as the inode
1765 * now remains allocated and sits on the unlinked list until the fs is
1768 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
,
1769 XFS_IFREE_SPACE_RES(mp
), 0, XFS_TRANS_RESERVE
, &tp
);
1771 if (error
== -ENOSPC
) {
1772 xfs_warn_ratelimited(mp
,
1773 "Failed to remove inode(s) from unlinked list. "
1774 "Please free space, unmount and run xfs_repair.");
1776 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1781 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1782 xfs_trans_ijoin(tp
, ip
, 0);
1784 xfs_defer_init(&dfops
, &first_block
);
1785 error
= xfs_ifree(tp
, ip
, &dfops
);
1788 * If we fail to free the inode, shut down. The cancel
1789 * might do that, we need to make sure. Otherwise the
1790 * inode might be lost for a long time or forever.
1792 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1793 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1795 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1797 xfs_trans_cancel(tp
);
1798 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1803 * Credit the quota account(s). The inode is gone.
1805 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1808 * Just ignore errors at this point. There is nothing we can do except
1809 * to try to keep going. Make sure it's not a silent error.
1811 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1813 xfs_notice(mp
, "%s: xfs_defer_finish returned error %d",
1815 xfs_defer_cancel(&dfops
);
1817 error
= xfs_trans_commit(tp
);
1819 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1822 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1829 * This is called when the vnode reference count for the vnode
1830 * goes to zero. If the file has been unlinked, then it must
1831 * now be truncated. Also, we clear all of the read-ahead state
1832 * kept for the inode here since the file is now closed.
1838 struct xfs_mount
*mp
;
1843 * If the inode is already free, then there can be nothing
1846 if (VFS_I(ip
)->i_mode
== 0) {
1847 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1848 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1854 /* If this is a read-only mount, don't do this (would generate I/O) */
1855 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1858 if (VFS_I(ip
)->i_nlink
!= 0) {
1860 * force is true because we are evicting an inode from the
1861 * cache. Post-eof blocks must be freed, lest we end up with
1862 * broken free space accounting.
1864 if (xfs_can_free_eofblocks(ip
, true))
1865 xfs_free_eofblocks(mp
, ip
, false);
1870 if (S_ISREG(VFS_I(ip
)->i_mode
) &&
1871 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1872 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1875 error
= xfs_qm_dqattach(ip
, 0);
1879 if (S_ISLNK(VFS_I(ip
)->i_mode
))
1880 error
= xfs_inactive_symlink(ip
);
1882 error
= xfs_inactive_truncate(ip
);
1887 * If there are attributes associated with the file then blow them away
1888 * now. The code calls a routine that recursively deconstructs the
1889 * attribute fork. If also blows away the in-core attribute fork.
1891 if (XFS_IFORK_Q(ip
)) {
1892 error
= xfs_attr_inactive(ip
);
1898 ASSERT(ip
->i_d
.di_anextents
== 0);
1899 ASSERT(ip
->i_d
.di_forkoff
== 0);
1904 error
= xfs_inactive_ifree(ip
);
1909 * Release the dquots held by inode, if any.
1911 xfs_qm_dqdetach(ip
);
1915 * This is called when the inode's link count goes to 0 or we are creating a
1916 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1917 * set to true as the link count is dropped to zero by the VFS after we've
1918 * created the file successfully, so we have to add it to the unlinked list
1919 * while the link count is non-zero.
1921 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1922 * list when the inode is freed.
1926 struct xfs_trans
*tp
,
1927 struct xfs_inode
*ip
)
1929 xfs_mount_t
*mp
= tp
->t_mountp
;
1939 ASSERT(VFS_I(ip
)->i_mode
!= 0);
1942 * Get the agi buffer first. It ensures lock ordering
1945 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1948 agi
= XFS_BUF_TO_AGI(agibp
);
1951 * Get the index into the agi hash table for the
1952 * list this inode will go on.
1954 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1956 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1957 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1958 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1960 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1962 * There is already another inode in the bucket we need
1963 * to add ourselves to. Add us at the front of the list.
1964 * Here we put the head pointer into our next pointer,
1965 * and then we fall through to point the head at us.
1967 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1972 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1973 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1974 offset
= ip
->i_imap
.im_boffset
+
1975 offsetof(xfs_dinode_t
, di_next_unlinked
);
1977 /* need to recalc the inode CRC if appropriate */
1978 xfs_dinode_calc_crc(mp
, dip
);
1980 xfs_trans_inode_buf(tp
, ibp
);
1981 xfs_trans_log_buf(tp
, ibp
, offset
,
1982 (offset
+ sizeof(xfs_agino_t
) - 1));
1983 xfs_inobp_check(mp
, ibp
);
1987 * Point the bucket head pointer at the inode being inserted.
1990 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1991 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1992 (sizeof(xfs_agino_t
) * bucket_index
);
1993 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
1994 xfs_trans_log_buf(tp
, agibp
, offset
,
1995 (offset
+ sizeof(xfs_agino_t
) - 1));
2000 * Pull the on-disk inode from the AGI unlinked list.
2013 xfs_agnumber_t agno
;
2015 xfs_agino_t next_agino
;
2016 xfs_buf_t
*last_ibp
;
2017 xfs_dinode_t
*last_dip
= NULL
;
2019 int offset
, last_offset
= 0;
2023 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2026 * Get the agi buffer first. It ensures lock ordering
2029 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2033 agi
= XFS_BUF_TO_AGI(agibp
);
2036 * Get the index into the agi hash table for the
2037 * list this inode will go on.
2039 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2041 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2042 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2043 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2045 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2047 * We're at the head of the list. Get the inode's on-disk
2048 * buffer to see if there is anyone after us on the list.
2049 * Only modify our next pointer if it is not already NULLAGINO.
2050 * This saves us the overhead of dealing with the buffer when
2051 * there is no need to change it.
2053 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2056 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2060 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2061 ASSERT(next_agino
!= 0);
2062 if (next_agino
!= NULLAGINO
) {
2063 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2064 offset
= ip
->i_imap
.im_boffset
+
2065 offsetof(xfs_dinode_t
, di_next_unlinked
);
2067 /* need to recalc the inode CRC if appropriate */
2068 xfs_dinode_calc_crc(mp
, dip
);
2070 xfs_trans_inode_buf(tp
, ibp
);
2071 xfs_trans_log_buf(tp
, ibp
, offset
,
2072 (offset
+ sizeof(xfs_agino_t
) - 1));
2073 xfs_inobp_check(mp
, ibp
);
2075 xfs_trans_brelse(tp
, ibp
);
2078 * Point the bucket head pointer at the next inode.
2080 ASSERT(next_agino
!= 0);
2081 ASSERT(next_agino
!= agino
);
2082 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2083 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2084 (sizeof(xfs_agino_t
) * bucket_index
);
2085 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2086 xfs_trans_log_buf(tp
, agibp
, offset
,
2087 (offset
+ sizeof(xfs_agino_t
) - 1));
2090 * We need to search the list for the inode being freed.
2092 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2094 while (next_agino
!= agino
) {
2095 struct xfs_imap imap
;
2098 xfs_trans_brelse(tp
, last_ibp
);
2101 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2103 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2106 "%s: xfs_imap returned error %d.",
2111 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2115 "%s: xfs_imap_to_bp returned error %d.",
2120 last_offset
= imap
.im_boffset
;
2121 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2122 ASSERT(next_agino
!= NULLAGINO
);
2123 ASSERT(next_agino
!= 0);
2127 * Now last_ibp points to the buffer previous to us on the
2128 * unlinked list. Pull us from the list.
2130 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2133 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2137 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2138 ASSERT(next_agino
!= 0);
2139 ASSERT(next_agino
!= agino
);
2140 if (next_agino
!= NULLAGINO
) {
2141 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2142 offset
= ip
->i_imap
.im_boffset
+
2143 offsetof(xfs_dinode_t
, di_next_unlinked
);
2145 /* need to recalc the inode CRC if appropriate */
2146 xfs_dinode_calc_crc(mp
, dip
);
2148 xfs_trans_inode_buf(tp
, ibp
);
2149 xfs_trans_log_buf(tp
, ibp
, offset
,
2150 (offset
+ sizeof(xfs_agino_t
) - 1));
2151 xfs_inobp_check(mp
, ibp
);
2153 xfs_trans_brelse(tp
, ibp
);
2156 * Point the previous inode on the list to the next inode.
2158 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2159 ASSERT(next_agino
!= 0);
2160 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2162 /* need to recalc the inode CRC if appropriate */
2163 xfs_dinode_calc_crc(mp
, last_dip
);
2165 xfs_trans_inode_buf(tp
, last_ibp
);
2166 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2167 (offset
+ sizeof(xfs_agino_t
) - 1));
2168 xfs_inobp_check(mp
, last_ibp
);
2174 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2175 * inodes that are in memory - they all must be marked stale and attached to
2176 * the cluster buffer.
2180 xfs_inode_t
*free_ip
,
2182 struct xfs_icluster
*xic
)
2184 xfs_mount_t
*mp
= free_ip
->i_mount
;
2185 int blks_per_cluster
;
2186 int inodes_per_cluster
;
2193 xfs_inode_log_item_t
*iip
;
2194 xfs_log_item_t
*lip
;
2195 struct xfs_perag
*pag
;
2198 inum
= xic
->first_ino
;
2199 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2200 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2201 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2202 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2204 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2206 * The allocation bitmap tells us which inodes of the chunk were
2207 * physically allocated. Skip the cluster if an inode falls into
2210 ioffset
= inum
- xic
->first_ino
;
2211 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2212 ASSERT(do_mod(ioffset
, inodes_per_cluster
) == 0);
2216 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2217 XFS_INO_TO_AGBNO(mp
, inum
));
2220 * We obtain and lock the backing buffer first in the process
2221 * here, as we have to ensure that any dirty inode that we
2222 * can't get the flush lock on is attached to the buffer.
2223 * If we scan the in-memory inodes first, then buffer IO can
2224 * complete before we get a lock on it, and hence we may fail
2225 * to mark all the active inodes on the buffer stale.
2227 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2228 mp
->m_bsize
* blks_per_cluster
,
2235 * This buffer may not have been correctly initialised as we
2236 * didn't read it from disk. That's not important because we are
2237 * only using to mark the buffer as stale in the log, and to
2238 * attach stale cached inodes on it. That means it will never be
2239 * dispatched for IO. If it is, we want to know about it, and we
2240 * want it to fail. We can acheive this by adding a write
2241 * verifier to the buffer.
2243 bp
->b_ops
= &xfs_inode_buf_ops
;
2246 * Walk the inodes already attached to the buffer and mark them
2247 * stale. These will all have the flush locks held, so an
2248 * in-memory inode walk can't lock them. By marking them all
2249 * stale first, we will not attempt to lock them in the loop
2250 * below as the XFS_ISTALE flag will be set.
2254 if (lip
->li_type
== XFS_LI_INODE
) {
2255 iip
= (xfs_inode_log_item_t
*)lip
;
2256 ASSERT(iip
->ili_logged
== 1);
2257 lip
->li_cb
= xfs_istale_done
;
2258 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2259 &iip
->ili_flush_lsn
,
2260 &iip
->ili_item
.li_lsn
);
2261 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2263 lip
= lip
->li_bio_list
;
2268 * For each inode in memory attempt to add it to the inode
2269 * buffer and set it up for being staled on buffer IO
2270 * completion. This is safe as we've locked out tail pushing
2271 * and flushing by locking the buffer.
2273 * We have already marked every inode that was part of a
2274 * transaction stale above, which means there is no point in
2275 * even trying to lock them.
2277 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2280 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2281 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2283 /* Inode not in memory, nothing to do */
2290 * because this is an RCU protected lookup, we could
2291 * find a recently freed or even reallocated inode
2292 * during the lookup. We need to check under the
2293 * i_flags_lock for a valid inode here. Skip it if it
2294 * is not valid, the wrong inode or stale.
2296 spin_lock(&ip
->i_flags_lock
);
2297 if (ip
->i_ino
!= inum
+ i
||
2298 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2299 spin_unlock(&ip
->i_flags_lock
);
2303 spin_unlock(&ip
->i_flags_lock
);
2306 * Don't try to lock/unlock the current inode, but we
2307 * _cannot_ skip the other inodes that we did not find
2308 * in the list attached to the buffer and are not
2309 * already marked stale. If we can't lock it, back off
2312 if (ip
!= free_ip
&&
2313 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2321 xfs_iflags_set(ip
, XFS_ISTALE
);
2324 * we don't need to attach clean inodes or those only
2325 * with unlogged changes (which we throw away, anyway).
2328 if (!iip
|| xfs_inode_clean(ip
)) {
2329 ASSERT(ip
!= free_ip
);
2331 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2335 iip
->ili_last_fields
= iip
->ili_fields
;
2336 iip
->ili_fields
= 0;
2337 iip
->ili_fsync_fields
= 0;
2338 iip
->ili_logged
= 1;
2339 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2340 &iip
->ili_item
.li_lsn
);
2342 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2346 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2349 xfs_trans_stale_inode_buf(tp
, bp
);
2350 xfs_trans_binval(tp
, bp
);
2358 * This is called to return an inode to the inode free list.
2359 * The inode should already be truncated to 0 length and have
2360 * no pages associated with it. This routine also assumes that
2361 * the inode is already a part of the transaction.
2363 * The on-disk copy of the inode will have been added to the list
2364 * of unlinked inodes in the AGI. We need to remove the inode from
2365 * that list atomically with respect to freeing it here.
2371 struct xfs_defer_ops
*dfops
)
2374 struct xfs_icluster xic
= { 0 };
2376 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2377 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2378 ASSERT(ip
->i_d
.di_nextents
== 0);
2379 ASSERT(ip
->i_d
.di_anextents
== 0);
2380 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(VFS_I(ip
)->i_mode
));
2381 ASSERT(ip
->i_d
.di_nblocks
== 0);
2384 * Pull the on-disk inode from the AGI unlinked list.
2386 error
= xfs_iunlink_remove(tp
, ip
);
2390 error
= xfs_difree(tp
, ip
->i_ino
, dfops
, &xic
);
2394 VFS_I(ip
)->i_mode
= 0; /* mark incore inode as free */
2395 ip
->i_d
.di_flags
= 0;
2396 ip
->i_d
.di_dmevmask
= 0;
2397 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2398 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2399 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2401 * Bump the generation count so no one will be confused
2402 * by reincarnations of this inode.
2404 VFS_I(ip
)->i_generation
++;
2405 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2408 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2414 * This is called to unpin an inode. The caller must have the inode locked
2415 * in at least shared mode so that the buffer cannot be subsequently pinned
2416 * once someone is waiting for it to be unpinned.
2420 struct xfs_inode
*ip
)
2422 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2424 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2426 /* Give the log a push to start the unpinning I/O */
2427 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2433 struct xfs_inode
*ip
)
2435 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2436 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2441 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2442 if (xfs_ipincount(ip
))
2444 } while (xfs_ipincount(ip
));
2445 finish_wait(wq
, &wait
.wait
);
2450 struct xfs_inode
*ip
)
2452 if (xfs_ipincount(ip
))
2453 __xfs_iunpin_wait(ip
);
2457 * Removing an inode from the namespace involves removing the directory entry
2458 * and dropping the link count on the inode. Removing the directory entry can
2459 * result in locking an AGF (directory blocks were freed) and removing a link
2460 * count can result in placing the inode on an unlinked list which results in
2463 * The big problem here is that we have an ordering constraint on AGF and AGI
2464 * locking - inode allocation locks the AGI, then can allocate a new extent for
2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466 * removes the inode from the unlinked list, requiring that we lock the AGI
2467 * first, and then freeing the inode can result in an inode chunk being freed
2468 * and hence freeing disk space requiring that we lock an AGF.
2470 * Hence the ordering that is imposed by other parts of the code is AGI before
2471 * AGF. This means we cannot remove the directory entry before we drop the inode
2472 * reference count and put it on the unlinked list as this results in a lock
2473 * order of AGF then AGI, and this can deadlock against inode allocation and
2474 * freeing. Therefore we must drop the link counts before we remove the
2477 * This is still safe from a transactional point of view - it is not until we
2478 * get to xfs_defer_finish() that we have the possibility of multiple
2479 * transactions in this operation. Hence as long as we remove the directory
2480 * entry and drop the link count in the first transaction of the remove
2481 * operation, there are no transactional constraints on the ordering here.
2486 struct xfs_name
*name
,
2489 xfs_mount_t
*mp
= dp
->i_mount
;
2490 xfs_trans_t
*tp
= NULL
;
2491 int is_dir
= S_ISDIR(VFS_I(ip
)->i_mode
);
2493 struct xfs_defer_ops dfops
;
2494 xfs_fsblock_t first_block
;
2497 trace_xfs_remove(dp
, name
);
2499 if (XFS_FORCED_SHUTDOWN(mp
))
2502 error
= xfs_qm_dqattach(dp
, 0);
2506 error
= xfs_qm_dqattach(ip
, 0);
2511 * We try to get the real space reservation first,
2512 * allowing for directory btree deletion(s) implying
2513 * possible bmap insert(s). If we can't get the space
2514 * reservation then we use 0 instead, and avoid the bmap
2515 * btree insert(s) in the directory code by, if the bmap
2516 * insert tries to happen, instead trimming the LAST
2517 * block from the directory.
2519 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2520 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, resblks
, 0, 0, &tp
);
2521 if (error
== -ENOSPC
) {
2523 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, 0, 0, 0,
2527 ASSERT(error
!= -ENOSPC
);
2531 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2532 xfs_lock_two_inodes(dp
, ip
, XFS_ILOCK_EXCL
);
2534 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2535 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2538 * If we're removing a directory perform some additional validation.
2541 ASSERT(VFS_I(ip
)->i_nlink
>= 2);
2542 if (VFS_I(ip
)->i_nlink
!= 2) {
2544 goto out_trans_cancel
;
2546 if (!xfs_dir_isempty(ip
)) {
2548 goto out_trans_cancel
;
2551 /* Drop the link from ip's "..". */
2552 error
= xfs_droplink(tp
, dp
);
2554 goto out_trans_cancel
;
2556 /* Drop the "." link from ip to self. */
2557 error
= xfs_droplink(tp
, ip
);
2559 goto out_trans_cancel
;
2562 * When removing a non-directory we need to log the parent
2563 * inode here. For a directory this is done implicitly
2564 * by the xfs_droplink call for the ".." entry.
2566 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2568 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2570 /* Drop the link from dp to ip. */
2571 error
= xfs_droplink(tp
, ip
);
2573 goto out_trans_cancel
;
2575 xfs_defer_init(&dfops
, &first_block
);
2576 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2577 &first_block
, &dfops
, resblks
);
2579 ASSERT(error
!= -ENOENT
);
2580 goto out_bmap_cancel
;
2584 * If this is a synchronous mount, make sure that the
2585 * remove transaction goes to disk before returning to
2588 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2589 xfs_trans_set_sync(tp
);
2591 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
2593 goto out_bmap_cancel
;
2595 error
= xfs_trans_commit(tp
);
2599 if (is_dir
&& xfs_inode_is_filestream(ip
))
2600 xfs_filestream_deassociate(ip
);
2605 xfs_defer_cancel(&dfops
);
2607 xfs_trans_cancel(tp
);
2613 * Enter all inodes for a rename transaction into a sorted array.
2615 #define __XFS_SORT_INODES 5
2617 xfs_sort_for_rename(
2618 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2619 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2620 struct xfs_inode
*ip1
, /* in: inode of old entry */
2621 struct xfs_inode
*ip2
, /* in: inode of new entry */
2622 struct xfs_inode
*wip
, /* in: whiteout inode */
2623 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2624 int *num_inodes
) /* in/out: inodes in array */
2628 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2629 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2632 * i_tab contains a list of pointers to inodes. We initialize
2633 * the table here & we'll sort it. We will then use it to
2634 * order the acquisition of the inode locks.
2636 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2649 * Sort the elements via bubble sort. (Remember, there are at
2650 * most 5 elements to sort, so this is adequate.)
2652 for (i
= 0; i
< *num_inodes
; i
++) {
2653 for (j
= 1; j
< *num_inodes
; j
++) {
2654 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2655 struct xfs_inode
*temp
= i_tab
[j
];
2656 i_tab
[j
] = i_tab
[j
-1];
2665 struct xfs_trans
*tp
,
2666 struct xfs_defer_ops
*dfops
)
2671 * If this is a synchronous mount, make sure that the rename transaction
2672 * goes to disk before returning to the user.
2674 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2675 xfs_trans_set_sync(tp
);
2677 error
= xfs_defer_finish(&tp
, dfops
, NULL
);
2679 xfs_defer_cancel(dfops
);
2680 xfs_trans_cancel(tp
);
2684 return xfs_trans_commit(tp
);
2688 * xfs_cross_rename()
2690 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2694 struct xfs_trans
*tp
,
2695 struct xfs_inode
*dp1
,
2696 struct xfs_name
*name1
,
2697 struct xfs_inode
*ip1
,
2698 struct xfs_inode
*dp2
,
2699 struct xfs_name
*name2
,
2700 struct xfs_inode
*ip2
,
2701 struct xfs_defer_ops
*dfops
,
2702 xfs_fsblock_t
*first_block
,
2710 /* Swap inode number for dirent in first parent */
2711 error
= xfs_dir_replace(tp
, dp1
, name1
,
2713 first_block
, dfops
, spaceres
);
2715 goto out_trans_abort
;
2717 /* Swap inode number for dirent in second parent */
2718 error
= xfs_dir_replace(tp
, dp2
, name2
,
2720 first_block
, dfops
, spaceres
);
2722 goto out_trans_abort
;
2725 * If we're renaming one or more directories across different parents,
2726 * update the respective ".." entries (and link counts) to match the new
2730 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2732 if (S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2733 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2734 dp1
->i_ino
, first_block
,
2737 goto out_trans_abort
;
2739 /* transfer ip2 ".." reference to dp1 */
2740 if (!S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2741 error
= xfs_droplink(tp
, dp2
);
2743 goto out_trans_abort
;
2744 error
= xfs_bumplink(tp
, dp1
);
2746 goto out_trans_abort
;
2750 * Although ip1 isn't changed here, userspace needs
2751 * to be warned about the change, so that applications
2752 * relying on it (like backup ones), will properly
2755 ip1_flags
|= XFS_ICHGTIME_CHG
;
2756 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2759 if (S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2760 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2761 dp2
->i_ino
, first_block
,
2764 goto out_trans_abort
;
2766 /* transfer ip1 ".." reference to dp2 */
2767 if (!S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2768 error
= xfs_droplink(tp
, dp1
);
2770 goto out_trans_abort
;
2771 error
= xfs_bumplink(tp
, dp2
);
2773 goto out_trans_abort
;
2777 * Although ip2 isn't changed here, userspace needs
2778 * to be warned about the change, so that applications
2779 * relying on it (like backup ones), will properly
2782 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2783 ip2_flags
|= XFS_ICHGTIME_CHG
;
2788 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2789 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2792 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2793 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2796 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2797 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2799 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2800 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2801 return xfs_finish_rename(tp
, dfops
);
2804 xfs_defer_cancel(dfops
);
2805 xfs_trans_cancel(tp
);
2810 * xfs_rename_alloc_whiteout()
2812 * Return a referenced, unlinked, unlocked inode that that can be used as a
2813 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2814 * crash between allocating the inode and linking it into the rename transaction
2815 * recovery will free the inode and we won't leak it.
2818 xfs_rename_alloc_whiteout(
2819 struct xfs_inode
*dp
,
2820 struct xfs_inode
**wip
)
2822 struct xfs_inode
*tmpfile
;
2825 error
= xfs_create_tmpfile(dp
, NULL
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2830 * Prepare the tmpfile inode as if it were created through the VFS.
2831 * Otherwise, the link increment paths will complain about nlink 0->1.
2832 * Drop the link count as done by d_tmpfile(), complete the inode setup
2833 * and flag it as linkable.
2835 drop_nlink(VFS_I(tmpfile
));
2836 xfs_setup_iops(tmpfile
);
2837 xfs_finish_inode_setup(tmpfile
);
2838 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2849 struct xfs_inode
*src_dp
,
2850 struct xfs_name
*src_name
,
2851 struct xfs_inode
*src_ip
,
2852 struct xfs_inode
*target_dp
,
2853 struct xfs_name
*target_name
,
2854 struct xfs_inode
*target_ip
,
2857 struct xfs_mount
*mp
= src_dp
->i_mount
;
2858 struct xfs_trans
*tp
;
2859 struct xfs_defer_ops dfops
;
2860 xfs_fsblock_t first_block
;
2861 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2862 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2863 int num_inodes
= __XFS_SORT_INODES
;
2864 bool new_parent
= (src_dp
!= target_dp
);
2865 bool src_is_directory
= S_ISDIR(VFS_I(src_ip
)->i_mode
);
2869 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2871 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2875 * If we are doing a whiteout operation, allocate the whiteout inode
2876 * we will be placing at the target and ensure the type is set
2879 if (flags
& RENAME_WHITEOUT
) {
2880 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2881 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2885 /* setup target dirent info as whiteout */
2886 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2889 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2890 inodes
, &num_inodes
);
2892 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2893 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, spaceres
, 0, 0, &tp
);
2894 if (error
== -ENOSPC
) {
2896 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, 0, 0, 0,
2900 goto out_release_wip
;
2903 * Attach the dquots to the inodes
2905 error
= xfs_qm_vop_rename_dqattach(inodes
);
2907 goto out_trans_cancel
;
2910 * Lock all the participating inodes. Depending upon whether
2911 * the target_name exists in the target directory, and
2912 * whether the target directory is the same as the source
2913 * directory, we can lock from 2 to 4 inodes.
2916 xfs_ilock(src_dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2918 xfs_lock_two_inodes(src_dp
, target_dp
,
2919 XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2921 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2924 * Join all the inodes to the transaction. From this point on,
2925 * we can rely on either trans_commit or trans_cancel to unlock
2928 xfs_trans_ijoin(tp
, src_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2930 xfs_trans_ijoin(tp
, target_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2931 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2933 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2935 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
2938 * If we are using project inheritance, we only allow renames
2939 * into our tree when the project IDs are the same; else the
2940 * tree quota mechanism would be circumvented.
2942 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
2943 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
2945 goto out_trans_cancel
;
2948 xfs_defer_init(&dfops
, &first_block
);
2950 /* RENAME_EXCHANGE is unique from here on. */
2951 if (flags
& RENAME_EXCHANGE
)
2952 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
2953 target_dp
, target_name
, target_ip
,
2954 &dfops
, &first_block
, spaceres
);
2957 * Set up the target.
2959 if (target_ip
== NULL
) {
2961 * If there's no space reservation, check the entry will
2962 * fit before actually inserting it.
2965 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
2967 goto out_trans_cancel
;
2970 * If target does not exist and the rename crosses
2971 * directories, adjust the target directory link count
2972 * to account for the ".." reference from the new entry.
2974 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
2975 src_ip
->i_ino
, &first_block
,
2978 goto out_bmap_cancel
;
2980 xfs_trans_ichgtime(tp
, target_dp
,
2981 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2983 if (new_parent
&& src_is_directory
) {
2984 error
= xfs_bumplink(tp
, target_dp
);
2986 goto out_bmap_cancel
;
2988 } else { /* target_ip != NULL */
2990 * If target exists and it's a directory, check that both
2991 * target and source are directories and that target can be
2992 * destroyed, or that neither is a directory.
2994 if (S_ISDIR(VFS_I(target_ip
)->i_mode
)) {
2996 * Make sure target dir is empty.
2998 if (!(xfs_dir_isempty(target_ip
)) ||
2999 (VFS_I(target_ip
)->i_nlink
> 2)) {
3001 goto out_trans_cancel
;
3006 * Link the source inode under the target name.
3007 * If the source inode is a directory and we are moving
3008 * it across directories, its ".." entry will be
3009 * inconsistent until we replace that down below.
3011 * In case there is already an entry with the same
3012 * name at the destination directory, remove it first.
3014 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3016 &first_block
, &dfops
, spaceres
);
3018 goto out_bmap_cancel
;
3020 xfs_trans_ichgtime(tp
, target_dp
,
3021 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3024 * Decrement the link count on the target since the target
3025 * dir no longer points to it.
3027 error
= xfs_droplink(tp
, target_ip
);
3029 goto out_bmap_cancel
;
3031 if (src_is_directory
) {
3033 * Drop the link from the old "." entry.
3035 error
= xfs_droplink(tp
, target_ip
);
3037 goto out_bmap_cancel
;
3039 } /* target_ip != NULL */
3042 * Remove the source.
3044 if (new_parent
&& src_is_directory
) {
3046 * Rewrite the ".." entry to point to the new
3049 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3051 &first_block
, &dfops
, spaceres
);
3052 ASSERT(error
!= -EEXIST
);
3054 goto out_bmap_cancel
;
3058 * We always want to hit the ctime on the source inode.
3060 * This isn't strictly required by the standards since the source
3061 * inode isn't really being changed, but old unix file systems did
3062 * it and some incremental backup programs won't work without it.
3064 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3065 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3068 * Adjust the link count on src_dp. This is necessary when
3069 * renaming a directory, either within one parent when
3070 * the target existed, or across two parent directories.
3072 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3075 * Decrement link count on src_directory since the
3076 * entry that's moved no longer points to it.
3078 error
= xfs_droplink(tp
, src_dp
);
3080 goto out_bmap_cancel
;
3084 * For whiteouts, we only need to update the source dirent with the
3085 * inode number of the whiteout inode rather than removing it
3089 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3090 &first_block
, &dfops
, spaceres
);
3092 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3093 &first_block
, &dfops
, spaceres
);
3095 goto out_bmap_cancel
;
3098 * For whiteouts, we need to bump the link count on the whiteout inode.
3099 * This means that failures all the way up to this point leave the inode
3100 * on the unlinked list and so cleanup is a simple matter of dropping
3101 * the remaining reference to it. If we fail here after bumping the link
3102 * count, we're shutting down the filesystem so we'll never see the
3103 * intermediate state on disk.
3106 ASSERT(VFS_I(wip
)->i_nlink
== 0);
3107 error
= xfs_bumplink(tp
, wip
);
3109 goto out_bmap_cancel
;
3110 error
= xfs_iunlink_remove(tp
, wip
);
3112 goto out_bmap_cancel
;
3113 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3116 * Now we have a real link, clear the "I'm a tmpfile" state
3117 * flag from the inode so it doesn't accidentally get misused in
3120 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3123 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3124 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3126 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3128 error
= xfs_finish_rename(tp
, &dfops
);
3134 xfs_defer_cancel(&dfops
);
3136 xfs_trans_cancel(tp
);
3145 struct xfs_inode
*ip
,
3148 struct xfs_mount
*mp
= ip
->i_mount
;
3149 struct xfs_perag
*pag
;
3150 unsigned long first_index
, mask
;
3151 unsigned long inodes_per_cluster
;
3153 struct xfs_inode
**cilist
;
3154 struct xfs_inode
*cip
;
3160 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3162 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3163 cilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3164 cilist
= kmem_alloc(cilist_size
, KM_MAYFAIL
|KM_NOFS
);
3168 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3169 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3171 /* really need a gang lookup range call here */
3172 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)cilist
,
3173 first_index
, inodes_per_cluster
);
3177 for (i
= 0; i
< nr_found
; i
++) {
3183 * because this is an RCU protected lookup, we could find a
3184 * recently freed or even reallocated inode during the lookup.
3185 * We need to check under the i_flags_lock for a valid inode
3186 * here. Skip it if it is not valid or the wrong inode.
3188 spin_lock(&cip
->i_flags_lock
);
3190 __xfs_iflags_test(cip
, XFS_ISTALE
)) {
3191 spin_unlock(&cip
->i_flags_lock
);
3196 * Once we fall off the end of the cluster, no point checking
3197 * any more inodes in the list because they will also all be
3198 * outside the cluster.
3200 if ((XFS_INO_TO_AGINO(mp
, cip
->i_ino
) & mask
) != first_index
) {
3201 spin_unlock(&cip
->i_flags_lock
);
3204 spin_unlock(&cip
->i_flags_lock
);
3207 * Do an un-protected check to see if the inode is dirty and
3208 * is a candidate for flushing. These checks will be repeated
3209 * later after the appropriate locks are acquired.
3211 if (xfs_inode_clean(cip
) && xfs_ipincount(cip
) == 0)
3215 * Try to get locks. If any are unavailable or it is pinned,
3216 * then this inode cannot be flushed and is skipped.
3219 if (!xfs_ilock_nowait(cip
, XFS_ILOCK_SHARED
))
3221 if (!xfs_iflock_nowait(cip
)) {
3222 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3225 if (xfs_ipincount(cip
)) {
3227 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3233 * Check the inode number again, just to be certain we are not
3234 * racing with freeing in xfs_reclaim_inode(). See the comments
3235 * in that function for more information as to why the initial
3236 * check is not sufficient.
3240 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3245 * arriving here means that this inode can be flushed. First
3246 * re-check that it's dirty before flushing.
3248 if (!xfs_inode_clean(cip
)) {
3250 error
= xfs_iflush_int(cip
, bp
);
3252 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3253 goto cluster_corrupt_out
;
3259 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3263 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3264 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3275 cluster_corrupt_out
:
3277 * Corruption detected in the clustering loop. Invalidate the
3278 * inode buffer and shut down the filesystem.
3282 * Clean up the buffer. If it was delwri, just release it --
3283 * brelse can handle it with no problems. If not, shut down the
3284 * filesystem before releasing the buffer.
3286 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3290 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3292 if (!bufwasdelwri
) {
3294 * Just like incore_relse: if we have b_iodone functions,
3295 * mark the buffer as an error and call them. Otherwise
3296 * mark it as stale and brelse.
3299 bp
->b_flags
&= ~XBF_DONE
;
3301 xfs_buf_ioerror(bp
, -EIO
);
3310 * Unlocks the flush lock
3312 xfs_iflush_abort(cip
, false);
3315 return -EFSCORRUPTED
;
3319 * Flush dirty inode metadata into the backing buffer.
3321 * The caller must have the inode lock and the inode flush lock held. The
3322 * inode lock will still be held upon return to the caller, and the inode
3323 * flush lock will be released after the inode has reached the disk.
3325 * The caller must write out the buffer returned in *bpp and release it.
3329 struct xfs_inode
*ip
,
3330 struct xfs_buf
**bpp
)
3332 struct xfs_mount
*mp
= ip
->i_mount
;
3333 struct xfs_buf
*bp
= NULL
;
3334 struct xfs_dinode
*dip
;
3337 XFS_STATS_INC(mp
, xs_iflush_count
);
3339 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3340 ASSERT(xfs_isiflocked(ip
));
3341 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3342 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3346 xfs_iunpin_wait(ip
);
3349 * For stale inodes we cannot rely on the backing buffer remaining
3350 * stale in cache for the remaining life of the stale inode and so
3351 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3352 * inodes below. We have to check this after ensuring the inode is
3353 * unpinned so that it is safe to reclaim the stale inode after the
3356 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3362 * This may have been unpinned because the filesystem is shutting
3363 * down forcibly. If that's the case we must not write this inode
3364 * to disk, because the log record didn't make it to disk.
3366 * We also have to remove the log item from the AIL in this case,
3367 * as we wait for an empty AIL as part of the unmount process.
3369 if (XFS_FORCED_SHUTDOWN(mp
)) {
3375 * Get the buffer containing the on-disk inode. We are doing a try-lock
3376 * operation here, so we may get an EAGAIN error. In that case, we
3377 * simply want to return with the inode still dirty.
3379 * If we get any other error, we effectively have a corruption situation
3380 * and we cannot flush the inode, so we treat it the same as failing
3383 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3385 if (error
== -EAGAIN
) {
3393 * First flush out the inode that xfs_iflush was called with.
3395 error
= xfs_iflush_int(ip
, bp
);
3400 * If the buffer is pinned then push on the log now so we won't
3401 * get stuck waiting in the write for too long.
3403 if (xfs_buf_ispinned(bp
))
3404 xfs_log_force(mp
, 0);
3408 * see if other inodes can be gathered into this write
3410 error
= xfs_iflush_cluster(ip
, bp
);
3412 goto cluster_corrupt_out
;
3420 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3421 cluster_corrupt_out
:
3422 error
= -EFSCORRUPTED
;
3425 * Unlocks the flush lock
3427 xfs_iflush_abort(ip
, false);
3433 struct xfs_inode
*ip
,
3436 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3437 struct xfs_dinode
*dip
;
3438 struct xfs_mount
*mp
= ip
->i_mount
;
3440 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3441 ASSERT(xfs_isiflocked(ip
));
3442 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3443 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3444 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3445 ASSERT(ip
->i_d
.di_version
> 1);
3447 /* set *dip = inode's place in the buffer */
3448 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3450 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3451 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3452 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3453 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3454 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3457 if (S_ISREG(VFS_I(ip
)->i_mode
)) {
3459 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3460 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3461 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3462 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3463 "%s: Bad regular inode %Lu, ptr 0x%p",
3464 __func__
, ip
->i_ino
, ip
);
3467 } else if (S_ISDIR(VFS_I(ip
)->i_mode
)) {
3469 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3470 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3471 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3472 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3473 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3474 "%s: Bad directory inode %Lu, ptr 0x%p",
3475 __func__
, ip
->i_ino
, ip
);
3479 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3480 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3481 XFS_RANDOM_IFLUSH_5
)) {
3482 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3483 "%s: detected corrupt incore inode %Lu, "
3484 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3485 __func__
, ip
->i_ino
,
3486 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3487 ip
->i_d
.di_nblocks
, ip
);
3490 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3491 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3492 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3493 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3494 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3499 * Inode item log recovery for v2 inodes are dependent on the
3500 * di_flushiter count for correct sequencing. We bump the flush
3501 * iteration count so we can detect flushes which postdate a log record
3502 * during recovery. This is redundant as we now log every change and
3503 * hence this can't happen but we need to still do it to ensure
3504 * backwards compatibility with old kernels that predate logging all
3507 if (ip
->i_d
.di_version
< 3)
3508 ip
->i_d
.di_flushiter
++;
3511 * Copy the dirty parts of the inode into the on-disk inode. We always
3512 * copy out the core of the inode, because if the inode is dirty at all
3515 xfs_inode_to_disk(ip
, dip
, iip
->ili_item
.li_lsn
);
3517 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3518 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3519 ip
->i_d
.di_flushiter
= 0;
3521 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3522 if (XFS_IFORK_Q(ip
))
3523 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3524 xfs_inobp_check(mp
, bp
);
3527 * We've recorded everything logged in the inode, so we'd like to clear
3528 * the ili_fields bits so we don't log and flush things unnecessarily.
3529 * However, we can't stop logging all this information until the data
3530 * we've copied into the disk buffer is written to disk. If we did we
3531 * might overwrite the copy of the inode in the log with all the data
3532 * after re-logging only part of it, and in the face of a crash we
3533 * wouldn't have all the data we need to recover.
3535 * What we do is move the bits to the ili_last_fields field. When
3536 * logging the inode, these bits are moved back to the ili_fields field.
3537 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3538 * know that the information those bits represent is permanently on
3539 * disk. As long as the flush completes before the inode is logged
3540 * again, then both ili_fields and ili_last_fields will be cleared.
3542 * We can play with the ili_fields bits here, because the inode lock
3543 * must be held exclusively in order to set bits there and the flush
3544 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3545 * done routine can tell whether or not to look in the AIL. Also, store
3546 * the current LSN of the inode so that we can tell whether the item has
3547 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3548 * need the AIL lock, because it is a 64 bit value that cannot be read
3551 iip
->ili_last_fields
= iip
->ili_fields
;
3552 iip
->ili_fields
= 0;
3553 iip
->ili_fsync_fields
= 0;
3554 iip
->ili_logged
= 1;
3556 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3557 &iip
->ili_item
.li_lsn
);
3560 * Attach the function xfs_iflush_done to the inode's
3561 * buffer. This will remove the inode from the AIL
3562 * and unlock the inode's flush lock when the inode is
3563 * completely written to disk.
3565 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3567 /* generate the checksum. */
3568 xfs_dinode_calc_crc(mp
, dip
);
3570 ASSERT(bp
->b_fspriv
!= NULL
);
3571 ASSERT(bp
->b_iodone
!= NULL
);
3575 return -EFSCORRUPTED
;