Linux 4.8.3
[linux/fpc-iii.git] / fs / xfs / xfs_mount.c
blobfaeead671f9ff02af6ca9c797a1480611ed4c95b
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
48 static DEFINE_MUTEX(xfs_uuid_table_mutex);
49 static int xfs_uuid_table_size;
50 static uuid_t *xfs_uuid_table;
52 void
53 xfs_uuid_table_free(void)
55 if (xfs_uuid_table_size == 0)
56 return;
57 kmem_free(xfs_uuid_table);
58 xfs_uuid_table = NULL;
59 xfs_uuid_table_size = 0;
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 STATIC int
67 xfs_uuid_mount(
68 struct xfs_mount *mp)
70 uuid_t *uuid = &mp->m_sb.sb_uuid;
71 int hole, i;
73 if (mp->m_flags & XFS_MOUNT_NOUUID)
74 return 0;
76 if (uuid_is_nil(uuid)) {
77 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 return -EINVAL;
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_nil(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
91 if (hole < 0) {
92 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 KM_SLEEP);
95 hole = xfs_uuid_table_size++;
97 xfs_uuid_table[hole] = *uuid;
98 mutex_unlock(&xfs_uuid_table_mutex);
100 return 0;
102 out_duplicate:
103 mutex_unlock(&xfs_uuid_table_mutex);
104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 return -EINVAL;
108 STATIC void
109 xfs_uuid_unmount(
110 struct xfs_mount *mp)
112 uuid_t *uuid = &mp->m_sb.sb_uuid;
113 int i;
115 if (mp->m_flags & XFS_MOUNT_NOUUID)
116 return;
118 mutex_lock(&xfs_uuid_table_mutex);
119 for (i = 0; i < xfs_uuid_table_size; i++) {
120 if (uuid_is_nil(&xfs_uuid_table[i]))
121 continue;
122 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 continue;
124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 break;
127 ASSERT(i < xfs_uuid_table_size);
128 mutex_unlock(&xfs_uuid_table_mutex);
132 STATIC void
133 __xfs_free_perag(
134 struct rcu_head *head)
136 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138 ASSERT(atomic_read(&pag->pag_ref) == 0);
139 kmem_free(pag);
143 * Free up the per-ag resources associated with the mount structure.
145 STATIC void
146 xfs_free_perag(
147 xfs_mount_t *mp)
149 xfs_agnumber_t agno;
150 struct xfs_perag *pag;
152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
153 spin_lock(&mp->m_perag_lock);
154 pag = radix_tree_delete(&mp->m_perag_tree, agno);
155 spin_unlock(&mp->m_perag_lock);
156 ASSERT(pag);
157 ASSERT(atomic_read(&pag->pag_ref) == 0);
158 call_rcu(&pag->rcu_head, __xfs_free_perag);
163 * Check size of device based on the (data/realtime) block count.
164 * Note: this check is used by the growfs code as well as mount.
167 xfs_sb_validate_fsb_count(
168 xfs_sb_t *sbp,
169 __uint64_t nblocks)
171 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
172 ASSERT(sbp->sb_blocklog >= BBSHIFT);
174 /* Limited by ULONG_MAX of page cache index */
175 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
176 return -EFBIG;
177 return 0;
181 xfs_initialize_perag(
182 xfs_mount_t *mp,
183 xfs_agnumber_t agcount,
184 xfs_agnumber_t *maxagi)
186 xfs_agnumber_t index;
187 xfs_agnumber_t first_initialised = 0;
188 xfs_perag_t *pag;
189 int error = -ENOMEM;
192 * Walk the current per-ag tree so we don't try to initialise AGs
193 * that already exist (growfs case). Allocate and insert all the
194 * AGs we don't find ready for initialisation.
196 for (index = 0; index < agcount; index++) {
197 pag = xfs_perag_get(mp, index);
198 if (pag) {
199 xfs_perag_put(pag);
200 continue;
202 if (!first_initialised)
203 first_initialised = index;
205 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
206 if (!pag)
207 goto out_unwind;
208 pag->pag_agno = index;
209 pag->pag_mount = mp;
210 spin_lock_init(&pag->pag_ici_lock);
211 mutex_init(&pag->pag_ici_reclaim_lock);
212 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
213 spin_lock_init(&pag->pag_buf_lock);
214 pag->pag_buf_tree = RB_ROOT;
216 if (radix_tree_preload(GFP_NOFS))
217 goto out_unwind;
219 spin_lock(&mp->m_perag_lock);
220 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
221 BUG();
222 spin_unlock(&mp->m_perag_lock);
223 radix_tree_preload_end();
224 error = -EEXIST;
225 goto out_unwind;
227 spin_unlock(&mp->m_perag_lock);
228 radix_tree_preload_end();
231 index = xfs_set_inode_alloc(mp, agcount);
233 if (maxagi)
234 *maxagi = index;
236 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
237 return 0;
239 out_unwind:
240 kmem_free(pag);
241 for (; index > first_initialised; index--) {
242 pag = radix_tree_delete(&mp->m_perag_tree, index);
243 kmem_free(pag);
245 return error;
249 * xfs_readsb
251 * Does the initial read of the superblock.
254 xfs_readsb(
255 struct xfs_mount *mp,
256 int flags)
258 unsigned int sector_size;
259 struct xfs_buf *bp;
260 struct xfs_sb *sbp = &mp->m_sb;
261 int error;
262 int loud = !(flags & XFS_MFSI_QUIET);
263 const struct xfs_buf_ops *buf_ops;
265 ASSERT(mp->m_sb_bp == NULL);
266 ASSERT(mp->m_ddev_targp != NULL);
269 * For the initial read, we must guess at the sector
270 * size based on the block device. It's enough to
271 * get the sb_sectsize out of the superblock and
272 * then reread with the proper length.
273 * We don't verify it yet, because it may not be complete.
275 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
276 buf_ops = NULL;
279 * Allocate a (locked) buffer to hold the superblock. This will be kept
280 * around at all times to optimize access to the superblock. Therefore,
281 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
282 * elevated.
284 reread:
285 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
286 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
287 buf_ops);
288 if (error) {
289 if (loud)
290 xfs_warn(mp, "SB validate failed with error %d.", error);
291 /* bad CRC means corrupted metadata */
292 if (error == -EFSBADCRC)
293 error = -EFSCORRUPTED;
294 return error;
298 * Initialize the mount structure from the superblock.
300 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
303 * If we haven't validated the superblock, do so now before we try
304 * to check the sector size and reread the superblock appropriately.
306 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
307 if (loud)
308 xfs_warn(mp, "Invalid superblock magic number");
309 error = -EINVAL;
310 goto release_buf;
314 * We must be able to do sector-sized and sector-aligned IO.
316 if (sector_size > sbp->sb_sectsize) {
317 if (loud)
318 xfs_warn(mp, "device supports %u byte sectors (not %u)",
319 sector_size, sbp->sb_sectsize);
320 error = -ENOSYS;
321 goto release_buf;
324 if (buf_ops == NULL) {
326 * Re-read the superblock so the buffer is correctly sized,
327 * and properly verified.
329 xfs_buf_relse(bp);
330 sector_size = sbp->sb_sectsize;
331 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
332 goto reread;
335 xfs_reinit_percpu_counters(mp);
337 /* no need to be quiet anymore, so reset the buf ops */
338 bp->b_ops = &xfs_sb_buf_ops;
340 mp->m_sb_bp = bp;
341 xfs_buf_unlock(bp);
342 return 0;
344 release_buf:
345 xfs_buf_relse(bp);
346 return error;
350 * Update alignment values based on mount options and sb values
352 STATIC int
353 xfs_update_alignment(xfs_mount_t *mp)
355 xfs_sb_t *sbp = &(mp->m_sb);
357 if (mp->m_dalign) {
359 * If stripe unit and stripe width are not multiples
360 * of the fs blocksize turn off alignment.
362 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
363 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
364 xfs_warn(mp,
365 "alignment check failed: sunit/swidth vs. blocksize(%d)",
366 sbp->sb_blocksize);
367 return -EINVAL;
368 } else {
370 * Convert the stripe unit and width to FSBs.
372 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
373 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
374 xfs_warn(mp,
375 "alignment check failed: sunit/swidth vs. agsize(%d)",
376 sbp->sb_agblocks);
377 return -EINVAL;
378 } else if (mp->m_dalign) {
379 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
380 } else {
381 xfs_warn(mp,
382 "alignment check failed: sunit(%d) less than bsize(%d)",
383 mp->m_dalign, sbp->sb_blocksize);
384 return -EINVAL;
389 * Update superblock with new values
390 * and log changes
392 if (xfs_sb_version_hasdalign(sbp)) {
393 if (sbp->sb_unit != mp->m_dalign) {
394 sbp->sb_unit = mp->m_dalign;
395 mp->m_update_sb = true;
397 if (sbp->sb_width != mp->m_swidth) {
398 sbp->sb_width = mp->m_swidth;
399 mp->m_update_sb = true;
401 } else {
402 xfs_warn(mp,
403 "cannot change alignment: superblock does not support data alignment");
404 return -EINVAL;
406 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
407 xfs_sb_version_hasdalign(&mp->m_sb)) {
408 mp->m_dalign = sbp->sb_unit;
409 mp->m_swidth = sbp->sb_width;
412 return 0;
416 * Set the maximum inode count for this filesystem
418 STATIC void
419 xfs_set_maxicount(xfs_mount_t *mp)
421 xfs_sb_t *sbp = &(mp->m_sb);
422 __uint64_t icount;
424 if (sbp->sb_imax_pct) {
426 * Make sure the maximum inode count is a multiple
427 * of the units we allocate inodes in.
429 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
430 do_div(icount, 100);
431 do_div(icount, mp->m_ialloc_blks);
432 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
433 sbp->sb_inopblog;
434 } else {
435 mp->m_maxicount = 0;
440 * Set the default minimum read and write sizes unless
441 * already specified in a mount option.
442 * We use smaller I/O sizes when the file system
443 * is being used for NFS service (wsync mount option).
445 STATIC void
446 xfs_set_rw_sizes(xfs_mount_t *mp)
448 xfs_sb_t *sbp = &(mp->m_sb);
449 int readio_log, writeio_log;
451 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
452 if (mp->m_flags & XFS_MOUNT_WSYNC) {
453 readio_log = XFS_WSYNC_READIO_LOG;
454 writeio_log = XFS_WSYNC_WRITEIO_LOG;
455 } else {
456 readio_log = XFS_READIO_LOG_LARGE;
457 writeio_log = XFS_WRITEIO_LOG_LARGE;
459 } else {
460 readio_log = mp->m_readio_log;
461 writeio_log = mp->m_writeio_log;
464 if (sbp->sb_blocklog > readio_log) {
465 mp->m_readio_log = sbp->sb_blocklog;
466 } else {
467 mp->m_readio_log = readio_log;
469 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
470 if (sbp->sb_blocklog > writeio_log) {
471 mp->m_writeio_log = sbp->sb_blocklog;
472 } else {
473 mp->m_writeio_log = writeio_log;
475 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
479 * precalculate the low space thresholds for dynamic speculative preallocation.
481 void
482 xfs_set_low_space_thresholds(
483 struct xfs_mount *mp)
485 int i;
487 for (i = 0; i < XFS_LOWSP_MAX; i++) {
488 __uint64_t space = mp->m_sb.sb_dblocks;
490 do_div(space, 100);
491 mp->m_low_space[i] = space * (i + 1);
497 * Set whether we're using inode alignment.
499 STATIC void
500 xfs_set_inoalignment(xfs_mount_t *mp)
502 if (xfs_sb_version_hasalign(&mp->m_sb) &&
503 mp->m_sb.sb_inoalignmt >=
504 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
505 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
506 else
507 mp->m_inoalign_mask = 0;
509 * If we are using stripe alignment, check whether
510 * the stripe unit is a multiple of the inode alignment
512 if (mp->m_dalign && mp->m_inoalign_mask &&
513 !(mp->m_dalign & mp->m_inoalign_mask))
514 mp->m_sinoalign = mp->m_dalign;
515 else
516 mp->m_sinoalign = 0;
520 * Check that the data (and log if separate) is an ok size.
522 STATIC int
523 xfs_check_sizes(
524 struct xfs_mount *mp)
526 struct xfs_buf *bp;
527 xfs_daddr_t d;
528 int error;
530 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
531 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
532 xfs_warn(mp, "filesystem size mismatch detected");
533 return -EFBIG;
535 error = xfs_buf_read_uncached(mp->m_ddev_targp,
536 d - XFS_FSS_TO_BB(mp, 1),
537 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
538 if (error) {
539 xfs_warn(mp, "last sector read failed");
540 return error;
542 xfs_buf_relse(bp);
544 if (mp->m_logdev_targp == mp->m_ddev_targp)
545 return 0;
547 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
548 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
549 xfs_warn(mp, "log size mismatch detected");
550 return -EFBIG;
552 error = xfs_buf_read_uncached(mp->m_logdev_targp,
553 d - XFS_FSB_TO_BB(mp, 1),
554 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
555 if (error) {
556 xfs_warn(mp, "log device read failed");
557 return error;
559 xfs_buf_relse(bp);
560 return 0;
564 * Clear the quotaflags in memory and in the superblock.
567 xfs_mount_reset_sbqflags(
568 struct xfs_mount *mp)
570 mp->m_qflags = 0;
572 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
573 if (mp->m_sb.sb_qflags == 0)
574 return 0;
575 spin_lock(&mp->m_sb_lock);
576 mp->m_sb.sb_qflags = 0;
577 spin_unlock(&mp->m_sb_lock);
579 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
580 return 0;
582 return xfs_sync_sb(mp, false);
585 __uint64_t
586 xfs_default_resblks(xfs_mount_t *mp)
588 __uint64_t resblks;
591 * We default to 5% or 8192 fsbs of space reserved, whichever is
592 * smaller. This is intended to cover concurrent allocation
593 * transactions when we initially hit enospc. These each require a 4
594 * block reservation. Hence by default we cover roughly 2000 concurrent
595 * allocation reservations.
597 resblks = mp->m_sb.sb_dblocks;
598 do_div(resblks, 20);
599 resblks = min_t(__uint64_t, resblks, 8192);
600 return resblks;
604 * This function does the following on an initial mount of a file system:
605 * - reads the superblock from disk and init the mount struct
606 * - if we're a 32-bit kernel, do a size check on the superblock
607 * so we don't mount terabyte filesystems
608 * - init mount struct realtime fields
609 * - allocate inode hash table for fs
610 * - init directory manager
611 * - perform recovery and init the log manager
614 xfs_mountfs(
615 struct xfs_mount *mp)
617 struct xfs_sb *sbp = &(mp->m_sb);
618 struct xfs_inode *rip;
619 __uint64_t resblks;
620 uint quotamount = 0;
621 uint quotaflags = 0;
622 int error = 0;
624 xfs_sb_mount_common(mp, sbp);
627 * Check for a mismatched features2 values. Older kernels read & wrote
628 * into the wrong sb offset for sb_features2 on some platforms due to
629 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
630 * which made older superblock reading/writing routines swap it as a
631 * 64-bit value.
633 * For backwards compatibility, we make both slots equal.
635 * If we detect a mismatched field, we OR the set bits into the existing
636 * features2 field in case it has already been modified; we don't want
637 * to lose any features. We then update the bad location with the ORed
638 * value so that older kernels will see any features2 flags. The
639 * superblock writeback code ensures the new sb_features2 is copied to
640 * sb_bad_features2 before it is logged or written to disk.
642 if (xfs_sb_has_mismatched_features2(sbp)) {
643 xfs_warn(mp, "correcting sb_features alignment problem");
644 sbp->sb_features2 |= sbp->sb_bad_features2;
645 mp->m_update_sb = true;
648 * Re-check for ATTR2 in case it was found in bad_features2
649 * slot.
651 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
652 !(mp->m_flags & XFS_MOUNT_NOATTR2))
653 mp->m_flags |= XFS_MOUNT_ATTR2;
656 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
657 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
658 xfs_sb_version_removeattr2(&mp->m_sb);
659 mp->m_update_sb = true;
661 /* update sb_versionnum for the clearing of the morebits */
662 if (!sbp->sb_features2)
663 mp->m_update_sb = true;
666 /* always use v2 inodes by default now */
667 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
668 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
669 mp->m_update_sb = true;
673 * Check if sb_agblocks is aligned at stripe boundary
674 * If sb_agblocks is NOT aligned turn off m_dalign since
675 * allocator alignment is within an ag, therefore ag has
676 * to be aligned at stripe boundary.
678 error = xfs_update_alignment(mp);
679 if (error)
680 goto out;
682 xfs_alloc_compute_maxlevels(mp);
683 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
684 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
685 xfs_ialloc_compute_maxlevels(mp);
686 xfs_rmapbt_compute_maxlevels(mp);
688 xfs_set_maxicount(mp);
690 /* enable fail_at_unmount as default */
691 mp->m_fail_unmount = 1;
693 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
694 if (error)
695 goto out;
697 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
698 &mp->m_kobj, "stats");
699 if (error)
700 goto out_remove_sysfs;
702 error = xfs_error_sysfs_init(mp);
703 if (error)
704 goto out_del_stats;
707 error = xfs_uuid_mount(mp);
708 if (error)
709 goto out_remove_error_sysfs;
712 * Set the minimum read and write sizes
714 xfs_set_rw_sizes(mp);
716 /* set the low space thresholds for dynamic preallocation */
717 xfs_set_low_space_thresholds(mp);
720 * Set the inode cluster size.
721 * This may still be overridden by the file system
722 * block size if it is larger than the chosen cluster size.
724 * For v5 filesystems, scale the cluster size with the inode size to
725 * keep a constant ratio of inode per cluster buffer, but only if mkfs
726 * has set the inode alignment value appropriately for larger cluster
727 * sizes.
729 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
730 if (xfs_sb_version_hascrc(&mp->m_sb)) {
731 int new_size = mp->m_inode_cluster_size;
733 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
734 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
735 mp->m_inode_cluster_size = new_size;
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 mp->m_sb.sb_spino_align !=
745 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
746 xfs_warn(mp,
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp->m_sb.sb_spino_align,
749 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
750 error = -EINVAL;
751 goto out_remove_uuid;
755 * Set inode alignment fields
757 xfs_set_inoalignment(mp);
760 * Check that the data (and log if separate) is an ok size.
762 error = xfs_check_sizes(mp);
763 if (error)
764 goto out_remove_uuid;
767 * Initialize realtime fields in the mount structure
769 error = xfs_rtmount_init(mp);
770 if (error) {
771 xfs_warn(mp, "RT mount failed");
772 goto out_remove_uuid;
776 * Copies the low order bits of the timestamp and the randomly
777 * set "sequence" number out of a UUID.
779 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
781 mp->m_dmevmask = 0; /* not persistent; set after each mount */
783 error = xfs_da_mount(mp);
784 if (error) {
785 xfs_warn(mp, "Failed dir/attr init: %d", error);
786 goto out_remove_uuid;
790 * Initialize the precomputed transaction reservations values.
792 xfs_trans_init(mp);
795 * Allocate and initialize the per-ag data.
797 spin_lock_init(&mp->m_perag_lock);
798 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
799 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
800 if (error) {
801 xfs_warn(mp, "Failed per-ag init: %d", error);
802 goto out_free_dir;
805 if (!sbp->sb_logblocks) {
806 xfs_warn(mp, "no log defined");
807 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
808 error = -EFSCORRUPTED;
809 goto out_free_perag;
813 * Log's mount-time initialization. The first part of recovery can place
814 * some items on the AIL, to be handled when recovery is finished or
815 * cancelled.
817 error = xfs_log_mount(mp, mp->m_logdev_targp,
818 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
819 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
820 if (error) {
821 xfs_warn(mp, "log mount failed");
822 goto out_fail_wait;
826 * Now the log is mounted, we know if it was an unclean shutdown or
827 * not. If it was, with the first phase of recovery has completed, we
828 * have consistent AG blocks on disk. We have not recovered EFIs yet,
829 * but they are recovered transactionally in the second recovery phase
830 * later.
832 * Hence we can safely re-initialise incore superblock counters from
833 * the per-ag data. These may not be correct if the filesystem was not
834 * cleanly unmounted, so we need to wait for recovery to finish before
835 * doing this.
837 * If the filesystem was cleanly unmounted, then we can trust the
838 * values in the superblock to be correct and we don't need to do
839 * anything here.
841 * If we are currently making the filesystem, the initialisation will
842 * fail as the perag data is in an undefined state.
844 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
845 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
846 !mp->m_sb.sb_inprogress) {
847 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
848 if (error)
849 goto out_log_dealloc;
853 * Get and sanity-check the root inode.
854 * Save the pointer to it in the mount structure.
856 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
857 if (error) {
858 xfs_warn(mp, "failed to read root inode");
859 goto out_log_dealloc;
862 ASSERT(rip != NULL);
864 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
865 xfs_warn(mp, "corrupted root inode %llu: not a directory",
866 (unsigned long long)rip->i_ino);
867 xfs_iunlock(rip, XFS_ILOCK_EXCL);
868 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
869 mp);
870 error = -EFSCORRUPTED;
871 goto out_rele_rip;
873 mp->m_rootip = rip; /* save it */
875 xfs_iunlock(rip, XFS_ILOCK_EXCL);
878 * Initialize realtime inode pointers in the mount structure
880 error = xfs_rtmount_inodes(mp);
881 if (error) {
883 * Free up the root inode.
885 xfs_warn(mp, "failed to read RT inodes");
886 goto out_rele_rip;
890 * If this is a read-only mount defer the superblock updates until
891 * the next remount into writeable mode. Otherwise we would never
892 * perform the update e.g. for the root filesystem.
894 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
895 error = xfs_sync_sb(mp, false);
896 if (error) {
897 xfs_warn(mp, "failed to write sb changes");
898 goto out_rtunmount;
903 * Initialise the XFS quota management subsystem for this mount
905 if (XFS_IS_QUOTA_RUNNING(mp)) {
906 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
907 if (error)
908 goto out_rtunmount;
909 } else {
910 ASSERT(!XFS_IS_QUOTA_ON(mp));
913 * If a file system had quotas running earlier, but decided to
914 * mount without -o uquota/pquota/gquota options, revoke the
915 * quotachecked license.
917 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
918 xfs_notice(mp, "resetting quota flags");
919 error = xfs_mount_reset_sbqflags(mp);
920 if (error)
921 goto out_rtunmount;
926 * Finish recovering the file system. This part needed to be delayed
927 * until after the root and real-time bitmap inodes were consistently
928 * read in.
930 error = xfs_log_mount_finish(mp);
931 if (error) {
932 xfs_warn(mp, "log mount finish failed");
933 goto out_rtunmount;
937 * Complete the quota initialisation, post-log-replay component.
939 if (quotamount) {
940 ASSERT(mp->m_qflags == 0);
941 mp->m_qflags = quotaflags;
943 xfs_qm_mount_quotas(mp);
947 * Now we are mounted, reserve a small amount of unused space for
948 * privileged transactions. This is needed so that transaction
949 * space required for critical operations can dip into this pool
950 * when at ENOSPC. This is needed for operations like create with
951 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
952 * are not allowed to use this reserved space.
954 * This may drive us straight to ENOSPC on mount, but that implies
955 * we were already there on the last unmount. Warn if this occurs.
957 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
958 resblks = xfs_default_resblks(mp);
959 error = xfs_reserve_blocks(mp, &resblks, NULL);
960 if (error)
961 xfs_warn(mp,
962 "Unable to allocate reserve blocks. Continuing without reserve pool.");
965 return 0;
967 out_rtunmount:
968 xfs_rtunmount_inodes(mp);
969 out_rele_rip:
970 IRELE(rip);
971 cancel_delayed_work_sync(&mp->m_reclaim_work);
972 xfs_reclaim_inodes(mp, SYNC_WAIT);
973 out_log_dealloc:
974 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
975 xfs_log_mount_cancel(mp);
976 out_fail_wait:
977 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
978 xfs_wait_buftarg(mp->m_logdev_targp);
979 xfs_wait_buftarg(mp->m_ddev_targp);
980 out_free_perag:
981 xfs_free_perag(mp);
982 out_free_dir:
983 xfs_da_unmount(mp);
984 out_remove_uuid:
985 xfs_uuid_unmount(mp);
986 out_remove_error_sysfs:
987 xfs_error_sysfs_del(mp);
988 out_del_stats:
989 xfs_sysfs_del(&mp->m_stats.xs_kobj);
990 out_remove_sysfs:
991 xfs_sysfs_del(&mp->m_kobj);
992 out:
993 return error;
997 * This flushes out the inodes,dquots and the superblock, unmounts the
998 * log and makes sure that incore structures are freed.
1000 void
1001 xfs_unmountfs(
1002 struct xfs_mount *mp)
1004 __uint64_t resblks;
1005 int error;
1007 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1009 xfs_qm_unmount_quotas(mp);
1010 xfs_rtunmount_inodes(mp);
1011 IRELE(mp->m_rootip);
1014 * We can potentially deadlock here if we have an inode cluster
1015 * that has been freed has its buffer still pinned in memory because
1016 * the transaction is still sitting in a iclog. The stale inodes
1017 * on that buffer will have their flush locks held until the
1018 * transaction hits the disk and the callbacks run. the inode
1019 * flush takes the flush lock unconditionally and with nothing to
1020 * push out the iclog we will never get that unlocked. hence we
1021 * need to force the log first.
1023 xfs_log_force(mp, XFS_LOG_SYNC);
1026 * We now need to tell the world we are unmounting. This will allow
1027 * us to detect that the filesystem is going away and we should error
1028 * out anything that we have been retrying in the background. This will
1029 * prevent neverending retries in AIL pushing from hanging the unmount.
1031 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1034 * Flush all pending changes from the AIL.
1036 xfs_ail_push_all_sync(mp->m_ail);
1039 * And reclaim all inodes. At this point there should be no dirty
1040 * inodes and none should be pinned or locked, but use synchronous
1041 * reclaim just to be sure. We can stop background inode reclaim
1042 * here as well if it is still running.
1044 cancel_delayed_work_sync(&mp->m_reclaim_work);
1045 xfs_reclaim_inodes(mp, SYNC_WAIT);
1047 xfs_qm_unmount(mp);
1050 * Unreserve any blocks we have so that when we unmount we don't account
1051 * the reserved free space as used. This is really only necessary for
1052 * lazy superblock counting because it trusts the incore superblock
1053 * counters to be absolutely correct on clean unmount.
1055 * We don't bother correcting this elsewhere for lazy superblock
1056 * counting because on mount of an unclean filesystem we reconstruct the
1057 * correct counter value and this is irrelevant.
1059 * For non-lazy counter filesystems, this doesn't matter at all because
1060 * we only every apply deltas to the superblock and hence the incore
1061 * value does not matter....
1063 resblks = 0;
1064 error = xfs_reserve_blocks(mp, &resblks, NULL);
1065 if (error)
1066 xfs_warn(mp, "Unable to free reserved block pool. "
1067 "Freespace may not be correct on next mount.");
1069 error = xfs_log_sbcount(mp);
1070 if (error)
1071 xfs_warn(mp, "Unable to update superblock counters. "
1072 "Freespace may not be correct on next mount.");
1075 xfs_log_unmount(mp);
1076 xfs_da_unmount(mp);
1077 xfs_uuid_unmount(mp);
1079 #if defined(DEBUG)
1080 xfs_errortag_clearall(mp, 0);
1081 #endif
1082 xfs_free_perag(mp);
1084 xfs_error_sysfs_del(mp);
1085 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1086 xfs_sysfs_del(&mp->m_kobj);
1090 * Determine whether modifications can proceed. The caller specifies the minimum
1091 * freeze level for which modifications should not be allowed. This allows
1092 * certain operations to proceed while the freeze sequence is in progress, if
1093 * necessary.
1095 bool
1096 xfs_fs_writable(
1097 struct xfs_mount *mp,
1098 int level)
1100 ASSERT(level > SB_UNFROZEN);
1101 if ((mp->m_super->s_writers.frozen >= level) ||
1102 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1103 return false;
1105 return true;
1109 * xfs_log_sbcount
1111 * Sync the superblock counters to disk.
1113 * Note this code can be called during the process of freezing, so we use the
1114 * transaction allocator that does not block when the transaction subsystem is
1115 * in its frozen state.
1118 xfs_log_sbcount(xfs_mount_t *mp)
1120 /* allow this to proceed during the freeze sequence... */
1121 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1122 return 0;
1125 * we don't need to do this if we are updating the superblock
1126 * counters on every modification.
1128 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1129 return 0;
1131 return xfs_sync_sb(mp, true);
1135 * Deltas for the inode count are +/-64, hence we use a large batch size
1136 * of 128 so we don't need to take the counter lock on every update.
1138 #define XFS_ICOUNT_BATCH 128
1140 xfs_mod_icount(
1141 struct xfs_mount *mp,
1142 int64_t delta)
1144 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1145 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1146 ASSERT(0);
1147 percpu_counter_add(&mp->m_icount, -delta);
1148 return -EINVAL;
1150 return 0;
1154 xfs_mod_ifree(
1155 struct xfs_mount *mp,
1156 int64_t delta)
1158 percpu_counter_add(&mp->m_ifree, delta);
1159 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1160 ASSERT(0);
1161 percpu_counter_add(&mp->m_ifree, -delta);
1162 return -EINVAL;
1164 return 0;
1168 * Deltas for the block count can vary from 1 to very large, but lock contention
1169 * only occurs on frequent small block count updates such as in the delayed
1170 * allocation path for buffered writes (page a time updates). Hence we set
1171 * a large batch count (1024) to minimise global counter updates except when
1172 * we get near to ENOSPC and we have to be very accurate with our updates.
1174 #define XFS_FDBLOCKS_BATCH 1024
1176 xfs_mod_fdblocks(
1177 struct xfs_mount *mp,
1178 int64_t delta,
1179 bool rsvd)
1181 int64_t lcounter;
1182 long long res_used;
1183 s32 batch;
1185 if (delta > 0) {
1187 * If the reserve pool is depleted, put blocks back into it
1188 * first. Most of the time the pool is full.
1190 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1191 percpu_counter_add(&mp->m_fdblocks, delta);
1192 return 0;
1195 spin_lock(&mp->m_sb_lock);
1196 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1198 if (res_used > delta) {
1199 mp->m_resblks_avail += delta;
1200 } else {
1201 delta -= res_used;
1202 mp->m_resblks_avail = mp->m_resblks;
1203 percpu_counter_add(&mp->m_fdblocks, delta);
1205 spin_unlock(&mp->m_sb_lock);
1206 return 0;
1210 * Taking blocks away, need to be more accurate the closer we
1211 * are to zero.
1213 * If the counter has a value of less than 2 * max batch size,
1214 * then make everything serialise as we are real close to
1215 * ENOSPC.
1217 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1218 XFS_FDBLOCKS_BATCH) < 0)
1219 batch = 1;
1220 else
1221 batch = XFS_FDBLOCKS_BATCH;
1223 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1224 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1225 XFS_FDBLOCKS_BATCH) >= 0) {
1226 /* we had space! */
1227 return 0;
1231 * lock up the sb for dipping into reserves before releasing the space
1232 * that took us to ENOSPC.
1234 spin_lock(&mp->m_sb_lock);
1235 percpu_counter_add(&mp->m_fdblocks, -delta);
1236 if (!rsvd)
1237 goto fdblocks_enospc;
1239 lcounter = (long long)mp->m_resblks_avail + delta;
1240 if (lcounter >= 0) {
1241 mp->m_resblks_avail = lcounter;
1242 spin_unlock(&mp->m_sb_lock);
1243 return 0;
1245 printk_once(KERN_WARNING
1246 "Filesystem \"%s\": reserve blocks depleted! "
1247 "Consider increasing reserve pool size.",
1248 mp->m_fsname);
1249 fdblocks_enospc:
1250 spin_unlock(&mp->m_sb_lock);
1251 return -ENOSPC;
1255 xfs_mod_frextents(
1256 struct xfs_mount *mp,
1257 int64_t delta)
1259 int64_t lcounter;
1260 int ret = 0;
1262 spin_lock(&mp->m_sb_lock);
1263 lcounter = mp->m_sb.sb_frextents + delta;
1264 if (lcounter < 0)
1265 ret = -ENOSPC;
1266 else
1267 mp->m_sb.sb_frextents = lcounter;
1268 spin_unlock(&mp->m_sb_lock);
1269 return ret;
1273 * xfs_getsb() is called to obtain the buffer for the superblock.
1274 * The buffer is returned locked and read in from disk.
1275 * The buffer should be released with a call to xfs_brelse().
1277 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1278 * the superblock buffer if it can be locked without sleeping.
1279 * If it can't then we'll return NULL.
1281 struct xfs_buf *
1282 xfs_getsb(
1283 struct xfs_mount *mp,
1284 int flags)
1286 struct xfs_buf *bp = mp->m_sb_bp;
1288 if (!xfs_buf_trylock(bp)) {
1289 if (flags & XBF_TRYLOCK)
1290 return NULL;
1291 xfs_buf_lock(bp);
1294 xfs_buf_hold(bp);
1295 ASSERT(bp->b_flags & XBF_DONE);
1296 return bp;
1300 * Used to free the superblock along various error paths.
1302 void
1303 xfs_freesb(
1304 struct xfs_mount *mp)
1306 struct xfs_buf *bp = mp->m_sb_bp;
1308 xfs_buf_lock(bp);
1309 mp->m_sb_bp = NULL;
1310 xfs_buf_relse(bp);
1314 * If the underlying (data/log/rt) device is readonly, there are some
1315 * operations that cannot proceed.
1318 xfs_dev_is_read_only(
1319 struct xfs_mount *mp,
1320 char *message)
1322 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1323 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1324 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1325 xfs_notice(mp, "%s required on read-only device.", message);
1326 xfs_notice(mp, "write access unavailable, cannot proceed.");
1327 return -EROFS;
1329 return 0;