Linux 4.8.3
[linux/fpc-iii.git] / net / rds / tcp_recv.c
blobad4892e97f91b3fdd4928072ea6f9a9aeaf11352
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <net/tcp.h>
37 #include "rds.h"
38 #include "tcp.h"
40 static struct kmem_cache *rds_tcp_incoming_slab;
42 static void rds_tcp_inc_purge(struct rds_incoming *inc)
44 struct rds_tcp_incoming *tinc;
45 tinc = container_of(inc, struct rds_tcp_incoming, ti_inc);
46 rdsdebug("purging tinc %p inc %p\n", tinc, inc);
47 skb_queue_purge(&tinc->ti_skb_list);
50 void rds_tcp_inc_free(struct rds_incoming *inc)
52 struct rds_tcp_incoming *tinc;
53 tinc = container_of(inc, struct rds_tcp_incoming, ti_inc);
54 rds_tcp_inc_purge(inc);
55 rdsdebug("freeing tinc %p inc %p\n", tinc, inc);
56 kmem_cache_free(rds_tcp_incoming_slab, tinc);
60 * this is pretty lame, but, whatever.
62 int rds_tcp_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
64 struct rds_tcp_incoming *tinc;
65 struct sk_buff *skb;
66 int ret = 0;
68 if (!iov_iter_count(to))
69 goto out;
71 tinc = container_of(inc, struct rds_tcp_incoming, ti_inc);
73 skb_queue_walk(&tinc->ti_skb_list, skb) {
74 unsigned long to_copy, skb_off;
75 for (skb_off = 0; skb_off < skb->len; skb_off += to_copy) {
76 to_copy = iov_iter_count(to);
77 to_copy = min(to_copy, skb->len - skb_off);
79 if (skb_copy_datagram_iter(skb, skb_off, to, to_copy))
80 return -EFAULT;
82 rds_stats_add(s_copy_to_user, to_copy);
83 ret += to_copy;
85 if (!iov_iter_count(to))
86 goto out;
89 out:
90 return ret;
94 * We have a series of skbs that have fragmented pieces of the congestion
95 * bitmap. They must add up to the exact size of the congestion bitmap. We
96 * use the skb helpers to copy those into the pages that make up the in-memory
97 * congestion bitmap for the remote address of this connection. We then tell
98 * the congestion core that the bitmap has been changed so that it can wake up
99 * sleepers.
101 * This is racing with sending paths which are using test_bit to see if the
102 * bitmap indicates that their recipient is congested.
105 static void rds_tcp_cong_recv(struct rds_connection *conn,
106 struct rds_tcp_incoming *tinc)
108 struct sk_buff *skb;
109 unsigned int to_copy, skb_off;
110 unsigned int map_off;
111 unsigned int map_page;
112 struct rds_cong_map *map;
113 int ret;
115 /* catch completely corrupt packets */
116 if (be32_to_cpu(tinc->ti_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
117 return;
119 map_page = 0;
120 map_off = 0;
121 map = conn->c_fcong;
123 skb_queue_walk(&tinc->ti_skb_list, skb) {
124 skb_off = 0;
125 while (skb_off < skb->len) {
126 to_copy = min_t(unsigned int, PAGE_SIZE - map_off,
127 skb->len - skb_off);
129 BUG_ON(map_page >= RDS_CONG_MAP_PAGES);
131 /* only returns 0 or -error */
132 ret = skb_copy_bits(skb, skb_off,
133 (void *)map->m_page_addrs[map_page] + map_off,
134 to_copy);
135 BUG_ON(ret != 0);
137 skb_off += to_copy;
138 map_off += to_copy;
139 if (map_off == PAGE_SIZE) {
140 map_off = 0;
141 map_page++;
146 rds_cong_map_updated(map, ~(u64) 0);
149 struct rds_tcp_desc_arg {
150 struct rds_conn_path *conn_path;
151 gfp_t gfp;
154 static int rds_tcp_data_recv(read_descriptor_t *desc, struct sk_buff *skb,
155 unsigned int offset, size_t len)
157 struct rds_tcp_desc_arg *arg = desc->arg.data;
158 struct rds_conn_path *cp = arg->conn_path;
159 struct rds_tcp_connection *tc = cp->cp_transport_data;
160 struct rds_tcp_incoming *tinc = tc->t_tinc;
161 struct sk_buff *clone;
162 size_t left = len, to_copy;
164 rdsdebug("tcp data tc %p skb %p offset %u len %zu\n", tc, skb, offset,
165 len);
168 * tcp_read_sock() interprets partial progress as an indication to stop
169 * processing.
171 while (left) {
172 if (!tinc) {
173 tinc = kmem_cache_alloc(rds_tcp_incoming_slab,
174 arg->gfp);
175 if (!tinc) {
176 desc->error = -ENOMEM;
177 goto out;
179 tc->t_tinc = tinc;
180 rdsdebug("alloced tinc %p\n", tinc);
181 rds_inc_path_init(&tinc->ti_inc, cp,
182 cp->cp_conn->c_faddr);
184 * XXX * we might be able to use the __ variants when
185 * we've already serialized at a higher level.
187 skb_queue_head_init(&tinc->ti_skb_list);
190 if (left && tc->t_tinc_hdr_rem) {
191 to_copy = min(tc->t_tinc_hdr_rem, left);
192 rdsdebug("copying %zu header from skb %p\n", to_copy,
193 skb);
194 skb_copy_bits(skb, offset,
195 (char *)&tinc->ti_inc.i_hdr +
196 sizeof(struct rds_header) -
197 tc->t_tinc_hdr_rem,
198 to_copy);
199 tc->t_tinc_hdr_rem -= to_copy;
200 left -= to_copy;
201 offset += to_copy;
203 if (tc->t_tinc_hdr_rem == 0) {
204 /* could be 0 for a 0 len message */
205 tc->t_tinc_data_rem =
206 be32_to_cpu(tinc->ti_inc.i_hdr.h_len);
210 if (left && tc->t_tinc_data_rem) {
211 to_copy = min(tc->t_tinc_data_rem, left);
213 clone = pskb_extract(skb, offset, to_copy, arg->gfp);
214 if (!clone) {
215 desc->error = -ENOMEM;
216 goto out;
219 skb_queue_tail(&tinc->ti_skb_list, clone);
221 rdsdebug("skb %p data %p len %d off %u to_copy %zu -> "
222 "clone %p data %p len %d\n",
223 skb, skb->data, skb->len, offset, to_copy,
224 clone, clone->data, clone->len);
226 tc->t_tinc_data_rem -= to_copy;
227 left -= to_copy;
228 offset += to_copy;
231 if (tc->t_tinc_hdr_rem == 0 && tc->t_tinc_data_rem == 0) {
232 struct rds_connection *conn = cp->cp_conn;
234 if (tinc->ti_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
235 rds_tcp_cong_recv(conn, tinc);
236 else
237 rds_recv_incoming(conn, conn->c_faddr,
238 conn->c_laddr, &tinc->ti_inc,
239 arg->gfp);
241 tc->t_tinc_hdr_rem = sizeof(struct rds_header);
242 tc->t_tinc_data_rem = 0;
243 tc->t_tinc = NULL;
244 rds_inc_put(&tinc->ti_inc);
245 tinc = NULL;
248 out:
249 rdsdebug("returning len %zu left %zu skb len %d rx queue depth %d\n",
250 len, left, skb->len,
251 skb_queue_len(&tc->t_sock->sk->sk_receive_queue));
252 return len - left;
255 /* the caller has to hold the sock lock */
256 static int rds_tcp_read_sock(struct rds_conn_path *cp, gfp_t gfp)
258 struct rds_tcp_connection *tc = cp->cp_transport_data;
259 struct socket *sock = tc->t_sock;
260 read_descriptor_t desc;
261 struct rds_tcp_desc_arg arg;
263 /* It's like glib in the kernel! */
264 arg.conn_path = cp;
265 arg.gfp = gfp;
266 desc.arg.data = &arg;
267 desc.error = 0;
268 desc.count = 1; /* give more than one skb per call */
270 tcp_read_sock(sock->sk, &desc, rds_tcp_data_recv);
271 rdsdebug("tcp_read_sock for tc %p gfp 0x%x returned %d\n", tc, gfp,
272 desc.error);
274 return desc.error;
278 * We hold the sock lock to serialize our rds_tcp_recv->tcp_read_sock from
279 * data_ready.
281 * if we fail to allocate we're in trouble.. blindly wait some time before
282 * trying again to see if the VM can free up something for us.
284 int rds_tcp_recv_path(struct rds_conn_path *cp)
286 struct rds_tcp_connection *tc = cp->cp_transport_data;
287 struct socket *sock = tc->t_sock;
288 int ret = 0;
290 rdsdebug("recv worker path [%d] tc %p sock %p\n",
291 cp->cp_index, tc, sock);
293 lock_sock(sock->sk);
294 ret = rds_tcp_read_sock(cp, GFP_KERNEL);
295 release_sock(sock->sk);
297 return ret;
300 void rds_tcp_data_ready(struct sock *sk)
302 void (*ready)(struct sock *sk);
303 struct rds_conn_path *cp;
304 struct rds_tcp_connection *tc;
306 rdsdebug("data ready sk %p\n", sk);
308 read_lock_bh(&sk->sk_callback_lock);
309 cp = sk->sk_user_data;
310 if (!cp) { /* check for teardown race */
311 ready = sk->sk_data_ready;
312 goto out;
315 tc = cp->cp_transport_data;
316 ready = tc->t_orig_data_ready;
317 rds_tcp_stats_inc(s_tcp_data_ready_calls);
319 if (rds_tcp_read_sock(cp, GFP_ATOMIC) == -ENOMEM)
320 queue_delayed_work(rds_wq, &cp->cp_recv_w, 0);
321 out:
322 read_unlock_bh(&sk->sk_callback_lock);
323 ready(sk);
326 int rds_tcp_recv_init(void)
328 rds_tcp_incoming_slab = kmem_cache_create("rds_tcp_incoming",
329 sizeof(struct rds_tcp_incoming),
330 0, 0, NULL);
331 if (!rds_tcp_incoming_slab)
332 return -ENOMEM;
333 return 0;
336 void rds_tcp_recv_exit(void)
338 kmem_cache_destroy(rds_tcp_incoming_slab);