Linux 4.8.3
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blobe08eaea6327b5c4752264c7a54996b75fd2e2447
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
53 kmem_zone_t *xfs_inode_zone;
56 * Used in xfs_itruncate_extents(). This is the maximum number of extents
57 * freed from a file in a single transaction.
59 #define XFS_ITRUNC_MAX_EXTENTS 2
61 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
62 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
63 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
66 * helper function to extract extent size hint from inode
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 struct xfs_inode *ip)
72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 return ip->i_d.di_extsize;
74 if (XFS_IS_REALTIME_INODE(ip))
75 return ip->i_mount->m_sb.sb_rextsize;
76 return 0;
80 * These two are wrapper routines around the xfs_ilock() routine used to
81 * centralize some grungy code. They are used in places that wish to lock the
82 * inode solely for reading the extents. The reason these places can't just
83 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
84 * bringing in of the extents from disk for a file in b-tree format. If the
85 * inode is in b-tree format, then we need to lock the inode exclusively until
86 * the extents are read in. Locking it exclusively all the time would limit
87 * our parallelism unnecessarily, though. What we do instead is check to see
88 * if the extents have been read in yet, and only lock the inode exclusively
89 * if they have not.
91 * The functions return a value which should be given to the corresponding
92 * xfs_iunlock() call.
94 uint
95 xfs_ilock_data_map_shared(
96 struct xfs_inode *ip)
98 uint lock_mode = XFS_ILOCK_SHARED;
100 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
101 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
102 lock_mode = XFS_ILOCK_EXCL;
103 xfs_ilock(ip, lock_mode);
104 return lock_mode;
107 uint
108 xfs_ilock_attr_map_shared(
109 struct xfs_inode *ip)
111 uint lock_mode = XFS_ILOCK_SHARED;
113 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
114 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
115 lock_mode = XFS_ILOCK_EXCL;
116 xfs_ilock(ip, lock_mode);
117 return lock_mode;
121 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
122 * the i_lock. This routine allows various combinations of the locks to be
123 * obtained.
125 * The 3 locks should always be ordered so that the IO lock is obtained first,
126 * the mmap lock second and the ilock last in order to prevent deadlock.
128 * Basic locking order:
130 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
132 * mmap_sem locking order:
134 * i_iolock -> page lock -> mmap_sem
135 * mmap_sem -> i_mmap_lock -> page_lock
137 * The difference in mmap_sem locking order mean that we cannot hold the
138 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
139 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
140 * in get_user_pages() to map the user pages into the kernel address space for
141 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
142 * page faults already hold the mmap_sem.
144 * Hence to serialise fully against both syscall and mmap based IO, we need to
145 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
146 * taken in places where we need to invalidate the page cache in a race
147 * free manner (e.g. truncate, hole punch and other extent manipulation
148 * functions).
150 void
151 xfs_ilock(
152 xfs_inode_t *ip,
153 uint lock_flags)
155 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
158 * You can't set both SHARED and EXCL for the same lock,
159 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
160 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
162 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
163 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
164 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
165 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
166 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
167 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
168 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
170 if (lock_flags & XFS_IOLOCK_EXCL)
171 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
172 else if (lock_flags & XFS_IOLOCK_SHARED)
173 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
175 if (lock_flags & XFS_MMAPLOCK_EXCL)
176 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
177 else if (lock_flags & XFS_MMAPLOCK_SHARED)
178 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
180 if (lock_flags & XFS_ILOCK_EXCL)
181 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
182 else if (lock_flags & XFS_ILOCK_SHARED)
183 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
187 * This is just like xfs_ilock(), except that the caller
188 * is guaranteed not to sleep. It returns 1 if it gets
189 * the requested locks and 0 otherwise. If the IO lock is
190 * obtained but the inode lock cannot be, then the IO lock
191 * is dropped before returning.
193 * ip -- the inode being locked
194 * lock_flags -- this parameter indicates the inode's locks to be
195 * to be locked. See the comment for xfs_ilock() for a list
196 * of valid values.
199 xfs_ilock_nowait(
200 xfs_inode_t *ip,
201 uint lock_flags)
203 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
206 * You can't set both SHARED and EXCL for the same lock,
207 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
208 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
210 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
211 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
212 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
213 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
214 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
215 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
216 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
218 if (lock_flags & XFS_IOLOCK_EXCL) {
219 if (!mrtryupdate(&ip->i_iolock))
220 goto out;
221 } else if (lock_flags & XFS_IOLOCK_SHARED) {
222 if (!mrtryaccess(&ip->i_iolock))
223 goto out;
226 if (lock_flags & XFS_MMAPLOCK_EXCL) {
227 if (!mrtryupdate(&ip->i_mmaplock))
228 goto out_undo_iolock;
229 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
230 if (!mrtryaccess(&ip->i_mmaplock))
231 goto out_undo_iolock;
234 if (lock_flags & XFS_ILOCK_EXCL) {
235 if (!mrtryupdate(&ip->i_lock))
236 goto out_undo_mmaplock;
237 } else if (lock_flags & XFS_ILOCK_SHARED) {
238 if (!mrtryaccess(&ip->i_lock))
239 goto out_undo_mmaplock;
241 return 1;
243 out_undo_mmaplock:
244 if (lock_flags & XFS_MMAPLOCK_EXCL)
245 mrunlock_excl(&ip->i_mmaplock);
246 else if (lock_flags & XFS_MMAPLOCK_SHARED)
247 mrunlock_shared(&ip->i_mmaplock);
248 out_undo_iolock:
249 if (lock_flags & XFS_IOLOCK_EXCL)
250 mrunlock_excl(&ip->i_iolock);
251 else if (lock_flags & XFS_IOLOCK_SHARED)
252 mrunlock_shared(&ip->i_iolock);
253 out:
254 return 0;
258 * xfs_iunlock() is used to drop the inode locks acquired with
259 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
260 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
261 * that we know which locks to drop.
263 * ip -- the inode being unlocked
264 * lock_flags -- this parameter indicates the inode's locks to be
265 * to be unlocked. See the comment for xfs_ilock() for a list
266 * of valid values for this parameter.
269 void
270 xfs_iunlock(
271 xfs_inode_t *ip,
272 uint lock_flags)
275 * You can't set both SHARED and EXCL for the same lock,
276 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
277 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
279 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
280 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
281 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
282 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
283 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
284 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
285 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
286 ASSERT(lock_flags != 0);
288 if (lock_flags & XFS_IOLOCK_EXCL)
289 mrunlock_excl(&ip->i_iolock);
290 else if (lock_flags & XFS_IOLOCK_SHARED)
291 mrunlock_shared(&ip->i_iolock);
293 if (lock_flags & XFS_MMAPLOCK_EXCL)
294 mrunlock_excl(&ip->i_mmaplock);
295 else if (lock_flags & XFS_MMAPLOCK_SHARED)
296 mrunlock_shared(&ip->i_mmaplock);
298 if (lock_flags & XFS_ILOCK_EXCL)
299 mrunlock_excl(&ip->i_lock);
300 else if (lock_flags & XFS_ILOCK_SHARED)
301 mrunlock_shared(&ip->i_lock);
303 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
307 * give up write locks. the i/o lock cannot be held nested
308 * if it is being demoted.
310 void
311 xfs_ilock_demote(
312 xfs_inode_t *ip,
313 uint lock_flags)
315 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
316 ASSERT((lock_flags &
317 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
319 if (lock_flags & XFS_ILOCK_EXCL)
320 mrdemote(&ip->i_lock);
321 if (lock_flags & XFS_MMAPLOCK_EXCL)
322 mrdemote(&ip->i_mmaplock);
323 if (lock_flags & XFS_IOLOCK_EXCL)
324 mrdemote(&ip->i_iolock);
326 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
329 #if defined(DEBUG) || defined(XFS_WARN)
331 xfs_isilocked(
332 xfs_inode_t *ip,
333 uint lock_flags)
335 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
336 if (!(lock_flags & XFS_ILOCK_SHARED))
337 return !!ip->i_lock.mr_writer;
338 return rwsem_is_locked(&ip->i_lock.mr_lock);
341 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
342 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
343 return !!ip->i_mmaplock.mr_writer;
344 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
347 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
348 if (!(lock_flags & XFS_IOLOCK_SHARED))
349 return !!ip->i_iolock.mr_writer;
350 return rwsem_is_locked(&ip->i_iolock.mr_lock);
353 ASSERT(0);
354 return 0;
356 #endif
358 #ifdef DEBUG
359 int xfs_locked_n;
360 int xfs_small_retries;
361 int xfs_middle_retries;
362 int xfs_lots_retries;
363 int xfs_lock_delays;
364 #endif
367 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
368 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
369 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
370 * errors and warnings.
372 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
373 static bool
374 xfs_lockdep_subclass_ok(
375 int subclass)
377 return subclass < MAX_LOCKDEP_SUBCLASSES;
379 #else
380 #define xfs_lockdep_subclass_ok(subclass) (true)
381 #endif
384 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
385 * value. This can be called for any type of inode lock combination, including
386 * parent locking. Care must be taken to ensure we don't overrun the subclass
387 * storage fields in the class mask we build.
389 static inline int
390 xfs_lock_inumorder(int lock_mode, int subclass)
392 int class = 0;
394 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
395 XFS_ILOCK_RTSUM)));
396 ASSERT(xfs_lockdep_subclass_ok(subclass));
398 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
399 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
400 ASSERT(xfs_lockdep_subclass_ok(subclass +
401 XFS_IOLOCK_PARENT_VAL));
402 class += subclass << XFS_IOLOCK_SHIFT;
403 if (lock_mode & XFS_IOLOCK_PARENT)
404 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
407 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
408 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
409 class += subclass << XFS_MMAPLOCK_SHIFT;
412 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
413 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
414 class += subclass << XFS_ILOCK_SHIFT;
417 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
421 * The following routine will lock n inodes in exclusive mode. We assume the
422 * caller calls us with the inodes in i_ino order.
424 * We need to detect deadlock where an inode that we lock is in the AIL and we
425 * start waiting for another inode that is locked by a thread in a long running
426 * transaction (such as truncate). This can result in deadlock since the long
427 * running trans might need to wait for the inode we just locked in order to
428 * push the tail and free space in the log.
430 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
431 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
432 * lock more than one at a time, lockdep will report false positives saying we
433 * have violated locking orders.
435 static void
436 xfs_lock_inodes(
437 xfs_inode_t **ips,
438 int inodes,
439 uint lock_mode)
441 int attempts = 0, i, j, try_lock;
442 xfs_log_item_t *lp;
445 * Currently supports between 2 and 5 inodes with exclusive locking. We
446 * support an arbitrary depth of locking here, but absolute limits on
447 * inodes depend on the the type of locking and the limits placed by
448 * lockdep annotations in xfs_lock_inumorder. These are all checked by
449 * the asserts.
451 ASSERT(ips && inodes >= 2 && inodes <= 5);
452 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
453 XFS_ILOCK_EXCL));
454 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
455 XFS_ILOCK_SHARED)));
456 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
457 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
458 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
459 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
460 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
461 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
463 if (lock_mode & XFS_IOLOCK_EXCL) {
464 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
465 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
466 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
468 try_lock = 0;
469 i = 0;
470 again:
471 for (; i < inodes; i++) {
472 ASSERT(ips[i]);
474 if (i && (ips[i] == ips[i - 1])) /* Already locked */
475 continue;
478 * If try_lock is not set yet, make sure all locked inodes are
479 * not in the AIL. If any are, set try_lock to be used later.
481 if (!try_lock) {
482 for (j = (i - 1); j >= 0 && !try_lock; j--) {
483 lp = (xfs_log_item_t *)ips[j]->i_itemp;
484 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
485 try_lock++;
490 * If any of the previous locks we have locked is in the AIL,
491 * we must TRY to get the second and subsequent locks. If
492 * we can't get any, we must release all we have
493 * and try again.
495 if (!try_lock) {
496 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
497 continue;
500 /* try_lock means we have an inode locked that is in the AIL. */
501 ASSERT(i != 0);
502 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
503 continue;
506 * Unlock all previous guys and try again. xfs_iunlock will try
507 * to push the tail if the inode is in the AIL.
509 attempts++;
510 for (j = i - 1; j >= 0; j--) {
512 * Check to see if we've already unlocked this one. Not
513 * the first one going back, and the inode ptr is the
514 * same.
516 if (j != (i - 1) && ips[j] == ips[j + 1])
517 continue;
519 xfs_iunlock(ips[j], lock_mode);
522 if ((attempts % 5) == 0) {
523 delay(1); /* Don't just spin the CPU */
524 #ifdef DEBUG
525 xfs_lock_delays++;
526 #endif
528 i = 0;
529 try_lock = 0;
530 goto again;
533 #ifdef DEBUG
534 if (attempts) {
535 if (attempts < 5) xfs_small_retries++;
536 else if (attempts < 100) xfs_middle_retries++;
537 else xfs_lots_retries++;
538 } else {
539 xfs_locked_n++;
541 #endif
545 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
546 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
547 * lock more than one at a time, lockdep will report false positives saying we
548 * have violated locking orders.
550 void
551 xfs_lock_two_inodes(
552 xfs_inode_t *ip0,
553 xfs_inode_t *ip1,
554 uint lock_mode)
556 xfs_inode_t *temp;
557 int attempts = 0;
558 xfs_log_item_t *lp;
560 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
561 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
562 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
563 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
564 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(ip0->i_ino != ip1->i_ino);
568 if (ip0->i_ino > ip1->i_ino) {
569 temp = ip0;
570 ip0 = ip1;
571 ip1 = temp;
574 again:
575 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
582 lp = (xfs_log_item_t *)ip0->i_itemp;
583 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
585 xfs_iunlock(ip0, lock_mode);
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
590 } else {
591 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
596 void
597 __xfs_iflock(
598 struct xfs_inode *ip)
600 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
601 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
603 do {
604 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
605 if (xfs_isiflocked(ip))
606 io_schedule();
607 } while (!xfs_iflock_nowait(ip));
609 finish_wait(wq, &wait.wait);
612 STATIC uint
613 _xfs_dic2xflags(
614 __uint16_t di_flags,
615 uint64_t di_flags2,
616 bool has_attr)
618 uint flags = 0;
620 if (di_flags & XFS_DIFLAG_ANY) {
621 if (di_flags & XFS_DIFLAG_REALTIME)
622 flags |= FS_XFLAG_REALTIME;
623 if (di_flags & XFS_DIFLAG_PREALLOC)
624 flags |= FS_XFLAG_PREALLOC;
625 if (di_flags & XFS_DIFLAG_IMMUTABLE)
626 flags |= FS_XFLAG_IMMUTABLE;
627 if (di_flags & XFS_DIFLAG_APPEND)
628 flags |= FS_XFLAG_APPEND;
629 if (di_flags & XFS_DIFLAG_SYNC)
630 flags |= FS_XFLAG_SYNC;
631 if (di_flags & XFS_DIFLAG_NOATIME)
632 flags |= FS_XFLAG_NOATIME;
633 if (di_flags & XFS_DIFLAG_NODUMP)
634 flags |= FS_XFLAG_NODUMP;
635 if (di_flags & XFS_DIFLAG_RTINHERIT)
636 flags |= FS_XFLAG_RTINHERIT;
637 if (di_flags & XFS_DIFLAG_PROJINHERIT)
638 flags |= FS_XFLAG_PROJINHERIT;
639 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
640 flags |= FS_XFLAG_NOSYMLINKS;
641 if (di_flags & XFS_DIFLAG_EXTSIZE)
642 flags |= FS_XFLAG_EXTSIZE;
643 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
644 flags |= FS_XFLAG_EXTSZINHERIT;
645 if (di_flags & XFS_DIFLAG_NODEFRAG)
646 flags |= FS_XFLAG_NODEFRAG;
647 if (di_flags & XFS_DIFLAG_FILESTREAM)
648 flags |= FS_XFLAG_FILESTREAM;
651 if (di_flags2 & XFS_DIFLAG2_ANY) {
652 if (di_flags2 & XFS_DIFLAG2_DAX)
653 flags |= FS_XFLAG_DAX;
656 if (has_attr)
657 flags |= FS_XFLAG_HASATTR;
659 return flags;
662 uint
663 xfs_ip2xflags(
664 struct xfs_inode *ip)
666 struct xfs_icdinode *dic = &ip->i_d;
668 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
672 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
673 * is allowed, otherwise it has to be an exact match. If a CI match is found,
674 * ci_name->name will point to a the actual name (caller must free) or
675 * will be set to NULL if an exact match is found.
678 xfs_lookup(
679 xfs_inode_t *dp,
680 struct xfs_name *name,
681 xfs_inode_t **ipp,
682 struct xfs_name *ci_name)
684 xfs_ino_t inum;
685 int error;
687 trace_xfs_lookup(dp, name);
689 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
690 return -EIO;
692 xfs_ilock(dp, XFS_IOLOCK_SHARED);
693 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
694 if (error)
695 goto out_unlock;
697 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 if (error)
699 goto out_free_name;
701 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
702 return 0;
704 out_free_name:
705 if (ci_name)
706 kmem_free(ci_name->name);
707 out_unlock:
708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 *ipp = NULL;
710 return error;
714 * Allocate an inode on disk and return a copy of its in-core version.
715 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
716 * appropriately within the inode. The uid and gid for the inode are
717 * set according to the contents of the given cred structure.
719 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
720 * has a free inode available, call xfs_iget() to obtain the in-core
721 * version of the allocated inode. Finally, fill in the inode and
722 * log its initial contents. In this case, ialloc_context would be
723 * set to NULL.
725 * If xfs_dialloc() does not have an available inode, it will replenish
726 * its supply by doing an allocation. Since we can only do one
727 * allocation within a transaction without deadlocks, we must commit
728 * the current transaction before returning the inode itself.
729 * In this case, therefore, we will set ialloc_context and return.
730 * The caller should then commit the current transaction, start a new
731 * transaction, and call xfs_ialloc() again to actually get the inode.
733 * To ensure that some other process does not grab the inode that
734 * was allocated during the first call to xfs_ialloc(), this routine
735 * also returns the [locked] bp pointing to the head of the freelist
736 * as ialloc_context. The caller should hold this buffer across
737 * the commit and pass it back into this routine on the second call.
739 * If we are allocating quota inodes, we do not have a parent inode
740 * to attach to or associate with (i.e. pip == NULL) because they
741 * are not linked into the directory structure - they are attached
742 * directly to the superblock - and so have no parent.
744 static int
745 xfs_ialloc(
746 xfs_trans_t *tp,
747 xfs_inode_t *pip,
748 umode_t mode,
749 xfs_nlink_t nlink,
750 xfs_dev_t rdev,
751 prid_t prid,
752 int okalloc,
753 xfs_buf_t **ialloc_context,
754 xfs_inode_t **ipp)
756 struct xfs_mount *mp = tp->t_mountp;
757 xfs_ino_t ino;
758 xfs_inode_t *ip;
759 uint flags;
760 int error;
761 struct timespec tv;
762 struct inode *inode;
765 * Call the space management code to pick
766 * the on-disk inode to be allocated.
768 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
769 ialloc_context, &ino);
770 if (error)
771 return error;
772 if (*ialloc_context || ino == NULLFSINO) {
773 *ipp = NULL;
774 return 0;
776 ASSERT(*ialloc_context == NULL);
779 * Get the in-core inode with the lock held exclusively.
780 * This is because we're setting fields here we need
781 * to prevent others from looking at until we're done.
783 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
784 XFS_ILOCK_EXCL, &ip);
785 if (error)
786 return error;
787 ASSERT(ip != NULL);
788 inode = VFS_I(ip);
791 * We always convert v1 inodes to v2 now - we only support filesystems
792 * with >= v2 inode capability, so there is no reason for ever leaving
793 * an inode in v1 format.
795 if (ip->i_d.di_version == 1)
796 ip->i_d.di_version = 2;
798 inode->i_mode = mode;
799 set_nlink(inode, nlink);
800 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
801 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
802 xfs_set_projid(ip, prid);
804 if (pip && XFS_INHERIT_GID(pip)) {
805 ip->i_d.di_gid = pip->i_d.di_gid;
806 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
807 inode->i_mode |= S_ISGID;
811 * If the group ID of the new file does not match the effective group
812 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 * (and only if the irix_sgid_inherit compatibility variable is set).
815 if ((irix_sgid_inherit) &&
816 (inode->i_mode & S_ISGID) &&
817 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
818 inode->i_mode &= ~S_ISGID;
820 ip->i_d.di_size = 0;
821 ip->i_d.di_nextents = 0;
822 ASSERT(ip->i_d.di_nblocks == 0);
824 tv = current_fs_time(mp->m_super);
825 inode->i_mtime = tv;
826 inode->i_atime = tv;
827 inode->i_ctime = tv;
829 ip->i_d.di_extsize = 0;
830 ip->i_d.di_dmevmask = 0;
831 ip->i_d.di_dmstate = 0;
832 ip->i_d.di_flags = 0;
834 if (ip->i_d.di_version == 3) {
835 inode->i_version = 1;
836 ip->i_d.di_flags2 = 0;
837 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
838 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
842 flags = XFS_ILOG_CORE;
843 switch (mode & S_IFMT) {
844 case S_IFIFO:
845 case S_IFCHR:
846 case S_IFBLK:
847 case S_IFSOCK:
848 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
849 ip->i_df.if_u2.if_rdev = rdev;
850 ip->i_df.if_flags = 0;
851 flags |= XFS_ILOG_DEV;
852 break;
853 case S_IFREG:
854 case S_IFDIR:
855 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
856 uint64_t di_flags2 = 0;
857 uint di_flags = 0;
859 if (S_ISDIR(mode)) {
860 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
861 di_flags |= XFS_DIFLAG_RTINHERIT;
862 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
863 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
864 ip->i_d.di_extsize = pip->i_d.di_extsize;
866 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
867 di_flags |= XFS_DIFLAG_PROJINHERIT;
868 } else if (S_ISREG(mode)) {
869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 di_flags |= XFS_DIFLAG_REALTIME;
871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 di_flags |= XFS_DIFLAG_EXTSIZE;
873 ip->i_d.di_extsize = pip->i_d.di_extsize;
876 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
877 xfs_inherit_noatime)
878 di_flags |= XFS_DIFLAG_NOATIME;
879 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
880 xfs_inherit_nodump)
881 di_flags |= XFS_DIFLAG_NODUMP;
882 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
883 xfs_inherit_sync)
884 di_flags |= XFS_DIFLAG_SYNC;
885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
886 xfs_inherit_nosymlinks)
887 di_flags |= XFS_DIFLAG_NOSYMLINKS;
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
889 xfs_inherit_nodefrag)
890 di_flags |= XFS_DIFLAG_NODEFRAG;
891 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
892 di_flags |= XFS_DIFLAG_FILESTREAM;
893 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
894 di_flags2 |= XFS_DIFLAG2_DAX;
896 ip->i_d.di_flags |= di_flags;
897 ip->i_d.di_flags2 |= di_flags2;
899 /* FALLTHROUGH */
900 case S_IFLNK:
901 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
902 ip->i_df.if_flags = XFS_IFEXTENTS;
903 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
904 ip->i_df.if_u1.if_extents = NULL;
905 break;
906 default:
907 ASSERT(0);
910 * Attribute fork settings for new inode.
912 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
913 ip->i_d.di_anextents = 0;
916 * Log the new values stuffed into the inode.
918 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
919 xfs_trans_log_inode(tp, ip, flags);
921 /* now that we have an i_mode we can setup the inode structure */
922 xfs_setup_inode(ip);
924 *ipp = ip;
925 return 0;
929 * Allocates a new inode from disk and return a pointer to the
930 * incore copy. This routine will internally commit the current
931 * transaction and allocate a new one if the Space Manager needed
932 * to do an allocation to replenish the inode free-list.
934 * This routine is designed to be called from xfs_create and
935 * xfs_create_dir.
939 xfs_dir_ialloc(
940 xfs_trans_t **tpp, /* input: current transaction;
941 output: may be a new transaction. */
942 xfs_inode_t *dp, /* directory within whose allocate
943 the inode. */
944 umode_t mode,
945 xfs_nlink_t nlink,
946 xfs_dev_t rdev,
947 prid_t prid, /* project id */
948 int okalloc, /* ok to allocate new space */
949 xfs_inode_t **ipp, /* pointer to inode; it will be
950 locked. */
951 int *committed)
954 xfs_trans_t *tp;
955 xfs_inode_t *ip;
956 xfs_buf_t *ialloc_context = NULL;
957 int code;
958 void *dqinfo;
959 uint tflags;
961 tp = *tpp;
962 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
965 * xfs_ialloc will return a pointer to an incore inode if
966 * the Space Manager has an available inode on the free
967 * list. Otherwise, it will do an allocation and replenish
968 * the freelist. Since we can only do one allocation per
969 * transaction without deadlocks, we will need to commit the
970 * current transaction and start a new one. We will then
971 * need to call xfs_ialloc again to get the inode.
973 * If xfs_ialloc did an allocation to replenish the freelist,
974 * it returns the bp containing the head of the freelist as
975 * ialloc_context. We will hold a lock on it across the
976 * transaction commit so that no other process can steal
977 * the inode(s) that we've just allocated.
979 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
980 &ialloc_context, &ip);
983 * Return an error if we were unable to allocate a new inode.
984 * This should only happen if we run out of space on disk or
985 * encounter a disk error.
987 if (code) {
988 *ipp = NULL;
989 return code;
991 if (!ialloc_context && !ip) {
992 *ipp = NULL;
993 return -ENOSPC;
997 * If the AGI buffer is non-NULL, then we were unable to get an
998 * inode in one operation. We need to commit the current
999 * transaction and call xfs_ialloc() again. It is guaranteed
1000 * to succeed the second time.
1002 if (ialloc_context) {
1004 * Normally, xfs_trans_commit releases all the locks.
1005 * We call bhold to hang on to the ialloc_context across
1006 * the commit. Holding this buffer prevents any other
1007 * processes from doing any allocations in this
1008 * allocation group.
1010 xfs_trans_bhold(tp, ialloc_context);
1013 * We want the quota changes to be associated with the next
1014 * transaction, NOT this one. So, detach the dqinfo from this
1015 * and attach it to the next transaction.
1017 dqinfo = NULL;
1018 tflags = 0;
1019 if (tp->t_dqinfo) {
1020 dqinfo = (void *)tp->t_dqinfo;
1021 tp->t_dqinfo = NULL;
1022 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1023 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1026 code = xfs_trans_roll(&tp, NULL);
1027 if (committed != NULL)
1028 *committed = 1;
1031 * Re-attach the quota info that we detached from prev trx.
1033 if (dqinfo) {
1034 tp->t_dqinfo = dqinfo;
1035 tp->t_flags |= tflags;
1038 if (code) {
1039 xfs_buf_relse(ialloc_context);
1040 *tpp = tp;
1041 *ipp = NULL;
1042 return code;
1044 xfs_trans_bjoin(tp, ialloc_context);
1047 * Call ialloc again. Since we've locked out all
1048 * other allocations in this allocation group,
1049 * this call should always succeed.
1051 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1052 okalloc, &ialloc_context, &ip);
1055 * If we get an error at this point, return to the caller
1056 * so that the current transaction can be aborted.
1058 if (code) {
1059 *tpp = tp;
1060 *ipp = NULL;
1061 return code;
1063 ASSERT(!ialloc_context && ip);
1065 } else {
1066 if (committed != NULL)
1067 *committed = 0;
1070 *ipp = ip;
1071 *tpp = tp;
1073 return 0;
1077 * Decrement the link count on an inode & log the change. If this causes the
1078 * link count to go to zero, move the inode to AGI unlinked list so that it can
1079 * be freed when the last active reference goes away via xfs_inactive().
1081 static int /* error */
1082 xfs_droplink(
1083 xfs_trans_t *tp,
1084 xfs_inode_t *ip)
1086 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1088 drop_nlink(VFS_I(ip));
1089 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1091 if (VFS_I(ip)->i_nlink)
1092 return 0;
1094 return xfs_iunlink(tp, ip);
1098 * Increment the link count on an inode & log the change.
1100 static int
1101 xfs_bumplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107 ASSERT(ip->i_d.di_version > 1);
1108 inc_nlink(VFS_I(ip));
1109 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110 return 0;
1114 xfs_create(
1115 xfs_inode_t *dp,
1116 struct xfs_name *name,
1117 umode_t mode,
1118 xfs_dev_t rdev,
1119 xfs_inode_t **ipp)
1121 int is_dir = S_ISDIR(mode);
1122 struct xfs_mount *mp = dp->i_mount;
1123 struct xfs_inode *ip = NULL;
1124 struct xfs_trans *tp = NULL;
1125 int error;
1126 struct xfs_defer_ops dfops;
1127 xfs_fsblock_t first_block;
1128 bool unlock_dp_on_error = false;
1129 prid_t prid;
1130 struct xfs_dquot *udqp = NULL;
1131 struct xfs_dquot *gdqp = NULL;
1132 struct xfs_dquot *pdqp = NULL;
1133 struct xfs_trans_res *tres;
1134 uint resblks;
1136 trace_xfs_create(dp, name);
1138 if (XFS_FORCED_SHUTDOWN(mp))
1139 return -EIO;
1141 prid = xfs_get_initial_prid(dp);
1144 * Make sure that we have allocated dquot(s) on disk.
1146 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1147 xfs_kgid_to_gid(current_fsgid()), prid,
1148 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1149 &udqp, &gdqp, &pdqp);
1150 if (error)
1151 return error;
1153 if (is_dir) {
1154 rdev = 0;
1155 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1156 tres = &M_RES(mp)->tr_mkdir;
1157 } else {
1158 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1159 tres = &M_RES(mp)->tr_create;
1163 * Initially assume that the file does not exist and
1164 * reserve the resources for that case. If that is not
1165 * the case we'll drop the one we have and get a more
1166 * appropriate transaction later.
1168 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1169 if (error == -ENOSPC) {
1170 /* flush outstanding delalloc blocks and retry */
1171 xfs_flush_inodes(mp);
1172 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1174 if (error == -ENOSPC) {
1175 /* No space at all so try a "no-allocation" reservation */
1176 resblks = 0;
1177 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1179 if (error)
1180 goto out_release_inode;
1182 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1183 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1184 unlock_dp_on_error = true;
1186 xfs_defer_init(&dfops, &first_block);
1189 * Reserve disk quota and the inode.
1191 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1192 pdqp, resblks, 1, 0);
1193 if (error)
1194 goto out_trans_cancel;
1196 if (!resblks) {
1197 error = xfs_dir_canenter(tp, dp, name);
1198 if (error)
1199 goto out_trans_cancel;
1203 * A newly created regular or special file just has one directory
1204 * entry pointing to them, but a directory also the "." entry
1205 * pointing to itself.
1207 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1208 prid, resblks > 0, &ip, NULL);
1209 if (error)
1210 goto out_trans_cancel;
1213 * Now we join the directory inode to the transaction. We do not do it
1214 * earlier because xfs_dir_ialloc might commit the previous transaction
1215 * (and release all the locks). An error from here on will result in
1216 * the transaction cancel unlocking dp so don't do it explicitly in the
1217 * error path.
1219 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1220 unlock_dp_on_error = false;
1222 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1223 &first_block, &dfops, resblks ?
1224 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1225 if (error) {
1226 ASSERT(error != -ENOSPC);
1227 goto out_trans_cancel;
1229 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1230 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1232 if (is_dir) {
1233 error = xfs_dir_init(tp, ip, dp);
1234 if (error)
1235 goto out_bmap_cancel;
1237 error = xfs_bumplink(tp, dp);
1238 if (error)
1239 goto out_bmap_cancel;
1243 * If this is a synchronous mount, make sure that the
1244 * create transaction goes to disk before returning to
1245 * the user.
1247 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1248 xfs_trans_set_sync(tp);
1251 * Attach the dquot(s) to the inodes and modify them incore.
1252 * These ids of the inode couldn't have changed since the new
1253 * inode has been locked ever since it was created.
1255 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1257 error = xfs_defer_finish(&tp, &dfops, NULL);
1258 if (error)
1259 goto out_bmap_cancel;
1261 error = xfs_trans_commit(tp);
1262 if (error)
1263 goto out_release_inode;
1265 xfs_qm_dqrele(udqp);
1266 xfs_qm_dqrele(gdqp);
1267 xfs_qm_dqrele(pdqp);
1269 *ipp = ip;
1270 return 0;
1272 out_bmap_cancel:
1273 xfs_defer_cancel(&dfops);
1274 out_trans_cancel:
1275 xfs_trans_cancel(tp);
1276 out_release_inode:
1278 * Wait until after the current transaction is aborted to finish the
1279 * setup of the inode and release the inode. This prevents recursive
1280 * transactions and deadlocks from xfs_inactive.
1282 if (ip) {
1283 xfs_finish_inode_setup(ip);
1284 IRELE(ip);
1287 xfs_qm_dqrele(udqp);
1288 xfs_qm_dqrele(gdqp);
1289 xfs_qm_dqrele(pdqp);
1291 if (unlock_dp_on_error)
1292 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1293 return error;
1297 xfs_create_tmpfile(
1298 struct xfs_inode *dp,
1299 struct dentry *dentry,
1300 umode_t mode,
1301 struct xfs_inode **ipp)
1303 struct xfs_mount *mp = dp->i_mount;
1304 struct xfs_inode *ip = NULL;
1305 struct xfs_trans *tp = NULL;
1306 int error;
1307 prid_t prid;
1308 struct xfs_dquot *udqp = NULL;
1309 struct xfs_dquot *gdqp = NULL;
1310 struct xfs_dquot *pdqp = NULL;
1311 struct xfs_trans_res *tres;
1312 uint resblks;
1314 if (XFS_FORCED_SHUTDOWN(mp))
1315 return -EIO;
1317 prid = xfs_get_initial_prid(dp);
1320 * Make sure that we have allocated dquot(s) on disk.
1322 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1323 xfs_kgid_to_gid(current_fsgid()), prid,
1324 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1325 &udqp, &gdqp, &pdqp);
1326 if (error)
1327 return error;
1329 resblks = XFS_IALLOC_SPACE_RES(mp);
1330 tres = &M_RES(mp)->tr_create_tmpfile;
1332 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1333 if (error == -ENOSPC) {
1334 /* No space at all so try a "no-allocation" reservation */
1335 resblks = 0;
1336 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1338 if (error)
1339 goto out_release_inode;
1341 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342 pdqp, resblks, 1, 0);
1343 if (error)
1344 goto out_trans_cancel;
1346 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1347 prid, resblks > 0, &ip, NULL);
1348 if (error)
1349 goto out_trans_cancel;
1351 if (mp->m_flags & XFS_MOUNT_WSYNC)
1352 xfs_trans_set_sync(tp);
1355 * Attach the dquot(s) to the inodes and modify them incore.
1356 * These ids of the inode couldn't have changed since the new
1357 * inode has been locked ever since it was created.
1359 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1361 error = xfs_iunlink(tp, ip);
1362 if (error)
1363 goto out_trans_cancel;
1365 error = xfs_trans_commit(tp);
1366 if (error)
1367 goto out_release_inode;
1369 xfs_qm_dqrele(udqp);
1370 xfs_qm_dqrele(gdqp);
1371 xfs_qm_dqrele(pdqp);
1373 *ipp = ip;
1374 return 0;
1376 out_trans_cancel:
1377 xfs_trans_cancel(tp);
1378 out_release_inode:
1380 * Wait until after the current transaction is aborted to finish the
1381 * setup of the inode and release the inode. This prevents recursive
1382 * transactions and deadlocks from xfs_inactive.
1384 if (ip) {
1385 xfs_finish_inode_setup(ip);
1386 IRELE(ip);
1389 xfs_qm_dqrele(udqp);
1390 xfs_qm_dqrele(gdqp);
1391 xfs_qm_dqrele(pdqp);
1393 return error;
1397 xfs_link(
1398 xfs_inode_t *tdp,
1399 xfs_inode_t *sip,
1400 struct xfs_name *target_name)
1402 xfs_mount_t *mp = tdp->i_mount;
1403 xfs_trans_t *tp;
1404 int error;
1405 struct xfs_defer_ops dfops;
1406 xfs_fsblock_t first_block;
1407 int resblks;
1409 trace_xfs_link(tdp, target_name);
1411 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1413 if (XFS_FORCED_SHUTDOWN(mp))
1414 return -EIO;
1416 error = xfs_qm_dqattach(sip, 0);
1417 if (error)
1418 goto std_return;
1420 error = xfs_qm_dqattach(tdp, 0);
1421 if (error)
1422 goto std_return;
1424 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1425 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1426 if (error == -ENOSPC) {
1427 resblks = 0;
1428 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1430 if (error)
1431 goto std_return;
1433 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1434 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1436 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1437 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1440 * If we are using project inheritance, we only allow hard link
1441 * creation in our tree when the project IDs are the same; else
1442 * the tree quota mechanism could be circumvented.
1444 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1445 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1446 error = -EXDEV;
1447 goto error_return;
1450 if (!resblks) {
1451 error = xfs_dir_canenter(tp, tdp, target_name);
1452 if (error)
1453 goto error_return;
1456 xfs_defer_init(&dfops, &first_block);
1459 * Handle initial link state of O_TMPFILE inode
1461 if (VFS_I(sip)->i_nlink == 0) {
1462 error = xfs_iunlink_remove(tp, sip);
1463 if (error)
1464 goto error_return;
1467 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1468 &first_block, &dfops, resblks);
1469 if (error)
1470 goto error_return;
1471 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1472 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1474 error = xfs_bumplink(tp, sip);
1475 if (error)
1476 goto error_return;
1479 * If this is a synchronous mount, make sure that the
1480 * link transaction goes to disk before returning to
1481 * the user.
1483 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1484 xfs_trans_set_sync(tp);
1486 error = xfs_defer_finish(&tp, &dfops, NULL);
1487 if (error) {
1488 xfs_defer_cancel(&dfops);
1489 goto error_return;
1492 return xfs_trans_commit(tp);
1494 error_return:
1495 xfs_trans_cancel(tp);
1496 std_return:
1497 return error;
1501 * Free up the underlying blocks past new_size. The new size must be smaller
1502 * than the current size. This routine can be used both for the attribute and
1503 * data fork, and does not modify the inode size, which is left to the caller.
1505 * The transaction passed to this routine must have made a permanent log
1506 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1507 * given transaction and start new ones, so make sure everything involved in
1508 * the transaction is tidy before calling here. Some transaction will be
1509 * returned to the caller to be committed. The incoming transaction must
1510 * already include the inode, and both inode locks must be held exclusively.
1511 * The inode must also be "held" within the transaction. On return the inode
1512 * will be "held" within the returned transaction. This routine does NOT
1513 * require any disk space to be reserved for it within the transaction.
1515 * If we get an error, we must return with the inode locked and linked into the
1516 * current transaction. This keeps things simple for the higher level code,
1517 * because it always knows that the inode is locked and held in the transaction
1518 * that returns to it whether errors occur or not. We don't mark the inode
1519 * dirty on error so that transactions can be easily aborted if possible.
1522 xfs_itruncate_extents(
1523 struct xfs_trans **tpp,
1524 struct xfs_inode *ip,
1525 int whichfork,
1526 xfs_fsize_t new_size)
1528 struct xfs_mount *mp = ip->i_mount;
1529 struct xfs_trans *tp = *tpp;
1530 struct xfs_defer_ops dfops;
1531 xfs_fsblock_t first_block;
1532 xfs_fileoff_t first_unmap_block;
1533 xfs_fileoff_t last_block;
1534 xfs_filblks_t unmap_len;
1535 int error = 0;
1536 int done = 0;
1538 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1539 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1540 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1541 ASSERT(new_size <= XFS_ISIZE(ip));
1542 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1543 ASSERT(ip->i_itemp != NULL);
1544 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1545 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1547 trace_xfs_itruncate_extents_start(ip, new_size);
1550 * Since it is possible for space to become allocated beyond
1551 * the end of the file (in a crash where the space is allocated
1552 * but the inode size is not yet updated), simply remove any
1553 * blocks which show up between the new EOF and the maximum
1554 * possible file size. If the first block to be removed is
1555 * beyond the maximum file size (ie it is the same as last_block),
1556 * then there is nothing to do.
1558 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1559 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1560 if (first_unmap_block == last_block)
1561 return 0;
1563 ASSERT(first_unmap_block < last_block);
1564 unmap_len = last_block - first_unmap_block + 1;
1565 while (!done) {
1566 xfs_defer_init(&dfops, &first_block);
1567 error = xfs_bunmapi(tp, ip,
1568 first_unmap_block, unmap_len,
1569 xfs_bmapi_aflag(whichfork),
1570 XFS_ITRUNC_MAX_EXTENTS,
1571 &first_block, &dfops,
1572 &done);
1573 if (error)
1574 goto out_bmap_cancel;
1577 * Duplicate the transaction that has the permanent
1578 * reservation and commit the old transaction.
1580 error = xfs_defer_finish(&tp, &dfops, ip);
1581 if (error)
1582 goto out_bmap_cancel;
1584 error = xfs_trans_roll(&tp, ip);
1585 if (error)
1586 goto out;
1590 * Always re-log the inode so that our permanent transaction can keep
1591 * on rolling it forward in the log.
1593 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1595 trace_xfs_itruncate_extents_end(ip, new_size);
1597 out:
1598 *tpp = tp;
1599 return error;
1600 out_bmap_cancel:
1602 * If the bunmapi call encounters an error, return to the caller where
1603 * the transaction can be properly aborted. We just need to make sure
1604 * we're not holding any resources that we were not when we came in.
1606 xfs_defer_cancel(&dfops);
1607 goto out;
1611 xfs_release(
1612 xfs_inode_t *ip)
1614 xfs_mount_t *mp = ip->i_mount;
1615 int error;
1617 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1618 return 0;
1620 /* If this is a read-only mount, don't do this (would generate I/O) */
1621 if (mp->m_flags & XFS_MOUNT_RDONLY)
1622 return 0;
1624 if (!XFS_FORCED_SHUTDOWN(mp)) {
1625 int truncated;
1628 * If we previously truncated this file and removed old data
1629 * in the process, we want to initiate "early" writeout on
1630 * the last close. This is an attempt to combat the notorious
1631 * NULL files problem which is particularly noticeable from a
1632 * truncate down, buffered (re-)write (delalloc), followed by
1633 * a crash. What we are effectively doing here is
1634 * significantly reducing the time window where we'd otherwise
1635 * be exposed to that problem.
1637 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1638 if (truncated) {
1639 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1640 if (ip->i_delayed_blks > 0) {
1641 error = filemap_flush(VFS_I(ip)->i_mapping);
1642 if (error)
1643 return error;
1648 if (VFS_I(ip)->i_nlink == 0)
1649 return 0;
1651 if (xfs_can_free_eofblocks(ip, false)) {
1654 * If we can't get the iolock just skip truncating the blocks
1655 * past EOF because we could deadlock with the mmap_sem
1656 * otherwise. We'll get another chance to drop them once the
1657 * last reference to the inode is dropped, so we'll never leak
1658 * blocks permanently.
1660 * Further, check if the inode is being opened, written and
1661 * closed frequently and we have delayed allocation blocks
1662 * outstanding (e.g. streaming writes from the NFS server),
1663 * truncating the blocks past EOF will cause fragmentation to
1664 * occur.
1666 * In this case don't do the truncation, either, but we have to
1667 * be careful how we detect this case. Blocks beyond EOF show
1668 * up as i_delayed_blks even when the inode is clean, so we
1669 * need to truncate them away first before checking for a dirty
1670 * release. Hence on the first dirty close we will still remove
1671 * the speculative allocation, but after that we will leave it
1672 * in place.
1674 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1675 return 0;
1677 error = xfs_free_eofblocks(mp, ip, true);
1678 if (error && error != -EAGAIN)
1679 return error;
1681 /* delalloc blocks after truncation means it really is dirty */
1682 if (ip->i_delayed_blks)
1683 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1685 return 0;
1689 * xfs_inactive_truncate
1691 * Called to perform a truncate when an inode becomes unlinked.
1693 STATIC int
1694 xfs_inactive_truncate(
1695 struct xfs_inode *ip)
1697 struct xfs_mount *mp = ip->i_mount;
1698 struct xfs_trans *tp;
1699 int error;
1701 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1702 if (error) {
1703 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1704 return error;
1707 xfs_ilock(ip, XFS_ILOCK_EXCL);
1708 xfs_trans_ijoin(tp, ip, 0);
1711 * Log the inode size first to prevent stale data exposure in the event
1712 * of a system crash before the truncate completes. See the related
1713 * comment in xfs_setattr_size() for details.
1715 ip->i_d.di_size = 0;
1716 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1718 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1719 if (error)
1720 goto error_trans_cancel;
1722 ASSERT(ip->i_d.di_nextents == 0);
1724 error = xfs_trans_commit(tp);
1725 if (error)
1726 goto error_unlock;
1728 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1729 return 0;
1731 error_trans_cancel:
1732 xfs_trans_cancel(tp);
1733 error_unlock:
1734 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1735 return error;
1739 * xfs_inactive_ifree()
1741 * Perform the inode free when an inode is unlinked.
1743 STATIC int
1744 xfs_inactive_ifree(
1745 struct xfs_inode *ip)
1747 struct xfs_defer_ops dfops;
1748 xfs_fsblock_t first_block;
1749 struct xfs_mount *mp = ip->i_mount;
1750 struct xfs_trans *tp;
1751 int error;
1754 * The ifree transaction might need to allocate blocks for record
1755 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1756 * allow ifree to dip into the reserved block pool if necessary.
1758 * Freeing large sets of inodes generally means freeing inode chunks,
1759 * directory and file data blocks, so this should be relatively safe.
1760 * Only under severe circumstances should it be possible to free enough
1761 * inodes to exhaust the reserve block pool via finobt expansion while
1762 * at the same time not creating free space in the filesystem.
1764 * Send a warning if the reservation does happen to fail, as the inode
1765 * now remains allocated and sits on the unlinked list until the fs is
1766 * repaired.
1768 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1769 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1770 if (error) {
1771 if (error == -ENOSPC) {
1772 xfs_warn_ratelimited(mp,
1773 "Failed to remove inode(s) from unlinked list. "
1774 "Please free space, unmount and run xfs_repair.");
1775 } else {
1776 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1778 return error;
1781 xfs_ilock(ip, XFS_ILOCK_EXCL);
1782 xfs_trans_ijoin(tp, ip, 0);
1784 xfs_defer_init(&dfops, &first_block);
1785 error = xfs_ifree(tp, ip, &dfops);
1786 if (error) {
1788 * If we fail to free the inode, shut down. The cancel
1789 * might do that, we need to make sure. Otherwise the
1790 * inode might be lost for a long time or forever.
1792 if (!XFS_FORCED_SHUTDOWN(mp)) {
1793 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1794 __func__, error);
1795 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1797 xfs_trans_cancel(tp);
1798 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799 return error;
1803 * Credit the quota account(s). The inode is gone.
1805 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1808 * Just ignore errors at this point. There is nothing we can do except
1809 * to try to keep going. Make sure it's not a silent error.
1811 error = xfs_defer_finish(&tp, &dfops, NULL);
1812 if (error) {
1813 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1814 __func__, error);
1815 xfs_defer_cancel(&dfops);
1817 error = xfs_trans_commit(tp);
1818 if (error)
1819 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1820 __func__, error);
1822 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1823 return 0;
1827 * xfs_inactive
1829 * This is called when the vnode reference count for the vnode
1830 * goes to zero. If the file has been unlinked, then it must
1831 * now be truncated. Also, we clear all of the read-ahead state
1832 * kept for the inode here since the file is now closed.
1834 void
1835 xfs_inactive(
1836 xfs_inode_t *ip)
1838 struct xfs_mount *mp;
1839 int error;
1840 int truncate = 0;
1843 * If the inode is already free, then there can be nothing
1844 * to clean up here.
1846 if (VFS_I(ip)->i_mode == 0) {
1847 ASSERT(ip->i_df.if_real_bytes == 0);
1848 ASSERT(ip->i_df.if_broot_bytes == 0);
1849 return;
1852 mp = ip->i_mount;
1854 /* If this is a read-only mount, don't do this (would generate I/O) */
1855 if (mp->m_flags & XFS_MOUNT_RDONLY)
1856 return;
1858 if (VFS_I(ip)->i_nlink != 0) {
1860 * force is true because we are evicting an inode from the
1861 * cache. Post-eof blocks must be freed, lest we end up with
1862 * broken free space accounting.
1864 if (xfs_can_free_eofblocks(ip, true))
1865 xfs_free_eofblocks(mp, ip, false);
1867 return;
1870 if (S_ISREG(VFS_I(ip)->i_mode) &&
1871 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1872 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1873 truncate = 1;
1875 error = xfs_qm_dqattach(ip, 0);
1876 if (error)
1877 return;
1879 if (S_ISLNK(VFS_I(ip)->i_mode))
1880 error = xfs_inactive_symlink(ip);
1881 else if (truncate)
1882 error = xfs_inactive_truncate(ip);
1883 if (error)
1884 return;
1887 * If there are attributes associated with the file then blow them away
1888 * now. The code calls a routine that recursively deconstructs the
1889 * attribute fork. If also blows away the in-core attribute fork.
1891 if (XFS_IFORK_Q(ip)) {
1892 error = xfs_attr_inactive(ip);
1893 if (error)
1894 return;
1897 ASSERT(!ip->i_afp);
1898 ASSERT(ip->i_d.di_anextents == 0);
1899 ASSERT(ip->i_d.di_forkoff == 0);
1902 * Free the inode.
1904 error = xfs_inactive_ifree(ip);
1905 if (error)
1906 return;
1909 * Release the dquots held by inode, if any.
1911 xfs_qm_dqdetach(ip);
1915 * This is called when the inode's link count goes to 0 or we are creating a
1916 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1917 * set to true as the link count is dropped to zero by the VFS after we've
1918 * created the file successfully, so we have to add it to the unlinked list
1919 * while the link count is non-zero.
1921 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1922 * list when the inode is freed.
1924 STATIC int
1925 xfs_iunlink(
1926 struct xfs_trans *tp,
1927 struct xfs_inode *ip)
1929 xfs_mount_t *mp = tp->t_mountp;
1930 xfs_agi_t *agi;
1931 xfs_dinode_t *dip;
1932 xfs_buf_t *agibp;
1933 xfs_buf_t *ibp;
1934 xfs_agino_t agino;
1935 short bucket_index;
1936 int offset;
1937 int error;
1939 ASSERT(VFS_I(ip)->i_mode != 0);
1942 * Get the agi buffer first. It ensures lock ordering
1943 * on the list.
1945 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1946 if (error)
1947 return error;
1948 agi = XFS_BUF_TO_AGI(agibp);
1951 * Get the index into the agi hash table for the
1952 * list this inode will go on.
1954 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1955 ASSERT(agino != 0);
1956 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1957 ASSERT(agi->agi_unlinked[bucket_index]);
1958 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1960 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1962 * There is already another inode in the bucket we need
1963 * to add ourselves to. Add us at the front of the list.
1964 * Here we put the head pointer into our next pointer,
1965 * and then we fall through to point the head at us.
1967 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1968 0, 0);
1969 if (error)
1970 return error;
1972 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1973 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1974 offset = ip->i_imap.im_boffset +
1975 offsetof(xfs_dinode_t, di_next_unlinked);
1977 /* need to recalc the inode CRC if appropriate */
1978 xfs_dinode_calc_crc(mp, dip);
1980 xfs_trans_inode_buf(tp, ibp);
1981 xfs_trans_log_buf(tp, ibp, offset,
1982 (offset + sizeof(xfs_agino_t) - 1));
1983 xfs_inobp_check(mp, ibp);
1987 * Point the bucket head pointer at the inode being inserted.
1989 ASSERT(agino != 0);
1990 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1991 offset = offsetof(xfs_agi_t, agi_unlinked) +
1992 (sizeof(xfs_agino_t) * bucket_index);
1993 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1994 xfs_trans_log_buf(tp, agibp, offset,
1995 (offset + sizeof(xfs_agino_t) - 1));
1996 return 0;
2000 * Pull the on-disk inode from the AGI unlinked list.
2002 STATIC int
2003 xfs_iunlink_remove(
2004 xfs_trans_t *tp,
2005 xfs_inode_t *ip)
2007 xfs_ino_t next_ino;
2008 xfs_mount_t *mp;
2009 xfs_agi_t *agi;
2010 xfs_dinode_t *dip;
2011 xfs_buf_t *agibp;
2012 xfs_buf_t *ibp;
2013 xfs_agnumber_t agno;
2014 xfs_agino_t agino;
2015 xfs_agino_t next_agino;
2016 xfs_buf_t *last_ibp;
2017 xfs_dinode_t *last_dip = NULL;
2018 short bucket_index;
2019 int offset, last_offset = 0;
2020 int error;
2022 mp = tp->t_mountp;
2023 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2026 * Get the agi buffer first. It ensures lock ordering
2027 * on the list.
2029 error = xfs_read_agi(mp, tp, agno, &agibp);
2030 if (error)
2031 return error;
2033 agi = XFS_BUF_TO_AGI(agibp);
2036 * Get the index into the agi hash table for the
2037 * list this inode will go on.
2039 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2040 ASSERT(agino != 0);
2041 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2042 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2043 ASSERT(agi->agi_unlinked[bucket_index]);
2045 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2047 * We're at the head of the list. Get the inode's on-disk
2048 * buffer to see if there is anyone after us on the list.
2049 * Only modify our next pointer if it is not already NULLAGINO.
2050 * This saves us the overhead of dealing with the buffer when
2051 * there is no need to change it.
2053 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2054 0, 0);
2055 if (error) {
2056 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2057 __func__, error);
2058 return error;
2060 next_agino = be32_to_cpu(dip->di_next_unlinked);
2061 ASSERT(next_agino != 0);
2062 if (next_agino != NULLAGINO) {
2063 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2064 offset = ip->i_imap.im_boffset +
2065 offsetof(xfs_dinode_t, di_next_unlinked);
2067 /* need to recalc the inode CRC if appropriate */
2068 xfs_dinode_calc_crc(mp, dip);
2070 xfs_trans_inode_buf(tp, ibp);
2071 xfs_trans_log_buf(tp, ibp, offset,
2072 (offset + sizeof(xfs_agino_t) - 1));
2073 xfs_inobp_check(mp, ibp);
2074 } else {
2075 xfs_trans_brelse(tp, ibp);
2078 * Point the bucket head pointer at the next inode.
2080 ASSERT(next_agino != 0);
2081 ASSERT(next_agino != agino);
2082 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2083 offset = offsetof(xfs_agi_t, agi_unlinked) +
2084 (sizeof(xfs_agino_t) * bucket_index);
2085 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2086 xfs_trans_log_buf(tp, agibp, offset,
2087 (offset + sizeof(xfs_agino_t) - 1));
2088 } else {
2090 * We need to search the list for the inode being freed.
2092 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2093 last_ibp = NULL;
2094 while (next_agino != agino) {
2095 struct xfs_imap imap;
2097 if (last_ibp)
2098 xfs_trans_brelse(tp, last_ibp);
2100 imap.im_blkno = 0;
2101 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2103 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2104 if (error) {
2105 xfs_warn(mp,
2106 "%s: xfs_imap returned error %d.",
2107 __func__, error);
2108 return error;
2111 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2112 &last_ibp, 0, 0);
2113 if (error) {
2114 xfs_warn(mp,
2115 "%s: xfs_imap_to_bp returned error %d.",
2116 __func__, error);
2117 return error;
2120 last_offset = imap.im_boffset;
2121 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2122 ASSERT(next_agino != NULLAGINO);
2123 ASSERT(next_agino != 0);
2127 * Now last_ibp points to the buffer previous to us on the
2128 * unlinked list. Pull us from the list.
2130 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2131 0, 0);
2132 if (error) {
2133 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2134 __func__, error);
2135 return error;
2137 next_agino = be32_to_cpu(dip->di_next_unlinked);
2138 ASSERT(next_agino != 0);
2139 ASSERT(next_agino != agino);
2140 if (next_agino != NULLAGINO) {
2141 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2142 offset = ip->i_imap.im_boffset +
2143 offsetof(xfs_dinode_t, di_next_unlinked);
2145 /* need to recalc the inode CRC if appropriate */
2146 xfs_dinode_calc_crc(mp, dip);
2148 xfs_trans_inode_buf(tp, ibp);
2149 xfs_trans_log_buf(tp, ibp, offset,
2150 (offset + sizeof(xfs_agino_t) - 1));
2151 xfs_inobp_check(mp, ibp);
2152 } else {
2153 xfs_trans_brelse(tp, ibp);
2156 * Point the previous inode on the list to the next inode.
2158 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2159 ASSERT(next_agino != 0);
2160 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2162 /* need to recalc the inode CRC if appropriate */
2163 xfs_dinode_calc_crc(mp, last_dip);
2165 xfs_trans_inode_buf(tp, last_ibp);
2166 xfs_trans_log_buf(tp, last_ibp, offset,
2167 (offset + sizeof(xfs_agino_t) - 1));
2168 xfs_inobp_check(mp, last_ibp);
2170 return 0;
2174 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2175 * inodes that are in memory - they all must be marked stale and attached to
2176 * the cluster buffer.
2178 STATIC int
2179 xfs_ifree_cluster(
2180 xfs_inode_t *free_ip,
2181 xfs_trans_t *tp,
2182 struct xfs_icluster *xic)
2184 xfs_mount_t *mp = free_ip->i_mount;
2185 int blks_per_cluster;
2186 int inodes_per_cluster;
2187 int nbufs;
2188 int i, j;
2189 int ioffset;
2190 xfs_daddr_t blkno;
2191 xfs_buf_t *bp;
2192 xfs_inode_t *ip;
2193 xfs_inode_log_item_t *iip;
2194 xfs_log_item_t *lip;
2195 struct xfs_perag *pag;
2196 xfs_ino_t inum;
2198 inum = xic->first_ino;
2199 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2200 blks_per_cluster = xfs_icluster_size_fsb(mp);
2201 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2202 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2204 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2206 * The allocation bitmap tells us which inodes of the chunk were
2207 * physically allocated. Skip the cluster if an inode falls into
2208 * a sparse region.
2210 ioffset = inum - xic->first_ino;
2211 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2212 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2213 continue;
2216 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2217 XFS_INO_TO_AGBNO(mp, inum));
2220 * We obtain and lock the backing buffer first in the process
2221 * here, as we have to ensure that any dirty inode that we
2222 * can't get the flush lock on is attached to the buffer.
2223 * If we scan the in-memory inodes first, then buffer IO can
2224 * complete before we get a lock on it, and hence we may fail
2225 * to mark all the active inodes on the buffer stale.
2227 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2228 mp->m_bsize * blks_per_cluster,
2229 XBF_UNMAPPED);
2231 if (!bp)
2232 return -ENOMEM;
2235 * This buffer may not have been correctly initialised as we
2236 * didn't read it from disk. That's not important because we are
2237 * only using to mark the buffer as stale in the log, and to
2238 * attach stale cached inodes on it. That means it will never be
2239 * dispatched for IO. If it is, we want to know about it, and we
2240 * want it to fail. We can acheive this by adding a write
2241 * verifier to the buffer.
2243 bp->b_ops = &xfs_inode_buf_ops;
2246 * Walk the inodes already attached to the buffer and mark them
2247 * stale. These will all have the flush locks held, so an
2248 * in-memory inode walk can't lock them. By marking them all
2249 * stale first, we will not attempt to lock them in the loop
2250 * below as the XFS_ISTALE flag will be set.
2252 lip = bp->b_fspriv;
2253 while (lip) {
2254 if (lip->li_type == XFS_LI_INODE) {
2255 iip = (xfs_inode_log_item_t *)lip;
2256 ASSERT(iip->ili_logged == 1);
2257 lip->li_cb = xfs_istale_done;
2258 xfs_trans_ail_copy_lsn(mp->m_ail,
2259 &iip->ili_flush_lsn,
2260 &iip->ili_item.li_lsn);
2261 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2263 lip = lip->li_bio_list;
2268 * For each inode in memory attempt to add it to the inode
2269 * buffer and set it up for being staled on buffer IO
2270 * completion. This is safe as we've locked out tail pushing
2271 * and flushing by locking the buffer.
2273 * We have already marked every inode that was part of a
2274 * transaction stale above, which means there is no point in
2275 * even trying to lock them.
2277 for (i = 0; i < inodes_per_cluster; i++) {
2278 retry:
2279 rcu_read_lock();
2280 ip = radix_tree_lookup(&pag->pag_ici_root,
2281 XFS_INO_TO_AGINO(mp, (inum + i)));
2283 /* Inode not in memory, nothing to do */
2284 if (!ip) {
2285 rcu_read_unlock();
2286 continue;
2290 * because this is an RCU protected lookup, we could
2291 * find a recently freed or even reallocated inode
2292 * during the lookup. We need to check under the
2293 * i_flags_lock for a valid inode here. Skip it if it
2294 * is not valid, the wrong inode or stale.
2296 spin_lock(&ip->i_flags_lock);
2297 if (ip->i_ino != inum + i ||
2298 __xfs_iflags_test(ip, XFS_ISTALE)) {
2299 spin_unlock(&ip->i_flags_lock);
2300 rcu_read_unlock();
2301 continue;
2303 spin_unlock(&ip->i_flags_lock);
2306 * Don't try to lock/unlock the current inode, but we
2307 * _cannot_ skip the other inodes that we did not find
2308 * in the list attached to the buffer and are not
2309 * already marked stale. If we can't lock it, back off
2310 * and retry.
2312 if (ip != free_ip &&
2313 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2314 rcu_read_unlock();
2315 delay(1);
2316 goto retry;
2318 rcu_read_unlock();
2320 xfs_iflock(ip);
2321 xfs_iflags_set(ip, XFS_ISTALE);
2324 * we don't need to attach clean inodes or those only
2325 * with unlogged changes (which we throw away, anyway).
2327 iip = ip->i_itemp;
2328 if (!iip || xfs_inode_clean(ip)) {
2329 ASSERT(ip != free_ip);
2330 xfs_ifunlock(ip);
2331 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2332 continue;
2335 iip->ili_last_fields = iip->ili_fields;
2336 iip->ili_fields = 0;
2337 iip->ili_fsync_fields = 0;
2338 iip->ili_logged = 1;
2339 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2340 &iip->ili_item.li_lsn);
2342 xfs_buf_attach_iodone(bp, xfs_istale_done,
2343 &iip->ili_item);
2345 if (ip != free_ip)
2346 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2349 xfs_trans_stale_inode_buf(tp, bp);
2350 xfs_trans_binval(tp, bp);
2353 xfs_perag_put(pag);
2354 return 0;
2358 * This is called to return an inode to the inode free list.
2359 * The inode should already be truncated to 0 length and have
2360 * no pages associated with it. This routine also assumes that
2361 * the inode is already a part of the transaction.
2363 * The on-disk copy of the inode will have been added to the list
2364 * of unlinked inodes in the AGI. We need to remove the inode from
2365 * that list atomically with respect to freeing it here.
2368 xfs_ifree(
2369 xfs_trans_t *tp,
2370 xfs_inode_t *ip,
2371 struct xfs_defer_ops *dfops)
2373 int error;
2374 struct xfs_icluster xic = { 0 };
2376 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2377 ASSERT(VFS_I(ip)->i_nlink == 0);
2378 ASSERT(ip->i_d.di_nextents == 0);
2379 ASSERT(ip->i_d.di_anextents == 0);
2380 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2381 ASSERT(ip->i_d.di_nblocks == 0);
2384 * Pull the on-disk inode from the AGI unlinked list.
2386 error = xfs_iunlink_remove(tp, ip);
2387 if (error)
2388 return error;
2390 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2391 if (error)
2392 return error;
2394 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2395 ip->i_d.di_flags = 0;
2396 ip->i_d.di_dmevmask = 0;
2397 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2398 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2399 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2401 * Bump the generation count so no one will be confused
2402 * by reincarnations of this inode.
2404 VFS_I(ip)->i_generation++;
2405 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2407 if (xic.deleted)
2408 error = xfs_ifree_cluster(ip, tp, &xic);
2410 return error;
2414 * This is called to unpin an inode. The caller must have the inode locked
2415 * in at least shared mode so that the buffer cannot be subsequently pinned
2416 * once someone is waiting for it to be unpinned.
2418 static void
2419 xfs_iunpin(
2420 struct xfs_inode *ip)
2422 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2424 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2426 /* Give the log a push to start the unpinning I/O */
2427 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2431 static void
2432 __xfs_iunpin_wait(
2433 struct xfs_inode *ip)
2435 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2438 xfs_iunpin(ip);
2440 do {
2441 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2442 if (xfs_ipincount(ip))
2443 io_schedule();
2444 } while (xfs_ipincount(ip));
2445 finish_wait(wq, &wait.wait);
2448 void
2449 xfs_iunpin_wait(
2450 struct xfs_inode *ip)
2452 if (xfs_ipincount(ip))
2453 __xfs_iunpin_wait(ip);
2457 * Removing an inode from the namespace involves removing the directory entry
2458 * and dropping the link count on the inode. Removing the directory entry can
2459 * result in locking an AGF (directory blocks were freed) and removing a link
2460 * count can result in placing the inode on an unlinked list which results in
2461 * locking an AGI.
2463 * The big problem here is that we have an ordering constraint on AGF and AGI
2464 * locking - inode allocation locks the AGI, then can allocate a new extent for
2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466 * removes the inode from the unlinked list, requiring that we lock the AGI
2467 * first, and then freeing the inode can result in an inode chunk being freed
2468 * and hence freeing disk space requiring that we lock an AGF.
2470 * Hence the ordering that is imposed by other parts of the code is AGI before
2471 * AGF. This means we cannot remove the directory entry before we drop the inode
2472 * reference count and put it on the unlinked list as this results in a lock
2473 * order of AGF then AGI, and this can deadlock against inode allocation and
2474 * freeing. Therefore we must drop the link counts before we remove the
2475 * directory entry.
2477 * This is still safe from a transactional point of view - it is not until we
2478 * get to xfs_defer_finish() that we have the possibility of multiple
2479 * transactions in this operation. Hence as long as we remove the directory
2480 * entry and drop the link count in the first transaction of the remove
2481 * operation, there are no transactional constraints on the ordering here.
2484 xfs_remove(
2485 xfs_inode_t *dp,
2486 struct xfs_name *name,
2487 xfs_inode_t *ip)
2489 xfs_mount_t *mp = dp->i_mount;
2490 xfs_trans_t *tp = NULL;
2491 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492 int error = 0;
2493 struct xfs_defer_ops dfops;
2494 xfs_fsblock_t first_block;
2495 uint resblks;
2497 trace_xfs_remove(dp, name);
2499 if (XFS_FORCED_SHUTDOWN(mp))
2500 return -EIO;
2502 error = xfs_qm_dqattach(dp, 0);
2503 if (error)
2504 goto std_return;
2506 error = xfs_qm_dqattach(ip, 0);
2507 if (error)
2508 goto std_return;
2511 * We try to get the real space reservation first,
2512 * allowing for directory btree deletion(s) implying
2513 * possible bmap insert(s). If we can't get the space
2514 * reservation then we use 0 instead, and avoid the bmap
2515 * btree insert(s) in the directory code by, if the bmap
2516 * insert tries to happen, instead trimming the LAST
2517 * block from the directory.
2519 resblks = XFS_REMOVE_SPACE_RES(mp);
2520 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2521 if (error == -ENOSPC) {
2522 resblks = 0;
2523 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2524 &tp);
2526 if (error) {
2527 ASSERT(error != -ENOSPC);
2528 goto std_return;
2531 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2532 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2534 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2535 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2538 * If we're removing a directory perform some additional validation.
2540 if (is_dir) {
2541 ASSERT(VFS_I(ip)->i_nlink >= 2);
2542 if (VFS_I(ip)->i_nlink != 2) {
2543 error = -ENOTEMPTY;
2544 goto out_trans_cancel;
2546 if (!xfs_dir_isempty(ip)) {
2547 error = -ENOTEMPTY;
2548 goto out_trans_cancel;
2551 /* Drop the link from ip's "..". */
2552 error = xfs_droplink(tp, dp);
2553 if (error)
2554 goto out_trans_cancel;
2556 /* Drop the "." link from ip to self. */
2557 error = xfs_droplink(tp, ip);
2558 if (error)
2559 goto out_trans_cancel;
2560 } else {
2562 * When removing a non-directory we need to log the parent
2563 * inode here. For a directory this is done implicitly
2564 * by the xfs_droplink call for the ".." entry.
2566 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2568 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2570 /* Drop the link from dp to ip. */
2571 error = xfs_droplink(tp, ip);
2572 if (error)
2573 goto out_trans_cancel;
2575 xfs_defer_init(&dfops, &first_block);
2576 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2577 &first_block, &dfops, resblks);
2578 if (error) {
2579 ASSERT(error != -ENOENT);
2580 goto out_bmap_cancel;
2584 * If this is a synchronous mount, make sure that the
2585 * remove transaction goes to disk before returning to
2586 * the user.
2588 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2589 xfs_trans_set_sync(tp);
2591 error = xfs_defer_finish(&tp, &dfops, NULL);
2592 if (error)
2593 goto out_bmap_cancel;
2595 error = xfs_trans_commit(tp);
2596 if (error)
2597 goto std_return;
2599 if (is_dir && xfs_inode_is_filestream(ip))
2600 xfs_filestream_deassociate(ip);
2602 return 0;
2604 out_bmap_cancel:
2605 xfs_defer_cancel(&dfops);
2606 out_trans_cancel:
2607 xfs_trans_cancel(tp);
2608 std_return:
2609 return error;
2613 * Enter all inodes for a rename transaction into a sorted array.
2615 #define __XFS_SORT_INODES 5
2616 STATIC void
2617 xfs_sort_for_rename(
2618 struct xfs_inode *dp1, /* in: old (source) directory inode */
2619 struct xfs_inode *dp2, /* in: new (target) directory inode */
2620 struct xfs_inode *ip1, /* in: inode of old entry */
2621 struct xfs_inode *ip2, /* in: inode of new entry */
2622 struct xfs_inode *wip, /* in: whiteout inode */
2623 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2624 int *num_inodes) /* in/out: inodes in array */
2626 int i, j;
2628 ASSERT(*num_inodes == __XFS_SORT_INODES);
2629 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2632 * i_tab contains a list of pointers to inodes. We initialize
2633 * the table here & we'll sort it. We will then use it to
2634 * order the acquisition of the inode locks.
2636 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2638 i = 0;
2639 i_tab[i++] = dp1;
2640 i_tab[i++] = dp2;
2641 i_tab[i++] = ip1;
2642 if (ip2)
2643 i_tab[i++] = ip2;
2644 if (wip)
2645 i_tab[i++] = wip;
2646 *num_inodes = i;
2649 * Sort the elements via bubble sort. (Remember, there are at
2650 * most 5 elements to sort, so this is adequate.)
2652 for (i = 0; i < *num_inodes; i++) {
2653 for (j = 1; j < *num_inodes; j++) {
2654 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2655 struct xfs_inode *temp = i_tab[j];
2656 i_tab[j] = i_tab[j-1];
2657 i_tab[j-1] = temp;
2663 static int
2664 xfs_finish_rename(
2665 struct xfs_trans *tp,
2666 struct xfs_defer_ops *dfops)
2668 int error;
2671 * If this is a synchronous mount, make sure that the rename transaction
2672 * goes to disk before returning to the user.
2674 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2675 xfs_trans_set_sync(tp);
2677 error = xfs_defer_finish(&tp, dfops, NULL);
2678 if (error) {
2679 xfs_defer_cancel(dfops);
2680 xfs_trans_cancel(tp);
2681 return error;
2684 return xfs_trans_commit(tp);
2688 * xfs_cross_rename()
2690 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2692 STATIC int
2693 xfs_cross_rename(
2694 struct xfs_trans *tp,
2695 struct xfs_inode *dp1,
2696 struct xfs_name *name1,
2697 struct xfs_inode *ip1,
2698 struct xfs_inode *dp2,
2699 struct xfs_name *name2,
2700 struct xfs_inode *ip2,
2701 struct xfs_defer_ops *dfops,
2702 xfs_fsblock_t *first_block,
2703 int spaceres)
2705 int error = 0;
2706 int ip1_flags = 0;
2707 int ip2_flags = 0;
2708 int dp2_flags = 0;
2710 /* Swap inode number for dirent in first parent */
2711 error = xfs_dir_replace(tp, dp1, name1,
2712 ip2->i_ino,
2713 first_block, dfops, spaceres);
2714 if (error)
2715 goto out_trans_abort;
2717 /* Swap inode number for dirent in second parent */
2718 error = xfs_dir_replace(tp, dp2, name2,
2719 ip1->i_ino,
2720 first_block, dfops, spaceres);
2721 if (error)
2722 goto out_trans_abort;
2725 * If we're renaming one or more directories across different parents,
2726 * update the respective ".." entries (and link counts) to match the new
2727 * parents.
2729 if (dp1 != dp2) {
2730 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2732 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2733 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2734 dp1->i_ino, first_block,
2735 dfops, spaceres);
2736 if (error)
2737 goto out_trans_abort;
2739 /* transfer ip2 ".." reference to dp1 */
2740 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2741 error = xfs_droplink(tp, dp2);
2742 if (error)
2743 goto out_trans_abort;
2744 error = xfs_bumplink(tp, dp1);
2745 if (error)
2746 goto out_trans_abort;
2750 * Although ip1 isn't changed here, userspace needs
2751 * to be warned about the change, so that applications
2752 * relying on it (like backup ones), will properly
2753 * notify the change
2755 ip1_flags |= XFS_ICHGTIME_CHG;
2756 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2759 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2760 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2761 dp2->i_ino, first_block,
2762 dfops, spaceres);
2763 if (error)
2764 goto out_trans_abort;
2766 /* transfer ip1 ".." reference to dp2 */
2767 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2768 error = xfs_droplink(tp, dp1);
2769 if (error)
2770 goto out_trans_abort;
2771 error = xfs_bumplink(tp, dp2);
2772 if (error)
2773 goto out_trans_abort;
2777 * Although ip2 isn't changed here, userspace needs
2778 * to be warned about the change, so that applications
2779 * relying on it (like backup ones), will properly
2780 * notify the change
2782 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2783 ip2_flags |= XFS_ICHGTIME_CHG;
2787 if (ip1_flags) {
2788 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2789 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2791 if (ip2_flags) {
2792 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2793 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2795 if (dp2_flags) {
2796 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2797 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2799 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2800 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2801 return xfs_finish_rename(tp, dfops);
2803 out_trans_abort:
2804 xfs_defer_cancel(dfops);
2805 xfs_trans_cancel(tp);
2806 return error;
2810 * xfs_rename_alloc_whiteout()
2812 * Return a referenced, unlinked, unlocked inode that that can be used as a
2813 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2814 * crash between allocating the inode and linking it into the rename transaction
2815 * recovery will free the inode and we won't leak it.
2817 static int
2818 xfs_rename_alloc_whiteout(
2819 struct xfs_inode *dp,
2820 struct xfs_inode **wip)
2822 struct xfs_inode *tmpfile;
2823 int error;
2825 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2826 if (error)
2827 return error;
2830 * Prepare the tmpfile inode as if it were created through the VFS.
2831 * Otherwise, the link increment paths will complain about nlink 0->1.
2832 * Drop the link count as done by d_tmpfile(), complete the inode setup
2833 * and flag it as linkable.
2835 drop_nlink(VFS_I(tmpfile));
2836 xfs_setup_iops(tmpfile);
2837 xfs_finish_inode_setup(tmpfile);
2838 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2840 *wip = tmpfile;
2841 return 0;
2845 * xfs_rename
2848 xfs_rename(
2849 struct xfs_inode *src_dp,
2850 struct xfs_name *src_name,
2851 struct xfs_inode *src_ip,
2852 struct xfs_inode *target_dp,
2853 struct xfs_name *target_name,
2854 struct xfs_inode *target_ip,
2855 unsigned int flags)
2857 struct xfs_mount *mp = src_dp->i_mount;
2858 struct xfs_trans *tp;
2859 struct xfs_defer_ops dfops;
2860 xfs_fsblock_t first_block;
2861 struct xfs_inode *wip = NULL; /* whiteout inode */
2862 struct xfs_inode *inodes[__XFS_SORT_INODES];
2863 int num_inodes = __XFS_SORT_INODES;
2864 bool new_parent = (src_dp != target_dp);
2865 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2866 int spaceres;
2867 int error;
2869 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2871 if ((flags & RENAME_EXCHANGE) && !target_ip)
2872 return -EINVAL;
2875 * If we are doing a whiteout operation, allocate the whiteout inode
2876 * we will be placing at the target and ensure the type is set
2877 * appropriately.
2879 if (flags & RENAME_WHITEOUT) {
2880 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2881 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2882 if (error)
2883 return error;
2885 /* setup target dirent info as whiteout */
2886 src_name->type = XFS_DIR3_FT_CHRDEV;
2889 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2890 inodes, &num_inodes);
2892 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2893 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2894 if (error == -ENOSPC) {
2895 spaceres = 0;
2896 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2897 &tp);
2899 if (error)
2900 goto out_release_wip;
2903 * Attach the dquots to the inodes
2905 error = xfs_qm_vop_rename_dqattach(inodes);
2906 if (error)
2907 goto out_trans_cancel;
2910 * Lock all the participating inodes. Depending upon whether
2911 * the target_name exists in the target directory, and
2912 * whether the target directory is the same as the source
2913 * directory, we can lock from 2 to 4 inodes.
2915 if (!new_parent)
2916 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2917 else
2918 xfs_lock_two_inodes(src_dp, target_dp,
2919 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2921 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2924 * Join all the inodes to the transaction. From this point on,
2925 * we can rely on either trans_commit or trans_cancel to unlock
2926 * them.
2928 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2929 if (new_parent)
2930 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2931 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2932 if (target_ip)
2933 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2934 if (wip)
2935 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2938 * If we are using project inheritance, we only allow renames
2939 * into our tree when the project IDs are the same; else the
2940 * tree quota mechanism would be circumvented.
2942 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2943 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2944 error = -EXDEV;
2945 goto out_trans_cancel;
2948 xfs_defer_init(&dfops, &first_block);
2950 /* RENAME_EXCHANGE is unique from here on. */
2951 if (flags & RENAME_EXCHANGE)
2952 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2953 target_dp, target_name, target_ip,
2954 &dfops, &first_block, spaceres);
2957 * Set up the target.
2959 if (target_ip == NULL) {
2961 * If there's no space reservation, check the entry will
2962 * fit before actually inserting it.
2964 if (!spaceres) {
2965 error = xfs_dir_canenter(tp, target_dp, target_name);
2966 if (error)
2967 goto out_trans_cancel;
2970 * If target does not exist and the rename crosses
2971 * directories, adjust the target directory link count
2972 * to account for the ".." reference from the new entry.
2974 error = xfs_dir_createname(tp, target_dp, target_name,
2975 src_ip->i_ino, &first_block,
2976 &dfops, spaceres);
2977 if (error)
2978 goto out_bmap_cancel;
2980 xfs_trans_ichgtime(tp, target_dp,
2981 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2983 if (new_parent && src_is_directory) {
2984 error = xfs_bumplink(tp, target_dp);
2985 if (error)
2986 goto out_bmap_cancel;
2988 } else { /* target_ip != NULL */
2990 * If target exists and it's a directory, check that both
2991 * target and source are directories and that target can be
2992 * destroyed, or that neither is a directory.
2994 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
2996 * Make sure target dir is empty.
2998 if (!(xfs_dir_isempty(target_ip)) ||
2999 (VFS_I(target_ip)->i_nlink > 2)) {
3000 error = -EEXIST;
3001 goto out_trans_cancel;
3006 * Link the source inode under the target name.
3007 * If the source inode is a directory and we are moving
3008 * it across directories, its ".." entry will be
3009 * inconsistent until we replace that down below.
3011 * In case there is already an entry with the same
3012 * name at the destination directory, remove it first.
3014 error = xfs_dir_replace(tp, target_dp, target_name,
3015 src_ip->i_ino,
3016 &first_block, &dfops, spaceres);
3017 if (error)
3018 goto out_bmap_cancel;
3020 xfs_trans_ichgtime(tp, target_dp,
3021 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3024 * Decrement the link count on the target since the target
3025 * dir no longer points to it.
3027 error = xfs_droplink(tp, target_ip);
3028 if (error)
3029 goto out_bmap_cancel;
3031 if (src_is_directory) {
3033 * Drop the link from the old "." entry.
3035 error = xfs_droplink(tp, target_ip);
3036 if (error)
3037 goto out_bmap_cancel;
3039 } /* target_ip != NULL */
3042 * Remove the source.
3044 if (new_parent && src_is_directory) {
3046 * Rewrite the ".." entry to point to the new
3047 * directory.
3049 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3050 target_dp->i_ino,
3051 &first_block, &dfops, spaceres);
3052 ASSERT(error != -EEXIST);
3053 if (error)
3054 goto out_bmap_cancel;
3058 * We always want to hit the ctime on the source inode.
3060 * This isn't strictly required by the standards since the source
3061 * inode isn't really being changed, but old unix file systems did
3062 * it and some incremental backup programs won't work without it.
3064 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3065 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3068 * Adjust the link count on src_dp. This is necessary when
3069 * renaming a directory, either within one parent when
3070 * the target existed, or across two parent directories.
3072 if (src_is_directory && (new_parent || target_ip != NULL)) {
3075 * Decrement link count on src_directory since the
3076 * entry that's moved no longer points to it.
3078 error = xfs_droplink(tp, src_dp);
3079 if (error)
3080 goto out_bmap_cancel;
3084 * For whiteouts, we only need to update the source dirent with the
3085 * inode number of the whiteout inode rather than removing it
3086 * altogether.
3088 if (wip) {
3089 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3090 &first_block, &dfops, spaceres);
3091 } else
3092 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3093 &first_block, &dfops, spaceres);
3094 if (error)
3095 goto out_bmap_cancel;
3098 * For whiteouts, we need to bump the link count on the whiteout inode.
3099 * This means that failures all the way up to this point leave the inode
3100 * on the unlinked list and so cleanup is a simple matter of dropping
3101 * the remaining reference to it. If we fail here after bumping the link
3102 * count, we're shutting down the filesystem so we'll never see the
3103 * intermediate state on disk.
3105 if (wip) {
3106 ASSERT(VFS_I(wip)->i_nlink == 0);
3107 error = xfs_bumplink(tp, wip);
3108 if (error)
3109 goto out_bmap_cancel;
3110 error = xfs_iunlink_remove(tp, wip);
3111 if (error)
3112 goto out_bmap_cancel;
3113 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3116 * Now we have a real link, clear the "I'm a tmpfile" state
3117 * flag from the inode so it doesn't accidentally get misused in
3118 * future.
3120 VFS_I(wip)->i_state &= ~I_LINKABLE;
3123 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3124 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3125 if (new_parent)
3126 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3128 error = xfs_finish_rename(tp, &dfops);
3129 if (wip)
3130 IRELE(wip);
3131 return error;
3133 out_bmap_cancel:
3134 xfs_defer_cancel(&dfops);
3135 out_trans_cancel:
3136 xfs_trans_cancel(tp);
3137 out_release_wip:
3138 if (wip)
3139 IRELE(wip);
3140 return error;
3143 STATIC int
3144 xfs_iflush_cluster(
3145 struct xfs_inode *ip,
3146 struct xfs_buf *bp)
3148 struct xfs_mount *mp = ip->i_mount;
3149 struct xfs_perag *pag;
3150 unsigned long first_index, mask;
3151 unsigned long inodes_per_cluster;
3152 int cilist_size;
3153 struct xfs_inode **cilist;
3154 struct xfs_inode *cip;
3155 int nr_found;
3156 int clcount = 0;
3157 int bufwasdelwri;
3158 int i;
3160 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3162 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3163 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3164 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3165 if (!cilist)
3166 goto out_put;
3168 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3169 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3170 rcu_read_lock();
3171 /* really need a gang lookup range call here */
3172 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3173 first_index, inodes_per_cluster);
3174 if (nr_found == 0)
3175 goto out_free;
3177 for (i = 0; i < nr_found; i++) {
3178 cip = cilist[i];
3179 if (cip == ip)
3180 continue;
3183 * because this is an RCU protected lookup, we could find a
3184 * recently freed or even reallocated inode during the lookup.
3185 * We need to check under the i_flags_lock for a valid inode
3186 * here. Skip it if it is not valid or the wrong inode.
3188 spin_lock(&cip->i_flags_lock);
3189 if (!cip->i_ino ||
3190 __xfs_iflags_test(cip, XFS_ISTALE)) {
3191 spin_unlock(&cip->i_flags_lock);
3192 continue;
3196 * Once we fall off the end of the cluster, no point checking
3197 * any more inodes in the list because they will also all be
3198 * outside the cluster.
3200 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3201 spin_unlock(&cip->i_flags_lock);
3202 break;
3204 spin_unlock(&cip->i_flags_lock);
3207 * Do an un-protected check to see if the inode is dirty and
3208 * is a candidate for flushing. These checks will be repeated
3209 * later after the appropriate locks are acquired.
3211 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3212 continue;
3215 * Try to get locks. If any are unavailable or it is pinned,
3216 * then this inode cannot be flushed and is skipped.
3219 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3220 continue;
3221 if (!xfs_iflock_nowait(cip)) {
3222 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3223 continue;
3225 if (xfs_ipincount(cip)) {
3226 xfs_ifunlock(cip);
3227 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3228 continue;
3233 * Check the inode number again, just to be certain we are not
3234 * racing with freeing in xfs_reclaim_inode(). See the comments
3235 * in that function for more information as to why the initial
3236 * check is not sufficient.
3238 if (!cip->i_ino) {
3239 xfs_ifunlock(cip);
3240 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3241 continue;
3245 * arriving here means that this inode can be flushed. First
3246 * re-check that it's dirty before flushing.
3248 if (!xfs_inode_clean(cip)) {
3249 int error;
3250 error = xfs_iflush_int(cip, bp);
3251 if (error) {
3252 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3253 goto cluster_corrupt_out;
3255 clcount++;
3256 } else {
3257 xfs_ifunlock(cip);
3259 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3262 if (clcount) {
3263 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3264 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3267 out_free:
3268 rcu_read_unlock();
3269 kmem_free(cilist);
3270 out_put:
3271 xfs_perag_put(pag);
3272 return 0;
3275 cluster_corrupt_out:
3277 * Corruption detected in the clustering loop. Invalidate the
3278 * inode buffer and shut down the filesystem.
3280 rcu_read_unlock();
3282 * Clean up the buffer. If it was delwri, just release it --
3283 * brelse can handle it with no problems. If not, shut down the
3284 * filesystem before releasing the buffer.
3286 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3287 if (bufwasdelwri)
3288 xfs_buf_relse(bp);
3290 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3292 if (!bufwasdelwri) {
3294 * Just like incore_relse: if we have b_iodone functions,
3295 * mark the buffer as an error and call them. Otherwise
3296 * mark it as stale and brelse.
3298 if (bp->b_iodone) {
3299 bp->b_flags &= ~XBF_DONE;
3300 xfs_buf_stale(bp);
3301 xfs_buf_ioerror(bp, -EIO);
3302 xfs_buf_ioend(bp);
3303 } else {
3304 xfs_buf_stale(bp);
3305 xfs_buf_relse(bp);
3310 * Unlocks the flush lock
3312 xfs_iflush_abort(cip, false);
3313 kmem_free(cilist);
3314 xfs_perag_put(pag);
3315 return -EFSCORRUPTED;
3319 * Flush dirty inode metadata into the backing buffer.
3321 * The caller must have the inode lock and the inode flush lock held. The
3322 * inode lock will still be held upon return to the caller, and the inode
3323 * flush lock will be released after the inode has reached the disk.
3325 * The caller must write out the buffer returned in *bpp and release it.
3328 xfs_iflush(
3329 struct xfs_inode *ip,
3330 struct xfs_buf **bpp)
3332 struct xfs_mount *mp = ip->i_mount;
3333 struct xfs_buf *bp = NULL;
3334 struct xfs_dinode *dip;
3335 int error;
3337 XFS_STATS_INC(mp, xs_iflush_count);
3339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3340 ASSERT(xfs_isiflocked(ip));
3341 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3342 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3344 *bpp = NULL;
3346 xfs_iunpin_wait(ip);
3349 * For stale inodes we cannot rely on the backing buffer remaining
3350 * stale in cache for the remaining life of the stale inode and so
3351 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3352 * inodes below. We have to check this after ensuring the inode is
3353 * unpinned so that it is safe to reclaim the stale inode after the
3354 * flush call.
3356 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3357 xfs_ifunlock(ip);
3358 return 0;
3362 * This may have been unpinned because the filesystem is shutting
3363 * down forcibly. If that's the case we must not write this inode
3364 * to disk, because the log record didn't make it to disk.
3366 * We also have to remove the log item from the AIL in this case,
3367 * as we wait for an empty AIL as part of the unmount process.
3369 if (XFS_FORCED_SHUTDOWN(mp)) {
3370 error = -EIO;
3371 goto abort_out;
3375 * Get the buffer containing the on-disk inode. We are doing a try-lock
3376 * operation here, so we may get an EAGAIN error. In that case, we
3377 * simply want to return with the inode still dirty.
3379 * If we get any other error, we effectively have a corruption situation
3380 * and we cannot flush the inode, so we treat it the same as failing
3381 * xfs_iflush_int().
3383 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3385 if (error == -EAGAIN) {
3386 xfs_ifunlock(ip);
3387 return error;
3389 if (error)
3390 goto corrupt_out;
3393 * First flush out the inode that xfs_iflush was called with.
3395 error = xfs_iflush_int(ip, bp);
3396 if (error)
3397 goto corrupt_out;
3400 * If the buffer is pinned then push on the log now so we won't
3401 * get stuck waiting in the write for too long.
3403 if (xfs_buf_ispinned(bp))
3404 xfs_log_force(mp, 0);
3407 * inode clustering:
3408 * see if other inodes can be gathered into this write
3410 error = xfs_iflush_cluster(ip, bp);
3411 if (error)
3412 goto cluster_corrupt_out;
3414 *bpp = bp;
3415 return 0;
3417 corrupt_out:
3418 if (bp)
3419 xfs_buf_relse(bp);
3420 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3421 cluster_corrupt_out:
3422 error = -EFSCORRUPTED;
3423 abort_out:
3425 * Unlocks the flush lock
3427 xfs_iflush_abort(ip, false);
3428 return error;
3431 STATIC int
3432 xfs_iflush_int(
3433 struct xfs_inode *ip,
3434 struct xfs_buf *bp)
3436 struct xfs_inode_log_item *iip = ip->i_itemp;
3437 struct xfs_dinode *dip;
3438 struct xfs_mount *mp = ip->i_mount;
3440 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3441 ASSERT(xfs_isiflocked(ip));
3442 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3443 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3444 ASSERT(iip != NULL && iip->ili_fields != 0);
3445 ASSERT(ip->i_d.di_version > 1);
3447 /* set *dip = inode's place in the buffer */
3448 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3450 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3451 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3452 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3453 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3454 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3455 goto corrupt_out;
3457 if (S_ISREG(VFS_I(ip)->i_mode)) {
3458 if (XFS_TEST_ERROR(
3459 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3460 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3461 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3462 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463 "%s: Bad regular inode %Lu, ptr 0x%p",
3464 __func__, ip->i_ino, ip);
3465 goto corrupt_out;
3467 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3468 if (XFS_TEST_ERROR(
3469 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3470 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3471 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3472 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3473 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3474 "%s: Bad directory inode %Lu, ptr 0x%p",
3475 __func__, ip->i_ino, ip);
3476 goto corrupt_out;
3479 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3480 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3481 XFS_RANDOM_IFLUSH_5)) {
3482 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483 "%s: detected corrupt incore inode %Lu, "
3484 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3485 __func__, ip->i_ino,
3486 ip->i_d.di_nextents + ip->i_d.di_anextents,
3487 ip->i_d.di_nblocks, ip);
3488 goto corrupt_out;
3490 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3491 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3492 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3493 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3494 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3495 goto corrupt_out;
3499 * Inode item log recovery for v2 inodes are dependent on the
3500 * di_flushiter count for correct sequencing. We bump the flush
3501 * iteration count so we can detect flushes which postdate a log record
3502 * during recovery. This is redundant as we now log every change and
3503 * hence this can't happen but we need to still do it to ensure
3504 * backwards compatibility with old kernels that predate logging all
3505 * inode changes.
3507 if (ip->i_d.di_version < 3)
3508 ip->i_d.di_flushiter++;
3511 * Copy the dirty parts of the inode into the on-disk inode. We always
3512 * copy out the core of the inode, because if the inode is dirty at all
3513 * the core must be.
3515 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3517 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3518 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3519 ip->i_d.di_flushiter = 0;
3521 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3522 if (XFS_IFORK_Q(ip))
3523 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3524 xfs_inobp_check(mp, bp);
3527 * We've recorded everything logged in the inode, so we'd like to clear
3528 * the ili_fields bits so we don't log and flush things unnecessarily.
3529 * However, we can't stop logging all this information until the data
3530 * we've copied into the disk buffer is written to disk. If we did we
3531 * might overwrite the copy of the inode in the log with all the data
3532 * after re-logging only part of it, and in the face of a crash we
3533 * wouldn't have all the data we need to recover.
3535 * What we do is move the bits to the ili_last_fields field. When
3536 * logging the inode, these bits are moved back to the ili_fields field.
3537 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3538 * know that the information those bits represent is permanently on
3539 * disk. As long as the flush completes before the inode is logged
3540 * again, then both ili_fields and ili_last_fields will be cleared.
3542 * We can play with the ili_fields bits here, because the inode lock
3543 * must be held exclusively in order to set bits there and the flush
3544 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3545 * done routine can tell whether or not to look in the AIL. Also, store
3546 * the current LSN of the inode so that we can tell whether the item has
3547 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3548 * need the AIL lock, because it is a 64 bit value that cannot be read
3549 * atomically.
3551 iip->ili_last_fields = iip->ili_fields;
3552 iip->ili_fields = 0;
3553 iip->ili_fsync_fields = 0;
3554 iip->ili_logged = 1;
3556 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3557 &iip->ili_item.li_lsn);
3560 * Attach the function xfs_iflush_done to the inode's
3561 * buffer. This will remove the inode from the AIL
3562 * and unlock the inode's flush lock when the inode is
3563 * completely written to disk.
3565 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3567 /* generate the checksum. */
3568 xfs_dinode_calc_crc(mp, dip);
3570 ASSERT(bp->b_fspriv != NULL);
3571 ASSERT(bp->b_iodone != NULL);
3572 return 0;
3574 corrupt_out:
3575 return -EFSCORRUPTED;