2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * 2003-10-17 - Ported from altq
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
85 u64 sm1
; /* scaled slope of the 1st segment */
86 u64 ism1
; /* scaled inverse-slope of the 1st segment */
87 u64 dx
; /* the x-projection of the 1st segment */
88 u64 dy
; /* the y-projection of the 1st segment */
89 u64 sm2
; /* scaled slope of the 2nd segment */
90 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
93 /* runtime service curve */
95 u64 x
; /* current starting position on x-axis */
96 u64 y
; /* current starting position on y-axis */
97 u64 sm1
; /* scaled slope of the 1st segment */
98 u64 ism1
; /* scaled inverse-slope of the 1st segment */
99 u64 dx
; /* the x-projection of the 1st segment */
100 u64 dy
; /* the y-projection of the 1st segment */
101 u64 sm2
; /* scaled slope of the 2nd segment */
102 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
105 enum hfsc_class_flags
{
112 struct Qdisc_class_common cl_common
;
113 unsigned int refcnt
; /* usage count */
115 struct gnet_stats_basic_packed bstats
;
116 struct gnet_stats_queue qstats
;
117 struct gnet_stats_rate_est64 rate_est
;
118 struct tcf_proto __rcu
*filter_list
; /* filter list */
119 unsigned int filter_cnt
; /* filter count */
120 unsigned int level
; /* class level in hierarchy */
122 struct hfsc_sched
*sched
; /* scheduler data */
123 struct hfsc_class
*cl_parent
; /* parent class */
124 struct list_head siblings
; /* sibling classes */
125 struct list_head children
; /* child classes */
126 struct Qdisc
*qdisc
; /* leaf qdisc */
128 struct rb_node el_node
; /* qdisc's eligible tree member */
129 struct rb_root vt_tree
; /* active children sorted by cl_vt */
130 struct rb_node vt_node
; /* parent's vt_tree member */
131 struct rb_root cf_tree
; /* active children sorted by cl_f */
132 struct rb_node cf_node
; /* parent's cf_heap member */
134 u64 cl_total
; /* total work in bytes */
135 u64 cl_cumul
; /* cumulative work in bytes done by
136 real-time criteria */
138 u64 cl_d
; /* deadline*/
139 u64 cl_e
; /* eligible time */
140 u64 cl_vt
; /* virtual time */
141 u64 cl_f
; /* time when this class will fit for
142 link-sharing, max(myf, cfmin) */
143 u64 cl_myf
; /* my fit-time (calculated from this
144 class's own upperlimit curve) */
145 u64 cl_myfadj
; /* my fit-time adjustment (to cancel
146 history dependence) */
147 u64 cl_cfmin
; /* earliest children's fit-time (used
148 with cl_myf to obtain cl_f) */
149 u64 cl_cvtmin
; /* minimal virtual time among the
150 children fit for link-sharing
151 (monotonic within a period) */
152 u64 cl_vtadj
; /* intra-period cumulative vt
154 u64 cl_vtoff
; /* inter-period cumulative vt offset */
155 u64 cl_cvtmax
; /* max child's vt in the last period */
156 u64 cl_cvtoff
; /* cumulative cvtmax of all periods */
157 u64 cl_pcvtoff
; /* parent's cvtoff at initialization
160 struct internal_sc cl_rsc
; /* internal real-time service curve */
161 struct internal_sc cl_fsc
; /* internal fair service curve */
162 struct internal_sc cl_usc
; /* internal upperlimit service curve */
163 struct runtime_sc cl_deadline
; /* deadline curve */
164 struct runtime_sc cl_eligible
; /* eligible curve */
165 struct runtime_sc cl_virtual
; /* virtual curve */
166 struct runtime_sc cl_ulimit
; /* upperlimit curve */
168 u8 cl_flags
; /* which curves are valid */
169 u32 cl_vtperiod
; /* vt period sequence number */
170 u32 cl_parentperiod
;/* parent's vt period sequence number*/
171 u32 cl_nactive
; /* number of active children */
175 u16 defcls
; /* default class id */
176 struct hfsc_class root
; /* root class */
177 struct Qdisc_class_hash clhash
; /* class hash */
178 struct rb_root eligible
; /* eligible tree */
179 struct qdisc_watchdog watchdog
; /* watchdog timer */
182 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
186 * eligible tree holds backlogged classes being sorted by their eligible times.
187 * there is one eligible tree per hfsc instance.
191 eltree_insert(struct hfsc_class
*cl
)
193 struct rb_node
**p
= &cl
->sched
->eligible
.rb_node
;
194 struct rb_node
*parent
= NULL
;
195 struct hfsc_class
*cl1
;
199 cl1
= rb_entry(parent
, struct hfsc_class
, el_node
);
200 if (cl
->cl_e
>= cl1
->cl_e
)
201 p
= &parent
->rb_right
;
203 p
= &parent
->rb_left
;
205 rb_link_node(&cl
->el_node
, parent
, p
);
206 rb_insert_color(&cl
->el_node
, &cl
->sched
->eligible
);
210 eltree_remove(struct hfsc_class
*cl
)
212 rb_erase(&cl
->el_node
, &cl
->sched
->eligible
);
216 eltree_update(struct hfsc_class
*cl
)
222 /* find the class with the minimum deadline among the eligible classes */
223 static inline struct hfsc_class
*
224 eltree_get_mindl(struct hfsc_sched
*q
, u64 cur_time
)
226 struct hfsc_class
*p
, *cl
= NULL
;
229 for (n
= rb_first(&q
->eligible
); n
!= NULL
; n
= rb_next(n
)) {
230 p
= rb_entry(n
, struct hfsc_class
, el_node
);
231 if (p
->cl_e
> cur_time
)
233 if (cl
== NULL
|| p
->cl_d
< cl
->cl_d
)
239 /* find the class with minimum eligible time among the eligible classes */
240 static inline struct hfsc_class
*
241 eltree_get_minel(struct hfsc_sched
*q
)
245 n
= rb_first(&q
->eligible
);
248 return rb_entry(n
, struct hfsc_class
, el_node
);
252 * vttree holds holds backlogged child classes being sorted by their virtual
253 * time. each intermediate class has one vttree.
256 vttree_insert(struct hfsc_class
*cl
)
258 struct rb_node
**p
= &cl
->cl_parent
->vt_tree
.rb_node
;
259 struct rb_node
*parent
= NULL
;
260 struct hfsc_class
*cl1
;
264 cl1
= rb_entry(parent
, struct hfsc_class
, vt_node
);
265 if (cl
->cl_vt
>= cl1
->cl_vt
)
266 p
= &parent
->rb_right
;
268 p
= &parent
->rb_left
;
270 rb_link_node(&cl
->vt_node
, parent
, p
);
271 rb_insert_color(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
275 vttree_remove(struct hfsc_class
*cl
)
277 rb_erase(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
281 vttree_update(struct hfsc_class
*cl
)
287 static inline struct hfsc_class
*
288 vttree_firstfit(struct hfsc_class
*cl
, u64 cur_time
)
290 struct hfsc_class
*p
;
293 for (n
= rb_first(&cl
->vt_tree
); n
!= NULL
; n
= rb_next(n
)) {
294 p
= rb_entry(n
, struct hfsc_class
, vt_node
);
295 if (p
->cl_f
<= cur_time
)
302 * get the leaf class with the minimum vt in the hierarchy
304 static struct hfsc_class
*
305 vttree_get_minvt(struct hfsc_class
*cl
, u64 cur_time
)
307 /* if root-class's cfmin is bigger than cur_time nothing to do */
308 if (cl
->cl_cfmin
> cur_time
)
311 while (cl
->level
> 0) {
312 cl
= vttree_firstfit(cl
, cur_time
);
316 * update parent's cl_cvtmin.
318 if (cl
->cl_parent
->cl_cvtmin
< cl
->cl_vt
)
319 cl
->cl_parent
->cl_cvtmin
= cl
->cl_vt
;
325 cftree_insert(struct hfsc_class
*cl
)
327 struct rb_node
**p
= &cl
->cl_parent
->cf_tree
.rb_node
;
328 struct rb_node
*parent
= NULL
;
329 struct hfsc_class
*cl1
;
333 cl1
= rb_entry(parent
, struct hfsc_class
, cf_node
);
334 if (cl
->cl_f
>= cl1
->cl_f
)
335 p
= &parent
->rb_right
;
337 p
= &parent
->rb_left
;
339 rb_link_node(&cl
->cf_node
, parent
, p
);
340 rb_insert_color(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
344 cftree_remove(struct hfsc_class
*cl
)
346 rb_erase(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
350 cftree_update(struct hfsc_class
*cl
)
357 * service curve support functions
359 * external service curve parameters
362 * internal service curve parameters
363 * sm: (bytes/psched_us) << SM_SHIFT
364 * ism: (psched_us/byte) << ISM_SHIFT
367 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
369 * sm and ism are scaled in order to keep effective digits.
370 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
371 * digits in decimal using the following table.
373 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
374 * ------------+-------------------------------------------------------
375 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
377 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
379 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
381 #define SM_SHIFT (30 - PSCHED_SHIFT)
382 #define ISM_SHIFT (8 + PSCHED_SHIFT)
384 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
385 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
388 seg_x2y(u64 x
, u64 sm
)
394 * y = x * sm >> SM_SHIFT
395 * but divide it for the upper and lower bits to avoid overflow
397 y
= (x
>> SM_SHIFT
) * sm
+ (((x
& SM_MASK
) * sm
) >> SM_SHIFT
);
402 seg_y2x(u64 y
, u64 ism
)
408 else if (ism
== HT_INFINITY
)
411 x
= (y
>> ISM_SHIFT
) * ism
412 + (((y
& ISM_MASK
) * ism
) >> ISM_SHIFT
);
417 /* Convert m (bps) into sm (bytes/psched us) */
423 sm
= ((u64
)m
<< SM_SHIFT
);
424 sm
+= PSCHED_TICKS_PER_SEC
- 1;
425 do_div(sm
, PSCHED_TICKS_PER_SEC
);
429 /* convert m (bps) into ism (psched us/byte) */
438 ism
= ((u64
)PSCHED_TICKS_PER_SEC
<< ISM_SHIFT
);
445 /* convert d (us) into dx (psched us) */
451 dx
= ((u64
)d
* PSCHED_TICKS_PER_SEC
);
452 dx
+= USEC_PER_SEC
- 1;
453 do_div(dx
, USEC_PER_SEC
);
457 /* convert sm (bytes/psched us) into m (bps) */
463 m
= (sm
* PSCHED_TICKS_PER_SEC
) >> SM_SHIFT
;
467 /* convert dx (psched us) into d (us) */
473 d
= dx
* USEC_PER_SEC
;
474 do_div(d
, PSCHED_TICKS_PER_SEC
);
479 sc2isc(struct tc_service_curve
*sc
, struct internal_sc
*isc
)
481 isc
->sm1
= m2sm(sc
->m1
);
482 isc
->ism1
= m2ism(sc
->m1
);
483 isc
->dx
= d2dx(sc
->d
);
484 isc
->dy
= seg_x2y(isc
->dx
, isc
->sm1
);
485 isc
->sm2
= m2sm(sc
->m2
);
486 isc
->ism2
= m2ism(sc
->m2
);
490 * initialize the runtime service curve with the given internal
491 * service curve starting at (x, y).
494 rtsc_init(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
498 rtsc
->sm1
= isc
->sm1
;
499 rtsc
->ism1
= isc
->ism1
;
502 rtsc
->sm2
= isc
->sm2
;
503 rtsc
->ism2
= isc
->ism2
;
507 * calculate the y-projection of the runtime service curve by the
508 * given x-projection value
511 rtsc_y2x(struct runtime_sc
*rtsc
, u64 y
)
517 else if (y
<= rtsc
->y
+ rtsc
->dy
) {
518 /* x belongs to the 1st segment */
520 x
= rtsc
->x
+ rtsc
->dx
;
522 x
= rtsc
->x
+ seg_y2x(y
- rtsc
->y
, rtsc
->ism1
);
524 /* x belongs to the 2nd segment */
525 x
= rtsc
->x
+ rtsc
->dx
526 + seg_y2x(y
- rtsc
->y
- rtsc
->dy
, rtsc
->ism2
);
532 rtsc_x2y(struct runtime_sc
*rtsc
, u64 x
)
538 else if (x
<= rtsc
->x
+ rtsc
->dx
)
539 /* y belongs to the 1st segment */
540 y
= rtsc
->y
+ seg_x2y(x
- rtsc
->x
, rtsc
->sm1
);
542 /* y belongs to the 2nd segment */
543 y
= rtsc
->y
+ rtsc
->dy
544 + seg_x2y(x
- rtsc
->x
- rtsc
->dx
, rtsc
->sm2
);
549 * update the runtime service curve by taking the minimum of the current
550 * runtime service curve and the service curve starting at (x, y).
553 rtsc_min(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
558 if (isc
->sm1
<= isc
->sm2
) {
559 /* service curve is convex */
560 y1
= rtsc_x2y(rtsc
, x
);
562 /* the current rtsc is smaller */
570 * service curve is concave
571 * compute the two y values of the current rtsc
575 y1
= rtsc_x2y(rtsc
, x
);
577 /* rtsc is below isc, no change to rtsc */
581 y2
= rtsc_x2y(rtsc
, x
+ isc
->dx
);
582 if (y2
>= y
+ isc
->dy
) {
583 /* rtsc is above isc, replace rtsc by isc */
592 * the two curves intersect
593 * compute the offsets (dx, dy) using the reverse
594 * function of seg_x2y()
595 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
597 dx
= (y1
- y
) << SM_SHIFT
;
598 dsm
= isc
->sm1
- isc
->sm2
;
601 * check if (x, y1) belongs to the 1st segment of rtsc.
602 * if so, add the offset.
604 if (rtsc
->x
+ rtsc
->dx
> x
)
605 dx
+= rtsc
->x
+ rtsc
->dx
- x
;
606 dy
= seg_x2y(dx
, isc
->sm1
);
615 init_ed(struct hfsc_class
*cl
, unsigned int next_len
)
617 u64 cur_time
= psched_get_time();
619 /* update the deadline curve */
620 rtsc_min(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
623 * update the eligible curve.
624 * for concave, it is equal to the deadline curve.
625 * for convex, it is a linear curve with slope m2.
627 cl
->cl_eligible
= cl
->cl_deadline
;
628 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
629 cl
->cl_eligible
.dx
= 0;
630 cl
->cl_eligible
.dy
= 0;
633 /* compute e and d */
634 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
635 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
641 update_ed(struct hfsc_class
*cl
, unsigned int next_len
)
643 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
644 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
650 update_d(struct hfsc_class
*cl
, unsigned int next_len
)
652 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
656 update_cfmin(struct hfsc_class
*cl
)
658 struct rb_node
*n
= rb_first(&cl
->cf_tree
);
659 struct hfsc_class
*p
;
665 p
= rb_entry(n
, struct hfsc_class
, cf_node
);
666 cl
->cl_cfmin
= p
->cl_f
;
670 init_vf(struct hfsc_class
*cl
, unsigned int len
)
672 struct hfsc_class
*max_cl
;
679 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
680 if (go_active
&& cl
->cl_nactive
++ == 0)
686 n
= rb_last(&cl
->cl_parent
->vt_tree
);
688 max_cl
= rb_entry(n
, struct hfsc_class
, vt_node
);
690 * set vt to the average of the min and max
691 * classes. if the parent's period didn't
692 * change, don't decrease vt of the class.
695 if (cl
->cl_parent
->cl_cvtmin
!= 0)
696 vt
= (cl
->cl_parent
->cl_cvtmin
+ vt
)/2;
698 if (cl
->cl_parent
->cl_vtperiod
!=
699 cl
->cl_parentperiod
|| vt
> cl
->cl_vt
)
703 * first child for a new parent backlog period.
704 * add parent's cvtmax to cvtoff to make a new
705 * vt (vtoff + vt) larger than the vt in the
706 * last period for all children.
708 vt
= cl
->cl_parent
->cl_cvtmax
;
709 cl
->cl_parent
->cl_cvtoff
+= vt
;
710 cl
->cl_parent
->cl_cvtmax
= 0;
711 cl
->cl_parent
->cl_cvtmin
= 0;
715 cl
->cl_vtoff
= cl
->cl_parent
->cl_cvtoff
-
718 /* update the virtual curve */
719 vt
= cl
->cl_vt
+ cl
->cl_vtoff
;
720 rtsc_min(&cl
->cl_virtual
, &cl
->cl_fsc
, vt
,
722 if (cl
->cl_virtual
.x
== vt
) {
723 cl
->cl_virtual
.x
-= cl
->cl_vtoff
;
728 cl
->cl_vtperiod
++; /* increment vt period */
729 cl
->cl_parentperiod
= cl
->cl_parent
->cl_vtperiod
;
730 if (cl
->cl_parent
->cl_nactive
== 0)
731 cl
->cl_parentperiod
++;
737 if (cl
->cl_flags
& HFSC_USC
) {
738 /* class has upper limit curve */
740 cur_time
= psched_get_time();
742 /* update the ulimit curve */
743 rtsc_min(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
,
746 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
,
752 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
757 update_cfmin(cl
->cl_parent
);
762 update_vf(struct hfsc_class
*cl
, unsigned int len
, u64 cur_time
)
764 u64 f
; /* , myf_bound, delta; */
767 if (cl
->qdisc
->q
.qlen
== 0 && cl
->cl_flags
& HFSC_FSC
)
770 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
773 if (!(cl
->cl_flags
& HFSC_FSC
) || cl
->cl_nactive
== 0)
776 if (go_passive
&& --cl
->cl_nactive
== 0)
782 cl
->cl_vt
= rtsc_y2x(&cl
->cl_virtual
, cl
->cl_total
)
783 - cl
->cl_vtoff
+ cl
->cl_vtadj
;
786 * if vt of the class is smaller than cvtmin,
787 * the class was skipped in the past due to non-fit.
788 * if so, we need to adjust vtadj.
790 if (cl
->cl_vt
< cl
->cl_parent
->cl_cvtmin
) {
791 cl
->cl_vtadj
+= cl
->cl_parent
->cl_cvtmin
- cl
->cl_vt
;
792 cl
->cl_vt
= cl
->cl_parent
->cl_cvtmin
;
796 /* no more active child, going passive */
798 /* update cvtmax of the parent class */
799 if (cl
->cl_vt
> cl
->cl_parent
->cl_cvtmax
)
800 cl
->cl_parent
->cl_cvtmax
= cl
->cl_vt
;
802 /* remove this class from the vt tree */
806 update_cfmin(cl
->cl_parent
);
811 /* update the vt tree */
815 if (cl
->cl_flags
& HFSC_USC
) {
816 cl
->cl_myf
= cl
->cl_myfadj
+ rtsc_y2x(&cl
->cl_ulimit
,
820 * This code causes classes to stay way under their
821 * limit when multiple classes are used at gigabit
822 * speed. needs investigation. -kaber
825 * if myf lags behind by more than one clock tick
826 * from the current time, adjust myfadj to prevent
827 * a rate-limited class from going greedy.
828 * in a steady state under rate-limiting, myf
829 * fluctuates within one clock tick.
831 myf_bound
= cur_time
- PSCHED_JIFFIE2US(1);
832 if (cl
->cl_myf
< myf_bound
) {
833 delta
= cur_time
- cl
->cl_myf
;
834 cl
->cl_myfadj
+= delta
;
840 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
844 update_cfmin(cl
->cl_parent
);
850 set_active(struct hfsc_class
*cl
, unsigned int len
)
852 if (cl
->cl_flags
& HFSC_RSC
)
854 if (cl
->cl_flags
& HFSC_FSC
)
860 set_passive(struct hfsc_class
*cl
)
862 if (cl
->cl_flags
& HFSC_RSC
)
866 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
867 * needs to be called explicitly to remove a class from vttree.
872 qdisc_peek_len(struct Qdisc
*sch
)
877 skb
= sch
->ops
->peek(sch
);
878 if (unlikely(skb
== NULL
)) {
879 qdisc_warn_nonwc("qdisc_peek_len", sch
);
882 len
= qdisc_pkt_len(skb
);
888 hfsc_purge_queue(struct Qdisc
*sch
, struct hfsc_class
*cl
)
890 unsigned int len
= cl
->qdisc
->q
.qlen
;
891 unsigned int backlog
= cl
->qdisc
->qstats
.backlog
;
893 qdisc_reset(cl
->qdisc
);
894 qdisc_tree_reduce_backlog(cl
->qdisc
, len
, backlog
);
898 hfsc_adjust_levels(struct hfsc_class
*cl
)
900 struct hfsc_class
*p
;
905 list_for_each_entry(p
, &cl
->children
, siblings
) {
906 if (p
->level
>= level
)
907 level
= p
->level
+ 1;
910 } while ((cl
= cl
->cl_parent
) != NULL
);
913 static inline struct hfsc_class
*
914 hfsc_find_class(u32 classid
, struct Qdisc
*sch
)
916 struct hfsc_sched
*q
= qdisc_priv(sch
);
917 struct Qdisc_class_common
*clc
;
919 clc
= qdisc_class_find(&q
->clhash
, classid
);
922 return container_of(clc
, struct hfsc_class
, cl_common
);
926 hfsc_change_rsc(struct hfsc_class
*cl
, struct tc_service_curve
*rsc
,
929 sc2isc(rsc
, &cl
->cl_rsc
);
930 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
931 cl
->cl_eligible
= cl
->cl_deadline
;
932 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
933 cl
->cl_eligible
.dx
= 0;
934 cl
->cl_eligible
.dy
= 0;
936 cl
->cl_flags
|= HFSC_RSC
;
940 hfsc_change_fsc(struct hfsc_class
*cl
, struct tc_service_curve
*fsc
)
942 sc2isc(fsc
, &cl
->cl_fsc
);
943 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vtoff
+ cl
->cl_vt
, cl
->cl_total
);
944 cl
->cl_flags
|= HFSC_FSC
;
948 hfsc_change_usc(struct hfsc_class
*cl
, struct tc_service_curve
*usc
,
951 sc2isc(usc
, &cl
->cl_usc
);
952 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
, cl
->cl_total
);
953 cl
->cl_flags
|= HFSC_USC
;
956 static const struct nla_policy hfsc_policy
[TCA_HFSC_MAX
+ 1] = {
957 [TCA_HFSC_RSC
] = { .len
= sizeof(struct tc_service_curve
) },
958 [TCA_HFSC_FSC
] = { .len
= sizeof(struct tc_service_curve
) },
959 [TCA_HFSC_USC
] = { .len
= sizeof(struct tc_service_curve
) },
963 hfsc_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
964 struct nlattr
**tca
, unsigned long *arg
)
966 struct hfsc_sched
*q
= qdisc_priv(sch
);
967 struct hfsc_class
*cl
= (struct hfsc_class
*)*arg
;
968 struct hfsc_class
*parent
= NULL
;
969 struct nlattr
*opt
= tca
[TCA_OPTIONS
];
970 struct nlattr
*tb
[TCA_HFSC_MAX
+ 1];
971 struct tc_service_curve
*rsc
= NULL
, *fsc
= NULL
, *usc
= NULL
;
978 err
= nla_parse_nested(tb
, TCA_HFSC_MAX
, opt
, hfsc_policy
);
982 if (tb
[TCA_HFSC_RSC
]) {
983 rsc
= nla_data(tb
[TCA_HFSC_RSC
]);
984 if (rsc
->m1
== 0 && rsc
->m2
== 0)
988 if (tb
[TCA_HFSC_FSC
]) {
989 fsc
= nla_data(tb
[TCA_HFSC_FSC
]);
990 if (fsc
->m1
== 0 && fsc
->m2
== 0)
994 if (tb
[TCA_HFSC_USC
]) {
995 usc
= nla_data(tb
[TCA_HFSC_USC
]);
996 if (usc
->m1
== 0 && usc
->m2
== 0)
1002 if (cl
->cl_parent
&&
1003 cl
->cl_parent
->cl_common
.classid
!= parentid
)
1005 if (cl
->cl_parent
== NULL
&& parentid
!= TC_H_ROOT
)
1008 cur_time
= psched_get_time();
1010 if (tca
[TCA_RATE
]) {
1011 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
1014 qdisc_root_sleeping_running(sch
),
1022 hfsc_change_rsc(cl
, rsc
, cur_time
);
1024 hfsc_change_fsc(cl
, fsc
);
1026 hfsc_change_usc(cl
, usc
, cur_time
);
1028 if (cl
->qdisc
->q
.qlen
!= 0) {
1029 if (cl
->cl_flags
& HFSC_RSC
)
1030 update_ed(cl
, qdisc_peek_len(cl
->qdisc
));
1031 if (cl
->cl_flags
& HFSC_FSC
)
1032 update_vf(cl
, 0, cur_time
);
1034 sch_tree_unlock(sch
);
1039 if (parentid
== TC_H_ROOT
)
1044 parent
= hfsc_find_class(parentid
, sch
);
1049 if (classid
== 0 || TC_H_MAJ(classid
^ sch
->handle
) != 0)
1051 if (hfsc_find_class(classid
, sch
))
1054 if (rsc
== NULL
&& fsc
== NULL
)
1057 cl
= kzalloc(sizeof(struct hfsc_class
), GFP_KERNEL
);
1061 if (tca
[TCA_RATE
]) {
1062 err
= gen_new_estimator(&cl
->bstats
, NULL
, &cl
->rate_est
,
1064 qdisc_root_sleeping_running(sch
),
1073 hfsc_change_rsc(cl
, rsc
, 0);
1075 hfsc_change_fsc(cl
, fsc
);
1077 hfsc_change_usc(cl
, usc
, 0);
1079 cl
->cl_common
.classid
= classid
;
1082 cl
->cl_parent
= parent
;
1083 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
,
1084 &pfifo_qdisc_ops
, classid
);
1085 if (cl
->qdisc
== NULL
)
1086 cl
->qdisc
= &noop_qdisc
;
1087 INIT_LIST_HEAD(&cl
->children
);
1088 cl
->vt_tree
= RB_ROOT
;
1089 cl
->cf_tree
= RB_ROOT
;
1092 qdisc_class_hash_insert(&q
->clhash
, &cl
->cl_common
);
1093 list_add_tail(&cl
->siblings
, &parent
->children
);
1094 if (parent
->level
== 0)
1095 hfsc_purge_queue(sch
, parent
);
1096 hfsc_adjust_levels(parent
);
1097 cl
->cl_pcvtoff
= parent
->cl_cvtoff
;
1098 sch_tree_unlock(sch
);
1100 qdisc_class_hash_grow(sch
, &q
->clhash
);
1102 *arg
= (unsigned long)cl
;
1107 hfsc_destroy_class(struct Qdisc
*sch
, struct hfsc_class
*cl
)
1109 struct hfsc_sched
*q
= qdisc_priv(sch
);
1111 tcf_destroy_chain(&cl
->filter_list
);
1112 qdisc_destroy(cl
->qdisc
);
1113 gen_kill_estimator(&cl
->bstats
, &cl
->rate_est
);
1119 hfsc_delete_class(struct Qdisc
*sch
, unsigned long arg
)
1121 struct hfsc_sched
*q
= qdisc_priv(sch
);
1122 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1124 if (cl
->level
> 0 || cl
->filter_cnt
> 0 || cl
== &q
->root
)
1129 list_del(&cl
->siblings
);
1130 hfsc_adjust_levels(cl
->cl_parent
);
1132 hfsc_purge_queue(sch
, cl
);
1133 qdisc_class_hash_remove(&q
->clhash
, &cl
->cl_common
);
1135 BUG_ON(--cl
->refcnt
== 0);
1137 * This shouldn't happen: we "hold" one cops->get() when called
1138 * from tc_ctl_tclass; the destroy method is done from cops->put().
1141 sch_tree_unlock(sch
);
1145 static struct hfsc_class
*
1146 hfsc_classify(struct sk_buff
*skb
, struct Qdisc
*sch
, int *qerr
)
1148 struct hfsc_sched
*q
= qdisc_priv(sch
);
1149 struct hfsc_class
*head
, *cl
;
1150 struct tcf_result res
;
1151 struct tcf_proto
*tcf
;
1154 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0 &&
1155 (cl
= hfsc_find_class(skb
->priority
, sch
)) != NULL
)
1159 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1161 tcf
= rcu_dereference_bh(q
->root
.filter_list
);
1162 while (tcf
&& (result
= tc_classify(skb
, tcf
, &res
, false)) >= 0) {
1163 #ifdef CONFIG_NET_CLS_ACT
1167 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1172 cl
= (struct hfsc_class
*)res
.class;
1174 cl
= hfsc_find_class(res
.classid
, sch
);
1176 break; /* filter selected invalid classid */
1177 if (cl
->level
>= head
->level
)
1178 break; /* filter may only point downwards */
1182 return cl
; /* hit leaf class */
1184 /* apply inner filter chain */
1185 tcf
= rcu_dereference_bh(cl
->filter_list
);
1189 /* classification failed, try default class */
1190 cl
= hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch
->handle
), q
->defcls
), sch
);
1191 if (cl
== NULL
|| cl
->level
> 0)
1198 hfsc_graft_class(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1201 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1206 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1207 cl
->cl_common
.classid
);
1212 *old
= qdisc_replace(sch
, new, &cl
->qdisc
);
1216 static struct Qdisc
*
1217 hfsc_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
1219 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1228 hfsc_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1230 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1232 if (cl
->qdisc
->q
.qlen
== 0) {
1233 update_vf(cl
, 0, 0);
1238 static unsigned long
1239 hfsc_get_class(struct Qdisc
*sch
, u32 classid
)
1241 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1246 return (unsigned long)cl
;
1250 hfsc_put_class(struct Qdisc
*sch
, unsigned long arg
)
1252 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1254 if (--cl
->refcnt
== 0)
1255 hfsc_destroy_class(sch
, cl
);
1258 static unsigned long
1259 hfsc_bind_tcf(struct Qdisc
*sch
, unsigned long parent
, u32 classid
)
1261 struct hfsc_class
*p
= (struct hfsc_class
*)parent
;
1262 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1265 if (p
!= NULL
&& p
->level
<= cl
->level
)
1270 return (unsigned long)cl
;
1274 hfsc_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
1276 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1281 static struct tcf_proto __rcu
**
1282 hfsc_tcf_chain(struct Qdisc
*sch
, unsigned long arg
)
1284 struct hfsc_sched
*q
= qdisc_priv(sch
);
1285 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1290 return &cl
->filter_list
;
1294 hfsc_dump_sc(struct sk_buff
*skb
, int attr
, struct internal_sc
*sc
)
1296 struct tc_service_curve tsc
;
1298 tsc
.m1
= sm2m(sc
->sm1
);
1299 tsc
.d
= dx2d(sc
->dx
);
1300 tsc
.m2
= sm2m(sc
->sm2
);
1301 if (nla_put(skb
, attr
, sizeof(tsc
), &tsc
))
1302 goto nla_put_failure
;
1311 hfsc_dump_curves(struct sk_buff
*skb
, struct hfsc_class
*cl
)
1313 if ((cl
->cl_flags
& HFSC_RSC
) &&
1314 (hfsc_dump_sc(skb
, TCA_HFSC_RSC
, &cl
->cl_rsc
) < 0))
1315 goto nla_put_failure
;
1317 if ((cl
->cl_flags
& HFSC_FSC
) &&
1318 (hfsc_dump_sc(skb
, TCA_HFSC_FSC
, &cl
->cl_fsc
) < 0))
1319 goto nla_put_failure
;
1321 if ((cl
->cl_flags
& HFSC_USC
) &&
1322 (hfsc_dump_sc(skb
, TCA_HFSC_USC
, &cl
->cl_usc
) < 0))
1323 goto nla_put_failure
;
1332 hfsc_dump_class(struct Qdisc
*sch
, unsigned long arg
, struct sk_buff
*skb
,
1335 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1336 struct nlattr
*nest
;
1338 tcm
->tcm_parent
= cl
->cl_parent
? cl
->cl_parent
->cl_common
.classid
:
1340 tcm
->tcm_handle
= cl
->cl_common
.classid
;
1342 tcm
->tcm_info
= cl
->qdisc
->handle
;
1344 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
1346 goto nla_put_failure
;
1347 if (hfsc_dump_curves(skb
, cl
) < 0)
1348 goto nla_put_failure
;
1349 return nla_nest_end(skb
, nest
);
1352 nla_nest_cancel(skb
, nest
);
1357 hfsc_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
1358 struct gnet_dump
*d
)
1360 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1361 struct tc_hfsc_stats xstats
;
1363 cl
->qstats
.backlog
= cl
->qdisc
->qstats
.backlog
;
1364 xstats
.level
= cl
->level
;
1365 xstats
.period
= cl
->cl_vtperiod
;
1366 xstats
.work
= cl
->cl_total
;
1367 xstats
.rtwork
= cl
->cl_cumul
;
1369 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch
), d
, NULL
, &cl
->bstats
) < 0 ||
1370 gnet_stats_copy_rate_est(d
, &cl
->bstats
, &cl
->rate_est
) < 0 ||
1371 gnet_stats_copy_queue(d
, NULL
, &cl
->qstats
, cl
->qdisc
->q
.qlen
) < 0)
1374 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
1380 hfsc_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
1382 struct hfsc_sched
*q
= qdisc_priv(sch
);
1383 struct hfsc_class
*cl
;
1389 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1390 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
],
1392 if (arg
->count
< arg
->skip
) {
1396 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
1406 hfsc_schedule_watchdog(struct Qdisc
*sch
)
1408 struct hfsc_sched
*q
= qdisc_priv(sch
);
1409 struct hfsc_class
*cl
;
1412 cl
= eltree_get_minel(q
);
1414 next_time
= cl
->cl_e
;
1415 if (q
->root
.cl_cfmin
!= 0) {
1416 if (next_time
== 0 || next_time
> q
->root
.cl_cfmin
)
1417 next_time
= q
->root
.cl_cfmin
;
1419 WARN_ON(next_time
== 0);
1420 qdisc_watchdog_schedule(&q
->watchdog
, next_time
);
1424 hfsc_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1426 struct hfsc_sched
*q
= qdisc_priv(sch
);
1427 struct tc_hfsc_qopt
*qopt
;
1430 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1432 qopt
= nla_data(opt
);
1434 q
->defcls
= qopt
->defcls
;
1435 err
= qdisc_class_hash_init(&q
->clhash
);
1438 q
->eligible
= RB_ROOT
;
1440 q
->root
.cl_common
.classid
= sch
->handle
;
1443 q
->root
.qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1445 if (q
->root
.qdisc
== NULL
)
1446 q
->root
.qdisc
= &noop_qdisc
;
1447 INIT_LIST_HEAD(&q
->root
.children
);
1448 q
->root
.vt_tree
= RB_ROOT
;
1449 q
->root
.cf_tree
= RB_ROOT
;
1451 qdisc_class_hash_insert(&q
->clhash
, &q
->root
.cl_common
);
1452 qdisc_class_hash_grow(sch
, &q
->clhash
);
1454 qdisc_watchdog_init(&q
->watchdog
, sch
);
1460 hfsc_change_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1462 struct hfsc_sched
*q
= qdisc_priv(sch
);
1463 struct tc_hfsc_qopt
*qopt
;
1465 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1467 qopt
= nla_data(opt
);
1470 q
->defcls
= qopt
->defcls
;
1471 sch_tree_unlock(sch
);
1477 hfsc_reset_class(struct hfsc_class
*cl
)
1490 cl
->cl_vtperiod
= 0;
1491 cl
->cl_parentperiod
= 0;
1498 cl
->vt_tree
= RB_ROOT
;
1499 cl
->cf_tree
= RB_ROOT
;
1500 qdisc_reset(cl
->qdisc
);
1502 if (cl
->cl_flags
& HFSC_RSC
)
1503 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, 0, 0);
1504 if (cl
->cl_flags
& HFSC_FSC
)
1505 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, 0, 0);
1506 if (cl
->cl_flags
& HFSC_USC
)
1507 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, 0, 0);
1511 hfsc_reset_qdisc(struct Qdisc
*sch
)
1513 struct hfsc_sched
*q
= qdisc_priv(sch
);
1514 struct hfsc_class
*cl
;
1517 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1518 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1519 hfsc_reset_class(cl
);
1521 q
->eligible
= RB_ROOT
;
1522 qdisc_watchdog_cancel(&q
->watchdog
);
1523 sch
->qstats
.backlog
= 0;
1528 hfsc_destroy_qdisc(struct Qdisc
*sch
)
1530 struct hfsc_sched
*q
= qdisc_priv(sch
);
1531 struct hlist_node
*next
;
1532 struct hfsc_class
*cl
;
1535 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1536 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1537 tcf_destroy_chain(&cl
->filter_list
);
1539 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1540 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1542 hfsc_destroy_class(sch
, cl
);
1544 qdisc_class_hash_destroy(&q
->clhash
);
1545 qdisc_watchdog_cancel(&q
->watchdog
);
1549 hfsc_dump_qdisc(struct Qdisc
*sch
, struct sk_buff
*skb
)
1551 struct hfsc_sched
*q
= qdisc_priv(sch
);
1552 unsigned char *b
= skb_tail_pointer(skb
);
1553 struct tc_hfsc_qopt qopt
;
1555 qopt
.defcls
= q
->defcls
;
1556 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1557 goto nla_put_failure
;
1566 hfsc_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
, struct sk_buff
**to_free
)
1568 struct hfsc_class
*cl
;
1569 int uninitialized_var(err
);
1571 cl
= hfsc_classify(skb
, sch
, &err
);
1573 if (err
& __NET_XMIT_BYPASS
)
1574 qdisc_qstats_drop(sch
);
1575 __qdisc_drop(skb
, to_free
);
1579 err
= qdisc_enqueue(skb
, cl
->qdisc
, to_free
);
1580 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1581 if (net_xmit_drop_count(err
)) {
1583 qdisc_qstats_drop(sch
);
1588 if (cl
->qdisc
->q
.qlen
== 1) {
1589 set_active(cl
, qdisc_pkt_len(skb
));
1591 * If this is the first packet, isolate the head so an eventual
1592 * head drop before the first dequeue operation has no chance
1593 * to invalidate the deadline.
1595 if (cl
->cl_flags
& HFSC_RSC
)
1596 cl
->qdisc
->ops
->peek(cl
->qdisc
);
1600 qdisc_qstats_backlog_inc(sch
, skb
);
1603 return NET_XMIT_SUCCESS
;
1606 static struct sk_buff
*
1607 hfsc_dequeue(struct Qdisc
*sch
)
1609 struct hfsc_sched
*q
= qdisc_priv(sch
);
1610 struct hfsc_class
*cl
;
1611 struct sk_buff
*skb
;
1613 unsigned int next_len
;
1616 if (sch
->q
.qlen
== 0)
1619 cur_time
= psched_get_time();
1622 * if there are eligible classes, use real-time criteria.
1623 * find the class with the minimum deadline among
1624 * the eligible classes.
1626 cl
= eltree_get_mindl(q
, cur_time
);
1631 * use link-sharing criteria
1632 * get the class with the minimum vt in the hierarchy
1634 cl
= vttree_get_minvt(&q
->root
, cur_time
);
1636 qdisc_qstats_overlimit(sch
);
1637 hfsc_schedule_watchdog(sch
);
1642 skb
= qdisc_dequeue_peeked(cl
->qdisc
);
1644 qdisc_warn_nonwc("HFSC", cl
->qdisc
);
1648 bstats_update(&cl
->bstats
, skb
);
1649 update_vf(cl
, qdisc_pkt_len(skb
), cur_time
);
1651 cl
->cl_cumul
+= qdisc_pkt_len(skb
);
1653 if (cl
->qdisc
->q
.qlen
!= 0) {
1654 if (cl
->cl_flags
& HFSC_RSC
) {
1656 next_len
= qdisc_peek_len(cl
->qdisc
);
1658 update_ed(cl
, next_len
);
1660 update_d(cl
, next_len
);
1663 /* the class becomes passive */
1667 qdisc_bstats_update(sch
, skb
);
1668 qdisc_qstats_backlog_dec(sch
, skb
);
1674 static const struct Qdisc_class_ops hfsc_class_ops
= {
1675 .change
= hfsc_change_class
,
1676 .delete = hfsc_delete_class
,
1677 .graft
= hfsc_graft_class
,
1678 .leaf
= hfsc_class_leaf
,
1679 .qlen_notify
= hfsc_qlen_notify
,
1680 .get
= hfsc_get_class
,
1681 .put
= hfsc_put_class
,
1682 .bind_tcf
= hfsc_bind_tcf
,
1683 .unbind_tcf
= hfsc_unbind_tcf
,
1684 .tcf_chain
= hfsc_tcf_chain
,
1685 .dump
= hfsc_dump_class
,
1686 .dump_stats
= hfsc_dump_class_stats
,
1690 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly
= {
1692 .init
= hfsc_init_qdisc
,
1693 .change
= hfsc_change_qdisc
,
1694 .reset
= hfsc_reset_qdisc
,
1695 .destroy
= hfsc_destroy_qdisc
,
1696 .dump
= hfsc_dump_qdisc
,
1697 .enqueue
= hfsc_enqueue
,
1698 .dequeue
= hfsc_dequeue
,
1699 .peek
= qdisc_peek_dequeued
,
1700 .cl_ops
= &hfsc_class_ops
,
1701 .priv_size
= sizeof(struct hfsc_sched
),
1702 .owner
= THIS_MODULE
1708 return register_qdisc(&hfsc_qdisc_ops
);
1714 unregister_qdisc(&hfsc_qdisc_ops
);
1717 MODULE_LICENSE("GPL");
1718 module_init(hfsc_init
);
1719 module_exit(hfsc_cleanup
);