2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
48 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
49 static int xfs_uuid_table_size
;
50 static uuid_t
*xfs_uuid_table
;
53 xfs_uuid_table_free(void)
55 if (xfs_uuid_table_size
== 0)
57 kmem_free(xfs_uuid_table
);
58 xfs_uuid_table
= NULL
;
59 xfs_uuid_table_size
= 0;
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
70 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
73 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
76 if (uuid_is_nil(uuid
)) {
77 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
81 mutex_lock(&xfs_uuid_table_mutex
);
82 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
83 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
87 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
92 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
93 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
95 hole
= xfs_uuid_table_size
++;
97 xfs_uuid_table
[hole
] = *uuid
;
98 mutex_unlock(&xfs_uuid_table_mutex
);
103 mutex_unlock(&xfs_uuid_table_mutex
);
104 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
110 struct xfs_mount
*mp
)
112 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
115 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
118 mutex_lock(&xfs_uuid_table_mutex
);
119 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
120 if (uuid_is_nil(&xfs_uuid_table
[i
]))
122 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
124 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
127 ASSERT(i
< xfs_uuid_table_size
);
128 mutex_unlock(&xfs_uuid_table_mutex
);
134 struct rcu_head
*head
)
136 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
138 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
143 * Free up the per-ag resources associated with the mount structure.
150 struct xfs_perag
*pag
;
152 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
153 spin_lock(&mp
->m_perag_lock
);
154 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
155 spin_unlock(&mp
->m_perag_lock
);
157 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
158 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
163 * Check size of device based on the (data/realtime) block count.
164 * Note: this check is used by the growfs code as well as mount.
167 xfs_sb_validate_fsb_count(
171 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
172 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
174 /* Limited by ULONG_MAX of page cache index */
175 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
181 xfs_initialize_perag(
183 xfs_agnumber_t agcount
,
184 xfs_agnumber_t
*maxagi
)
186 xfs_agnumber_t index
;
187 xfs_agnumber_t first_initialised
= 0;
192 * Walk the current per-ag tree so we don't try to initialise AGs
193 * that already exist (growfs case). Allocate and insert all the
194 * AGs we don't find ready for initialisation.
196 for (index
= 0; index
< agcount
; index
++) {
197 pag
= xfs_perag_get(mp
, index
);
202 if (!first_initialised
)
203 first_initialised
= index
;
205 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
208 pag
->pag_agno
= index
;
210 spin_lock_init(&pag
->pag_ici_lock
);
211 mutex_init(&pag
->pag_ici_reclaim_lock
);
212 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
213 spin_lock_init(&pag
->pag_buf_lock
);
214 pag
->pag_buf_tree
= RB_ROOT
;
216 if (radix_tree_preload(GFP_NOFS
))
219 spin_lock(&mp
->m_perag_lock
);
220 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
222 spin_unlock(&mp
->m_perag_lock
);
223 radix_tree_preload_end();
227 spin_unlock(&mp
->m_perag_lock
);
228 radix_tree_preload_end();
231 index
= xfs_set_inode_alloc(mp
, agcount
);
236 mp
->m_ag_prealloc_blocks
= xfs_prealloc_blocks(mp
);
241 for (; index
> first_initialised
; index
--) {
242 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
251 * Does the initial read of the superblock.
255 struct xfs_mount
*mp
,
258 unsigned int sector_size
;
260 struct xfs_sb
*sbp
= &mp
->m_sb
;
262 int loud
= !(flags
& XFS_MFSI_QUIET
);
263 const struct xfs_buf_ops
*buf_ops
;
265 ASSERT(mp
->m_sb_bp
== NULL
);
266 ASSERT(mp
->m_ddev_targp
!= NULL
);
269 * For the initial read, we must guess at the sector
270 * size based on the block device. It's enough to
271 * get the sb_sectsize out of the superblock and
272 * then reread with the proper length.
273 * We don't verify it yet, because it may not be complete.
275 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
279 * Allocate a (locked) buffer to hold the superblock. This will be kept
280 * around at all times to optimize access to the superblock. Therefore,
281 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
285 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
286 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
290 xfs_warn(mp
, "SB validate failed with error %d.", error
);
291 /* bad CRC means corrupted metadata */
292 if (error
== -EFSBADCRC
)
293 error
= -EFSCORRUPTED
;
298 * Initialize the mount structure from the superblock.
300 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
303 * If we haven't validated the superblock, do so now before we try
304 * to check the sector size and reread the superblock appropriately.
306 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
308 xfs_warn(mp
, "Invalid superblock magic number");
314 * We must be able to do sector-sized and sector-aligned IO.
316 if (sector_size
> sbp
->sb_sectsize
) {
318 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
319 sector_size
, sbp
->sb_sectsize
);
324 if (buf_ops
== NULL
) {
326 * Re-read the superblock so the buffer is correctly sized,
327 * and properly verified.
330 sector_size
= sbp
->sb_sectsize
;
331 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
335 xfs_reinit_percpu_counters(mp
);
337 /* no need to be quiet anymore, so reset the buf ops */
338 bp
->b_ops
= &xfs_sb_buf_ops
;
350 * Update alignment values based on mount options and sb values
353 xfs_update_alignment(xfs_mount_t
*mp
)
355 xfs_sb_t
*sbp
= &(mp
->m_sb
);
359 * If stripe unit and stripe width are not multiples
360 * of the fs blocksize turn off alignment.
362 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
363 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
365 "alignment check failed: sunit/swidth vs. blocksize(%d)",
370 * Convert the stripe unit and width to FSBs.
372 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
373 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
375 "alignment check failed: sunit/swidth vs. agsize(%d)",
378 } else if (mp
->m_dalign
) {
379 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
382 "alignment check failed: sunit(%d) less than bsize(%d)",
383 mp
->m_dalign
, sbp
->sb_blocksize
);
389 * Update superblock with new values
392 if (xfs_sb_version_hasdalign(sbp
)) {
393 if (sbp
->sb_unit
!= mp
->m_dalign
) {
394 sbp
->sb_unit
= mp
->m_dalign
;
395 mp
->m_update_sb
= true;
397 if (sbp
->sb_width
!= mp
->m_swidth
) {
398 sbp
->sb_width
= mp
->m_swidth
;
399 mp
->m_update_sb
= true;
403 "cannot change alignment: superblock does not support data alignment");
406 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
407 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
408 mp
->m_dalign
= sbp
->sb_unit
;
409 mp
->m_swidth
= sbp
->sb_width
;
416 * Set the maximum inode count for this filesystem
419 xfs_set_maxicount(xfs_mount_t
*mp
)
421 xfs_sb_t
*sbp
= &(mp
->m_sb
);
424 if (sbp
->sb_imax_pct
) {
426 * Make sure the maximum inode count is a multiple
427 * of the units we allocate inodes in.
429 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
431 do_div(icount
, mp
->m_ialloc_blks
);
432 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
440 * Set the default minimum read and write sizes unless
441 * already specified in a mount option.
442 * We use smaller I/O sizes when the file system
443 * is being used for NFS service (wsync mount option).
446 xfs_set_rw_sizes(xfs_mount_t
*mp
)
448 xfs_sb_t
*sbp
= &(mp
->m_sb
);
449 int readio_log
, writeio_log
;
451 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
452 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
453 readio_log
= XFS_WSYNC_READIO_LOG
;
454 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
456 readio_log
= XFS_READIO_LOG_LARGE
;
457 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
460 readio_log
= mp
->m_readio_log
;
461 writeio_log
= mp
->m_writeio_log
;
464 if (sbp
->sb_blocklog
> readio_log
) {
465 mp
->m_readio_log
= sbp
->sb_blocklog
;
467 mp
->m_readio_log
= readio_log
;
469 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
470 if (sbp
->sb_blocklog
> writeio_log
) {
471 mp
->m_writeio_log
= sbp
->sb_blocklog
;
473 mp
->m_writeio_log
= writeio_log
;
475 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
479 * precalculate the low space thresholds for dynamic speculative preallocation.
482 xfs_set_low_space_thresholds(
483 struct xfs_mount
*mp
)
487 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
488 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
491 mp
->m_low_space
[i
] = space
* (i
+ 1);
497 * Set whether we're using inode alignment.
500 xfs_set_inoalignment(xfs_mount_t
*mp
)
502 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
503 mp
->m_sb
.sb_inoalignmt
>=
504 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
505 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
507 mp
->m_inoalign_mask
= 0;
509 * If we are using stripe alignment, check whether
510 * the stripe unit is a multiple of the inode alignment
512 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
513 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
514 mp
->m_sinoalign
= mp
->m_dalign
;
520 * Check that the data (and log if separate) is an ok size.
524 struct xfs_mount
*mp
)
530 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
531 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
532 xfs_warn(mp
, "filesystem size mismatch detected");
535 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
536 d
- XFS_FSS_TO_BB(mp
, 1),
537 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
539 xfs_warn(mp
, "last sector read failed");
544 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
547 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
548 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
549 xfs_warn(mp
, "log size mismatch detected");
552 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
553 d
- XFS_FSB_TO_BB(mp
, 1),
554 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
556 xfs_warn(mp
, "log device read failed");
564 * Clear the quotaflags in memory and in the superblock.
567 xfs_mount_reset_sbqflags(
568 struct xfs_mount
*mp
)
572 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
573 if (mp
->m_sb
.sb_qflags
== 0)
575 spin_lock(&mp
->m_sb_lock
);
576 mp
->m_sb
.sb_qflags
= 0;
577 spin_unlock(&mp
->m_sb_lock
);
579 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
582 return xfs_sync_sb(mp
, false);
586 xfs_default_resblks(xfs_mount_t
*mp
)
591 * We default to 5% or 8192 fsbs of space reserved, whichever is
592 * smaller. This is intended to cover concurrent allocation
593 * transactions when we initially hit enospc. These each require a 4
594 * block reservation. Hence by default we cover roughly 2000 concurrent
595 * allocation reservations.
597 resblks
= mp
->m_sb
.sb_dblocks
;
599 resblks
= min_t(__uint64_t
, resblks
, 8192);
604 * This function does the following on an initial mount of a file system:
605 * - reads the superblock from disk and init the mount struct
606 * - if we're a 32-bit kernel, do a size check on the superblock
607 * so we don't mount terabyte filesystems
608 * - init mount struct realtime fields
609 * - allocate inode hash table for fs
610 * - init directory manager
611 * - perform recovery and init the log manager
615 struct xfs_mount
*mp
)
617 struct xfs_sb
*sbp
= &(mp
->m_sb
);
618 struct xfs_inode
*rip
;
624 xfs_sb_mount_common(mp
, sbp
);
627 * Check for a mismatched features2 values. Older kernels read & wrote
628 * into the wrong sb offset for sb_features2 on some platforms due to
629 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
630 * which made older superblock reading/writing routines swap it as a
633 * For backwards compatibility, we make both slots equal.
635 * If we detect a mismatched field, we OR the set bits into the existing
636 * features2 field in case it has already been modified; we don't want
637 * to lose any features. We then update the bad location with the ORed
638 * value so that older kernels will see any features2 flags. The
639 * superblock writeback code ensures the new sb_features2 is copied to
640 * sb_bad_features2 before it is logged or written to disk.
642 if (xfs_sb_has_mismatched_features2(sbp
)) {
643 xfs_warn(mp
, "correcting sb_features alignment problem");
644 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
645 mp
->m_update_sb
= true;
648 * Re-check for ATTR2 in case it was found in bad_features2
651 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
652 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
653 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
656 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
657 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
658 xfs_sb_version_removeattr2(&mp
->m_sb
);
659 mp
->m_update_sb
= true;
661 /* update sb_versionnum for the clearing of the morebits */
662 if (!sbp
->sb_features2
)
663 mp
->m_update_sb
= true;
666 /* always use v2 inodes by default now */
667 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
668 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
669 mp
->m_update_sb
= true;
673 * Check if sb_agblocks is aligned at stripe boundary
674 * If sb_agblocks is NOT aligned turn off m_dalign since
675 * allocator alignment is within an ag, therefore ag has
676 * to be aligned at stripe boundary.
678 error
= xfs_update_alignment(mp
);
682 xfs_alloc_compute_maxlevels(mp
);
683 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
684 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
685 xfs_ialloc_compute_maxlevels(mp
);
686 xfs_rmapbt_compute_maxlevels(mp
);
688 xfs_set_maxicount(mp
);
690 /* enable fail_at_unmount as default */
691 mp
->m_fail_unmount
= 1;
693 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
697 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
698 &mp
->m_kobj
, "stats");
700 goto out_remove_sysfs
;
702 error
= xfs_error_sysfs_init(mp
);
707 error
= xfs_uuid_mount(mp
);
709 goto out_remove_error_sysfs
;
712 * Set the minimum read and write sizes
714 xfs_set_rw_sizes(mp
);
716 /* set the low space thresholds for dynamic preallocation */
717 xfs_set_low_space_thresholds(mp
);
720 * Set the inode cluster size.
721 * This may still be overridden by the file system
722 * block size if it is larger than the chosen cluster size.
724 * For v5 filesystems, scale the cluster size with the inode size to
725 * keep a constant ratio of inode per cluster buffer, but only if mkfs
726 * has set the inode alignment value appropriately for larger cluster
729 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
730 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
731 int new_size
= mp
->m_inode_cluster_size
;
733 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
734 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
735 mp
->m_inode_cluster_size
= new_size
;
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
743 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
744 mp
->m_sb
.sb_spino_align
!=
745 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp
->m_sb
.sb_spino_align
,
749 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
751 goto out_remove_uuid
;
755 * Set inode alignment fields
757 xfs_set_inoalignment(mp
);
760 * Check that the data (and log if separate) is an ok size.
762 error
= xfs_check_sizes(mp
);
764 goto out_remove_uuid
;
767 * Initialize realtime fields in the mount structure
769 error
= xfs_rtmount_init(mp
);
771 xfs_warn(mp
, "RT mount failed");
772 goto out_remove_uuid
;
776 * Copies the low order bits of the timestamp and the randomly
777 * set "sequence" number out of a UUID.
779 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
781 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
783 error
= xfs_da_mount(mp
);
785 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
786 goto out_remove_uuid
;
790 * Initialize the precomputed transaction reservations values.
795 * Allocate and initialize the per-ag data.
797 spin_lock_init(&mp
->m_perag_lock
);
798 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
799 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
801 xfs_warn(mp
, "Failed per-ag init: %d", error
);
805 if (!sbp
->sb_logblocks
) {
806 xfs_warn(mp
, "no log defined");
807 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
808 error
= -EFSCORRUPTED
;
813 * Log's mount-time initialization. The first part of recovery can place
814 * some items on the AIL, to be handled when recovery is finished or
817 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
818 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
819 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
821 xfs_warn(mp
, "log mount failed");
826 * Now the log is mounted, we know if it was an unclean shutdown or
827 * not. If it was, with the first phase of recovery has completed, we
828 * have consistent AG blocks on disk. We have not recovered EFIs yet,
829 * but they are recovered transactionally in the second recovery phase
832 * Hence we can safely re-initialise incore superblock counters from
833 * the per-ag data. These may not be correct if the filesystem was not
834 * cleanly unmounted, so we need to wait for recovery to finish before
837 * If the filesystem was cleanly unmounted, then we can trust the
838 * values in the superblock to be correct and we don't need to do
841 * If we are currently making the filesystem, the initialisation will
842 * fail as the perag data is in an undefined state.
844 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
845 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
846 !mp
->m_sb
.sb_inprogress
) {
847 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
849 goto out_log_dealloc
;
853 * Get and sanity-check the root inode.
854 * Save the pointer to it in the mount structure.
856 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
858 xfs_warn(mp
, "failed to read root inode");
859 goto out_log_dealloc
;
864 if (unlikely(!S_ISDIR(VFS_I(rip
)->i_mode
))) {
865 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
866 (unsigned long long)rip
->i_ino
);
867 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
868 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
870 error
= -EFSCORRUPTED
;
873 mp
->m_rootip
= rip
; /* save it */
875 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
878 * Initialize realtime inode pointers in the mount structure
880 error
= xfs_rtmount_inodes(mp
);
883 * Free up the root inode.
885 xfs_warn(mp
, "failed to read RT inodes");
890 * If this is a read-only mount defer the superblock updates until
891 * the next remount into writeable mode. Otherwise we would never
892 * perform the update e.g. for the root filesystem.
894 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
895 error
= xfs_sync_sb(mp
, false);
897 xfs_warn(mp
, "failed to write sb changes");
903 * Initialise the XFS quota management subsystem for this mount
905 if (XFS_IS_QUOTA_RUNNING(mp
)) {
906 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
910 ASSERT(!XFS_IS_QUOTA_ON(mp
));
913 * If a file system had quotas running earlier, but decided to
914 * mount without -o uquota/pquota/gquota options, revoke the
915 * quotachecked license.
917 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
918 xfs_notice(mp
, "resetting quota flags");
919 error
= xfs_mount_reset_sbqflags(mp
);
926 * Finish recovering the file system. This part needed to be delayed
927 * until after the root and real-time bitmap inodes were consistently
930 error
= xfs_log_mount_finish(mp
);
932 xfs_warn(mp
, "log mount finish failed");
937 * Complete the quota initialisation, post-log-replay component.
940 ASSERT(mp
->m_qflags
== 0);
941 mp
->m_qflags
= quotaflags
;
943 xfs_qm_mount_quotas(mp
);
947 * Now we are mounted, reserve a small amount of unused space for
948 * privileged transactions. This is needed so that transaction
949 * space required for critical operations can dip into this pool
950 * when at ENOSPC. This is needed for operations like create with
951 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
952 * are not allowed to use this reserved space.
954 * This may drive us straight to ENOSPC on mount, but that implies
955 * we were already there on the last unmount. Warn if this occurs.
957 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
958 resblks
= xfs_default_resblks(mp
);
959 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
962 "Unable to allocate reserve blocks. Continuing without reserve pool.");
968 xfs_rtunmount_inodes(mp
);
971 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
972 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
974 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
975 xfs_log_mount_cancel(mp
);
977 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
978 xfs_wait_buftarg(mp
->m_logdev_targp
);
979 xfs_wait_buftarg(mp
->m_ddev_targp
);
985 xfs_uuid_unmount(mp
);
986 out_remove_error_sysfs
:
987 xfs_error_sysfs_del(mp
);
989 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
991 xfs_sysfs_del(&mp
->m_kobj
);
997 * This flushes out the inodes,dquots and the superblock, unmounts the
998 * log and makes sure that incore structures are freed.
1002 struct xfs_mount
*mp
)
1007 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1009 xfs_qm_unmount_quotas(mp
);
1010 xfs_rtunmount_inodes(mp
);
1011 IRELE(mp
->m_rootip
);
1014 * We can potentially deadlock here if we have an inode cluster
1015 * that has been freed has its buffer still pinned in memory because
1016 * the transaction is still sitting in a iclog. The stale inodes
1017 * on that buffer will have their flush locks held until the
1018 * transaction hits the disk and the callbacks run. the inode
1019 * flush takes the flush lock unconditionally and with nothing to
1020 * push out the iclog we will never get that unlocked. hence we
1021 * need to force the log first.
1023 xfs_log_force(mp
, XFS_LOG_SYNC
);
1026 * We now need to tell the world we are unmounting. This will allow
1027 * us to detect that the filesystem is going away and we should error
1028 * out anything that we have been retrying in the background. This will
1029 * prevent neverending retries in AIL pushing from hanging the unmount.
1031 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1034 * Flush all pending changes from the AIL.
1036 xfs_ail_push_all_sync(mp
->m_ail
);
1039 * And reclaim all inodes. At this point there should be no dirty
1040 * inodes and none should be pinned or locked, but use synchronous
1041 * reclaim just to be sure. We can stop background inode reclaim
1042 * here as well if it is still running.
1044 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1045 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1050 * Unreserve any blocks we have so that when we unmount we don't account
1051 * the reserved free space as used. This is really only necessary for
1052 * lazy superblock counting because it trusts the incore superblock
1053 * counters to be absolutely correct on clean unmount.
1055 * We don't bother correcting this elsewhere for lazy superblock
1056 * counting because on mount of an unclean filesystem we reconstruct the
1057 * correct counter value and this is irrelevant.
1059 * For non-lazy counter filesystems, this doesn't matter at all because
1060 * we only every apply deltas to the superblock and hence the incore
1061 * value does not matter....
1064 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1066 xfs_warn(mp
, "Unable to free reserved block pool. "
1067 "Freespace may not be correct on next mount.");
1069 error
= xfs_log_sbcount(mp
);
1071 xfs_warn(mp
, "Unable to update superblock counters. "
1072 "Freespace may not be correct on next mount.");
1075 xfs_log_unmount(mp
);
1077 xfs_uuid_unmount(mp
);
1080 xfs_errortag_clearall(mp
, 0);
1084 xfs_error_sysfs_del(mp
);
1085 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1086 xfs_sysfs_del(&mp
->m_kobj
);
1090 * Determine whether modifications can proceed. The caller specifies the minimum
1091 * freeze level for which modifications should not be allowed. This allows
1092 * certain operations to proceed while the freeze sequence is in progress, if
1097 struct xfs_mount
*mp
,
1100 ASSERT(level
> SB_UNFROZEN
);
1101 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1102 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1111 * Sync the superblock counters to disk.
1113 * Note this code can be called during the process of freezing, so we use the
1114 * transaction allocator that does not block when the transaction subsystem is
1115 * in its frozen state.
1118 xfs_log_sbcount(xfs_mount_t
*mp
)
1120 /* allow this to proceed during the freeze sequence... */
1121 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1125 * we don't need to do this if we are updating the superblock
1126 * counters on every modification.
1128 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1131 return xfs_sync_sb(mp
, true);
1135 * Deltas for the inode count are +/-64, hence we use a large batch size
1136 * of 128 so we don't need to take the counter lock on every update.
1138 #define XFS_ICOUNT_BATCH 128
1141 struct xfs_mount
*mp
,
1144 __percpu_counter_add(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1145 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1147 percpu_counter_add(&mp
->m_icount
, -delta
);
1155 struct xfs_mount
*mp
,
1158 percpu_counter_add(&mp
->m_ifree
, delta
);
1159 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1161 percpu_counter_add(&mp
->m_ifree
, -delta
);
1168 * Deltas for the block count can vary from 1 to very large, but lock contention
1169 * only occurs on frequent small block count updates such as in the delayed
1170 * allocation path for buffered writes (page a time updates). Hence we set
1171 * a large batch count (1024) to minimise global counter updates except when
1172 * we get near to ENOSPC and we have to be very accurate with our updates.
1174 #define XFS_FDBLOCKS_BATCH 1024
1177 struct xfs_mount
*mp
,
1187 * If the reserve pool is depleted, put blocks back into it
1188 * first. Most of the time the pool is full.
1190 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1191 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1195 spin_lock(&mp
->m_sb_lock
);
1196 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1198 if (res_used
> delta
) {
1199 mp
->m_resblks_avail
+= delta
;
1202 mp
->m_resblks_avail
= mp
->m_resblks
;
1203 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1205 spin_unlock(&mp
->m_sb_lock
);
1210 * Taking blocks away, need to be more accurate the closer we
1213 * If the counter has a value of less than 2 * max batch size,
1214 * then make everything serialise as we are real close to
1217 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1218 XFS_FDBLOCKS_BATCH
) < 0)
1221 batch
= XFS_FDBLOCKS_BATCH
;
1223 __percpu_counter_add(&mp
->m_fdblocks
, delta
, batch
);
1224 if (__percpu_counter_compare(&mp
->m_fdblocks
, mp
->m_alloc_set_aside
,
1225 XFS_FDBLOCKS_BATCH
) >= 0) {
1231 * lock up the sb for dipping into reserves before releasing the space
1232 * that took us to ENOSPC.
1234 spin_lock(&mp
->m_sb_lock
);
1235 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1237 goto fdblocks_enospc
;
1239 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1240 if (lcounter
>= 0) {
1241 mp
->m_resblks_avail
= lcounter
;
1242 spin_unlock(&mp
->m_sb_lock
);
1245 printk_once(KERN_WARNING
1246 "Filesystem \"%s\": reserve blocks depleted! "
1247 "Consider increasing reserve pool size.",
1250 spin_unlock(&mp
->m_sb_lock
);
1256 struct xfs_mount
*mp
,
1262 spin_lock(&mp
->m_sb_lock
);
1263 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1267 mp
->m_sb
.sb_frextents
= lcounter
;
1268 spin_unlock(&mp
->m_sb_lock
);
1273 * xfs_getsb() is called to obtain the buffer for the superblock.
1274 * The buffer is returned locked and read in from disk.
1275 * The buffer should be released with a call to xfs_brelse().
1277 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1278 * the superblock buffer if it can be locked without sleeping.
1279 * If it can't then we'll return NULL.
1283 struct xfs_mount
*mp
,
1286 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1288 if (!xfs_buf_trylock(bp
)) {
1289 if (flags
& XBF_TRYLOCK
)
1295 ASSERT(bp
->b_flags
& XBF_DONE
);
1300 * Used to free the superblock along various error paths.
1304 struct xfs_mount
*mp
)
1306 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1314 * If the underlying (data/log/rt) device is readonly, there are some
1315 * operations that cannot proceed.
1318 xfs_dev_is_read_only(
1319 struct xfs_mount
*mp
,
1322 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1323 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1324 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1325 xfs_notice(mp
, "%s required on read-only device.", message
);
1326 xfs_notice(mp
, "write access unavailable, cannot proceed.");