2 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
3 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
5 * An implementation of the DCCP protocol
7 * This code has been developed by the University of Waikato WAND
8 * research group. For further information please see http://www.wand.net.nz/
9 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
11 * This code also uses code from Lulea University, rereleased as GPL by its
13 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
15 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
16 * and to make it work as a loadable module in the DCCP stack written by
17 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
19 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License as published by
23 * the Free Software Foundation; either version 2 of the License, or
24 * (at your option) any later version.
26 * This program is distributed in the hope that it will be useful,
27 * but WITHOUT ANY WARRANTY; without even the implied warranty of
28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 * GNU General Public License for more details.
31 * You should have received a copy of the GNU General Public License
32 * along with this program; if not, write to the Free Software
33 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include "packet_history.h"
39 #include "../../dccp.h"
42 * Transmitter History Routines
44 static struct kmem_cache
*tfrc_tx_hist_slab
;
46 int __init
tfrc_tx_packet_history_init(void)
48 tfrc_tx_hist_slab
= kmem_cache_create("tfrc_tx_hist",
49 sizeof(struct tfrc_tx_hist_entry
),
50 0, SLAB_HWCACHE_ALIGN
, NULL
);
51 return tfrc_tx_hist_slab
== NULL
? -ENOBUFS
: 0;
54 void tfrc_tx_packet_history_exit(void)
56 if (tfrc_tx_hist_slab
!= NULL
) {
57 kmem_cache_destroy(tfrc_tx_hist_slab
);
58 tfrc_tx_hist_slab
= NULL
;
62 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry
**headp
, u64 seqno
)
64 struct tfrc_tx_hist_entry
*entry
= kmem_cache_alloc(tfrc_tx_hist_slab
, gfp_any());
69 entry
->stamp
= ktime_get_real();
75 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry
**headp
)
77 struct tfrc_tx_hist_entry
*head
= *headp
;
79 while (head
!= NULL
) {
80 struct tfrc_tx_hist_entry
*next
= head
->next
;
82 kmem_cache_free(tfrc_tx_hist_slab
, head
);
90 * Receiver History Routines
92 static struct kmem_cache
*tfrc_rx_hist_slab
;
94 int __init
tfrc_rx_packet_history_init(void)
96 tfrc_rx_hist_slab
= kmem_cache_create("tfrc_rxh_cache",
97 sizeof(struct tfrc_rx_hist_entry
),
98 0, SLAB_HWCACHE_ALIGN
, NULL
);
99 return tfrc_rx_hist_slab
== NULL
? -ENOBUFS
: 0;
102 void tfrc_rx_packet_history_exit(void)
104 if (tfrc_rx_hist_slab
!= NULL
) {
105 kmem_cache_destroy(tfrc_rx_hist_slab
);
106 tfrc_rx_hist_slab
= NULL
;
110 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry
*entry
,
111 const struct sk_buff
*skb
,
114 const struct dccp_hdr
*dh
= dccp_hdr(skb
);
116 entry
->tfrchrx_seqno
= DCCP_SKB_CB(skb
)->dccpd_seq
;
117 entry
->tfrchrx_ccval
= dh
->dccph_ccval
;
118 entry
->tfrchrx_type
= dh
->dccph_type
;
119 entry
->tfrchrx_ndp
= ndp
;
120 entry
->tfrchrx_tstamp
= ktime_get_real();
123 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist
*h
,
124 const struct sk_buff
*skb
,
127 struct tfrc_rx_hist_entry
*entry
= tfrc_rx_hist_last_rcv(h
);
129 tfrc_rx_hist_entry_from_skb(entry
, skb
, ndp
);
132 /* has the packet contained in skb been seen before? */
133 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
)
135 const u64 seq
= DCCP_SKB_CB(skb
)->dccpd_seq
;
138 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
, seq
) <= 0)
141 for (i
= 1; i
<= h
->loss_count
; i
++)
142 if (tfrc_rx_hist_entry(h
, i
)->tfrchrx_seqno
== seq
)
148 static void tfrc_rx_hist_swap(struct tfrc_rx_hist
*h
, const u8 a
, const u8 b
)
150 const u8 idx_a
= tfrc_rx_hist_index(h
, a
),
151 idx_b
= tfrc_rx_hist_index(h
, b
);
152 struct tfrc_rx_hist_entry
*tmp
= h
->ring
[idx_a
];
154 h
->ring
[idx_a
] = h
->ring
[idx_b
];
155 h
->ring
[idx_b
] = tmp
;
159 * Private helper functions for loss detection.
161 * In the descriptions, `Si' refers to the sequence number of entry number i,
162 * whose NDP count is `Ni' (lower case is used for variables).
163 * Note: All __xxx_loss functions expect that a test against duplicates has been
164 * performed already: the seqno of the skb must not be less than the seqno
165 * of loss_prev; and it must not equal that of any valid history entry.
167 static void __do_track_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u64 n1
)
169 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
170 s1
= DCCP_SKB_CB(skb
)->dccpd_seq
;
172 if (!dccp_loss_free(s0
, s1
, n1
)) { /* gap between S0 and S1 */
174 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n1
);
178 static void __one_after_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u32 n2
)
180 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
181 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
182 s2
= DCCP_SKB_CB(skb
)->dccpd_seq
;
184 if (likely(dccp_delta_seqno(s1
, s2
) > 0)) { /* S1 < S2 */
186 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 2), skb
, n2
);
192 if (dccp_loss_free(s0
, s2
, n2
)) {
193 u64 n1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_ndp
;
195 if (dccp_loss_free(s2
, s1
, n1
)) {
196 /* hole is filled: S0, S2, and S1 are consecutive */
198 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
200 /* gap between S2 and S1: just update loss_prev */
201 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h
), skb
, n2
);
203 } else { /* gap between S0 and S2 */
205 * Reorder history to insert S2 between S0 and S1
207 tfrc_rx_hist_swap(h
, 0, 3);
208 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
209 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n2
);
214 /* return 1 if a new loss event has been identified */
215 static int __two_after_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u32 n3
)
217 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
218 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
219 s2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_seqno
,
220 s3
= DCCP_SKB_CB(skb
)->dccpd_seq
;
222 if (likely(dccp_delta_seqno(s2
, s3
) > 0)) { /* S2 < S3 */
224 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 3), skb
, n3
);
230 if (dccp_delta_seqno(s1
, s3
) > 0) { /* S1 < S3 < S2 */
232 * Reorder history to insert S3 between S1 and S2
234 tfrc_rx_hist_swap(h
, 2, 3);
235 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 2), skb
, n3
);
242 if (dccp_loss_free(s0
, s3
, n3
)) {
243 u64 n1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_ndp
;
245 if (dccp_loss_free(s3
, s1
, n1
)) {
246 /* hole between S0 and S1 filled by S3 */
247 u64 n2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_ndp
;
249 if (dccp_loss_free(s1
, s2
, n2
)) {
250 /* entire hole filled by S0, S3, S1, S2 */
251 h
->loss_start
= tfrc_rx_hist_index(h
, 2);
254 /* gap remains between S1 and S2 */
255 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
259 } else /* gap exists between S3 and S1, loss_count stays at 2 */
260 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h
), skb
, n3
);
266 * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
267 * Reorder history to insert S3 between S0 and S1.
269 tfrc_rx_hist_swap(h
, 0, 3);
270 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
271 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n3
);
277 /* recycle RX history records to continue loss detection if necessary */
278 static void __three_after_loss(struct tfrc_rx_hist
*h
)
281 * At this stage we know already that there is a gap between S0 and S1
282 * (since S0 was the highest sequence number received before detecting
283 * the loss). To recycle the loss record, it is thus only necessary to
284 * check for other possible gaps between S1/S2 and between S2/S3.
286 u64 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
287 s2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_seqno
,
288 s3
= tfrc_rx_hist_entry(h
, 3)->tfrchrx_seqno
;
289 u64 n2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_ndp
,
290 n3
= tfrc_rx_hist_entry(h
, 3)->tfrchrx_ndp
;
292 if (dccp_loss_free(s1
, s2
, n2
)) {
294 if (dccp_loss_free(s2
, s3
, n3
)) {
295 /* no gap between S2 and S3: entire hole is filled */
296 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
299 /* gap between S2 and S3 */
300 h
->loss_start
= tfrc_rx_hist_index(h
, 2);
304 } else { /* gap between S1 and S2 */
305 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
311 * tfrc_rx_handle_loss - Loss detection and further processing
312 * @h: The non-empty RX history object
313 * @lh: Loss Intervals database to update
314 * @skb: Currently received packet
315 * @ndp: The NDP count belonging to @skb
316 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
317 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
319 * Chooses action according to pending loss, updates LI database when a new
320 * loss was detected, and does required post-processing. Returns 1 when caller
321 * should send feedback, 0 otherwise.
322 * Since it also takes care of reordering during loss detection and updates the
323 * records accordingly, the caller should not perform any more RX history
324 * operations when loss_count is greater than 0 after calling this function.
326 int tfrc_rx_handle_loss(struct tfrc_rx_hist
*h
,
327 struct tfrc_loss_hist
*lh
,
328 struct sk_buff
*skb
, const u64 ndp
,
329 u32 (*calc_first_li
)(struct sock
*), struct sock
*sk
)
333 if (h
->loss_count
== 0) {
334 __do_track_loss(h
, skb
, ndp
);
335 } else if (h
->loss_count
== 1) {
336 __one_after_loss(h
, skb
, ndp
);
337 } else if (h
->loss_count
!= 2) {
338 DCCP_BUG("invalid loss_count %d", h
->loss_count
);
339 } else if (__two_after_loss(h
, skb
, ndp
)) {
341 * Update Loss Interval database and recycle RX records
343 is_new_loss
= tfrc_lh_interval_add(lh
, h
, calc_first_li
, sk
);
344 __three_after_loss(h
);
349 int tfrc_rx_hist_alloc(struct tfrc_rx_hist
*h
)
353 for (i
= 0; i
<= TFRC_NDUPACK
; i
++) {
354 h
->ring
[i
] = kmem_cache_alloc(tfrc_rx_hist_slab
, GFP_ATOMIC
);
355 if (h
->ring
[i
] == NULL
)
359 h
->loss_count
= h
->loss_start
= 0;
364 kmem_cache_free(tfrc_rx_hist_slab
, h
->ring
[i
]);
370 void tfrc_rx_hist_purge(struct tfrc_rx_hist
*h
)
374 for (i
= 0; i
<= TFRC_NDUPACK
; ++i
)
375 if (h
->ring
[i
] != NULL
) {
376 kmem_cache_free(tfrc_rx_hist_slab
, h
->ring
[i
]);
382 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
384 static inline struct tfrc_rx_hist_entry
*
385 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist
*h
)
391 * tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry
393 static inline struct tfrc_rx_hist_entry
*
394 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist
*h
)
396 return h
->ring
[h
->rtt_sample_prev
];
400 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
401 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
402 * to compute a sample with given data - calling function should check this.
404 u32
tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist
*h
, const struct sk_buff
*skb
)
407 delta_v
= SUB16(dccp_hdr(skb
)->dccph_ccval
,
408 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
410 if (delta_v
< 1 || delta_v
> 4) { /* unsuitable CCVal delta */
411 if (h
->rtt_sample_prev
== 2) { /* previous candidate stored */
412 sample
= SUB16(tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_ccval
,
413 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
415 sample
= 4 / sample
*
416 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_tstamp
,
417 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_tstamp
);
419 * FIXME: This condition is in principle not
420 * possible but occurs when CCID is used for
421 * two-way data traffic. I have tried to trace
422 * it, but the cause does not seem to be here.
424 DCCP_BUG("please report to dccp@vger.kernel.org"
425 " => prev = %u, last = %u",
426 tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_ccval
,
427 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
428 } else if (delta_v
< 1) {
429 h
->rtt_sample_prev
= 1;
430 goto keep_ref_for_next_time
;
433 } else if (delta_v
== 4) /* optimal match */
434 sample
= ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_tstamp
));
435 else { /* suboptimal match */
436 h
->rtt_sample_prev
= 2;
437 goto keep_ref_for_next_time
;
440 if (unlikely(sample
> DCCP_SANE_RTT_MAX
)) {
441 DCCP_WARN("RTT sample %u too large, using max\n", sample
);
442 sample
= DCCP_SANE_RTT_MAX
;
445 h
->rtt_sample_prev
= 0; /* use current entry as next reference */
446 keep_ref_for_next_time
: