2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds_single_path.h"
43 static struct kmem_cache
*rds_ib_incoming_slab
;
44 static struct kmem_cache
*rds_ib_frag_slab
;
45 static atomic_t rds_ib_allocation
= ATOMIC_INIT(0);
47 void rds_ib_recv_init_ring(struct rds_ib_connection
*ic
)
49 struct rds_ib_recv_work
*recv
;
52 for (i
= 0, recv
= ic
->i_recvs
; i
< ic
->i_recv_ring
.w_nr
; i
++, recv
++) {
58 recv
->r_wr
.next
= NULL
;
60 recv
->r_wr
.sg_list
= recv
->r_sge
;
61 recv
->r_wr
.num_sge
= RDS_IB_RECV_SGE
;
63 sge
= &recv
->r_sge
[0];
64 sge
->addr
= ic
->i_recv_hdrs_dma
+ (i
* sizeof(struct rds_header
));
65 sge
->length
= sizeof(struct rds_header
);
66 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
68 sge
= &recv
->r_sge
[1];
70 sge
->length
= RDS_FRAG_SIZE
;
71 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
76 * The entire 'from' list, including the from element itself, is put on
77 * to the tail of the 'to' list.
79 static void list_splice_entire_tail(struct list_head
*from
,
82 struct list_head
*from_last
= from
->prev
;
84 list_splice_tail(from_last
, to
);
85 list_add_tail(from_last
, to
);
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache
*cache
)
90 struct list_head
*tmp
;
92 tmp
= xchg(&cache
->xfer
, NULL
);
95 list_splice_entire_tail(tmp
, cache
->ready
);
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache
*cache
)
103 struct rds_ib_cache_head
*head
;
106 cache
->percpu
= alloc_percpu(struct rds_ib_cache_head
);
110 for_each_possible_cpu(cpu
) {
111 head
= per_cpu_ptr(cache
->percpu
, cpu
);
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection
*ic
)
125 ret
= rds_ib_recv_alloc_cache(&ic
->i_cache_incs
);
127 ret
= rds_ib_recv_alloc_cache(&ic
->i_cache_frags
);
129 free_percpu(ic
->i_cache_incs
.percpu
);
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache
*cache
,
136 struct list_head
*caller_list
)
138 struct rds_ib_cache_head
*head
;
141 for_each_possible_cpu(cpu
) {
142 head
= per_cpu_ptr(cache
->percpu
, cpu
);
144 list_splice_entire_tail(head
->first
, caller_list
);
150 list_splice_entire_tail(cache
->ready
, caller_list
);
155 void rds_ib_recv_free_caches(struct rds_ib_connection
*ic
)
157 struct rds_ib_incoming
*inc
;
158 struct rds_ib_incoming
*inc_tmp
;
159 struct rds_page_frag
*frag
;
160 struct rds_page_frag
*frag_tmp
;
163 rds_ib_cache_xfer_to_ready(&ic
->i_cache_incs
);
164 rds_ib_cache_splice_all_lists(&ic
->i_cache_incs
, &list
);
165 free_percpu(ic
->i_cache_incs
.percpu
);
167 list_for_each_entry_safe(inc
, inc_tmp
, &list
, ii_cache_entry
) {
168 list_del(&inc
->ii_cache_entry
);
169 WARN_ON(!list_empty(&inc
->ii_frags
));
170 kmem_cache_free(rds_ib_incoming_slab
, inc
);
173 rds_ib_cache_xfer_to_ready(&ic
->i_cache_frags
);
174 rds_ib_cache_splice_all_lists(&ic
->i_cache_frags
, &list
);
175 free_percpu(ic
->i_cache_frags
.percpu
);
177 list_for_each_entry_safe(frag
, frag_tmp
, &list
, f_cache_entry
) {
178 list_del(&frag
->f_cache_entry
);
179 WARN_ON(!list_empty(&frag
->f_item
));
180 kmem_cache_free(rds_ib_frag_slab
, frag
);
185 static void rds_ib_recv_cache_put(struct list_head
*new_item
,
186 struct rds_ib_refill_cache
*cache
);
187 static struct list_head
*rds_ib_recv_cache_get(struct rds_ib_refill_cache
*cache
);
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection
*ic
,
192 struct rds_page_frag
*frag
)
194 rdsdebug("frag %p page %p\n", frag
, sg_page(&frag
->f_sg
));
196 rds_ib_recv_cache_put(&frag
->f_cache_entry
, &ic
->i_cache_frags
);
199 /* Recycle inc after freeing attached frags */
200 void rds_ib_inc_free(struct rds_incoming
*inc
)
202 struct rds_ib_incoming
*ibinc
;
203 struct rds_page_frag
*frag
;
204 struct rds_page_frag
*pos
;
205 struct rds_ib_connection
*ic
= inc
->i_conn
->c_transport_data
;
207 ibinc
= container_of(inc
, struct rds_ib_incoming
, ii_inc
);
209 /* Free attached frags */
210 list_for_each_entry_safe(frag
, pos
, &ibinc
->ii_frags
, f_item
) {
211 list_del_init(&frag
->f_item
);
212 rds_ib_frag_free(ic
, frag
);
214 BUG_ON(!list_empty(&ibinc
->ii_frags
));
216 rdsdebug("freeing ibinc %p inc %p\n", ibinc
, inc
);
217 rds_ib_recv_cache_put(&ibinc
->ii_cache_entry
, &ic
->i_cache_incs
);
220 static void rds_ib_recv_clear_one(struct rds_ib_connection
*ic
,
221 struct rds_ib_recv_work
*recv
)
224 rds_inc_put(&recv
->r_ibinc
->ii_inc
);
225 recv
->r_ibinc
= NULL
;
228 ib_dma_unmap_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
, 1, DMA_FROM_DEVICE
);
229 rds_ib_frag_free(ic
, recv
->r_frag
);
234 void rds_ib_recv_clear_ring(struct rds_ib_connection
*ic
)
238 for (i
= 0; i
< ic
->i_recv_ring
.w_nr
; i
++)
239 rds_ib_recv_clear_one(ic
, &ic
->i_recvs
[i
]);
242 static struct rds_ib_incoming
*rds_ib_refill_one_inc(struct rds_ib_connection
*ic
,
245 struct rds_ib_incoming
*ibinc
;
246 struct list_head
*cache_item
;
249 cache_item
= rds_ib_recv_cache_get(&ic
->i_cache_incs
);
251 ibinc
= container_of(cache_item
, struct rds_ib_incoming
, ii_cache_entry
);
253 avail_allocs
= atomic_add_unless(&rds_ib_allocation
,
254 1, rds_ib_sysctl_max_recv_allocation
);
256 rds_ib_stats_inc(s_ib_rx_alloc_limit
);
259 ibinc
= kmem_cache_alloc(rds_ib_incoming_slab
, slab_mask
);
261 atomic_dec(&rds_ib_allocation
);
265 INIT_LIST_HEAD(&ibinc
->ii_frags
);
266 rds_inc_init(&ibinc
->ii_inc
, ic
->conn
, ic
->conn
->c_faddr
);
271 static struct rds_page_frag
*rds_ib_refill_one_frag(struct rds_ib_connection
*ic
,
272 gfp_t slab_mask
, gfp_t page_mask
)
274 struct rds_page_frag
*frag
;
275 struct list_head
*cache_item
;
278 cache_item
= rds_ib_recv_cache_get(&ic
->i_cache_frags
);
280 frag
= container_of(cache_item
, struct rds_page_frag
, f_cache_entry
);
282 frag
= kmem_cache_alloc(rds_ib_frag_slab
, slab_mask
);
286 sg_init_table(&frag
->f_sg
, 1);
287 ret
= rds_page_remainder_alloc(&frag
->f_sg
,
288 RDS_FRAG_SIZE
, page_mask
);
290 kmem_cache_free(rds_ib_frag_slab
, frag
);
295 INIT_LIST_HEAD(&frag
->f_item
);
300 static int rds_ib_recv_refill_one(struct rds_connection
*conn
,
301 struct rds_ib_recv_work
*recv
, gfp_t gfp
)
303 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
306 gfp_t slab_mask
= GFP_NOWAIT
;
307 gfp_t page_mask
= GFP_NOWAIT
;
309 if (gfp
& __GFP_DIRECT_RECLAIM
) {
310 slab_mask
= GFP_KERNEL
;
311 page_mask
= GFP_HIGHUSER
;
314 if (!ic
->i_cache_incs
.ready
)
315 rds_ib_cache_xfer_to_ready(&ic
->i_cache_incs
);
316 if (!ic
->i_cache_frags
.ready
)
317 rds_ib_cache_xfer_to_ready(&ic
->i_cache_frags
);
320 * ibinc was taken from recv if recv contained the start of a message.
321 * recvs that were continuations will still have this allocated.
323 if (!recv
->r_ibinc
) {
324 recv
->r_ibinc
= rds_ib_refill_one_inc(ic
, slab_mask
);
329 WARN_ON(recv
->r_frag
); /* leak! */
330 recv
->r_frag
= rds_ib_refill_one_frag(ic
, slab_mask
, page_mask
);
334 ret
= ib_dma_map_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
,
338 sge
= &recv
->r_sge
[0];
339 sge
->addr
= ic
->i_recv_hdrs_dma
+ (recv
- ic
->i_recvs
) * sizeof(struct rds_header
);
340 sge
->length
= sizeof(struct rds_header
);
342 sge
= &recv
->r_sge
[1];
343 sge
->addr
= ib_sg_dma_address(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
);
344 sge
->length
= ib_sg_dma_len(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
);
351 static int acquire_refill(struct rds_connection
*conn
)
353 return test_and_set_bit(RDS_RECV_REFILL
, &conn
->c_flags
) == 0;
356 static void release_refill(struct rds_connection
*conn
)
358 clear_bit(RDS_RECV_REFILL
, &conn
->c_flags
);
360 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
361 * hot path and finding waiters is very rare. We don't want to walk
362 * the system-wide hashed waitqueue buckets in the fast path only to
363 * almost never find waiters.
365 if (waitqueue_active(&conn
->c_waitq
))
366 wake_up_all(&conn
->c_waitq
);
370 * This tries to allocate and post unused work requests after making sure that
371 * they have all the allocations they need to queue received fragments into
374 * -1 is returned if posting fails due to temporary resource exhaustion.
376 void rds_ib_recv_refill(struct rds_connection
*conn
, int prefill
, gfp_t gfp
)
378 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
379 struct rds_ib_recv_work
*recv
;
380 struct ib_recv_wr
*failed_wr
;
381 unsigned int posted
= 0;
383 bool can_wait
= !!(gfp
& __GFP_DIRECT_RECLAIM
);
386 /* the goal here is to just make sure that someone, somewhere
387 * is posting buffers. If we can't get the refill lock,
388 * let them do their thing
390 if (!acquire_refill(conn
))
393 while ((prefill
|| rds_conn_up(conn
)) &&
394 rds_ib_ring_alloc(&ic
->i_recv_ring
, 1, &pos
)) {
395 if (pos
>= ic
->i_recv_ring
.w_nr
) {
396 printk(KERN_NOTICE
"Argh - ring alloc returned pos=%u\n",
401 recv
= &ic
->i_recvs
[pos
];
402 ret
= rds_ib_recv_refill_one(conn
, recv
, gfp
);
407 /* XXX when can this fail? */
408 ret
= ib_post_recv(ic
->i_cm_id
->qp
, &recv
->r_wr
, &failed_wr
);
409 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv
,
410 recv
->r_ibinc
, sg_page(&recv
->r_frag
->f_sg
),
411 (long) ib_sg_dma_address(
413 &recv
->r_frag
->f_sg
),
416 rds_ib_conn_error(conn
, "recv post on "
417 "%pI4 returned %d, disconnecting and "
418 "reconnecting\n", &conn
->c_faddr
,
426 /* We're doing flow control - update the window. */
427 if (ic
->i_flowctl
&& posted
)
428 rds_ib_advertise_credits(conn
, posted
);
431 rds_ib_ring_unalloc(&ic
->i_recv_ring
, 1);
433 release_refill(conn
);
435 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
436 * in this case the ring being low is going to lead to more interrupts
437 * and we can safely let the softirq code take care of it unless the
438 * ring is completely empty.
440 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
441 * we might have raced with the softirq code while we had the refill
442 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
443 * if we should requeue.
445 if (rds_conn_up(conn
) &&
446 ((can_wait
&& rds_ib_ring_low(&ic
->i_recv_ring
)) ||
447 rds_ib_ring_empty(&ic
->i_recv_ring
))) {
448 queue_delayed_work(rds_wq
, &conn
->c_recv_w
, 1);
453 * We want to recycle several types of recv allocations, like incs and frags.
454 * To use this, the *_free() function passes in the ptr to a list_head within
455 * the recyclee, as well as the cache to put it on.
457 * First, we put the memory on a percpu list. When this reaches a certain size,
458 * We move it to an intermediate non-percpu list in a lockless manner, with some
459 * xchg/compxchg wizardry.
461 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
462 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
463 * list_empty() will return true with one element is actually present.
465 static void rds_ib_recv_cache_put(struct list_head
*new_item
,
466 struct rds_ib_refill_cache
*cache
)
469 struct list_head
*old
, *chpfirst
;
471 local_irq_save(flags
);
473 chpfirst
= __this_cpu_read(cache
->percpu
->first
);
475 INIT_LIST_HEAD(new_item
);
476 else /* put on front */
477 list_add_tail(new_item
, chpfirst
);
479 __this_cpu_write(cache
->percpu
->first
, new_item
);
480 __this_cpu_inc(cache
->percpu
->count
);
482 if (__this_cpu_read(cache
->percpu
->count
) < RDS_IB_RECYCLE_BATCH_COUNT
)
486 * Return our per-cpu first list to the cache's xfer by atomically
487 * grabbing the current xfer list, appending it to our per-cpu list,
488 * and then atomically returning that entire list back to the
489 * cache's xfer list as long as it's still empty.
492 old
= xchg(&cache
->xfer
, NULL
);
494 list_splice_entire_tail(old
, chpfirst
);
495 old
= cmpxchg(&cache
->xfer
, NULL
, chpfirst
);
499 __this_cpu_write(cache
->percpu
->first
, NULL
);
500 __this_cpu_write(cache
->percpu
->count
, 0);
502 local_irq_restore(flags
);
505 static struct list_head
*rds_ib_recv_cache_get(struct rds_ib_refill_cache
*cache
)
507 struct list_head
*head
= cache
->ready
;
510 if (!list_empty(head
)) {
511 cache
->ready
= head
->next
;
520 int rds_ib_inc_copy_to_user(struct rds_incoming
*inc
, struct iov_iter
*to
)
522 struct rds_ib_incoming
*ibinc
;
523 struct rds_page_frag
*frag
;
524 unsigned long to_copy
;
525 unsigned long frag_off
= 0;
530 ibinc
= container_of(inc
, struct rds_ib_incoming
, ii_inc
);
531 frag
= list_entry(ibinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
532 len
= be32_to_cpu(inc
->i_hdr
.h_len
);
534 while (iov_iter_count(to
) && copied
< len
) {
535 if (frag_off
== RDS_FRAG_SIZE
) {
536 frag
= list_entry(frag
->f_item
.next
,
537 struct rds_page_frag
, f_item
);
540 to_copy
= min_t(unsigned long, iov_iter_count(to
),
541 RDS_FRAG_SIZE
- frag_off
);
542 to_copy
= min_t(unsigned long, to_copy
, len
- copied
);
544 /* XXX needs + offset for multiple recvs per page */
545 rds_stats_add(s_copy_to_user
, to_copy
);
546 ret
= copy_page_to_iter(sg_page(&frag
->f_sg
),
547 frag
->f_sg
.offset
+ frag_off
,
560 /* ic starts out kzalloc()ed */
561 void rds_ib_recv_init_ack(struct rds_ib_connection
*ic
)
563 struct ib_send_wr
*wr
= &ic
->i_ack_wr
;
564 struct ib_sge
*sge
= &ic
->i_ack_sge
;
566 sge
->addr
= ic
->i_ack_dma
;
567 sge
->length
= sizeof(struct rds_header
);
568 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
572 wr
->opcode
= IB_WR_SEND
;
573 wr
->wr_id
= RDS_IB_ACK_WR_ID
;
574 wr
->send_flags
= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
578 * You'd think that with reliable IB connections you wouldn't need to ack
579 * messages that have been received. The problem is that IB hardware generates
580 * an ack message before it has DMAed the message into memory. This creates a
581 * potential message loss if the HCA is disabled for any reason between when it
582 * sends the ack and before the message is DMAed and processed. This is only a
583 * potential issue if another HCA is available for fail-over.
585 * When the remote host receives our ack they'll free the sent message from
586 * their send queue. To decrease the latency of this we always send an ack
587 * immediately after we've received messages.
589 * For simplicity, we only have one ack in flight at a time. This puts
590 * pressure on senders to have deep enough send queues to absorb the latency of
591 * a single ack frame being in flight. This might not be good enough.
593 * This is implemented by have a long-lived send_wr and sge which point to a
594 * statically allocated ack frame. This ack wr does not fall under the ring
595 * accounting that the tx and rx wrs do. The QP attribute specifically makes
596 * room for it beyond the ring size. Send completion notices its special
597 * wr_id and avoids working with the ring in that case.
599 #ifndef KERNEL_HAS_ATOMIC64
600 void rds_ib_set_ack(struct rds_ib_connection
*ic
, u64 seq
, int ack_required
)
604 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
605 ic
->i_ack_next
= seq
;
607 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
608 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
611 static u64
rds_ib_get_ack(struct rds_ib_connection
*ic
)
616 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
618 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
619 seq
= ic
->i_ack_next
;
620 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
625 void rds_ib_set_ack(struct rds_ib_connection
*ic
, u64 seq
, int ack_required
)
627 atomic64_set(&ic
->i_ack_next
, seq
);
629 smp_mb__before_atomic();
630 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
634 static u64
rds_ib_get_ack(struct rds_ib_connection
*ic
)
636 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
637 smp_mb__after_atomic();
639 return atomic64_read(&ic
->i_ack_next
);
644 static void rds_ib_send_ack(struct rds_ib_connection
*ic
, unsigned int adv_credits
)
646 struct rds_header
*hdr
= ic
->i_ack
;
647 struct ib_send_wr
*failed_wr
;
651 seq
= rds_ib_get_ack(ic
);
653 rdsdebug("send_ack: ic %p ack %llu\n", ic
, (unsigned long long) seq
);
654 rds_message_populate_header(hdr
, 0, 0, 0);
655 hdr
->h_ack
= cpu_to_be64(seq
);
656 hdr
->h_credit
= adv_credits
;
657 rds_message_make_checksum(hdr
);
658 ic
->i_ack_queued
= jiffies
;
660 ret
= ib_post_send(ic
->i_cm_id
->qp
, &ic
->i_ack_wr
, &failed_wr
);
662 /* Failed to send. Release the WR, and
665 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
666 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
668 rds_ib_stats_inc(s_ib_ack_send_failure
);
670 rds_ib_conn_error(ic
->conn
, "sending ack failed\n");
672 rds_ib_stats_inc(s_ib_ack_sent
);
676 * There are 3 ways of getting acknowledgements to the peer:
677 * 1. We call rds_ib_attempt_ack from the recv completion handler
678 * to send an ACK-only frame.
679 * However, there can be only one such frame in the send queue
680 * at any time, so we may have to postpone it.
681 * 2. When another (data) packet is transmitted while there's
682 * an ACK in the queue, we piggyback the ACK sequence number
683 * on the data packet.
684 * 3. If the ACK WR is done sending, we get called from the
685 * send queue completion handler, and check whether there's
686 * another ACK pending (postponed because the WR was on the
687 * queue). If so, we transmit it.
689 * We maintain 2 variables:
690 * - i_ack_flags, which keeps track of whether the ACK WR
691 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
692 * - i_ack_next, which is the last sequence number we received
694 * Potentially, send queue and receive queue handlers can run concurrently.
695 * It would be nice to not have to use a spinlock to synchronize things,
696 * but the one problem that rules this out is that 64bit updates are
697 * not atomic on all platforms. Things would be a lot simpler if
698 * we had atomic64 or maybe cmpxchg64 everywhere.
700 * Reconnecting complicates this picture just slightly. When we
701 * reconnect, we may be seeing duplicate packets. The peer
702 * is retransmitting them, because it hasn't seen an ACK for
703 * them. It is important that we ACK these.
705 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
706 * this flag set *MUST* be acknowledged immediately.
710 * When we get here, we're called from the recv queue handler.
711 * Check whether we ought to transmit an ACK.
713 void rds_ib_attempt_ack(struct rds_ib_connection
*ic
)
715 unsigned int adv_credits
;
717 if (!test_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
720 if (test_and_set_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
)) {
721 rds_ib_stats_inc(s_ib_ack_send_delayed
);
725 /* Can we get a send credit? */
726 if (!rds_ib_send_grab_credits(ic
, 1, &adv_credits
, 0, RDS_MAX_ADV_CREDIT
)) {
727 rds_ib_stats_inc(s_ib_tx_throttle
);
728 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
732 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
733 rds_ib_send_ack(ic
, adv_credits
);
737 * We get here from the send completion handler, when the
738 * adapter tells us the ACK frame was sent.
740 void rds_ib_ack_send_complete(struct rds_ib_connection
*ic
)
742 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
743 rds_ib_attempt_ack(ic
);
747 * This is called by the regular xmit code when it wants to piggyback
748 * an ACK on an outgoing frame.
750 u64
rds_ib_piggyb_ack(struct rds_ib_connection
*ic
)
752 if (test_and_clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
753 rds_ib_stats_inc(s_ib_ack_send_piggybacked
);
754 return rds_ib_get_ack(ic
);
758 * It's kind of lame that we're copying from the posted receive pages into
759 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
760 * them. But receiving new congestion bitmaps should be a *rare* event, so
761 * hopefully we won't need to invest that complexity in making it more
762 * efficient. By copying we can share a simpler core with TCP which has to
765 static void rds_ib_cong_recv(struct rds_connection
*conn
,
766 struct rds_ib_incoming
*ibinc
)
768 struct rds_cong_map
*map
;
769 unsigned int map_off
;
770 unsigned int map_page
;
771 struct rds_page_frag
*frag
;
772 unsigned long frag_off
;
773 unsigned long to_copy
;
774 unsigned long copied
;
775 uint64_t uncongested
= 0;
778 /* catch completely corrupt packets */
779 if (be32_to_cpu(ibinc
->ii_inc
.i_hdr
.h_len
) != RDS_CONG_MAP_BYTES
)
786 frag
= list_entry(ibinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
791 while (copied
< RDS_CONG_MAP_BYTES
) {
795 to_copy
= min(RDS_FRAG_SIZE
- frag_off
, PAGE_SIZE
- map_off
);
796 BUG_ON(to_copy
& 7); /* Must be 64bit aligned. */
798 addr
= kmap_atomic(sg_page(&frag
->f_sg
));
800 src
= addr
+ frag
->f_sg
.offset
+ frag_off
;
801 dst
= (void *)map
->m_page_addrs
[map_page
] + map_off
;
802 for (k
= 0; k
< to_copy
; k
+= 8) {
803 /* Record ports that became uncongested, ie
804 * bits that changed from 0 to 1. */
805 uncongested
|= ~(*src
) & *dst
;
813 if (map_off
== PAGE_SIZE
) {
819 if (frag_off
== RDS_FRAG_SIZE
) {
820 frag
= list_entry(frag
->f_item
.next
,
821 struct rds_page_frag
, f_item
);
826 /* the congestion map is in little endian order */
827 uncongested
= le64_to_cpu(uncongested
);
829 rds_cong_map_updated(map
, uncongested
);
832 static void rds_ib_process_recv(struct rds_connection
*conn
,
833 struct rds_ib_recv_work
*recv
, u32 data_len
,
834 struct rds_ib_ack_state
*state
)
836 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
837 struct rds_ib_incoming
*ibinc
= ic
->i_ibinc
;
838 struct rds_header
*ihdr
, *hdr
;
840 /* XXX shut down the connection if port 0,0 are seen? */
842 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic
, ibinc
, recv
,
845 if (data_len
< sizeof(struct rds_header
)) {
846 rds_ib_conn_error(conn
, "incoming message "
847 "from %pI4 didn't include a "
848 "header, disconnecting and "
853 data_len
-= sizeof(struct rds_header
);
855 ihdr
= &ic
->i_recv_hdrs
[recv
- ic
->i_recvs
];
857 /* Validate the checksum. */
858 if (!rds_message_verify_checksum(ihdr
)) {
859 rds_ib_conn_error(conn
, "incoming message "
860 "from %pI4 has corrupted header - "
861 "forcing a reconnect\n",
863 rds_stats_inc(s_recv_drop_bad_checksum
);
867 /* Process the ACK sequence which comes with every packet */
868 state
->ack_recv
= be64_to_cpu(ihdr
->h_ack
);
869 state
->ack_recv_valid
= 1;
871 /* Process the credits update if there was one */
873 rds_ib_send_add_credits(conn
, ihdr
->h_credit
);
875 if (ihdr
->h_sport
== 0 && ihdr
->h_dport
== 0 && data_len
== 0) {
876 /* This is an ACK-only packet. The fact that it gets
877 * special treatment here is that historically, ACKs
878 * were rather special beasts.
880 rds_ib_stats_inc(s_ib_ack_received
);
883 * Usually the frags make their way on to incs and are then freed as
884 * the inc is freed. We don't go that route, so we have to drop the
885 * page ref ourselves. We can't just leave the page on the recv
886 * because that confuses the dma mapping of pages and each recv's use
889 * FIXME: Fold this into the code path below.
891 rds_ib_frag_free(ic
, recv
->r_frag
);
897 * If we don't already have an inc on the connection then this
898 * fragment has a header and starts a message.. copy its header
899 * into the inc and save the inc so we can hang upcoming fragments
903 ibinc
= recv
->r_ibinc
;
904 recv
->r_ibinc
= NULL
;
907 hdr
= &ibinc
->ii_inc
.i_hdr
;
908 memcpy(hdr
, ihdr
, sizeof(*hdr
));
909 ic
->i_recv_data_rem
= be32_to_cpu(hdr
->h_len
);
911 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic
, ibinc
,
912 ic
->i_recv_data_rem
, hdr
->h_flags
);
914 hdr
= &ibinc
->ii_inc
.i_hdr
;
915 /* We can't just use memcmp here; fragments of a
916 * single message may carry different ACKs */
917 if (hdr
->h_sequence
!= ihdr
->h_sequence
||
918 hdr
->h_len
!= ihdr
->h_len
||
919 hdr
->h_sport
!= ihdr
->h_sport
||
920 hdr
->h_dport
!= ihdr
->h_dport
) {
921 rds_ib_conn_error(conn
,
922 "fragment header mismatch; forcing reconnect\n");
927 list_add_tail(&recv
->r_frag
->f_item
, &ibinc
->ii_frags
);
930 if (ic
->i_recv_data_rem
> RDS_FRAG_SIZE
)
931 ic
->i_recv_data_rem
-= RDS_FRAG_SIZE
;
933 ic
->i_recv_data_rem
= 0;
936 if (ibinc
->ii_inc
.i_hdr
.h_flags
== RDS_FLAG_CONG_BITMAP
)
937 rds_ib_cong_recv(conn
, ibinc
);
939 rds_recv_incoming(conn
, conn
->c_faddr
, conn
->c_laddr
,
940 &ibinc
->ii_inc
, GFP_ATOMIC
);
941 state
->ack_next
= be64_to_cpu(hdr
->h_sequence
);
942 state
->ack_next_valid
= 1;
945 /* Evaluate the ACK_REQUIRED flag *after* we received
946 * the complete frame, and after bumping the next_rx
948 if (hdr
->h_flags
& RDS_FLAG_ACK_REQUIRED
) {
949 rds_stats_inc(s_recv_ack_required
);
950 state
->ack_required
= 1;
953 rds_inc_put(&ibinc
->ii_inc
);
957 void rds_ib_recv_cqe_handler(struct rds_ib_connection
*ic
,
959 struct rds_ib_ack_state
*state
)
961 struct rds_connection
*conn
= ic
->conn
;
962 struct rds_ib_recv_work
*recv
;
964 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
965 (unsigned long long)wc
->wr_id
, wc
->status
,
966 ib_wc_status_msg(wc
->status
), wc
->byte_len
,
967 be32_to_cpu(wc
->ex
.imm_data
));
969 rds_ib_stats_inc(s_ib_rx_cq_event
);
970 recv
= &ic
->i_recvs
[rds_ib_ring_oldest(&ic
->i_recv_ring
)];
971 ib_dma_unmap_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
, 1,
974 /* Also process recvs in connecting state because it is possible
975 * to get a recv completion _before_ the rdmacm ESTABLISHED
976 * event is processed.
978 if (wc
->status
== IB_WC_SUCCESS
) {
979 rds_ib_process_recv(conn
, recv
, wc
->byte_len
, state
);
981 /* We expect errors as the qp is drained during shutdown */
982 if (rds_conn_up(conn
) || rds_conn_connecting(conn
))
983 rds_ib_conn_error(conn
, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
986 ib_wc_status_msg(wc
->status
));
989 /* rds_ib_process_recv() doesn't always consume the frag, and
990 * we might not have called it at all if the wc didn't indicate
991 * success. We already unmapped the frag's pages, though, and
992 * the following rds_ib_ring_free() call tells the refill path
993 * that it will not find an allocated frag here. Make sure we
994 * keep that promise by freeing a frag that's still on the ring.
997 rds_ib_frag_free(ic
, recv
->r_frag
);
1000 rds_ib_ring_free(&ic
->i_recv_ring
, 1);
1002 /* If we ever end up with a really empty receive ring, we're
1003 * in deep trouble, as the sender will definitely see RNR
1005 if (rds_ib_ring_empty(&ic
->i_recv_ring
))
1006 rds_ib_stats_inc(s_ib_rx_ring_empty
);
1008 if (rds_ib_ring_low(&ic
->i_recv_ring
))
1009 rds_ib_recv_refill(conn
, 0, GFP_NOWAIT
);
1012 int rds_ib_recv_path(struct rds_conn_path
*cp
)
1014 struct rds_connection
*conn
= cp
->cp_conn
;
1015 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
1018 rdsdebug("conn %p\n", conn
);
1019 if (rds_conn_up(conn
)) {
1020 rds_ib_attempt_ack(ic
);
1021 rds_ib_recv_refill(conn
, 0, GFP_KERNEL
);
1027 int rds_ib_recv_init(void)
1032 /* Default to 30% of all available RAM for recv memory */
1034 rds_ib_sysctl_max_recv_allocation
= si
.totalram
/ 3 * PAGE_SIZE
/ RDS_FRAG_SIZE
;
1036 rds_ib_incoming_slab
= kmem_cache_create("rds_ib_incoming",
1037 sizeof(struct rds_ib_incoming
),
1038 0, SLAB_HWCACHE_ALIGN
, NULL
);
1039 if (!rds_ib_incoming_slab
)
1042 rds_ib_frag_slab
= kmem_cache_create("rds_ib_frag",
1043 sizeof(struct rds_page_frag
),
1044 0, SLAB_HWCACHE_ALIGN
, NULL
);
1045 if (!rds_ib_frag_slab
) {
1046 kmem_cache_destroy(rds_ib_incoming_slab
);
1047 rds_ib_incoming_slab
= NULL
;
1054 void rds_ib_recv_exit(void)
1056 kmem_cache_destroy(rds_ib_incoming_slab
);
1057 kmem_cache_destroy(rds_ib_frag_slab
);