Btrfs: keep track of max_extent_size per space_info
[linux/fpc-iii.git] / fs / btrfs / extent-tree.c
blobfebb5bc35a6424c81f054dd902b298112d00987a
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 return (cache->flags & bits) == bits;
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 atomic_inc(&cache->count);
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
178 spin_unlock(&info->block_group_cache_lock);
180 return 0;
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
224 spin_unlock(&info->block_group_cache_lock);
226 return ret;
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
243 u64 start, end;
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
279 while (nr--) {
280 u64 start, len;
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
307 kfree(logical);
309 return 0;
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
315 struct btrfs_caching_control *ctl;
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
329 static void put_caching_control(struct btrfs_caching_control *ctl)
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
354 #endif
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
361 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
364 u64 extent_start, extent_end, size, total_added = 0;
365 int ret;
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
372 if (ret)
373 break;
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
379 total_added += size;
380 ret = btrfs_add_free_space(block_group, start,
381 size);
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
384 } else {
385 break;
389 if (start < end) {
390 size = end - start;
391 total_added += size;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
396 return total_added;
399 static noinline void caching_thread(struct btrfs_work *work)
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_caching_control *caching_ctl;
404 struct btrfs_root *extent_root;
405 struct btrfs_path *path;
406 struct extent_buffer *leaf;
407 struct btrfs_key key;
408 u64 total_found = 0;
409 u64 last = 0;
410 u32 nritems;
411 int ret = -ENOMEM;
412 bool wakeup = true;
414 caching_ctl = container_of(work, struct btrfs_caching_control, work);
415 block_group = caching_ctl->block_group;
416 fs_info = block_group->fs_info;
417 extent_root = fs_info->extent_root;
419 path = btrfs_alloc_path();
420 if (!path)
421 goto out;
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
425 #ifdef CONFIG_BTRFS_DEBUG
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
431 if (btrfs_should_fragment_free_space(extent_root, block_group))
432 wakeup = false;
433 #endif
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = 1;
444 key.objectid = last;
445 key.offset = 0;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
447 again:
448 mutex_lock(&caching_ctl->mutex);
449 /* need to make sure the commit_root doesn't disappear */
450 down_read(&fs_info->commit_root_sem);
452 next:
453 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
454 if (ret < 0)
455 goto err;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
460 while (1) {
461 if (btrfs_fs_closing(fs_info) > 1) {
462 last = (u64)-1;
463 break;
466 if (path->slots[0] < nritems) {
467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
468 } else {
469 ret = find_next_key(path, 0, &key);
470 if (ret)
471 break;
473 if (need_resched() ||
474 rwsem_is_contended(&fs_info->commit_root_sem)) {
475 if (wakeup)
476 caching_ctl->progress = last;
477 btrfs_release_path(path);
478 up_read(&fs_info->commit_root_sem);
479 mutex_unlock(&caching_ctl->mutex);
480 cond_resched();
481 goto again;
484 ret = btrfs_next_leaf(extent_root, path);
485 if (ret < 0)
486 goto err;
487 if (ret)
488 break;
489 leaf = path->nodes[0];
490 nritems = btrfs_header_nritems(leaf);
491 continue;
494 if (key.objectid < last) {
495 key.objectid = last;
496 key.offset = 0;
497 key.type = BTRFS_EXTENT_ITEM_KEY;
499 if (wakeup)
500 caching_ctl->progress = last;
501 btrfs_release_path(path);
502 goto next;
505 if (key.objectid < block_group->key.objectid) {
506 path->slots[0]++;
507 continue;
510 if (key.objectid >= block_group->key.objectid +
511 block_group->key.offset)
512 break;
514 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
515 key.type == BTRFS_METADATA_ITEM_KEY) {
516 total_found += add_new_free_space(block_group,
517 fs_info, last,
518 key.objectid);
519 if (key.type == BTRFS_METADATA_ITEM_KEY)
520 last = key.objectid +
521 fs_info->tree_root->nodesize;
522 else
523 last = key.objectid + key.offset;
525 if (total_found > (1024 * 1024 * 2)) {
526 total_found = 0;
527 if (wakeup)
528 wake_up(&caching_ctl->wait);
531 path->slots[0]++;
533 ret = 0;
535 total_found += add_new_free_space(block_group, fs_info, last,
536 block_group->key.objectid +
537 block_group->key.offset);
538 spin_lock(&block_group->lock);
539 block_group->caching_ctl = NULL;
540 block_group->cached = BTRFS_CACHE_FINISHED;
541 spin_unlock(&block_group->lock);
543 #ifdef CONFIG_BTRFS_DEBUG
544 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
545 u64 bytes_used;
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
554 fragment_free_space(extent_root, block_group);
556 #endif
558 caching_ctl->progress = (u64)-1;
559 err:
560 btrfs_free_path(path);
561 up_read(&fs_info->commit_root_sem);
563 free_excluded_extents(extent_root, block_group);
565 mutex_unlock(&caching_ctl->mutex);
566 out:
567 if (ret) {
568 spin_lock(&block_group->lock);
569 block_group->caching_ctl = NULL;
570 block_group->cached = BTRFS_CACHE_ERROR;
571 spin_unlock(&block_group->lock);
573 wake_up(&caching_ctl->wait);
575 put_caching_control(caching_ctl);
576 btrfs_put_block_group(block_group);
579 static int cache_block_group(struct btrfs_block_group_cache *cache,
580 int load_cache_only)
582 DEFINE_WAIT(wait);
583 struct btrfs_fs_info *fs_info = cache->fs_info;
584 struct btrfs_caching_control *caching_ctl;
585 int ret = 0;
587 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
588 if (!caching_ctl)
589 return -ENOMEM;
591 INIT_LIST_HEAD(&caching_ctl->list);
592 mutex_init(&caching_ctl->mutex);
593 init_waitqueue_head(&caching_ctl->wait);
594 caching_ctl->block_group = cache;
595 caching_ctl->progress = cache->key.objectid;
596 atomic_set(&caching_ctl->count, 1);
597 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
598 caching_thread, NULL, NULL);
600 spin_lock(&cache->lock);
602 * This should be a rare occasion, but this could happen I think in the
603 * case where one thread starts to load the space cache info, and then
604 * some other thread starts a transaction commit which tries to do an
605 * allocation while the other thread is still loading the space cache
606 * info. The previous loop should have kept us from choosing this block
607 * group, but if we've moved to the state where we will wait on caching
608 * block groups we need to first check if we're doing a fast load here,
609 * so we can wait for it to finish, otherwise we could end up allocating
610 * from a block group who's cache gets evicted for one reason or
611 * another.
613 while (cache->cached == BTRFS_CACHE_FAST) {
614 struct btrfs_caching_control *ctl;
616 ctl = cache->caching_ctl;
617 atomic_inc(&ctl->count);
618 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
619 spin_unlock(&cache->lock);
621 schedule();
623 finish_wait(&ctl->wait, &wait);
624 put_caching_control(ctl);
625 spin_lock(&cache->lock);
628 if (cache->cached != BTRFS_CACHE_NO) {
629 spin_unlock(&cache->lock);
630 kfree(caching_ctl);
631 return 0;
633 WARN_ON(cache->caching_ctl);
634 cache->caching_ctl = caching_ctl;
635 cache->cached = BTRFS_CACHE_FAST;
636 spin_unlock(&cache->lock);
638 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
639 mutex_lock(&caching_ctl->mutex);
640 ret = load_free_space_cache(fs_info, cache);
642 spin_lock(&cache->lock);
643 if (ret == 1) {
644 cache->caching_ctl = NULL;
645 cache->cached = BTRFS_CACHE_FINISHED;
646 cache->last_byte_to_unpin = (u64)-1;
647 caching_ctl->progress = (u64)-1;
648 } else {
649 if (load_cache_only) {
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_NO;
652 } else {
653 cache->cached = BTRFS_CACHE_STARTED;
654 cache->has_caching_ctl = 1;
657 spin_unlock(&cache->lock);
658 #ifdef CONFIG_BTRFS_DEBUG
659 if (ret == 1 &&
660 btrfs_should_fragment_free_space(fs_info->extent_root,
661 cache)) {
662 u64 bytes_used;
664 spin_lock(&cache->space_info->lock);
665 spin_lock(&cache->lock);
666 bytes_used = cache->key.offset -
667 btrfs_block_group_used(&cache->item);
668 cache->space_info->bytes_used += bytes_used >> 1;
669 spin_unlock(&cache->lock);
670 spin_unlock(&cache->space_info->lock);
671 fragment_free_space(fs_info->extent_root, cache);
673 #endif
674 mutex_unlock(&caching_ctl->mutex);
676 wake_up(&caching_ctl->wait);
677 if (ret == 1) {
678 put_caching_control(caching_ctl);
679 free_excluded_extents(fs_info->extent_root, cache);
680 return 0;
682 } else {
684 * We are not going to do the fast caching, set cached to the
685 * appropriate value and wakeup any waiters.
687 spin_lock(&cache->lock);
688 if (load_cache_only) {
689 cache->caching_ctl = NULL;
690 cache->cached = BTRFS_CACHE_NO;
691 } else {
692 cache->cached = BTRFS_CACHE_STARTED;
693 cache->has_caching_ctl = 1;
695 spin_unlock(&cache->lock);
696 wake_up(&caching_ctl->wait);
699 if (load_cache_only) {
700 put_caching_control(caching_ctl);
701 return 0;
704 down_write(&fs_info->commit_root_sem);
705 atomic_inc(&caching_ctl->count);
706 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
707 up_write(&fs_info->commit_root_sem);
709 btrfs_get_block_group(cache);
711 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
713 return ret;
717 * return the block group that starts at or after bytenr
719 static struct btrfs_block_group_cache *
720 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
722 struct btrfs_block_group_cache *cache;
724 cache = block_group_cache_tree_search(info, bytenr, 0);
726 return cache;
730 * return the block group that contains the given bytenr
732 struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
736 struct btrfs_block_group_cache *cache;
738 cache = block_group_cache_tree_search(info, bytenr, 1);
740 return cache;
743 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
744 u64 flags)
746 struct list_head *head = &info->space_info;
747 struct btrfs_space_info *found;
749 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
751 rcu_read_lock();
752 list_for_each_entry_rcu(found, head, list) {
753 if (found->flags & flags) {
754 rcu_read_unlock();
755 return found;
758 rcu_read_unlock();
759 return NULL;
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
792 0, 0);
793 btrfs_free_path(path);
794 return ret;
798 * helper function to lookup reference count and flags of a tree block.
800 * the head node for delayed ref is used to store the sum of all the
801 * reference count modifications queued up in the rbtree. the head
802 * node may also store the extent flags to set. This way you can check
803 * to see what the reference count and extent flags would be if all of
804 * the delayed refs are not processed.
806 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root, u64 bytenr,
808 u64 offset, int metadata, u64 *refs, u64 *flags)
810 struct btrfs_delayed_ref_head *head;
811 struct btrfs_delayed_ref_root *delayed_refs;
812 struct btrfs_path *path;
813 struct btrfs_extent_item *ei;
814 struct extent_buffer *leaf;
815 struct btrfs_key key;
816 u32 item_size;
817 u64 num_refs;
818 u64 extent_flags;
819 int ret;
822 * If we don't have skinny metadata, don't bother doing anything
823 * different
825 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
826 offset = root->nodesize;
827 metadata = 0;
830 path = btrfs_alloc_path();
831 if (!path)
832 return -ENOMEM;
834 if (!trans) {
835 path->skip_locking = 1;
836 path->search_commit_root = 1;
839 search_again:
840 key.objectid = bytenr;
841 key.offset = offset;
842 if (metadata)
843 key.type = BTRFS_METADATA_ITEM_KEY;
844 else
845 key.type = BTRFS_EXTENT_ITEM_KEY;
847 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
848 &key, path, 0, 0);
849 if (ret < 0)
850 goto out_free;
852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
859 key.offset == root->nodesize)
860 ret = 0;
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 #else
882 BUG();
883 #endif
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
892 if (!trans)
893 goto out;
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
897 head = btrfs_find_delayed_ref_head(trans, bytenr);
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
900 atomic_inc(&head->node.refs);
901 spin_unlock(&delayed_refs->lock);
903 btrfs_release_path(path);
906 * Mutex was contended, block until it's released and try
907 * again
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
911 btrfs_put_delayed_ref(&head->node);
912 goto search_again;
914 spin_lock(&head->lock);
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
920 num_refs += head->node.ref_mod;
921 spin_unlock(&head->lock);
922 mutex_unlock(&head->mutex);
924 spin_unlock(&delayed_refs->lock);
925 out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931 out_free:
932 btrfs_free_path(path);
933 return ret;
937 * Back reference rules. Back refs have three main goals:
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
968 * When a tree block is COW'd through a tree, there are four cases:
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
988 * Back Reference Key composing:
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
995 * File extents can be referenced by:
997 * - multiple snapshots, subvolumes, or different generations in one subvol
998 * - different files inside a single subvolume
999 * - different offsets inside a file (bookend extents in file.c)
1001 * The extent ref structure for the implicit back refs has fields for:
1003 * - Objectid of the subvolume root
1004 * - objectid of the file holding the reference
1005 * - original offset in the file
1006 * - how many bookend extents
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
1011 * The extent ref structure for the full back refs has field for:
1013 * - number of pointers in the tree leaf
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
1021 * (root_key.objectid, inode objectid, offset in file, 1)
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1028 * Btree extents can be referenced by:
1030 * - Different subvolumes
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
1042 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
1048 struct btrfs_extent_item *item;
1049 struct btrfs_extent_item_v0 *ei0;
1050 struct btrfs_extent_ref_v0 *ref0;
1051 struct btrfs_tree_block_info *bi;
1052 struct extent_buffer *leaf;
1053 struct btrfs_key key;
1054 struct btrfs_key found_key;
1055 u32 new_size = sizeof(*item);
1056 u64 refs;
1057 int ret;
1059 leaf = path->nodes[0];
1060 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_extent_item_v0);
1065 refs = btrfs_extent_refs_v0(leaf, ei0);
1067 if (owner == (u64)-1) {
1068 while (1) {
1069 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1070 ret = btrfs_next_leaf(root, path);
1071 if (ret < 0)
1072 return ret;
1073 BUG_ON(ret > 0); /* Corruption */
1074 leaf = path->nodes[0];
1076 btrfs_item_key_to_cpu(leaf, &found_key,
1077 path->slots[0]);
1078 BUG_ON(key.objectid != found_key.objectid);
1079 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1080 path->slots[0]++;
1081 continue;
1083 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_ref_v0);
1085 owner = btrfs_ref_objectid_v0(leaf, ref0);
1086 break;
1089 btrfs_release_path(path);
1091 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1092 new_size += sizeof(*bi);
1094 new_size -= sizeof(*ei0);
1095 ret = btrfs_search_slot(trans, root, &key, path,
1096 new_size + extra_size, 1);
1097 if (ret < 0)
1098 return ret;
1099 BUG_ON(ret); /* Corruption */
1101 btrfs_extend_item(root, path, new_size);
1103 leaf = path->nodes[0];
1104 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1105 btrfs_set_extent_refs(leaf, item, refs);
1106 /* FIXME: get real generation */
1107 btrfs_set_extent_generation(leaf, item, 0);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1109 btrfs_set_extent_flags(leaf, item,
1110 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1111 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1112 bi = (struct btrfs_tree_block_info *)(item + 1);
1113 /* FIXME: get first key of the block */
1114 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1115 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1116 } else {
1117 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1119 btrfs_mark_buffer_dirty(leaf);
1120 return 0;
1122 #endif
1124 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1126 u32 high_crc = ~(u32)0;
1127 u32 low_crc = ~(u32)0;
1128 __le64 lenum;
1130 lenum = cpu_to_le64(root_objectid);
1131 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1132 lenum = cpu_to_le64(owner);
1133 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1134 lenum = cpu_to_le64(offset);
1135 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1137 return ((u64)high_crc << 31) ^ (u64)low_crc;
1140 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1141 struct btrfs_extent_data_ref *ref)
1143 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1144 btrfs_extent_data_ref_objectid(leaf, ref),
1145 btrfs_extent_data_ref_offset(leaf, ref));
1148 static int match_extent_data_ref(struct extent_buffer *leaf,
1149 struct btrfs_extent_data_ref *ref,
1150 u64 root_objectid, u64 owner, u64 offset)
1152 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1153 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1154 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1155 return 0;
1156 return 1;
1159 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid,
1164 u64 owner, u64 offset)
1166 struct btrfs_key key;
1167 struct btrfs_extent_data_ref *ref;
1168 struct extent_buffer *leaf;
1169 u32 nritems;
1170 int ret;
1171 int recow;
1172 int err = -ENOENT;
1174 key.objectid = bytenr;
1175 if (parent) {
1176 key.type = BTRFS_SHARED_DATA_REF_KEY;
1177 key.offset = parent;
1178 } else {
1179 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180 key.offset = hash_extent_data_ref(root_objectid,
1181 owner, offset);
1183 again:
1184 recow = 0;
1185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1186 if (ret < 0) {
1187 err = ret;
1188 goto fail;
1191 if (parent) {
1192 if (!ret)
1193 return 0;
1194 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1195 key.type = BTRFS_EXTENT_REF_V0_KEY;
1196 btrfs_release_path(path);
1197 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1198 if (ret < 0) {
1199 err = ret;
1200 goto fail;
1202 if (!ret)
1203 return 0;
1204 #endif
1205 goto fail;
1208 leaf = path->nodes[0];
1209 nritems = btrfs_header_nritems(leaf);
1210 while (1) {
1211 if (path->slots[0] >= nritems) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0)
1214 err = ret;
1215 if (ret)
1216 goto fail;
1218 leaf = path->nodes[0];
1219 nritems = btrfs_header_nritems(leaf);
1220 recow = 1;
1223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1224 if (key.objectid != bytenr ||
1225 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1226 goto fail;
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_extent_data_ref);
1231 if (match_extent_data_ref(leaf, ref, root_objectid,
1232 owner, offset)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1237 err = 0;
1238 break;
1240 path->slots[0]++;
1242 fail:
1243 return err;
1246 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1247 struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 u64 bytenr, u64 parent,
1250 u64 root_objectid, u64 owner,
1251 u64 offset, int refs_to_add)
1253 struct btrfs_key key;
1254 struct extent_buffer *leaf;
1255 u32 size;
1256 u32 num_refs;
1257 int ret;
1259 key.objectid = bytenr;
1260 if (parent) {
1261 key.type = BTRFS_SHARED_DATA_REF_KEY;
1262 key.offset = parent;
1263 size = sizeof(struct btrfs_shared_data_ref);
1264 } else {
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1267 owner, offset);
1268 size = sizeof(struct btrfs_extent_data_ref);
1271 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1272 if (ret && ret != -EEXIST)
1273 goto fail;
1275 leaf = path->nodes[0];
1276 if (parent) {
1277 struct btrfs_shared_data_ref *ref;
1278 ref = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_shared_data_ref);
1280 if (ret == 0) {
1281 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1282 } else {
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1284 num_refs += refs_to_add;
1285 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1287 } else {
1288 struct btrfs_extent_data_ref *ref;
1289 while (ret == -EEXIST) {
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292 if (match_extent_data_ref(leaf, ref, root_objectid,
1293 owner, offset))
1294 break;
1295 btrfs_release_path(path);
1296 key.offset++;
1297 ret = btrfs_insert_empty_item(trans, root, path, &key,
1298 size);
1299 if (ret && ret != -EEXIST)
1300 goto fail;
1302 leaf = path->nodes[0];
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306 if (ret == 0) {
1307 btrfs_set_extent_data_ref_root(leaf, ref,
1308 root_objectid);
1309 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1310 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1311 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1312 } else {
1313 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1314 num_refs += refs_to_add;
1315 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1318 btrfs_mark_buffer_dirty(leaf);
1319 ret = 0;
1320 fail:
1321 btrfs_release_path(path);
1322 return ret;
1325 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root,
1327 struct btrfs_path *path,
1328 int refs_to_drop, int *last_ref)
1330 struct btrfs_key key;
1331 struct btrfs_extent_data_ref *ref1 = NULL;
1332 struct btrfs_shared_data_ref *ref2 = NULL;
1333 struct extent_buffer *leaf;
1334 u32 num_refs = 0;
1335 int ret = 0;
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 } else {
1356 BUG();
1359 BUG_ON(num_refs < refs_to_drop);
1360 num_refs -= refs_to_drop;
1362 if (num_refs == 0) {
1363 ret = btrfs_del_item(trans, root, path);
1364 *last_ref = 1;
1365 } else {
1366 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1367 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1368 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1369 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1370 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1371 else {
1372 struct btrfs_extent_ref_v0 *ref0;
1373 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1374 struct btrfs_extent_ref_v0);
1375 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1377 #endif
1378 btrfs_mark_buffer_dirty(leaf);
1380 return ret;
1383 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1384 struct btrfs_extent_inline_ref *iref)
1386 struct btrfs_key key;
1387 struct extent_buffer *leaf;
1388 struct btrfs_extent_data_ref *ref1;
1389 struct btrfs_shared_data_ref *ref2;
1390 u32 num_refs = 0;
1392 leaf = path->nodes[0];
1393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1394 if (iref) {
1395 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1396 BTRFS_EXTENT_DATA_REF_KEY) {
1397 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1398 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1399 } else {
1400 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1401 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1403 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418 } else {
1419 WARN_ON(1);
1421 return num_refs;
1424 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct btrfs_path *path,
1427 u64 bytenr, u64 parent,
1428 u64 root_objectid)
1430 struct btrfs_key key;
1431 int ret;
1433 key.objectid = bytenr;
1434 if (parent) {
1435 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1436 key.offset = parent;
1437 } else {
1438 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1439 key.offset = root_objectid;
1442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1443 if (ret > 0)
1444 ret = -ENOENT;
1445 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 if (ret == -ENOENT && parent) {
1447 btrfs_release_path(path);
1448 key.type = BTRFS_EXTENT_REF_V0_KEY;
1449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1450 if (ret > 0)
1451 ret = -ENOENT;
1453 #endif
1454 return ret;
1457 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_path *path,
1460 u64 bytenr, u64 parent,
1461 u64 root_objectid)
1463 struct btrfs_key key;
1464 int ret;
1466 key.objectid = bytenr;
1467 if (parent) {
1468 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1469 key.offset = parent;
1470 } else {
1471 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1472 key.offset = root_objectid;
1475 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1476 btrfs_release_path(path);
1477 return ret;
1480 static inline int extent_ref_type(u64 parent, u64 owner)
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1494 return type;
1497 static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
1501 for (; level < BTRFS_MAX_LEVEL; level++) {
1502 if (!path->nodes[level])
1503 break;
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1515 return 1;
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1531 static noinline_for_stack
1532 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root,
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1540 struct btrfs_key key;
1541 struct extent_buffer *leaf;
1542 struct btrfs_extent_item *ei;
1543 struct btrfs_extent_inline_ref *iref;
1544 u64 flags;
1545 u64 item_size;
1546 unsigned long ptr;
1547 unsigned long end;
1548 int extra_size;
1549 int type;
1550 int want;
1551 int ret;
1552 int err = 0;
1553 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1554 SKINNY_METADATA);
1556 key.objectid = bytenr;
1557 key.type = BTRFS_EXTENT_ITEM_KEY;
1558 key.offset = num_bytes;
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
1563 path->keep_locks = 1;
1564 } else
1565 extra_size = -1;
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1576 again:
1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1578 if (ret < 0) {
1579 err = ret;
1580 goto out;
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1598 if (ret) {
1599 key.objectid = bytenr;
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
1610 } else if (WARN_ON(ret)) {
1611 err = -EIO;
1612 goto out;
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1623 ret = convert_extent_item_v0(trans, root, path, owner,
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #endif
1633 BUG_ON(item_size < sizeof(*ei));
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1687 if (ref_offset < root_objectid)
1688 break;
1691 ptr += btrfs_extent_inline_ref_size(type);
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1708 err = -EAGAIN;
1709 goto out;
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713 out:
1714 if (insert) {
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1718 return err;
1722 * helper to add new inline back ref
1724 static noinline_for_stack
1725 void setup_inline_extent_backref(struct btrfs_root *root,
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1748 btrfs_extend_item(root, path, size);
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1782 btrfs_mark_buffer_dirty(leaf);
1785 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 struct btrfs_root *root,
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1792 int ret;
1794 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
1798 return ret;
1800 btrfs_release_path(path);
1801 *ref_ret = NULL;
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1805 root_objectid);
1806 } else {
1807 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1808 root_objectid, owner, offset);
1810 return ret;
1814 * helper to update/remove inline back ref
1816 static noinline_for_stack
1817 void update_inline_extent_backref(struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref *iref,
1820 int refs_to_mod,
1821 struct btrfs_delayed_extent_op *extent_op,
1822 int *last_ref)
1824 struct extent_buffer *leaf;
1825 struct btrfs_extent_item *ei;
1826 struct btrfs_extent_data_ref *dref = NULL;
1827 struct btrfs_shared_data_ref *sref = NULL;
1828 unsigned long ptr;
1829 unsigned long end;
1830 u32 item_size;
1831 int size;
1832 int type;
1833 u64 refs;
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 refs = btrfs_extent_refs(leaf, ei);
1838 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 refs += refs_to_mod;
1840 btrfs_set_extent_refs(leaf, ei, refs);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, ei);
1844 type = btrfs_extent_inline_ref_type(leaf, iref);
1846 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 refs = btrfs_extent_data_ref_count(leaf, dref);
1849 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 refs = btrfs_shared_data_ref_count(leaf, sref);
1852 } else {
1853 refs = 1;
1854 BUG_ON(refs_to_mod != -1);
1857 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 refs += refs_to_mod;
1860 if (refs > 0) {
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 else
1864 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 } else {
1866 *last_ref = 1;
1867 size = btrfs_extent_inline_ref_size(type);
1868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 ptr = (unsigned long)iref;
1870 end = (unsigned long)ei + item_size;
1871 if (ptr + size < end)
1872 memmove_extent_buffer(leaf, ptr, ptr + size,
1873 end - ptr - size);
1874 item_size -= size;
1875 btrfs_truncate_item(root, path, item_size, 1);
1877 btrfs_mark_buffer_dirty(leaf);
1880 static noinline_for_stack
1881 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path,
1884 u64 bytenr, u64 num_bytes, u64 parent,
1885 u64 root_objectid, u64 owner,
1886 u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1889 struct btrfs_extent_inline_ref *iref;
1890 int ret;
1892 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1893 bytenr, num_bytes, parent,
1894 root_objectid, owner, offset, 1);
1895 if (ret == 0) {
1896 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1897 update_inline_extent_backref(root, path, iref,
1898 refs_to_add, extent_op, NULL);
1899 } else if (ret == -ENOENT) {
1900 setup_inline_extent_backref(root, path, iref, parent,
1901 root_objectid, owner, offset,
1902 refs_to_add, extent_op);
1903 ret = 0;
1905 return ret;
1908 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_path *path,
1911 u64 bytenr, u64 parent, u64 root_objectid,
1912 u64 owner, u64 offset, int refs_to_add)
1914 int ret;
1915 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 BUG_ON(refs_to_add != 1);
1917 ret = insert_tree_block_ref(trans, root, path, bytenr,
1918 parent, root_objectid);
1919 } else {
1920 ret = insert_extent_data_ref(trans, root, path, bytenr,
1921 parent, root_objectid,
1922 owner, offset, refs_to_add);
1924 return ret;
1927 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct btrfs_extent_inline_ref *iref,
1931 int refs_to_drop, int is_data, int *last_ref)
1933 int ret = 0;
1935 BUG_ON(!is_data && refs_to_drop != 1);
1936 if (iref) {
1937 update_inline_extent_backref(root, path, iref,
1938 -refs_to_drop, NULL, last_ref);
1939 } else if (is_data) {
1940 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1941 last_ref);
1942 } else {
1943 *last_ref = 1;
1944 ret = btrfs_del_item(trans, root, path);
1946 return ret;
1949 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1950 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 u64 *discarded_bytes)
1953 int j, ret = 0;
1954 u64 bytes_left, end;
1955 u64 aligned_start = ALIGN(start, 1 << 9);
1957 if (WARN_ON(start != aligned_start)) {
1958 len -= aligned_start - start;
1959 len = round_down(len, 1 << 9);
1960 start = aligned_start;
1963 *discarded_bytes = 0;
1965 if (!len)
1966 return 0;
1968 end = start + len;
1969 bytes_left = len;
1971 /* Skip any superblocks on this device. */
1972 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 u64 sb_start = btrfs_sb_offset(j);
1974 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 u64 size = sb_start - start;
1977 if (!in_range(sb_start, start, bytes_left) &&
1978 !in_range(sb_end, start, bytes_left) &&
1979 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 continue;
1983 * Superblock spans beginning of range. Adjust start and
1984 * try again.
1986 if (sb_start <= start) {
1987 start += sb_end - start;
1988 if (start > end) {
1989 bytes_left = 0;
1990 break;
1992 bytes_left = end - start;
1993 continue;
1996 if (size) {
1997 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 GFP_NOFS, 0);
1999 if (!ret)
2000 *discarded_bytes += size;
2001 else if (ret != -EOPNOTSUPP)
2002 return ret;
2005 start = sb_end;
2006 if (start > end) {
2007 bytes_left = 0;
2008 break;
2010 bytes_left = end - start;
2013 if (bytes_left) {
2014 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2015 GFP_NOFS, 0);
2016 if (!ret)
2017 *discarded_bytes += bytes_left;
2019 return ret;
2022 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2023 u64 num_bytes, u64 *actual_bytes)
2025 int ret;
2026 u64 discarded_bytes = 0;
2027 struct btrfs_bio *bbio = NULL;
2030 /* Tell the block device(s) that the sectors can be discarded */
2031 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2032 bytenr, &num_bytes, &bbio, 0);
2033 /* Error condition is -ENOMEM */
2034 if (!ret) {
2035 struct btrfs_bio_stripe *stripe = bbio->stripes;
2036 int i;
2039 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2040 u64 bytes;
2041 if (!stripe->dev->can_discard)
2042 continue;
2044 ret = btrfs_issue_discard(stripe->dev->bdev,
2045 stripe->physical,
2046 stripe->length,
2047 &bytes);
2048 if (!ret)
2049 discarded_bytes += bytes;
2050 else if (ret != -EOPNOTSUPP)
2051 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2054 * Just in case we get back EOPNOTSUPP for some reason,
2055 * just ignore the return value so we don't screw up
2056 * people calling discard_extent.
2058 ret = 0;
2060 btrfs_put_bbio(bbio);
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
2069 return ret;
2072 /* Can return -ENOMEM */
2073 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 u64 bytenr, u64 num_bytes, u64 parent,
2076 u64 root_objectid, u64 owner, u64 offset,
2077 int no_quota)
2079 int ret;
2080 struct btrfs_fs_info *fs_info = root->fs_info;
2082 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2083 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2086 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2087 num_bytes,
2088 parent, root_objectid, (int)owner,
2089 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2090 } else {
2091 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2092 num_bytes,
2093 parent, root_objectid, owner, offset,
2094 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2096 return ret;
2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 u64 parent, u64 root_objectid,
2103 u64 owner, u64 offset, int refs_to_add,
2104 struct btrfs_delayed_extent_op *extent_op)
2106 struct btrfs_fs_info *fs_info = root->fs_info;
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_extent_item *item;
2110 struct btrfs_key key;
2111 u64 bytenr = node->bytenr;
2112 u64 num_bytes = node->num_bytes;
2113 u64 refs;
2114 int ret;
2115 int no_quota = node->no_quota;
2117 path = btrfs_alloc_path();
2118 if (!path)
2119 return -ENOMEM;
2121 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2122 no_quota = 1;
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
2127 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2128 bytenr, num_bytes, parent,
2129 root_objectid, owner, offset,
2130 refs_to_add, extent_op);
2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
2132 goto out;
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2139 leaf = path->nodes[0];
2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
2147 btrfs_mark_buffer_dirty(leaf);
2148 btrfs_release_path(path);
2150 path->reada = 1;
2151 path->leave_spinning = 1;
2152 /* now insert the actual backref */
2153 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2154 path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
2156 if (ret)
2157 btrfs_abort_transaction(trans, root, ret);
2158 out:
2159 btrfs_free_path(path);
2160 return ret;
2163 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root,
2165 struct btrfs_delayed_ref_node *node,
2166 struct btrfs_delayed_extent_op *extent_op,
2167 int insert_reserved)
2169 int ret = 0;
2170 struct btrfs_delayed_data_ref *ref;
2171 struct btrfs_key ins;
2172 u64 parent = 0;
2173 u64 ref_root = 0;
2174 u64 flags = 0;
2176 ins.objectid = node->bytenr;
2177 ins.offset = node->num_bytes;
2178 ins.type = BTRFS_EXTENT_ITEM_KEY;
2180 ref = btrfs_delayed_node_to_data_ref(node);
2181 trace_run_delayed_data_ref(node, ref, node->action);
2183 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2184 parent = ref->parent;
2185 ref_root = ref->root;
2187 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2188 if (extent_op)
2189 flags |= extent_op->flags_to_set;
2190 ret = alloc_reserved_file_extent(trans, root,
2191 parent, ref_root, flags,
2192 ref->objectid, ref->offset,
2193 &ins, node->ref_mod);
2194 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2195 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2196 ref_root, ref->objectid,
2197 ref->offset, node->ref_mod,
2198 extent_op);
2199 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2200 ret = __btrfs_free_extent(trans, root, node, parent,
2201 ref_root, ref->objectid,
2202 ref->offset, node->ref_mod,
2203 extent_op);
2204 } else {
2205 BUG();
2207 return ret;
2210 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2211 struct extent_buffer *leaf,
2212 struct btrfs_extent_item *ei)
2214 u64 flags = btrfs_extent_flags(leaf, ei);
2215 if (extent_op->update_flags) {
2216 flags |= extent_op->flags_to_set;
2217 btrfs_set_extent_flags(leaf, ei, flags);
2220 if (extent_op->update_key) {
2221 struct btrfs_tree_block_info *bi;
2222 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2223 bi = (struct btrfs_tree_block_info *)(ei + 1);
2224 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2228 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2229 struct btrfs_root *root,
2230 struct btrfs_delayed_ref_node *node,
2231 struct btrfs_delayed_extent_op *extent_op)
2233 struct btrfs_key key;
2234 struct btrfs_path *path;
2235 struct btrfs_extent_item *ei;
2236 struct extent_buffer *leaf;
2237 u32 item_size;
2238 int ret;
2239 int err = 0;
2240 int metadata = !extent_op->is_data;
2242 if (trans->aborted)
2243 return 0;
2245 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2246 metadata = 0;
2248 path = btrfs_alloc_path();
2249 if (!path)
2250 return -ENOMEM;
2252 key.objectid = node->bytenr;
2254 if (metadata) {
2255 key.type = BTRFS_METADATA_ITEM_KEY;
2256 key.offset = extent_op->level;
2257 } else {
2258 key.type = BTRFS_EXTENT_ITEM_KEY;
2259 key.offset = node->num_bytes;
2262 again:
2263 path->reada = 1;
2264 path->leave_spinning = 1;
2265 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2266 path, 0, 1);
2267 if (ret < 0) {
2268 err = ret;
2269 goto out;
2271 if (ret > 0) {
2272 if (metadata) {
2273 if (path->slots[0] > 0) {
2274 path->slots[0]--;
2275 btrfs_item_key_to_cpu(path->nodes[0], &key,
2276 path->slots[0]);
2277 if (key.objectid == node->bytenr &&
2278 key.type == BTRFS_EXTENT_ITEM_KEY &&
2279 key.offset == node->num_bytes)
2280 ret = 0;
2282 if (ret > 0) {
2283 btrfs_release_path(path);
2284 metadata = 0;
2286 key.objectid = node->bytenr;
2287 key.offset = node->num_bytes;
2288 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 goto again;
2291 } else {
2292 err = -EIO;
2293 goto out;
2297 leaf = path->nodes[0];
2298 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2299 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2300 if (item_size < sizeof(*ei)) {
2301 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2302 path, (u64)-1, 0);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2310 #endif
2311 BUG_ON(item_size < sizeof(*ei));
2312 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2313 __run_delayed_extent_op(extent_op, leaf, ei);
2315 btrfs_mark_buffer_dirty(leaf);
2316 out:
2317 btrfs_free_path(path);
2318 return err;
2321 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
2327 int ret = 0;
2328 struct btrfs_delayed_tree_ref *ref;
2329 struct btrfs_key ins;
2330 u64 parent = 0;
2331 u64 ref_root = 0;
2332 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2333 SKINNY_METADATA);
2335 ref = btrfs_delayed_node_to_tree_ref(node);
2336 trace_run_delayed_tree_ref(node, ref, node->action);
2338 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2339 parent = ref->parent;
2340 ref_root = ref->root;
2342 ins.objectid = node->bytenr;
2343 if (skinny_metadata) {
2344 ins.offset = ref->level;
2345 ins.type = BTRFS_METADATA_ITEM_KEY;
2346 } else {
2347 ins.offset = node->num_bytes;
2348 ins.type = BTRFS_EXTENT_ITEM_KEY;
2351 BUG_ON(node->ref_mod != 1);
2352 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2353 BUG_ON(!extent_op || !extent_op->update_flags);
2354 ret = alloc_reserved_tree_block(trans, root,
2355 parent, ref_root,
2356 extent_op->flags_to_set,
2357 &extent_op->key,
2358 ref->level, &ins,
2359 node->no_quota);
2360 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2361 ret = __btrfs_inc_extent_ref(trans, root, node,
2362 parent, ref_root,
2363 ref->level, 0, 1,
2364 extent_op);
2365 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2366 ret = __btrfs_free_extent(trans, root, node,
2367 parent, ref_root,
2368 ref->level, 0, 1, extent_op);
2369 } else {
2370 BUG();
2372 return ret;
2375 /* helper function to actually process a single delayed ref entry */
2376 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root,
2378 struct btrfs_delayed_ref_node *node,
2379 struct btrfs_delayed_extent_op *extent_op,
2380 int insert_reserved)
2382 int ret = 0;
2384 if (trans->aborted) {
2385 if (insert_reserved)
2386 btrfs_pin_extent(root, node->bytenr,
2387 node->num_bytes, 1);
2388 return 0;
2391 if (btrfs_delayed_ref_is_head(node)) {
2392 struct btrfs_delayed_ref_head *head;
2394 * we've hit the end of the chain and we were supposed
2395 * to insert this extent into the tree. But, it got
2396 * deleted before we ever needed to insert it, so all
2397 * we have to do is clean up the accounting
2399 BUG_ON(extent_op);
2400 head = btrfs_delayed_node_to_head(node);
2401 trace_run_delayed_ref_head(node, head, node->action);
2403 if (insert_reserved) {
2404 btrfs_pin_extent(root, node->bytenr,
2405 node->num_bytes, 1);
2406 if (head->is_data) {
2407 ret = btrfs_del_csums(trans, root,
2408 node->bytenr,
2409 node->num_bytes);
2412 return ret;
2415 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2416 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2417 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2418 insert_reserved);
2419 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2420 node->type == BTRFS_SHARED_DATA_REF_KEY)
2421 ret = run_delayed_data_ref(trans, root, node, extent_op,
2422 insert_reserved);
2423 else
2424 BUG();
2425 return ret;
2428 static inline struct btrfs_delayed_ref_node *
2429 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2431 struct btrfs_delayed_ref_node *ref;
2433 if (list_empty(&head->ref_list))
2434 return NULL;
2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2438 * This is to prevent a ref count from going down to zero, which deletes
2439 * the extent item from the extent tree, when there still are references
2440 * to add, which would fail because they would not find the extent item.
2442 list_for_each_entry(ref, &head->ref_list, list) {
2443 if (ref->action == BTRFS_ADD_DELAYED_REF)
2444 return ref;
2447 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2448 list);
2452 * Returns 0 on success or if called with an already aborted transaction.
2453 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2455 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2456 struct btrfs_root *root,
2457 unsigned long nr)
2459 struct btrfs_delayed_ref_root *delayed_refs;
2460 struct btrfs_delayed_ref_node *ref;
2461 struct btrfs_delayed_ref_head *locked_ref = NULL;
2462 struct btrfs_delayed_extent_op *extent_op;
2463 struct btrfs_fs_info *fs_info = root->fs_info;
2464 ktime_t start = ktime_get();
2465 int ret;
2466 unsigned long count = 0;
2467 unsigned long actual_count = 0;
2468 int must_insert_reserved = 0;
2470 delayed_refs = &trans->transaction->delayed_refs;
2471 while (1) {
2472 if (!locked_ref) {
2473 if (count >= nr)
2474 break;
2476 spin_lock(&delayed_refs->lock);
2477 locked_ref = btrfs_select_ref_head(trans);
2478 if (!locked_ref) {
2479 spin_unlock(&delayed_refs->lock);
2480 break;
2483 /* grab the lock that says we are going to process
2484 * all the refs for this head */
2485 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2486 spin_unlock(&delayed_refs->lock);
2488 * we may have dropped the spin lock to get the head
2489 * mutex lock, and that might have given someone else
2490 * time to free the head. If that's true, it has been
2491 * removed from our list and we can move on.
2493 if (ret == -EAGAIN) {
2494 locked_ref = NULL;
2495 count++;
2496 continue;
2500 spin_lock(&locked_ref->lock);
2503 * locked_ref is the head node, so we have to go one
2504 * node back for any delayed ref updates
2506 ref = select_delayed_ref(locked_ref);
2508 if (ref && ref->seq &&
2509 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2510 spin_unlock(&locked_ref->lock);
2511 btrfs_delayed_ref_unlock(locked_ref);
2512 spin_lock(&delayed_refs->lock);
2513 locked_ref->processing = 0;
2514 delayed_refs->num_heads_ready++;
2515 spin_unlock(&delayed_refs->lock);
2516 locked_ref = NULL;
2517 cond_resched();
2518 count++;
2519 continue;
2523 * record the must insert reserved flag before we
2524 * drop the spin lock.
2526 must_insert_reserved = locked_ref->must_insert_reserved;
2527 locked_ref->must_insert_reserved = 0;
2529 extent_op = locked_ref->extent_op;
2530 locked_ref->extent_op = NULL;
2532 if (!ref) {
2535 /* All delayed refs have been processed, Go ahead
2536 * and send the head node to run_one_delayed_ref,
2537 * so that any accounting fixes can happen
2539 ref = &locked_ref->node;
2541 if (extent_op && must_insert_reserved) {
2542 btrfs_free_delayed_extent_op(extent_op);
2543 extent_op = NULL;
2546 if (extent_op) {
2547 spin_unlock(&locked_ref->lock);
2548 ret = run_delayed_extent_op(trans, root,
2549 ref, extent_op);
2550 btrfs_free_delayed_extent_op(extent_op);
2552 if (ret) {
2554 * Need to reset must_insert_reserved if
2555 * there was an error so the abort stuff
2556 * can cleanup the reserved space
2557 * properly.
2559 if (must_insert_reserved)
2560 locked_ref->must_insert_reserved = 1;
2561 locked_ref->processing = 0;
2562 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2563 btrfs_delayed_ref_unlock(locked_ref);
2564 return ret;
2566 continue;
2570 * Need to drop our head ref lock and re-aqcuire the
2571 * delayed ref lock and then re-check to make sure
2572 * nobody got added.
2574 spin_unlock(&locked_ref->lock);
2575 spin_lock(&delayed_refs->lock);
2576 spin_lock(&locked_ref->lock);
2577 if (!list_empty(&locked_ref->ref_list) ||
2578 locked_ref->extent_op) {
2579 spin_unlock(&locked_ref->lock);
2580 spin_unlock(&delayed_refs->lock);
2581 continue;
2583 ref->in_tree = 0;
2584 delayed_refs->num_heads--;
2585 rb_erase(&locked_ref->href_node,
2586 &delayed_refs->href_root);
2587 spin_unlock(&delayed_refs->lock);
2588 } else {
2589 actual_count++;
2590 ref->in_tree = 0;
2591 list_del(&ref->list);
2593 atomic_dec(&delayed_refs->num_entries);
2595 if (!btrfs_delayed_ref_is_head(ref)) {
2597 * when we play the delayed ref, also correct the
2598 * ref_mod on head
2600 switch (ref->action) {
2601 case BTRFS_ADD_DELAYED_REF:
2602 case BTRFS_ADD_DELAYED_EXTENT:
2603 locked_ref->node.ref_mod -= ref->ref_mod;
2604 break;
2605 case BTRFS_DROP_DELAYED_REF:
2606 locked_ref->node.ref_mod += ref->ref_mod;
2607 break;
2608 default:
2609 WARN_ON(1);
2612 spin_unlock(&locked_ref->lock);
2614 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2615 must_insert_reserved);
2617 btrfs_free_delayed_extent_op(extent_op);
2618 if (ret) {
2619 locked_ref->processing = 0;
2620 btrfs_delayed_ref_unlock(locked_ref);
2621 btrfs_put_delayed_ref(ref);
2622 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2623 return ret;
2627 * If this node is a head, that means all the refs in this head
2628 * have been dealt with, and we will pick the next head to deal
2629 * with, so we must unlock the head and drop it from the cluster
2630 * list before we release it.
2632 if (btrfs_delayed_ref_is_head(ref)) {
2633 if (locked_ref->is_data &&
2634 locked_ref->total_ref_mod < 0) {
2635 spin_lock(&delayed_refs->lock);
2636 delayed_refs->pending_csums -= ref->num_bytes;
2637 spin_unlock(&delayed_refs->lock);
2639 btrfs_delayed_ref_unlock(locked_ref);
2640 locked_ref = NULL;
2642 btrfs_put_delayed_ref(ref);
2643 count++;
2644 cond_resched();
2648 * We don't want to include ref heads since we can have empty ref heads
2649 * and those will drastically skew our runtime down since we just do
2650 * accounting, no actual extent tree updates.
2652 if (actual_count > 0) {
2653 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2654 u64 avg;
2657 * We weigh the current average higher than our current runtime
2658 * to avoid large swings in the average.
2660 spin_lock(&delayed_refs->lock);
2661 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2662 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2663 spin_unlock(&delayed_refs->lock);
2665 return 0;
2668 #ifdef SCRAMBLE_DELAYED_REFS
2670 * Normally delayed refs get processed in ascending bytenr order. This
2671 * correlates in most cases to the order added. To expose dependencies on this
2672 * order, we start to process the tree in the middle instead of the beginning
2674 static u64 find_middle(struct rb_root *root)
2676 struct rb_node *n = root->rb_node;
2677 struct btrfs_delayed_ref_node *entry;
2678 int alt = 1;
2679 u64 middle;
2680 u64 first = 0, last = 0;
2682 n = rb_first(root);
2683 if (n) {
2684 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2685 first = entry->bytenr;
2687 n = rb_last(root);
2688 if (n) {
2689 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2690 last = entry->bytenr;
2692 n = root->rb_node;
2694 while (n) {
2695 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2696 WARN_ON(!entry->in_tree);
2698 middle = entry->bytenr;
2700 if (alt)
2701 n = n->rb_left;
2702 else
2703 n = n->rb_right;
2705 alt = 1 - alt;
2707 return middle;
2709 #endif
2711 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2713 u64 num_bytes;
2715 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2716 sizeof(struct btrfs_extent_inline_ref));
2717 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2718 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721 * We don't ever fill up leaves all the way so multiply by 2 just to be
2722 * closer to what we're really going to want to ouse.
2724 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2728 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2729 * would require to store the csums for that many bytes.
2731 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2733 u64 csum_size;
2734 u64 num_csums_per_leaf;
2735 u64 num_csums;
2737 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2738 num_csums_per_leaf = div64_u64(csum_size,
2739 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2740 num_csums = div64_u64(csum_bytes, root->sectorsize);
2741 num_csums += num_csums_per_leaf - 1;
2742 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2743 return num_csums;
2746 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2747 struct btrfs_root *root)
2749 struct btrfs_block_rsv *global_rsv;
2750 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2751 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2752 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2753 u64 num_bytes, num_dirty_bgs_bytes;
2754 int ret = 0;
2756 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2757 num_heads = heads_to_leaves(root, num_heads);
2758 if (num_heads > 1)
2759 num_bytes += (num_heads - 1) * root->nodesize;
2760 num_bytes <<= 1;
2761 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2762 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2763 num_dirty_bgs);
2764 global_rsv = &root->fs_info->global_block_rsv;
2767 * If we can't allocate any more chunks lets make sure we have _lots_ of
2768 * wiggle room since running delayed refs can create more delayed refs.
2770 if (global_rsv->space_info->full) {
2771 num_dirty_bgs_bytes <<= 1;
2772 num_bytes <<= 1;
2775 spin_lock(&global_rsv->lock);
2776 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2777 ret = 1;
2778 spin_unlock(&global_rsv->lock);
2779 return ret;
2782 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2783 struct btrfs_root *root)
2785 struct btrfs_fs_info *fs_info = root->fs_info;
2786 u64 num_entries =
2787 atomic_read(&trans->transaction->delayed_refs.num_entries);
2788 u64 avg_runtime;
2789 u64 val;
2791 smp_mb();
2792 avg_runtime = fs_info->avg_delayed_ref_runtime;
2793 val = num_entries * avg_runtime;
2794 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2795 return 1;
2796 if (val >= NSEC_PER_SEC / 2)
2797 return 2;
2799 return btrfs_check_space_for_delayed_refs(trans, root);
2802 struct async_delayed_refs {
2803 struct btrfs_root *root;
2804 int count;
2805 int error;
2806 int sync;
2807 struct completion wait;
2808 struct btrfs_work work;
2811 static void delayed_ref_async_start(struct btrfs_work *work)
2813 struct async_delayed_refs *async;
2814 struct btrfs_trans_handle *trans;
2815 int ret;
2817 async = container_of(work, struct async_delayed_refs, work);
2819 trans = btrfs_join_transaction(async->root);
2820 if (IS_ERR(trans)) {
2821 async->error = PTR_ERR(trans);
2822 goto done;
2826 * trans->sync means that when we call end_transaciton, we won't
2827 * wait on delayed refs
2829 trans->sync = true;
2830 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2831 if (ret)
2832 async->error = ret;
2834 ret = btrfs_end_transaction(trans, async->root);
2835 if (ret && !async->error)
2836 async->error = ret;
2837 done:
2838 if (async->sync)
2839 complete(&async->wait);
2840 else
2841 kfree(async);
2844 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2845 unsigned long count, int wait)
2847 struct async_delayed_refs *async;
2848 int ret;
2850 async = kmalloc(sizeof(*async), GFP_NOFS);
2851 if (!async)
2852 return -ENOMEM;
2854 async->root = root->fs_info->tree_root;
2855 async->count = count;
2856 async->error = 0;
2857 if (wait)
2858 async->sync = 1;
2859 else
2860 async->sync = 0;
2861 init_completion(&async->wait);
2863 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2864 delayed_ref_async_start, NULL, NULL);
2866 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2868 if (wait) {
2869 wait_for_completion(&async->wait);
2870 ret = async->error;
2871 kfree(async);
2872 return ret;
2874 return 0;
2878 * this starts processing the delayed reference count updates and
2879 * extent insertions we have queued up so far. count can be
2880 * 0, which means to process everything in the tree at the start
2881 * of the run (but not newly added entries), or it can be some target
2882 * number you'd like to process.
2884 * Returns 0 on success or if called with an aborted transaction
2885 * Returns <0 on error and aborts the transaction
2887 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2888 struct btrfs_root *root, unsigned long count)
2890 struct rb_node *node;
2891 struct btrfs_delayed_ref_root *delayed_refs;
2892 struct btrfs_delayed_ref_head *head;
2893 int ret;
2894 int run_all = count == (unsigned long)-1;
2895 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2897 /* We'll clean this up in btrfs_cleanup_transaction */
2898 if (trans->aborted)
2899 return 0;
2901 if (root == root->fs_info->extent_root)
2902 root = root->fs_info->tree_root;
2904 delayed_refs = &trans->transaction->delayed_refs;
2905 if (count == 0)
2906 count = atomic_read(&delayed_refs->num_entries) * 2;
2908 again:
2909 #ifdef SCRAMBLE_DELAYED_REFS
2910 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2911 #endif
2912 trans->can_flush_pending_bgs = false;
2913 ret = __btrfs_run_delayed_refs(trans, root, count);
2914 if (ret < 0) {
2915 btrfs_abort_transaction(trans, root, ret);
2916 return ret;
2919 if (run_all) {
2920 if (!list_empty(&trans->new_bgs))
2921 btrfs_create_pending_block_groups(trans, root);
2923 spin_lock(&delayed_refs->lock);
2924 node = rb_first(&delayed_refs->href_root);
2925 if (!node) {
2926 spin_unlock(&delayed_refs->lock);
2927 goto out;
2929 count = (unsigned long)-1;
2931 while (node) {
2932 head = rb_entry(node, struct btrfs_delayed_ref_head,
2933 href_node);
2934 if (btrfs_delayed_ref_is_head(&head->node)) {
2935 struct btrfs_delayed_ref_node *ref;
2937 ref = &head->node;
2938 atomic_inc(&ref->refs);
2940 spin_unlock(&delayed_refs->lock);
2942 * Mutex was contended, block until it's
2943 * released and try again
2945 mutex_lock(&head->mutex);
2946 mutex_unlock(&head->mutex);
2948 btrfs_put_delayed_ref(ref);
2949 cond_resched();
2950 goto again;
2951 } else {
2952 WARN_ON(1);
2954 node = rb_next(node);
2956 spin_unlock(&delayed_refs->lock);
2957 cond_resched();
2958 goto again;
2960 out:
2961 assert_qgroups_uptodate(trans);
2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2963 return 0;
2966 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 u64 bytenr, u64 num_bytes, u64 flags,
2969 int level, int is_data)
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2974 extent_op = btrfs_alloc_delayed_extent_op();
2975 if (!extent_op)
2976 return -ENOMEM;
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = 1;
2980 extent_op->update_key = 0;
2981 extent_op->is_data = is_data ? 1 : 0;
2982 extent_op->level = level;
2984 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2985 num_bytes, extent_op);
2986 if (ret)
2987 btrfs_free_delayed_extent_op(extent_op);
2988 return ret;
2991 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2992 struct btrfs_root *root,
2993 struct btrfs_path *path,
2994 u64 objectid, u64 offset, u64 bytenr)
2996 struct btrfs_delayed_ref_head *head;
2997 struct btrfs_delayed_ref_node *ref;
2998 struct btrfs_delayed_data_ref *data_ref;
2999 struct btrfs_delayed_ref_root *delayed_refs;
3000 int ret = 0;
3002 delayed_refs = &trans->transaction->delayed_refs;
3003 spin_lock(&delayed_refs->lock);
3004 head = btrfs_find_delayed_ref_head(trans, bytenr);
3005 if (!head) {
3006 spin_unlock(&delayed_refs->lock);
3007 return 0;
3010 if (!mutex_trylock(&head->mutex)) {
3011 atomic_inc(&head->node.refs);
3012 spin_unlock(&delayed_refs->lock);
3014 btrfs_release_path(path);
3017 * Mutex was contended, block until it's released and let
3018 * caller try again
3020 mutex_lock(&head->mutex);
3021 mutex_unlock(&head->mutex);
3022 btrfs_put_delayed_ref(&head->node);
3023 return -EAGAIN;
3025 spin_unlock(&delayed_refs->lock);
3027 spin_lock(&head->lock);
3028 list_for_each_entry(ref, &head->ref_list, list) {
3029 /* If it's a shared ref we know a cross reference exists */
3030 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3031 ret = 1;
3032 break;
3035 data_ref = btrfs_delayed_node_to_data_ref(ref);
3038 * If our ref doesn't match the one we're currently looking at
3039 * then we have a cross reference.
3041 if (data_ref->root != root->root_key.objectid ||
3042 data_ref->objectid != objectid ||
3043 data_ref->offset != offset) {
3044 ret = 1;
3045 break;
3048 spin_unlock(&head->lock);
3049 mutex_unlock(&head->mutex);
3050 return ret;
3053 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3054 struct btrfs_root *root,
3055 struct btrfs_path *path,
3056 u64 objectid, u64 offset, u64 bytenr)
3058 struct btrfs_root *extent_root = root->fs_info->extent_root;
3059 struct extent_buffer *leaf;
3060 struct btrfs_extent_data_ref *ref;
3061 struct btrfs_extent_inline_ref *iref;
3062 struct btrfs_extent_item *ei;
3063 struct btrfs_key key;
3064 u32 item_size;
3065 int ret;
3067 key.objectid = bytenr;
3068 key.offset = (u64)-1;
3069 key.type = BTRFS_EXTENT_ITEM_KEY;
3071 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3072 if (ret < 0)
3073 goto out;
3074 BUG_ON(ret == 0); /* Corruption */
3076 ret = -ENOENT;
3077 if (path->slots[0] == 0)
3078 goto out;
3080 path->slots[0]--;
3081 leaf = path->nodes[0];
3082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3084 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3085 goto out;
3087 ret = 1;
3088 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3090 if (item_size < sizeof(*ei)) {
3091 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3092 goto out;
3094 #endif
3095 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3097 if (item_size != sizeof(*ei) +
3098 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3099 goto out;
3101 if (btrfs_extent_generation(leaf, ei) <=
3102 btrfs_root_last_snapshot(&root->root_item))
3103 goto out;
3105 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3106 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3107 BTRFS_EXTENT_DATA_REF_KEY)
3108 goto out;
3110 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3111 if (btrfs_extent_refs(leaf, ei) !=
3112 btrfs_extent_data_ref_count(leaf, ref) ||
3113 btrfs_extent_data_ref_root(leaf, ref) !=
3114 root->root_key.objectid ||
3115 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3116 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3117 goto out;
3119 ret = 0;
3120 out:
3121 return ret;
3124 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3125 struct btrfs_root *root,
3126 u64 objectid, u64 offset, u64 bytenr)
3128 struct btrfs_path *path;
3129 int ret;
3130 int ret2;
3132 path = btrfs_alloc_path();
3133 if (!path)
3134 return -ENOENT;
3136 do {
3137 ret = check_committed_ref(trans, root, path, objectid,
3138 offset, bytenr);
3139 if (ret && ret != -ENOENT)
3140 goto out;
3142 ret2 = check_delayed_ref(trans, root, path, objectid,
3143 offset, bytenr);
3144 } while (ret2 == -EAGAIN);
3146 if (ret2 && ret2 != -ENOENT) {
3147 ret = ret2;
3148 goto out;
3151 if (ret != -ENOENT || ret2 != -ENOENT)
3152 ret = 0;
3153 out:
3154 btrfs_free_path(path);
3155 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3156 WARN_ON(ret > 0);
3157 return ret;
3160 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct extent_buffer *buf,
3163 int full_backref, int inc)
3165 u64 bytenr;
3166 u64 num_bytes;
3167 u64 parent;
3168 u64 ref_root;
3169 u32 nritems;
3170 struct btrfs_key key;
3171 struct btrfs_file_extent_item *fi;
3172 int i;
3173 int level;
3174 int ret = 0;
3175 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3176 u64, u64, u64, u64, u64, u64, int);
3179 if (btrfs_test_is_dummy_root(root))
3180 return 0;
3182 ref_root = btrfs_header_owner(buf);
3183 nritems = btrfs_header_nritems(buf);
3184 level = btrfs_header_level(buf);
3186 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3187 return 0;
3189 if (inc)
3190 process_func = btrfs_inc_extent_ref;
3191 else
3192 process_func = btrfs_free_extent;
3194 if (full_backref)
3195 parent = buf->start;
3196 else
3197 parent = 0;
3199 for (i = 0; i < nritems; i++) {
3200 if (level == 0) {
3201 btrfs_item_key_to_cpu(buf, &key, i);
3202 if (key.type != BTRFS_EXTENT_DATA_KEY)
3203 continue;
3204 fi = btrfs_item_ptr(buf, i,
3205 struct btrfs_file_extent_item);
3206 if (btrfs_file_extent_type(buf, fi) ==
3207 BTRFS_FILE_EXTENT_INLINE)
3208 continue;
3209 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3210 if (bytenr == 0)
3211 continue;
3213 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3214 key.offset -= btrfs_file_extent_offset(buf, fi);
3215 ret = process_func(trans, root, bytenr, num_bytes,
3216 parent, ref_root, key.objectid,
3217 key.offset, 1);
3218 if (ret)
3219 goto fail;
3220 } else {
3221 bytenr = btrfs_node_blockptr(buf, i);
3222 num_bytes = root->nodesize;
3223 ret = process_func(trans, root, bytenr, num_bytes,
3224 parent, ref_root, level - 1, 0,
3226 if (ret)
3227 goto fail;
3230 return 0;
3231 fail:
3232 return ret;
3235 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3236 struct extent_buffer *buf, int full_backref)
3238 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3241 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3242 struct extent_buffer *buf, int full_backref)
3244 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3247 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3248 struct btrfs_root *root,
3249 struct btrfs_path *path,
3250 struct btrfs_block_group_cache *cache)
3252 int ret;
3253 struct btrfs_root *extent_root = root->fs_info->extent_root;
3254 unsigned long bi;
3255 struct extent_buffer *leaf;
3257 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3258 if (ret) {
3259 if (ret > 0)
3260 ret = -ENOENT;
3261 goto fail;
3264 leaf = path->nodes[0];
3265 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3266 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3267 btrfs_mark_buffer_dirty(leaf);
3268 fail:
3269 btrfs_release_path(path);
3270 return ret;
3274 static struct btrfs_block_group_cache *
3275 next_block_group(struct btrfs_root *root,
3276 struct btrfs_block_group_cache *cache)
3278 struct rb_node *node;
3280 spin_lock(&root->fs_info->block_group_cache_lock);
3282 /* If our block group was removed, we need a full search. */
3283 if (RB_EMPTY_NODE(&cache->cache_node)) {
3284 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3286 spin_unlock(&root->fs_info->block_group_cache_lock);
3287 btrfs_put_block_group(cache);
3288 cache = btrfs_lookup_first_block_group(root->fs_info,
3289 next_bytenr);
3290 return cache;
3292 node = rb_next(&cache->cache_node);
3293 btrfs_put_block_group(cache);
3294 if (node) {
3295 cache = rb_entry(node, struct btrfs_block_group_cache,
3296 cache_node);
3297 btrfs_get_block_group(cache);
3298 } else
3299 cache = NULL;
3300 spin_unlock(&root->fs_info->block_group_cache_lock);
3301 return cache;
3304 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3305 struct btrfs_trans_handle *trans,
3306 struct btrfs_path *path)
3308 struct btrfs_root *root = block_group->fs_info->tree_root;
3309 struct inode *inode = NULL;
3310 u64 alloc_hint = 0;
3311 int dcs = BTRFS_DC_ERROR;
3312 u64 num_pages = 0;
3313 int retries = 0;
3314 int ret = 0;
3317 * If this block group is smaller than 100 megs don't bother caching the
3318 * block group.
3320 if (block_group->key.offset < (100 * 1024 * 1024)) {
3321 spin_lock(&block_group->lock);
3322 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3323 spin_unlock(&block_group->lock);
3324 return 0;
3327 if (trans->aborted)
3328 return 0;
3329 again:
3330 inode = lookup_free_space_inode(root, block_group, path);
3331 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3332 ret = PTR_ERR(inode);
3333 btrfs_release_path(path);
3334 goto out;
3337 if (IS_ERR(inode)) {
3338 BUG_ON(retries);
3339 retries++;
3341 if (block_group->ro)
3342 goto out_free;
3344 ret = create_free_space_inode(root, trans, block_group, path);
3345 if (ret)
3346 goto out_free;
3347 goto again;
3350 /* We've already setup this transaction, go ahead and exit */
3351 if (block_group->cache_generation == trans->transid &&
3352 i_size_read(inode)) {
3353 dcs = BTRFS_DC_SETUP;
3354 goto out_put;
3358 * We want to set the generation to 0, that way if anything goes wrong
3359 * from here on out we know not to trust this cache when we load up next
3360 * time.
3362 BTRFS_I(inode)->generation = 0;
3363 ret = btrfs_update_inode(trans, root, inode);
3364 if (ret) {
3366 * So theoretically we could recover from this, simply set the
3367 * super cache generation to 0 so we know to invalidate the
3368 * cache, but then we'd have to keep track of the block groups
3369 * that fail this way so we know we _have_ to reset this cache
3370 * before the next commit or risk reading stale cache. So to
3371 * limit our exposure to horrible edge cases lets just abort the
3372 * transaction, this only happens in really bad situations
3373 * anyway.
3375 btrfs_abort_transaction(trans, root, ret);
3376 goto out_put;
3378 WARN_ON(ret);
3380 if (i_size_read(inode) > 0) {
3381 ret = btrfs_check_trunc_cache_free_space(root,
3382 &root->fs_info->global_block_rsv);
3383 if (ret)
3384 goto out_put;
3386 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3387 if (ret)
3388 goto out_put;
3391 spin_lock(&block_group->lock);
3392 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3393 !btrfs_test_opt(root, SPACE_CACHE)) {
3395 * don't bother trying to write stuff out _if_
3396 * a) we're not cached,
3397 * b) we're with nospace_cache mount option.
3399 dcs = BTRFS_DC_WRITTEN;
3400 spin_unlock(&block_group->lock);
3401 goto out_put;
3403 spin_unlock(&block_group->lock);
3406 * Try to preallocate enough space based on how big the block group is.
3407 * Keep in mind this has to include any pinned space which could end up
3408 * taking up quite a bit since it's not folded into the other space
3409 * cache.
3411 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3412 if (!num_pages)
3413 num_pages = 1;
3415 num_pages *= 16;
3416 num_pages *= PAGE_CACHE_SIZE;
3418 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3419 if (ret)
3420 goto out_put;
3422 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3423 num_pages, num_pages,
3424 &alloc_hint);
3425 if (!ret)
3426 dcs = BTRFS_DC_SETUP;
3427 btrfs_free_reserved_data_space(inode, num_pages);
3429 out_put:
3430 iput(inode);
3431 out_free:
3432 btrfs_release_path(path);
3433 out:
3434 spin_lock(&block_group->lock);
3435 if (!ret && dcs == BTRFS_DC_SETUP)
3436 block_group->cache_generation = trans->transid;
3437 block_group->disk_cache_state = dcs;
3438 spin_unlock(&block_group->lock);
3440 return ret;
3443 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3444 struct btrfs_root *root)
3446 struct btrfs_block_group_cache *cache, *tmp;
3447 struct btrfs_transaction *cur_trans = trans->transaction;
3448 struct btrfs_path *path;
3450 if (list_empty(&cur_trans->dirty_bgs) ||
3451 !btrfs_test_opt(root, SPACE_CACHE))
3452 return 0;
3454 path = btrfs_alloc_path();
3455 if (!path)
3456 return -ENOMEM;
3458 /* Could add new block groups, use _safe just in case */
3459 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3460 dirty_list) {
3461 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3462 cache_save_setup(cache, trans, path);
3465 btrfs_free_path(path);
3466 return 0;
3470 * transaction commit does final block group cache writeback during a
3471 * critical section where nothing is allowed to change the FS. This is
3472 * required in order for the cache to actually match the block group,
3473 * but can introduce a lot of latency into the commit.
3475 * So, btrfs_start_dirty_block_groups is here to kick off block group
3476 * cache IO. There's a chance we'll have to redo some of it if the
3477 * block group changes again during the commit, but it greatly reduces
3478 * the commit latency by getting rid of the easy block groups while
3479 * we're still allowing others to join the commit.
3481 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3482 struct btrfs_root *root)
3484 struct btrfs_block_group_cache *cache;
3485 struct btrfs_transaction *cur_trans = trans->transaction;
3486 int ret = 0;
3487 int should_put;
3488 struct btrfs_path *path = NULL;
3489 LIST_HEAD(dirty);
3490 struct list_head *io = &cur_trans->io_bgs;
3491 int num_started = 0;
3492 int loops = 0;
3494 spin_lock(&cur_trans->dirty_bgs_lock);
3495 if (list_empty(&cur_trans->dirty_bgs)) {
3496 spin_unlock(&cur_trans->dirty_bgs_lock);
3497 return 0;
3499 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3500 spin_unlock(&cur_trans->dirty_bgs_lock);
3502 again:
3504 * make sure all the block groups on our dirty list actually
3505 * exist
3507 btrfs_create_pending_block_groups(trans, root);
3509 if (!path) {
3510 path = btrfs_alloc_path();
3511 if (!path)
3512 return -ENOMEM;
3516 * cache_write_mutex is here only to save us from balance or automatic
3517 * removal of empty block groups deleting this block group while we are
3518 * writing out the cache
3520 mutex_lock(&trans->transaction->cache_write_mutex);
3521 while (!list_empty(&dirty)) {
3522 cache = list_first_entry(&dirty,
3523 struct btrfs_block_group_cache,
3524 dirty_list);
3526 * this can happen if something re-dirties a block
3527 * group that is already under IO. Just wait for it to
3528 * finish and then do it all again
3530 if (!list_empty(&cache->io_list)) {
3531 list_del_init(&cache->io_list);
3532 btrfs_wait_cache_io(root, trans, cache,
3533 &cache->io_ctl, path,
3534 cache->key.objectid);
3535 btrfs_put_block_group(cache);
3540 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3541 * if it should update the cache_state. Don't delete
3542 * until after we wait.
3544 * Since we're not running in the commit critical section
3545 * we need the dirty_bgs_lock to protect from update_block_group
3547 spin_lock(&cur_trans->dirty_bgs_lock);
3548 list_del_init(&cache->dirty_list);
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3551 should_put = 1;
3553 cache_save_setup(cache, trans, path);
3555 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3556 cache->io_ctl.inode = NULL;
3557 ret = btrfs_write_out_cache(root, trans, cache, path);
3558 if (ret == 0 && cache->io_ctl.inode) {
3559 num_started++;
3560 should_put = 0;
3563 * the cache_write_mutex is protecting
3564 * the io_list
3566 list_add_tail(&cache->io_list, io);
3567 } else {
3569 * if we failed to write the cache, the
3570 * generation will be bad and life goes on
3572 ret = 0;
3575 if (!ret) {
3576 ret = write_one_cache_group(trans, root, path, cache);
3578 * Our block group might still be attached to the list
3579 * of new block groups in the transaction handle of some
3580 * other task (struct btrfs_trans_handle->new_bgs). This
3581 * means its block group item isn't yet in the extent
3582 * tree. If this happens ignore the error, as we will
3583 * try again later in the critical section of the
3584 * transaction commit.
3586 if (ret == -ENOENT) {
3587 ret = 0;
3588 spin_lock(&cur_trans->dirty_bgs_lock);
3589 if (list_empty(&cache->dirty_list)) {
3590 list_add_tail(&cache->dirty_list,
3591 &cur_trans->dirty_bgs);
3592 btrfs_get_block_group(cache);
3594 spin_unlock(&cur_trans->dirty_bgs_lock);
3595 } else if (ret) {
3596 btrfs_abort_transaction(trans, root, ret);
3600 /* if its not on the io list, we need to put the block group */
3601 if (should_put)
3602 btrfs_put_block_group(cache);
3604 if (ret)
3605 break;
3608 * Avoid blocking other tasks for too long. It might even save
3609 * us from writing caches for block groups that are going to be
3610 * removed.
3612 mutex_unlock(&trans->transaction->cache_write_mutex);
3613 mutex_lock(&trans->transaction->cache_write_mutex);
3615 mutex_unlock(&trans->transaction->cache_write_mutex);
3618 * go through delayed refs for all the stuff we've just kicked off
3619 * and then loop back (just once)
3621 ret = btrfs_run_delayed_refs(trans, root, 0);
3622 if (!ret && loops == 0) {
3623 loops++;
3624 spin_lock(&cur_trans->dirty_bgs_lock);
3625 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3627 * dirty_bgs_lock protects us from concurrent block group
3628 * deletes too (not just cache_write_mutex).
3630 if (!list_empty(&dirty)) {
3631 spin_unlock(&cur_trans->dirty_bgs_lock);
3632 goto again;
3634 spin_unlock(&cur_trans->dirty_bgs_lock);
3637 btrfs_free_path(path);
3638 return ret;
3641 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3642 struct btrfs_root *root)
3644 struct btrfs_block_group_cache *cache;
3645 struct btrfs_transaction *cur_trans = trans->transaction;
3646 int ret = 0;
3647 int should_put;
3648 struct btrfs_path *path;
3649 struct list_head *io = &cur_trans->io_bgs;
3650 int num_started = 0;
3652 path = btrfs_alloc_path();
3653 if (!path)
3654 return -ENOMEM;
3657 * We don't need the lock here since we are protected by the transaction
3658 * commit. We want to do the cache_save_setup first and then run the
3659 * delayed refs to make sure we have the best chance at doing this all
3660 * in one shot.
3662 while (!list_empty(&cur_trans->dirty_bgs)) {
3663 cache = list_first_entry(&cur_trans->dirty_bgs,
3664 struct btrfs_block_group_cache,
3665 dirty_list);
3668 * this can happen if cache_save_setup re-dirties a block
3669 * group that is already under IO. Just wait for it to
3670 * finish and then do it all again
3672 if (!list_empty(&cache->io_list)) {
3673 list_del_init(&cache->io_list);
3674 btrfs_wait_cache_io(root, trans, cache,
3675 &cache->io_ctl, path,
3676 cache->key.objectid);
3677 btrfs_put_block_group(cache);
3681 * don't remove from the dirty list until after we've waited
3682 * on any pending IO
3684 list_del_init(&cache->dirty_list);
3685 should_put = 1;
3687 cache_save_setup(cache, trans, path);
3689 if (!ret)
3690 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3692 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3693 cache->io_ctl.inode = NULL;
3694 ret = btrfs_write_out_cache(root, trans, cache, path);
3695 if (ret == 0 && cache->io_ctl.inode) {
3696 num_started++;
3697 should_put = 0;
3698 list_add_tail(&cache->io_list, io);
3699 } else {
3701 * if we failed to write the cache, the
3702 * generation will be bad and life goes on
3704 ret = 0;
3707 if (!ret) {
3708 ret = write_one_cache_group(trans, root, path, cache);
3709 if (ret)
3710 btrfs_abort_transaction(trans, root, ret);
3713 /* if its not on the io list, we need to put the block group */
3714 if (should_put)
3715 btrfs_put_block_group(cache);
3718 while (!list_empty(io)) {
3719 cache = list_first_entry(io, struct btrfs_block_group_cache,
3720 io_list);
3721 list_del_init(&cache->io_list);
3722 btrfs_wait_cache_io(root, trans, cache,
3723 &cache->io_ctl, path, cache->key.objectid);
3724 btrfs_put_block_group(cache);
3727 btrfs_free_path(path);
3728 return ret;
3731 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3733 struct btrfs_block_group_cache *block_group;
3734 int readonly = 0;
3736 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3737 if (!block_group || block_group->ro)
3738 readonly = 1;
3739 if (block_group)
3740 btrfs_put_block_group(block_group);
3741 return readonly;
3744 static const char *alloc_name(u64 flags)
3746 switch (flags) {
3747 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3748 return "mixed";
3749 case BTRFS_BLOCK_GROUP_METADATA:
3750 return "metadata";
3751 case BTRFS_BLOCK_GROUP_DATA:
3752 return "data";
3753 case BTRFS_BLOCK_GROUP_SYSTEM:
3754 return "system";
3755 default:
3756 WARN_ON(1);
3757 return "invalid-combination";
3761 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3762 u64 total_bytes, u64 bytes_used,
3763 struct btrfs_space_info **space_info)
3765 struct btrfs_space_info *found;
3766 int i;
3767 int factor;
3768 int ret;
3770 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3771 BTRFS_BLOCK_GROUP_RAID10))
3772 factor = 2;
3773 else
3774 factor = 1;
3776 found = __find_space_info(info, flags);
3777 if (found) {
3778 spin_lock(&found->lock);
3779 found->total_bytes += total_bytes;
3780 found->disk_total += total_bytes * factor;
3781 found->bytes_used += bytes_used;
3782 found->disk_used += bytes_used * factor;
3783 if (total_bytes > 0)
3784 found->full = 0;
3785 spin_unlock(&found->lock);
3786 *space_info = found;
3787 return 0;
3789 found = kzalloc(sizeof(*found), GFP_NOFS);
3790 if (!found)
3791 return -ENOMEM;
3793 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3794 if (ret) {
3795 kfree(found);
3796 return ret;
3799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3800 INIT_LIST_HEAD(&found->block_groups[i]);
3801 init_rwsem(&found->groups_sem);
3802 spin_lock_init(&found->lock);
3803 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3804 found->total_bytes = total_bytes;
3805 found->disk_total = total_bytes * factor;
3806 found->bytes_used = bytes_used;
3807 found->disk_used = bytes_used * factor;
3808 found->bytes_pinned = 0;
3809 found->bytes_reserved = 0;
3810 found->bytes_readonly = 0;
3811 found->bytes_may_use = 0;
3812 found->full = 0;
3813 found->max_extent_size = 0;
3814 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3815 found->chunk_alloc = 0;
3816 found->flush = 0;
3817 init_waitqueue_head(&found->wait);
3818 INIT_LIST_HEAD(&found->ro_bgs);
3820 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3821 info->space_info_kobj, "%s",
3822 alloc_name(found->flags));
3823 if (ret) {
3824 kfree(found);
3825 return ret;
3828 *space_info = found;
3829 list_add_rcu(&found->list, &info->space_info);
3830 if (flags & BTRFS_BLOCK_GROUP_DATA)
3831 info->data_sinfo = found;
3833 return ret;
3836 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3838 u64 extra_flags = chunk_to_extended(flags) &
3839 BTRFS_EXTENDED_PROFILE_MASK;
3841 write_seqlock(&fs_info->profiles_lock);
3842 if (flags & BTRFS_BLOCK_GROUP_DATA)
3843 fs_info->avail_data_alloc_bits |= extra_flags;
3844 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3845 fs_info->avail_metadata_alloc_bits |= extra_flags;
3846 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3847 fs_info->avail_system_alloc_bits |= extra_flags;
3848 write_sequnlock(&fs_info->profiles_lock);
3852 * returns target flags in extended format or 0 if restripe for this
3853 * chunk_type is not in progress
3855 * should be called with either volume_mutex or balance_lock held
3857 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3859 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3860 u64 target = 0;
3862 if (!bctl)
3863 return 0;
3865 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3866 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3867 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3868 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3869 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3870 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3871 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3872 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3873 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3876 return target;
3880 * @flags: available profiles in extended format (see ctree.h)
3882 * Returns reduced profile in chunk format. If profile changing is in
3883 * progress (either running or paused) picks the target profile (if it's
3884 * already available), otherwise falls back to plain reducing.
3886 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3888 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3889 u64 target;
3890 u64 raid_type;
3891 u64 allowed = 0;
3894 * see if restripe for this chunk_type is in progress, if so
3895 * try to reduce to the target profile
3897 spin_lock(&root->fs_info->balance_lock);
3898 target = get_restripe_target(root->fs_info, flags);
3899 if (target) {
3900 /* pick target profile only if it's already available */
3901 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3902 spin_unlock(&root->fs_info->balance_lock);
3903 return extended_to_chunk(target);
3906 spin_unlock(&root->fs_info->balance_lock);
3908 /* First, mask out the RAID levels which aren't possible */
3909 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3910 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3911 allowed |= btrfs_raid_group[raid_type];
3913 allowed &= flags;
3915 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3916 allowed = BTRFS_BLOCK_GROUP_RAID6;
3917 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3918 allowed = BTRFS_BLOCK_GROUP_RAID5;
3919 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3920 allowed = BTRFS_BLOCK_GROUP_RAID10;
3921 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3922 allowed = BTRFS_BLOCK_GROUP_RAID1;
3923 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3924 allowed = BTRFS_BLOCK_GROUP_RAID0;
3926 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3928 return extended_to_chunk(flags | allowed);
3931 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3933 unsigned seq;
3934 u64 flags;
3936 do {
3937 flags = orig_flags;
3938 seq = read_seqbegin(&root->fs_info->profiles_lock);
3940 if (flags & BTRFS_BLOCK_GROUP_DATA)
3941 flags |= root->fs_info->avail_data_alloc_bits;
3942 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3943 flags |= root->fs_info->avail_system_alloc_bits;
3944 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3945 flags |= root->fs_info->avail_metadata_alloc_bits;
3946 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3948 return btrfs_reduce_alloc_profile(root, flags);
3951 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3953 u64 flags;
3954 u64 ret;
3956 if (data)
3957 flags = BTRFS_BLOCK_GROUP_DATA;
3958 else if (root == root->fs_info->chunk_root)
3959 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3960 else
3961 flags = BTRFS_BLOCK_GROUP_METADATA;
3963 ret = get_alloc_profile(root, flags);
3964 return ret;
3968 * This will check the space that the inode allocates from to make sure we have
3969 * enough space for bytes.
3971 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3973 struct btrfs_space_info *data_sinfo;
3974 struct btrfs_root *root = BTRFS_I(inode)->root;
3975 struct btrfs_fs_info *fs_info = root->fs_info;
3976 u64 used;
3977 int ret = 0;
3978 int need_commit = 2;
3979 int have_pinned_space;
3981 /* make sure bytes are sectorsize aligned */
3982 bytes = ALIGN(bytes, root->sectorsize);
3984 if (btrfs_is_free_space_inode(inode)) {
3985 need_commit = 0;
3986 ASSERT(current->journal_info);
3989 data_sinfo = fs_info->data_sinfo;
3990 if (!data_sinfo)
3991 goto alloc;
3993 again:
3994 /* make sure we have enough space to handle the data first */
3995 spin_lock(&data_sinfo->lock);
3996 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3997 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3998 data_sinfo->bytes_may_use;
4000 if (used + bytes > data_sinfo->total_bytes) {
4001 struct btrfs_trans_handle *trans;
4004 * if we don't have enough free bytes in this space then we need
4005 * to alloc a new chunk.
4007 if (!data_sinfo->full) {
4008 u64 alloc_target;
4010 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4011 spin_unlock(&data_sinfo->lock);
4012 alloc:
4013 alloc_target = btrfs_get_alloc_profile(root, 1);
4015 * It is ugly that we don't call nolock join
4016 * transaction for the free space inode case here.
4017 * But it is safe because we only do the data space
4018 * reservation for the free space cache in the
4019 * transaction context, the common join transaction
4020 * just increase the counter of the current transaction
4021 * handler, doesn't try to acquire the trans_lock of
4022 * the fs.
4024 trans = btrfs_join_transaction(root);
4025 if (IS_ERR(trans))
4026 return PTR_ERR(trans);
4028 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4029 alloc_target,
4030 CHUNK_ALLOC_NO_FORCE);
4031 btrfs_end_transaction(trans, root);
4032 if (ret < 0) {
4033 if (ret != -ENOSPC)
4034 return ret;
4035 else {
4036 have_pinned_space = 1;
4037 goto commit_trans;
4041 if (!data_sinfo)
4042 data_sinfo = fs_info->data_sinfo;
4044 goto again;
4048 * If we don't have enough pinned space to deal with this
4049 * allocation, and no removed chunk in current transaction,
4050 * don't bother committing the transaction.
4052 have_pinned_space = percpu_counter_compare(
4053 &data_sinfo->total_bytes_pinned,
4054 used + bytes - data_sinfo->total_bytes);
4055 spin_unlock(&data_sinfo->lock);
4057 /* commit the current transaction and try again */
4058 commit_trans:
4059 if (need_commit &&
4060 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4061 need_commit--;
4063 if (need_commit > 0)
4064 btrfs_wait_ordered_roots(fs_info, -1);
4066 trans = btrfs_join_transaction(root);
4067 if (IS_ERR(trans))
4068 return PTR_ERR(trans);
4069 if (have_pinned_space >= 0 ||
4070 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4071 &trans->transaction->flags) ||
4072 need_commit > 0) {
4073 ret = btrfs_commit_transaction(trans, root);
4074 if (ret)
4075 return ret;
4077 * make sure that all running delayed iput are
4078 * done
4080 down_write(&root->fs_info->delayed_iput_sem);
4081 up_write(&root->fs_info->delayed_iput_sem);
4082 goto again;
4083 } else {
4084 btrfs_end_transaction(trans, root);
4088 trace_btrfs_space_reservation(root->fs_info,
4089 "space_info:enospc",
4090 data_sinfo->flags, bytes, 1);
4091 return -ENOSPC;
4093 ret = btrfs_qgroup_reserve(root, write_bytes);
4094 if (ret)
4095 goto out;
4096 data_sinfo->bytes_may_use += bytes;
4097 trace_btrfs_space_reservation(root->fs_info, "space_info",
4098 data_sinfo->flags, bytes, 1);
4099 out:
4100 spin_unlock(&data_sinfo->lock);
4102 return ret;
4106 * Called if we need to clear a data reservation for this inode.
4108 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4110 struct btrfs_root *root = BTRFS_I(inode)->root;
4111 struct btrfs_space_info *data_sinfo;
4113 /* make sure bytes are sectorsize aligned */
4114 bytes = ALIGN(bytes, root->sectorsize);
4116 data_sinfo = root->fs_info->data_sinfo;
4117 spin_lock(&data_sinfo->lock);
4118 WARN_ON(data_sinfo->bytes_may_use < bytes);
4119 data_sinfo->bytes_may_use -= bytes;
4120 trace_btrfs_space_reservation(root->fs_info, "space_info",
4121 data_sinfo->flags, bytes, 0);
4122 spin_unlock(&data_sinfo->lock);
4125 static void force_metadata_allocation(struct btrfs_fs_info *info)
4127 struct list_head *head = &info->space_info;
4128 struct btrfs_space_info *found;
4130 rcu_read_lock();
4131 list_for_each_entry_rcu(found, head, list) {
4132 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4133 found->force_alloc = CHUNK_ALLOC_FORCE;
4135 rcu_read_unlock();
4138 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4140 return (global->size << 1);
4143 static int should_alloc_chunk(struct btrfs_root *root,
4144 struct btrfs_space_info *sinfo, int force)
4146 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4147 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4148 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4149 u64 thresh;
4151 if (force == CHUNK_ALLOC_FORCE)
4152 return 1;
4155 * We need to take into account the global rsv because for all intents
4156 * and purposes it's used space. Don't worry about locking the
4157 * global_rsv, it doesn't change except when the transaction commits.
4159 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4160 num_allocated += calc_global_rsv_need_space(global_rsv);
4163 * in limited mode, we want to have some free space up to
4164 * about 1% of the FS size.
4166 if (force == CHUNK_ALLOC_LIMITED) {
4167 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4168 thresh = max_t(u64, 64 * 1024 * 1024,
4169 div_factor_fine(thresh, 1));
4171 if (num_bytes - num_allocated < thresh)
4172 return 1;
4175 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4176 return 0;
4177 return 1;
4180 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4182 u64 num_dev;
4184 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4185 BTRFS_BLOCK_GROUP_RAID0 |
4186 BTRFS_BLOCK_GROUP_RAID5 |
4187 BTRFS_BLOCK_GROUP_RAID6))
4188 num_dev = root->fs_info->fs_devices->rw_devices;
4189 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4190 num_dev = 2;
4191 else
4192 num_dev = 1; /* DUP or single */
4194 return num_dev;
4198 * If @is_allocation is true, reserve space in the system space info necessary
4199 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4200 * removing a chunk.
4202 void check_system_chunk(struct btrfs_trans_handle *trans,
4203 struct btrfs_root *root,
4204 u64 type)
4206 struct btrfs_space_info *info;
4207 u64 left;
4208 u64 thresh;
4209 int ret = 0;
4210 u64 num_devs;
4213 * Needed because we can end up allocating a system chunk and for an
4214 * atomic and race free space reservation in the chunk block reserve.
4216 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4218 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4219 spin_lock(&info->lock);
4220 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4221 info->bytes_reserved - info->bytes_readonly -
4222 info->bytes_may_use;
4223 spin_unlock(&info->lock);
4225 num_devs = get_profile_num_devs(root, type);
4227 /* num_devs device items to update and 1 chunk item to add or remove */
4228 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4229 btrfs_calc_trans_metadata_size(root, 1);
4231 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4232 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4233 left, thresh, type);
4234 dump_space_info(info, 0, 0);
4237 if (left < thresh) {
4238 u64 flags;
4240 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4242 * Ignore failure to create system chunk. We might end up not
4243 * needing it, as we might not need to COW all nodes/leafs from
4244 * the paths we visit in the chunk tree (they were already COWed
4245 * or created in the current transaction for example).
4247 ret = btrfs_alloc_chunk(trans, root, flags);
4250 if (!ret) {
4251 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4252 &root->fs_info->chunk_block_rsv,
4253 thresh, BTRFS_RESERVE_NO_FLUSH);
4254 if (!ret)
4255 trans->chunk_bytes_reserved += thresh;
4259 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4260 struct btrfs_root *extent_root, u64 flags, int force)
4262 struct btrfs_space_info *space_info;
4263 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4264 int wait_for_alloc = 0;
4265 int ret = 0;
4267 /* Don't re-enter if we're already allocating a chunk */
4268 if (trans->allocating_chunk)
4269 return -ENOSPC;
4271 space_info = __find_space_info(extent_root->fs_info, flags);
4272 if (!space_info) {
4273 ret = update_space_info(extent_root->fs_info, flags,
4274 0, 0, &space_info);
4275 BUG_ON(ret); /* -ENOMEM */
4277 BUG_ON(!space_info); /* Logic error */
4279 again:
4280 spin_lock(&space_info->lock);
4281 if (force < space_info->force_alloc)
4282 force = space_info->force_alloc;
4283 if (space_info->full) {
4284 if (should_alloc_chunk(extent_root, space_info, force))
4285 ret = -ENOSPC;
4286 else
4287 ret = 0;
4288 spin_unlock(&space_info->lock);
4289 return ret;
4292 if (!should_alloc_chunk(extent_root, space_info, force)) {
4293 spin_unlock(&space_info->lock);
4294 return 0;
4295 } else if (space_info->chunk_alloc) {
4296 wait_for_alloc = 1;
4297 } else {
4298 space_info->chunk_alloc = 1;
4301 spin_unlock(&space_info->lock);
4303 mutex_lock(&fs_info->chunk_mutex);
4306 * The chunk_mutex is held throughout the entirety of a chunk
4307 * allocation, so once we've acquired the chunk_mutex we know that the
4308 * other guy is done and we need to recheck and see if we should
4309 * allocate.
4311 if (wait_for_alloc) {
4312 mutex_unlock(&fs_info->chunk_mutex);
4313 wait_for_alloc = 0;
4314 goto again;
4317 trans->allocating_chunk = true;
4320 * If we have mixed data/metadata chunks we want to make sure we keep
4321 * allocating mixed chunks instead of individual chunks.
4323 if (btrfs_mixed_space_info(space_info))
4324 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4327 * if we're doing a data chunk, go ahead and make sure that
4328 * we keep a reasonable number of metadata chunks allocated in the
4329 * FS as well.
4331 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4332 fs_info->data_chunk_allocations++;
4333 if (!(fs_info->data_chunk_allocations %
4334 fs_info->metadata_ratio))
4335 force_metadata_allocation(fs_info);
4339 * Check if we have enough space in SYSTEM chunk because we may need
4340 * to update devices.
4342 check_system_chunk(trans, extent_root, flags);
4344 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4345 trans->allocating_chunk = false;
4347 spin_lock(&space_info->lock);
4348 if (ret < 0 && ret != -ENOSPC)
4349 goto out;
4350 if (ret)
4351 space_info->full = 1;
4352 else
4353 ret = 1;
4355 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4356 out:
4357 space_info->chunk_alloc = 0;
4358 spin_unlock(&space_info->lock);
4359 mutex_unlock(&fs_info->chunk_mutex);
4361 * When we allocate a new chunk we reserve space in the chunk block
4362 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4363 * add new nodes/leafs to it if we end up needing to do it when
4364 * inserting the chunk item and updating device items as part of the
4365 * second phase of chunk allocation, performed by
4366 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4367 * large number of new block groups to create in our transaction
4368 * handle's new_bgs list to avoid exhausting the chunk block reserve
4369 * in extreme cases - like having a single transaction create many new
4370 * block groups when starting to write out the free space caches of all
4371 * the block groups that were made dirty during the lifetime of the
4372 * transaction.
4374 if (trans->can_flush_pending_bgs &&
4375 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4376 btrfs_create_pending_block_groups(trans, trans->root);
4377 btrfs_trans_release_chunk_metadata(trans);
4379 return ret;
4382 static int can_overcommit(struct btrfs_root *root,
4383 struct btrfs_space_info *space_info, u64 bytes,
4384 enum btrfs_reserve_flush_enum flush)
4386 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4387 u64 profile = btrfs_get_alloc_profile(root, 0);
4388 u64 space_size;
4389 u64 avail;
4390 u64 used;
4392 used = space_info->bytes_used + space_info->bytes_reserved +
4393 space_info->bytes_pinned + space_info->bytes_readonly;
4396 * We only want to allow over committing if we have lots of actual space
4397 * free, but if we don't have enough space to handle the global reserve
4398 * space then we could end up having a real enospc problem when trying
4399 * to allocate a chunk or some other such important allocation.
4401 spin_lock(&global_rsv->lock);
4402 space_size = calc_global_rsv_need_space(global_rsv);
4403 spin_unlock(&global_rsv->lock);
4404 if (used + space_size >= space_info->total_bytes)
4405 return 0;
4407 used += space_info->bytes_may_use;
4409 spin_lock(&root->fs_info->free_chunk_lock);
4410 avail = root->fs_info->free_chunk_space;
4411 spin_unlock(&root->fs_info->free_chunk_lock);
4414 * If we have dup, raid1 or raid10 then only half of the free
4415 * space is actually useable. For raid56, the space info used
4416 * doesn't include the parity drive, so we don't have to
4417 * change the math
4419 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4420 BTRFS_BLOCK_GROUP_RAID1 |
4421 BTRFS_BLOCK_GROUP_RAID10))
4422 avail >>= 1;
4425 * If we aren't flushing all things, let us overcommit up to
4426 * 1/2th of the space. If we can flush, don't let us overcommit
4427 * too much, let it overcommit up to 1/8 of the space.
4429 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4430 avail >>= 3;
4431 else
4432 avail >>= 1;
4434 if (used + bytes < space_info->total_bytes + avail)
4435 return 1;
4436 return 0;
4439 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4440 unsigned long nr_pages, int nr_items)
4442 struct super_block *sb = root->fs_info->sb;
4444 if (down_read_trylock(&sb->s_umount)) {
4445 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4446 up_read(&sb->s_umount);
4447 } else {
4449 * We needn't worry the filesystem going from r/w to r/o though
4450 * we don't acquire ->s_umount mutex, because the filesystem
4451 * should guarantee the delalloc inodes list be empty after
4452 * the filesystem is readonly(all dirty pages are written to
4453 * the disk).
4455 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4456 if (!current->journal_info)
4457 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4461 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4463 u64 bytes;
4464 int nr;
4466 bytes = btrfs_calc_trans_metadata_size(root, 1);
4467 nr = (int)div64_u64(to_reclaim, bytes);
4468 if (!nr)
4469 nr = 1;
4470 return nr;
4473 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4476 * shrink metadata reservation for delalloc
4478 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4479 bool wait_ordered)
4481 struct btrfs_block_rsv *block_rsv;
4482 struct btrfs_space_info *space_info;
4483 struct btrfs_trans_handle *trans;
4484 u64 delalloc_bytes;
4485 u64 max_reclaim;
4486 long time_left;
4487 unsigned long nr_pages;
4488 int loops;
4489 int items;
4490 enum btrfs_reserve_flush_enum flush;
4492 /* Calc the number of the pages we need flush for space reservation */
4493 items = calc_reclaim_items_nr(root, to_reclaim);
4494 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4496 trans = (struct btrfs_trans_handle *)current->journal_info;
4497 block_rsv = &root->fs_info->delalloc_block_rsv;
4498 space_info = block_rsv->space_info;
4500 delalloc_bytes = percpu_counter_sum_positive(
4501 &root->fs_info->delalloc_bytes);
4502 if (delalloc_bytes == 0) {
4503 if (trans)
4504 return;
4505 if (wait_ordered)
4506 btrfs_wait_ordered_roots(root->fs_info, items);
4507 return;
4510 loops = 0;
4511 while (delalloc_bytes && loops < 3) {
4512 max_reclaim = min(delalloc_bytes, to_reclaim);
4513 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4514 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4516 * We need to wait for the async pages to actually start before
4517 * we do anything.
4519 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4520 if (!max_reclaim)
4521 goto skip_async;
4523 if (max_reclaim <= nr_pages)
4524 max_reclaim = 0;
4525 else
4526 max_reclaim -= nr_pages;
4528 wait_event(root->fs_info->async_submit_wait,
4529 atomic_read(&root->fs_info->async_delalloc_pages) <=
4530 (int)max_reclaim);
4531 skip_async:
4532 if (!trans)
4533 flush = BTRFS_RESERVE_FLUSH_ALL;
4534 else
4535 flush = BTRFS_RESERVE_NO_FLUSH;
4536 spin_lock(&space_info->lock);
4537 if (can_overcommit(root, space_info, orig, flush)) {
4538 spin_unlock(&space_info->lock);
4539 break;
4541 spin_unlock(&space_info->lock);
4543 loops++;
4544 if (wait_ordered && !trans) {
4545 btrfs_wait_ordered_roots(root->fs_info, items);
4546 } else {
4547 time_left = schedule_timeout_killable(1);
4548 if (time_left)
4549 break;
4551 delalloc_bytes = percpu_counter_sum_positive(
4552 &root->fs_info->delalloc_bytes);
4557 * maybe_commit_transaction - possibly commit the transaction if its ok to
4558 * @root - the root we're allocating for
4559 * @bytes - the number of bytes we want to reserve
4560 * @force - force the commit
4562 * This will check to make sure that committing the transaction will actually
4563 * get us somewhere and then commit the transaction if it does. Otherwise it
4564 * will return -ENOSPC.
4566 static int may_commit_transaction(struct btrfs_root *root,
4567 struct btrfs_space_info *space_info,
4568 u64 bytes, int force)
4570 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4571 struct btrfs_trans_handle *trans;
4573 trans = (struct btrfs_trans_handle *)current->journal_info;
4574 if (trans)
4575 return -EAGAIN;
4577 if (force)
4578 goto commit;
4580 /* See if there is enough pinned space to make this reservation */
4581 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4582 bytes) >= 0)
4583 goto commit;
4586 * See if there is some space in the delayed insertion reservation for
4587 * this reservation.
4589 if (space_info != delayed_rsv->space_info)
4590 return -ENOSPC;
4592 spin_lock(&delayed_rsv->lock);
4593 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4594 bytes - delayed_rsv->size) >= 0) {
4595 spin_unlock(&delayed_rsv->lock);
4596 return -ENOSPC;
4598 spin_unlock(&delayed_rsv->lock);
4600 commit:
4601 trans = btrfs_join_transaction(root);
4602 if (IS_ERR(trans))
4603 return -ENOSPC;
4605 return btrfs_commit_transaction(trans, root);
4608 enum flush_state {
4609 FLUSH_DELAYED_ITEMS_NR = 1,
4610 FLUSH_DELAYED_ITEMS = 2,
4611 FLUSH_DELALLOC = 3,
4612 FLUSH_DELALLOC_WAIT = 4,
4613 ALLOC_CHUNK = 5,
4614 COMMIT_TRANS = 6,
4617 static int flush_space(struct btrfs_root *root,
4618 struct btrfs_space_info *space_info, u64 num_bytes,
4619 u64 orig_bytes, int state)
4621 struct btrfs_trans_handle *trans;
4622 int nr;
4623 int ret = 0;
4625 switch (state) {
4626 case FLUSH_DELAYED_ITEMS_NR:
4627 case FLUSH_DELAYED_ITEMS:
4628 if (state == FLUSH_DELAYED_ITEMS_NR)
4629 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4630 else
4631 nr = -1;
4633 trans = btrfs_join_transaction(root);
4634 if (IS_ERR(trans)) {
4635 ret = PTR_ERR(trans);
4636 break;
4638 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4639 btrfs_end_transaction(trans, root);
4640 break;
4641 case FLUSH_DELALLOC:
4642 case FLUSH_DELALLOC_WAIT:
4643 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4644 state == FLUSH_DELALLOC_WAIT);
4645 break;
4646 case ALLOC_CHUNK:
4647 trans = btrfs_join_transaction(root);
4648 if (IS_ERR(trans)) {
4649 ret = PTR_ERR(trans);
4650 break;
4652 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4653 btrfs_get_alloc_profile(root, 0),
4654 CHUNK_ALLOC_NO_FORCE);
4655 btrfs_end_transaction(trans, root);
4656 if (ret == -ENOSPC)
4657 ret = 0;
4658 break;
4659 case COMMIT_TRANS:
4660 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4661 break;
4662 default:
4663 ret = -ENOSPC;
4664 break;
4667 return ret;
4670 static inline u64
4671 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4672 struct btrfs_space_info *space_info)
4674 u64 used;
4675 u64 expected;
4676 u64 to_reclaim;
4678 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4679 16 * 1024 * 1024);
4680 spin_lock(&space_info->lock);
4681 if (can_overcommit(root, space_info, to_reclaim,
4682 BTRFS_RESERVE_FLUSH_ALL)) {
4683 to_reclaim = 0;
4684 goto out;
4687 used = space_info->bytes_used + space_info->bytes_reserved +
4688 space_info->bytes_pinned + space_info->bytes_readonly +
4689 space_info->bytes_may_use;
4690 if (can_overcommit(root, space_info, 1024 * 1024,
4691 BTRFS_RESERVE_FLUSH_ALL))
4692 expected = div_factor_fine(space_info->total_bytes, 95);
4693 else
4694 expected = div_factor_fine(space_info->total_bytes, 90);
4696 if (used > expected)
4697 to_reclaim = used - expected;
4698 else
4699 to_reclaim = 0;
4700 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4701 space_info->bytes_reserved);
4702 out:
4703 spin_unlock(&space_info->lock);
4705 return to_reclaim;
4708 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4709 struct btrfs_fs_info *fs_info, u64 used)
4711 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4713 /* If we're just plain full then async reclaim just slows us down. */
4714 if (space_info->bytes_used >= thresh)
4715 return 0;
4717 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4718 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4721 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4722 struct btrfs_fs_info *fs_info,
4723 int flush_state)
4725 u64 used;
4727 spin_lock(&space_info->lock);
4729 * We run out of space and have not got any free space via flush_space,
4730 * so don't bother doing async reclaim.
4732 if (flush_state > COMMIT_TRANS && space_info->full) {
4733 spin_unlock(&space_info->lock);
4734 return 0;
4737 used = space_info->bytes_used + space_info->bytes_reserved +
4738 space_info->bytes_pinned + space_info->bytes_readonly +
4739 space_info->bytes_may_use;
4740 if (need_do_async_reclaim(space_info, fs_info, used)) {
4741 spin_unlock(&space_info->lock);
4742 return 1;
4744 spin_unlock(&space_info->lock);
4746 return 0;
4749 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4751 struct btrfs_fs_info *fs_info;
4752 struct btrfs_space_info *space_info;
4753 u64 to_reclaim;
4754 int flush_state;
4756 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4757 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4759 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4760 space_info);
4761 if (!to_reclaim)
4762 return;
4764 flush_state = FLUSH_DELAYED_ITEMS_NR;
4765 do {
4766 flush_space(fs_info->fs_root, space_info, to_reclaim,
4767 to_reclaim, flush_state);
4768 flush_state++;
4769 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4770 flush_state))
4771 return;
4772 } while (flush_state < COMMIT_TRANS);
4775 void btrfs_init_async_reclaim_work(struct work_struct *work)
4777 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4781 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4782 * @root - the root we're allocating for
4783 * @block_rsv - the block_rsv we're allocating for
4784 * @orig_bytes - the number of bytes we want
4785 * @flush - whether or not we can flush to make our reservation
4787 * This will reserve orgi_bytes number of bytes from the space info associated
4788 * with the block_rsv. If there is not enough space it will make an attempt to
4789 * flush out space to make room. It will do this by flushing delalloc if
4790 * possible or committing the transaction. If flush is 0 then no attempts to
4791 * regain reservations will be made and this will fail if there is not enough
4792 * space already.
4794 static int reserve_metadata_bytes(struct btrfs_root *root,
4795 struct btrfs_block_rsv *block_rsv,
4796 u64 orig_bytes,
4797 enum btrfs_reserve_flush_enum flush)
4799 struct btrfs_space_info *space_info = block_rsv->space_info;
4800 u64 used;
4801 u64 num_bytes = orig_bytes;
4802 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4803 int ret = 0;
4804 bool flushing = false;
4806 again:
4807 ret = 0;
4808 spin_lock(&space_info->lock);
4810 * We only want to wait if somebody other than us is flushing and we
4811 * are actually allowed to flush all things.
4813 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4814 space_info->flush) {
4815 spin_unlock(&space_info->lock);
4817 * If we have a trans handle we can't wait because the flusher
4818 * may have to commit the transaction, which would mean we would
4819 * deadlock since we are waiting for the flusher to finish, but
4820 * hold the current transaction open.
4822 if (current->journal_info)
4823 return -EAGAIN;
4824 ret = wait_event_killable(space_info->wait, !space_info->flush);
4825 /* Must have been killed, return */
4826 if (ret)
4827 return -EINTR;
4829 spin_lock(&space_info->lock);
4832 ret = -ENOSPC;
4833 used = space_info->bytes_used + space_info->bytes_reserved +
4834 space_info->bytes_pinned + space_info->bytes_readonly +
4835 space_info->bytes_may_use;
4838 * The idea here is that we've not already over-reserved the block group
4839 * then we can go ahead and save our reservation first and then start
4840 * flushing if we need to. Otherwise if we've already overcommitted
4841 * lets start flushing stuff first and then come back and try to make
4842 * our reservation.
4844 if (used <= space_info->total_bytes) {
4845 if (used + orig_bytes <= space_info->total_bytes) {
4846 space_info->bytes_may_use += orig_bytes;
4847 trace_btrfs_space_reservation(root->fs_info,
4848 "space_info", space_info->flags, orig_bytes, 1);
4849 ret = 0;
4850 } else {
4852 * Ok set num_bytes to orig_bytes since we aren't
4853 * overocmmitted, this way we only try and reclaim what
4854 * we need.
4856 num_bytes = orig_bytes;
4858 } else {
4860 * Ok we're over committed, set num_bytes to the overcommitted
4861 * amount plus the amount of bytes that we need for this
4862 * reservation.
4864 num_bytes = used - space_info->total_bytes +
4865 (orig_bytes * 2);
4868 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4869 space_info->bytes_may_use += orig_bytes;
4870 trace_btrfs_space_reservation(root->fs_info, "space_info",
4871 space_info->flags, orig_bytes,
4873 ret = 0;
4877 * Couldn't make our reservation, save our place so while we're trying
4878 * to reclaim space we can actually use it instead of somebody else
4879 * stealing it from us.
4881 * We make the other tasks wait for the flush only when we can flush
4882 * all things.
4884 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4885 flushing = true;
4886 space_info->flush = 1;
4887 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4888 used += orig_bytes;
4890 * We will do the space reservation dance during log replay,
4891 * which means we won't have fs_info->fs_root set, so don't do
4892 * the async reclaim as we will panic.
4894 if (!root->fs_info->log_root_recovering &&
4895 need_do_async_reclaim(space_info, root->fs_info, used) &&
4896 !work_busy(&root->fs_info->async_reclaim_work))
4897 queue_work(system_unbound_wq,
4898 &root->fs_info->async_reclaim_work);
4900 spin_unlock(&space_info->lock);
4902 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4903 goto out;
4905 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4906 flush_state);
4907 flush_state++;
4910 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4911 * would happen. So skip delalloc flush.
4913 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4914 (flush_state == FLUSH_DELALLOC ||
4915 flush_state == FLUSH_DELALLOC_WAIT))
4916 flush_state = ALLOC_CHUNK;
4918 if (!ret)
4919 goto again;
4920 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4921 flush_state < COMMIT_TRANS)
4922 goto again;
4923 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4924 flush_state <= COMMIT_TRANS)
4925 goto again;
4927 out:
4928 if (ret == -ENOSPC &&
4929 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4930 struct btrfs_block_rsv *global_rsv =
4931 &root->fs_info->global_block_rsv;
4933 if (block_rsv != global_rsv &&
4934 !block_rsv_use_bytes(global_rsv, orig_bytes))
4935 ret = 0;
4937 if (ret == -ENOSPC)
4938 trace_btrfs_space_reservation(root->fs_info,
4939 "space_info:enospc",
4940 space_info->flags, orig_bytes, 1);
4941 if (flushing) {
4942 spin_lock(&space_info->lock);
4943 space_info->flush = 0;
4944 wake_up_all(&space_info->wait);
4945 spin_unlock(&space_info->lock);
4947 return ret;
4950 static struct btrfs_block_rsv *get_block_rsv(
4951 const struct btrfs_trans_handle *trans,
4952 const struct btrfs_root *root)
4954 struct btrfs_block_rsv *block_rsv = NULL;
4956 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4957 (root == root->fs_info->csum_root && trans->adding_csums) ||
4958 (root == root->fs_info->uuid_root))
4959 block_rsv = trans->block_rsv;
4961 if (!block_rsv)
4962 block_rsv = root->block_rsv;
4964 if (!block_rsv)
4965 block_rsv = &root->fs_info->empty_block_rsv;
4967 return block_rsv;
4970 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4971 u64 num_bytes)
4973 int ret = -ENOSPC;
4974 spin_lock(&block_rsv->lock);
4975 if (block_rsv->reserved >= num_bytes) {
4976 block_rsv->reserved -= num_bytes;
4977 if (block_rsv->reserved < block_rsv->size)
4978 block_rsv->full = 0;
4979 ret = 0;
4981 spin_unlock(&block_rsv->lock);
4982 return ret;
4985 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4986 u64 num_bytes, int update_size)
4988 spin_lock(&block_rsv->lock);
4989 block_rsv->reserved += num_bytes;
4990 if (update_size)
4991 block_rsv->size += num_bytes;
4992 else if (block_rsv->reserved >= block_rsv->size)
4993 block_rsv->full = 1;
4994 spin_unlock(&block_rsv->lock);
4997 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4998 struct btrfs_block_rsv *dest, u64 num_bytes,
4999 int min_factor)
5001 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5002 u64 min_bytes;
5004 if (global_rsv->space_info != dest->space_info)
5005 return -ENOSPC;
5007 spin_lock(&global_rsv->lock);
5008 min_bytes = div_factor(global_rsv->size, min_factor);
5009 if (global_rsv->reserved < min_bytes + num_bytes) {
5010 spin_unlock(&global_rsv->lock);
5011 return -ENOSPC;
5013 global_rsv->reserved -= num_bytes;
5014 if (global_rsv->reserved < global_rsv->size)
5015 global_rsv->full = 0;
5016 spin_unlock(&global_rsv->lock);
5018 block_rsv_add_bytes(dest, num_bytes, 1);
5019 return 0;
5022 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5023 struct btrfs_block_rsv *block_rsv,
5024 struct btrfs_block_rsv *dest, u64 num_bytes)
5026 struct btrfs_space_info *space_info = block_rsv->space_info;
5028 spin_lock(&block_rsv->lock);
5029 if (num_bytes == (u64)-1)
5030 num_bytes = block_rsv->size;
5031 block_rsv->size -= num_bytes;
5032 if (block_rsv->reserved >= block_rsv->size) {
5033 num_bytes = block_rsv->reserved - block_rsv->size;
5034 block_rsv->reserved = block_rsv->size;
5035 block_rsv->full = 1;
5036 } else {
5037 num_bytes = 0;
5039 spin_unlock(&block_rsv->lock);
5041 if (num_bytes > 0) {
5042 if (dest) {
5043 spin_lock(&dest->lock);
5044 if (!dest->full) {
5045 u64 bytes_to_add;
5047 bytes_to_add = dest->size - dest->reserved;
5048 bytes_to_add = min(num_bytes, bytes_to_add);
5049 dest->reserved += bytes_to_add;
5050 if (dest->reserved >= dest->size)
5051 dest->full = 1;
5052 num_bytes -= bytes_to_add;
5054 spin_unlock(&dest->lock);
5056 if (num_bytes) {
5057 spin_lock(&space_info->lock);
5058 space_info->bytes_may_use -= num_bytes;
5059 trace_btrfs_space_reservation(fs_info, "space_info",
5060 space_info->flags, num_bytes, 0);
5061 spin_unlock(&space_info->lock);
5066 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5067 struct btrfs_block_rsv *dst, u64 num_bytes)
5069 int ret;
5071 ret = block_rsv_use_bytes(src, num_bytes);
5072 if (ret)
5073 return ret;
5075 block_rsv_add_bytes(dst, num_bytes, 1);
5076 return 0;
5079 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5081 memset(rsv, 0, sizeof(*rsv));
5082 spin_lock_init(&rsv->lock);
5083 rsv->type = type;
5086 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5087 unsigned short type)
5089 struct btrfs_block_rsv *block_rsv;
5090 struct btrfs_fs_info *fs_info = root->fs_info;
5092 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5093 if (!block_rsv)
5094 return NULL;
5096 btrfs_init_block_rsv(block_rsv, type);
5097 block_rsv->space_info = __find_space_info(fs_info,
5098 BTRFS_BLOCK_GROUP_METADATA);
5099 return block_rsv;
5102 void btrfs_free_block_rsv(struct btrfs_root *root,
5103 struct btrfs_block_rsv *rsv)
5105 if (!rsv)
5106 return;
5107 btrfs_block_rsv_release(root, rsv, (u64)-1);
5108 kfree(rsv);
5111 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5113 kfree(rsv);
5116 int btrfs_block_rsv_add(struct btrfs_root *root,
5117 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5118 enum btrfs_reserve_flush_enum flush)
5120 int ret;
5122 if (num_bytes == 0)
5123 return 0;
5125 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5126 if (!ret) {
5127 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5128 return 0;
5131 return ret;
5134 int btrfs_block_rsv_check(struct btrfs_root *root,
5135 struct btrfs_block_rsv *block_rsv, int min_factor)
5137 u64 num_bytes = 0;
5138 int ret = -ENOSPC;
5140 if (!block_rsv)
5141 return 0;
5143 spin_lock(&block_rsv->lock);
5144 num_bytes = div_factor(block_rsv->size, min_factor);
5145 if (block_rsv->reserved >= num_bytes)
5146 ret = 0;
5147 spin_unlock(&block_rsv->lock);
5149 return ret;
5152 int btrfs_block_rsv_refill(struct btrfs_root *root,
5153 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5154 enum btrfs_reserve_flush_enum flush)
5156 u64 num_bytes = 0;
5157 int ret = -ENOSPC;
5159 if (!block_rsv)
5160 return 0;
5162 spin_lock(&block_rsv->lock);
5163 num_bytes = min_reserved;
5164 if (block_rsv->reserved >= num_bytes)
5165 ret = 0;
5166 else
5167 num_bytes -= block_rsv->reserved;
5168 spin_unlock(&block_rsv->lock);
5170 if (!ret)
5171 return 0;
5173 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5174 if (!ret) {
5175 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5176 return 0;
5179 return ret;
5182 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5183 struct btrfs_block_rsv *dst_rsv,
5184 u64 num_bytes)
5186 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5189 void btrfs_block_rsv_release(struct btrfs_root *root,
5190 struct btrfs_block_rsv *block_rsv,
5191 u64 num_bytes)
5193 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5194 if (global_rsv == block_rsv ||
5195 block_rsv->space_info != global_rsv->space_info)
5196 global_rsv = NULL;
5197 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5198 num_bytes);
5202 * helper to calculate size of global block reservation.
5203 * the desired value is sum of space used by extent tree,
5204 * checksum tree and root tree
5206 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5208 struct btrfs_space_info *sinfo;
5209 u64 num_bytes;
5210 u64 meta_used;
5211 u64 data_used;
5212 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5214 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5215 spin_lock(&sinfo->lock);
5216 data_used = sinfo->bytes_used;
5217 spin_unlock(&sinfo->lock);
5219 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5220 spin_lock(&sinfo->lock);
5221 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5222 data_used = 0;
5223 meta_used = sinfo->bytes_used;
5224 spin_unlock(&sinfo->lock);
5226 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5227 csum_size * 2;
5228 num_bytes += div_u64(data_used + meta_used, 50);
5230 if (num_bytes * 3 > meta_used)
5231 num_bytes = div_u64(meta_used, 3);
5233 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5236 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5238 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5239 struct btrfs_space_info *sinfo = block_rsv->space_info;
5240 u64 num_bytes;
5242 num_bytes = calc_global_metadata_size(fs_info);
5244 spin_lock(&sinfo->lock);
5245 spin_lock(&block_rsv->lock);
5247 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5249 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5250 sinfo->bytes_reserved + sinfo->bytes_readonly +
5251 sinfo->bytes_may_use;
5253 if (sinfo->total_bytes > num_bytes) {
5254 num_bytes = sinfo->total_bytes - num_bytes;
5255 block_rsv->reserved += num_bytes;
5256 sinfo->bytes_may_use += num_bytes;
5257 trace_btrfs_space_reservation(fs_info, "space_info",
5258 sinfo->flags, num_bytes, 1);
5261 if (block_rsv->reserved >= block_rsv->size) {
5262 num_bytes = block_rsv->reserved - block_rsv->size;
5263 sinfo->bytes_may_use -= num_bytes;
5264 trace_btrfs_space_reservation(fs_info, "space_info",
5265 sinfo->flags, num_bytes, 0);
5266 block_rsv->reserved = block_rsv->size;
5267 block_rsv->full = 1;
5270 spin_unlock(&block_rsv->lock);
5271 spin_unlock(&sinfo->lock);
5274 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5276 struct btrfs_space_info *space_info;
5278 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5279 fs_info->chunk_block_rsv.space_info = space_info;
5281 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5282 fs_info->global_block_rsv.space_info = space_info;
5283 fs_info->delalloc_block_rsv.space_info = space_info;
5284 fs_info->trans_block_rsv.space_info = space_info;
5285 fs_info->empty_block_rsv.space_info = space_info;
5286 fs_info->delayed_block_rsv.space_info = space_info;
5288 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5289 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5290 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5291 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5292 if (fs_info->quota_root)
5293 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5294 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5296 update_global_block_rsv(fs_info);
5299 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5301 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5302 (u64)-1);
5303 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5304 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5305 WARN_ON(fs_info->trans_block_rsv.size > 0);
5306 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5307 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5308 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5309 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5310 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5313 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5314 struct btrfs_root *root)
5316 if (!trans->block_rsv)
5317 return;
5319 if (!trans->bytes_reserved)
5320 return;
5322 trace_btrfs_space_reservation(root->fs_info, "transaction",
5323 trans->transid, trans->bytes_reserved, 0);
5324 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5325 trans->bytes_reserved = 0;
5329 * To be called after all the new block groups attached to the transaction
5330 * handle have been created (btrfs_create_pending_block_groups()).
5332 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5334 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5336 if (!trans->chunk_bytes_reserved)
5337 return;
5339 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5341 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5342 trans->chunk_bytes_reserved);
5343 trans->chunk_bytes_reserved = 0;
5346 /* Can only return 0 or -ENOSPC */
5347 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5348 struct inode *inode)
5350 struct btrfs_root *root = BTRFS_I(inode)->root;
5351 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5352 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5355 * We need to hold space in order to delete our orphan item once we've
5356 * added it, so this takes the reservation so we can release it later
5357 * when we are truly done with the orphan item.
5359 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5360 trace_btrfs_space_reservation(root->fs_info, "orphan",
5361 btrfs_ino(inode), num_bytes, 1);
5362 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5365 void btrfs_orphan_release_metadata(struct inode *inode)
5367 struct btrfs_root *root = BTRFS_I(inode)->root;
5368 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5369 trace_btrfs_space_reservation(root->fs_info, "orphan",
5370 btrfs_ino(inode), num_bytes, 0);
5371 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5375 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5376 * root: the root of the parent directory
5377 * rsv: block reservation
5378 * items: the number of items that we need do reservation
5379 * qgroup_reserved: used to return the reserved size in qgroup
5381 * This function is used to reserve the space for snapshot/subvolume
5382 * creation and deletion. Those operations are different with the
5383 * common file/directory operations, they change two fs/file trees
5384 * and root tree, the number of items that the qgroup reserves is
5385 * different with the free space reservation. So we can not use
5386 * the space reseravtion mechanism in start_transaction().
5388 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5389 struct btrfs_block_rsv *rsv,
5390 int items,
5391 u64 *qgroup_reserved,
5392 bool use_global_rsv)
5394 u64 num_bytes;
5395 int ret;
5396 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5398 if (root->fs_info->quota_enabled) {
5399 /* One for parent inode, two for dir entries */
5400 num_bytes = 3 * root->nodesize;
5401 ret = btrfs_qgroup_reserve(root, num_bytes);
5402 if (ret)
5403 return ret;
5404 } else {
5405 num_bytes = 0;
5408 *qgroup_reserved = num_bytes;
5410 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5411 rsv->space_info = __find_space_info(root->fs_info,
5412 BTRFS_BLOCK_GROUP_METADATA);
5413 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5414 BTRFS_RESERVE_FLUSH_ALL);
5416 if (ret == -ENOSPC && use_global_rsv)
5417 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5419 if (ret) {
5420 if (*qgroup_reserved)
5421 btrfs_qgroup_free(root, *qgroup_reserved);
5424 return ret;
5427 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5428 struct btrfs_block_rsv *rsv,
5429 u64 qgroup_reserved)
5431 btrfs_block_rsv_release(root, rsv, (u64)-1);
5435 * drop_outstanding_extent - drop an outstanding extent
5436 * @inode: the inode we're dropping the extent for
5437 * @num_bytes: the number of bytes we're relaseing.
5439 * This is called when we are freeing up an outstanding extent, either called
5440 * after an error or after an extent is written. This will return the number of
5441 * reserved extents that need to be freed. This must be called with
5442 * BTRFS_I(inode)->lock held.
5444 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5446 unsigned drop_inode_space = 0;
5447 unsigned dropped_extents = 0;
5448 unsigned num_extents = 0;
5450 num_extents = (unsigned)div64_u64(num_bytes +
5451 BTRFS_MAX_EXTENT_SIZE - 1,
5452 BTRFS_MAX_EXTENT_SIZE);
5453 ASSERT(num_extents);
5454 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5455 BTRFS_I(inode)->outstanding_extents -= num_extents;
5457 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5458 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5459 &BTRFS_I(inode)->runtime_flags))
5460 drop_inode_space = 1;
5463 * If we have more or the same amount of outsanding extents than we have
5464 * reserved then we need to leave the reserved extents count alone.
5466 if (BTRFS_I(inode)->outstanding_extents >=
5467 BTRFS_I(inode)->reserved_extents)
5468 return drop_inode_space;
5470 dropped_extents = BTRFS_I(inode)->reserved_extents -
5471 BTRFS_I(inode)->outstanding_extents;
5472 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5473 return dropped_extents + drop_inode_space;
5477 * calc_csum_metadata_size - return the amount of metada space that must be
5478 * reserved/free'd for the given bytes.
5479 * @inode: the inode we're manipulating
5480 * @num_bytes: the number of bytes in question
5481 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5483 * This adjusts the number of csum_bytes in the inode and then returns the
5484 * correct amount of metadata that must either be reserved or freed. We
5485 * calculate how many checksums we can fit into one leaf and then divide the
5486 * number of bytes that will need to be checksumed by this value to figure out
5487 * how many checksums will be required. If we are adding bytes then the number
5488 * may go up and we will return the number of additional bytes that must be
5489 * reserved. If it is going down we will return the number of bytes that must
5490 * be freed.
5492 * This must be called with BTRFS_I(inode)->lock held.
5494 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5495 int reserve)
5497 struct btrfs_root *root = BTRFS_I(inode)->root;
5498 u64 old_csums, num_csums;
5500 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5501 BTRFS_I(inode)->csum_bytes == 0)
5502 return 0;
5504 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5505 if (reserve)
5506 BTRFS_I(inode)->csum_bytes += num_bytes;
5507 else
5508 BTRFS_I(inode)->csum_bytes -= num_bytes;
5509 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5511 /* No change, no need to reserve more */
5512 if (old_csums == num_csums)
5513 return 0;
5515 if (reserve)
5516 return btrfs_calc_trans_metadata_size(root,
5517 num_csums - old_csums);
5519 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5522 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5524 struct btrfs_root *root = BTRFS_I(inode)->root;
5525 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5526 u64 to_reserve = 0;
5527 u64 csum_bytes;
5528 unsigned nr_extents = 0;
5529 int extra_reserve = 0;
5530 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5531 int ret = 0;
5532 bool delalloc_lock = true;
5533 u64 to_free = 0;
5534 unsigned dropped;
5536 /* If we are a free space inode we need to not flush since we will be in
5537 * the middle of a transaction commit. We also don't need the delalloc
5538 * mutex since we won't race with anybody. We need this mostly to make
5539 * lockdep shut its filthy mouth.
5541 if (btrfs_is_free_space_inode(inode)) {
5542 flush = BTRFS_RESERVE_NO_FLUSH;
5543 delalloc_lock = false;
5546 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5547 btrfs_transaction_in_commit(root->fs_info))
5548 schedule_timeout(1);
5550 if (delalloc_lock)
5551 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5553 num_bytes = ALIGN(num_bytes, root->sectorsize);
5555 spin_lock(&BTRFS_I(inode)->lock);
5556 nr_extents = (unsigned)div64_u64(num_bytes +
5557 BTRFS_MAX_EXTENT_SIZE - 1,
5558 BTRFS_MAX_EXTENT_SIZE);
5559 BTRFS_I(inode)->outstanding_extents += nr_extents;
5560 nr_extents = 0;
5562 if (BTRFS_I(inode)->outstanding_extents >
5563 BTRFS_I(inode)->reserved_extents)
5564 nr_extents = BTRFS_I(inode)->outstanding_extents -
5565 BTRFS_I(inode)->reserved_extents;
5568 * Add an item to reserve for updating the inode when we complete the
5569 * delalloc io.
5571 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5572 &BTRFS_I(inode)->runtime_flags)) {
5573 nr_extents++;
5574 extra_reserve = 1;
5577 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5578 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5579 csum_bytes = BTRFS_I(inode)->csum_bytes;
5580 spin_unlock(&BTRFS_I(inode)->lock);
5582 if (root->fs_info->quota_enabled) {
5583 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5584 if (ret)
5585 goto out_fail;
5588 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5589 if (unlikely(ret)) {
5590 if (root->fs_info->quota_enabled)
5591 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5592 goto out_fail;
5595 spin_lock(&BTRFS_I(inode)->lock);
5596 if (extra_reserve) {
5597 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5598 &BTRFS_I(inode)->runtime_flags);
5599 nr_extents--;
5601 BTRFS_I(inode)->reserved_extents += nr_extents;
5602 spin_unlock(&BTRFS_I(inode)->lock);
5604 if (delalloc_lock)
5605 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5607 if (to_reserve)
5608 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5609 btrfs_ino(inode), to_reserve, 1);
5610 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5612 return 0;
5614 out_fail:
5615 spin_lock(&BTRFS_I(inode)->lock);
5616 dropped = drop_outstanding_extent(inode, num_bytes);
5618 * If the inodes csum_bytes is the same as the original
5619 * csum_bytes then we know we haven't raced with any free()ers
5620 * so we can just reduce our inodes csum bytes and carry on.
5622 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5623 calc_csum_metadata_size(inode, num_bytes, 0);
5624 } else {
5625 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5626 u64 bytes;
5629 * This is tricky, but first we need to figure out how much we
5630 * free'd from any free-ers that occured during this
5631 * reservation, so we reset ->csum_bytes to the csum_bytes
5632 * before we dropped our lock, and then call the free for the
5633 * number of bytes that were freed while we were trying our
5634 * reservation.
5636 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5637 BTRFS_I(inode)->csum_bytes = csum_bytes;
5638 to_free = calc_csum_metadata_size(inode, bytes, 0);
5642 * Now we need to see how much we would have freed had we not
5643 * been making this reservation and our ->csum_bytes were not
5644 * artificially inflated.
5646 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5647 bytes = csum_bytes - orig_csum_bytes;
5648 bytes = calc_csum_metadata_size(inode, bytes, 0);
5651 * Now reset ->csum_bytes to what it should be. If bytes is
5652 * more than to_free then we would have free'd more space had we
5653 * not had an artificially high ->csum_bytes, so we need to free
5654 * the remainder. If bytes is the same or less then we don't
5655 * need to do anything, the other free-ers did the correct
5656 * thing.
5658 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5659 if (bytes > to_free)
5660 to_free = bytes - to_free;
5661 else
5662 to_free = 0;
5664 spin_unlock(&BTRFS_I(inode)->lock);
5665 if (dropped)
5666 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5668 if (to_free) {
5669 btrfs_block_rsv_release(root, block_rsv, to_free);
5670 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5671 btrfs_ino(inode), to_free, 0);
5673 if (delalloc_lock)
5674 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5675 return ret;
5679 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5680 * @inode: the inode to release the reservation for
5681 * @num_bytes: the number of bytes we're releasing
5683 * This will release the metadata reservation for an inode. This can be called
5684 * once we complete IO for a given set of bytes to release their metadata
5685 * reservations.
5687 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5689 struct btrfs_root *root = BTRFS_I(inode)->root;
5690 u64 to_free = 0;
5691 unsigned dropped;
5693 num_bytes = ALIGN(num_bytes, root->sectorsize);
5694 spin_lock(&BTRFS_I(inode)->lock);
5695 dropped = drop_outstanding_extent(inode, num_bytes);
5697 if (num_bytes)
5698 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5699 spin_unlock(&BTRFS_I(inode)->lock);
5700 if (dropped > 0)
5701 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5703 if (btrfs_test_is_dummy_root(root))
5704 return;
5706 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5707 btrfs_ino(inode), to_free, 0);
5709 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5710 to_free);
5714 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5715 * @inode: inode we're writing to
5716 * @num_bytes: the number of bytes we want to allocate
5718 * This will do the following things
5720 * o reserve space in the data space info for num_bytes
5721 * o reserve space in the metadata space info based on number of outstanding
5722 * extents and how much csums will be needed
5723 * o add to the inodes ->delalloc_bytes
5724 * o add it to the fs_info's delalloc inodes list.
5726 * This will return 0 for success and -ENOSPC if there is no space left.
5728 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5730 int ret;
5732 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5733 if (ret)
5734 return ret;
5736 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5737 if (ret) {
5738 btrfs_free_reserved_data_space(inode, num_bytes);
5739 return ret;
5742 return 0;
5746 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5747 * @inode: inode we're releasing space for
5748 * @num_bytes: the number of bytes we want to free up
5750 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5751 * called in the case that we don't need the metadata AND data reservations
5752 * anymore. So if there is an error or we insert an inline extent.
5754 * This function will release the metadata space that was not used and will
5755 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5756 * list if there are no delalloc bytes left.
5758 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5760 btrfs_delalloc_release_metadata(inode, num_bytes);
5761 btrfs_free_reserved_data_space(inode, num_bytes);
5764 static int update_block_group(struct btrfs_trans_handle *trans,
5765 struct btrfs_root *root, u64 bytenr,
5766 u64 num_bytes, int alloc)
5768 struct btrfs_block_group_cache *cache = NULL;
5769 struct btrfs_fs_info *info = root->fs_info;
5770 u64 total = num_bytes;
5771 u64 old_val;
5772 u64 byte_in_group;
5773 int factor;
5775 /* block accounting for super block */
5776 spin_lock(&info->delalloc_root_lock);
5777 old_val = btrfs_super_bytes_used(info->super_copy);
5778 if (alloc)
5779 old_val += num_bytes;
5780 else
5781 old_val -= num_bytes;
5782 btrfs_set_super_bytes_used(info->super_copy, old_val);
5783 spin_unlock(&info->delalloc_root_lock);
5785 while (total) {
5786 cache = btrfs_lookup_block_group(info, bytenr);
5787 if (!cache)
5788 return -ENOENT;
5789 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5790 BTRFS_BLOCK_GROUP_RAID1 |
5791 BTRFS_BLOCK_GROUP_RAID10))
5792 factor = 2;
5793 else
5794 factor = 1;
5796 * If this block group has free space cache written out, we
5797 * need to make sure to load it if we are removing space. This
5798 * is because we need the unpinning stage to actually add the
5799 * space back to the block group, otherwise we will leak space.
5801 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5802 cache_block_group(cache, 1);
5804 byte_in_group = bytenr - cache->key.objectid;
5805 WARN_ON(byte_in_group > cache->key.offset);
5807 spin_lock(&cache->space_info->lock);
5808 spin_lock(&cache->lock);
5810 if (btrfs_test_opt(root, SPACE_CACHE) &&
5811 cache->disk_cache_state < BTRFS_DC_CLEAR)
5812 cache->disk_cache_state = BTRFS_DC_CLEAR;
5814 old_val = btrfs_block_group_used(&cache->item);
5815 num_bytes = min(total, cache->key.offset - byte_in_group);
5816 if (alloc) {
5817 old_val += num_bytes;
5818 btrfs_set_block_group_used(&cache->item, old_val);
5819 cache->reserved -= num_bytes;
5820 cache->space_info->bytes_reserved -= num_bytes;
5821 cache->space_info->bytes_used += num_bytes;
5822 cache->space_info->disk_used += num_bytes * factor;
5823 spin_unlock(&cache->lock);
5824 spin_unlock(&cache->space_info->lock);
5825 } else {
5826 old_val -= num_bytes;
5827 btrfs_set_block_group_used(&cache->item, old_val);
5828 cache->pinned += num_bytes;
5829 cache->space_info->bytes_pinned += num_bytes;
5830 cache->space_info->bytes_used -= num_bytes;
5831 cache->space_info->disk_used -= num_bytes * factor;
5832 spin_unlock(&cache->lock);
5833 spin_unlock(&cache->space_info->lock);
5835 set_extent_dirty(info->pinned_extents,
5836 bytenr, bytenr + num_bytes - 1,
5837 GFP_NOFS | __GFP_NOFAIL);
5839 * No longer have used bytes in this block group, queue
5840 * it for deletion.
5842 if (old_val == 0) {
5843 spin_lock(&info->unused_bgs_lock);
5844 if (list_empty(&cache->bg_list)) {
5845 btrfs_get_block_group(cache);
5846 list_add_tail(&cache->bg_list,
5847 &info->unused_bgs);
5849 spin_unlock(&info->unused_bgs_lock);
5853 spin_lock(&trans->transaction->dirty_bgs_lock);
5854 if (list_empty(&cache->dirty_list)) {
5855 list_add_tail(&cache->dirty_list,
5856 &trans->transaction->dirty_bgs);
5857 trans->transaction->num_dirty_bgs++;
5858 btrfs_get_block_group(cache);
5860 spin_unlock(&trans->transaction->dirty_bgs_lock);
5862 btrfs_put_block_group(cache);
5863 total -= num_bytes;
5864 bytenr += num_bytes;
5866 return 0;
5869 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5871 struct btrfs_block_group_cache *cache;
5872 u64 bytenr;
5874 spin_lock(&root->fs_info->block_group_cache_lock);
5875 bytenr = root->fs_info->first_logical_byte;
5876 spin_unlock(&root->fs_info->block_group_cache_lock);
5878 if (bytenr < (u64)-1)
5879 return bytenr;
5881 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5882 if (!cache)
5883 return 0;
5885 bytenr = cache->key.objectid;
5886 btrfs_put_block_group(cache);
5888 return bytenr;
5891 static int pin_down_extent(struct btrfs_root *root,
5892 struct btrfs_block_group_cache *cache,
5893 u64 bytenr, u64 num_bytes, int reserved)
5895 spin_lock(&cache->space_info->lock);
5896 spin_lock(&cache->lock);
5897 cache->pinned += num_bytes;
5898 cache->space_info->bytes_pinned += num_bytes;
5899 if (reserved) {
5900 cache->reserved -= num_bytes;
5901 cache->space_info->bytes_reserved -= num_bytes;
5903 spin_unlock(&cache->lock);
5904 spin_unlock(&cache->space_info->lock);
5906 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5907 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5908 if (reserved)
5909 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5910 return 0;
5914 * this function must be called within transaction
5916 int btrfs_pin_extent(struct btrfs_root *root,
5917 u64 bytenr, u64 num_bytes, int reserved)
5919 struct btrfs_block_group_cache *cache;
5921 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5922 BUG_ON(!cache); /* Logic error */
5924 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5926 btrfs_put_block_group(cache);
5927 return 0;
5931 * this function must be called within transaction
5933 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5934 u64 bytenr, u64 num_bytes)
5936 struct btrfs_block_group_cache *cache;
5937 int ret;
5939 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5940 if (!cache)
5941 return -EINVAL;
5944 * pull in the free space cache (if any) so that our pin
5945 * removes the free space from the cache. We have load_only set
5946 * to one because the slow code to read in the free extents does check
5947 * the pinned extents.
5949 cache_block_group(cache, 1);
5951 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5953 /* remove us from the free space cache (if we're there at all) */
5954 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5955 btrfs_put_block_group(cache);
5956 return ret;
5959 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5961 int ret;
5962 struct btrfs_block_group_cache *block_group;
5963 struct btrfs_caching_control *caching_ctl;
5965 block_group = btrfs_lookup_block_group(root->fs_info, start);
5966 if (!block_group)
5967 return -EINVAL;
5969 cache_block_group(block_group, 0);
5970 caching_ctl = get_caching_control(block_group);
5972 if (!caching_ctl) {
5973 /* Logic error */
5974 BUG_ON(!block_group_cache_done(block_group));
5975 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5976 } else {
5977 mutex_lock(&caching_ctl->mutex);
5979 if (start >= caching_ctl->progress) {
5980 ret = add_excluded_extent(root, start, num_bytes);
5981 } else if (start + num_bytes <= caching_ctl->progress) {
5982 ret = btrfs_remove_free_space(block_group,
5983 start, num_bytes);
5984 } else {
5985 num_bytes = caching_ctl->progress - start;
5986 ret = btrfs_remove_free_space(block_group,
5987 start, num_bytes);
5988 if (ret)
5989 goto out_lock;
5991 num_bytes = (start + num_bytes) -
5992 caching_ctl->progress;
5993 start = caching_ctl->progress;
5994 ret = add_excluded_extent(root, start, num_bytes);
5996 out_lock:
5997 mutex_unlock(&caching_ctl->mutex);
5998 put_caching_control(caching_ctl);
6000 btrfs_put_block_group(block_group);
6001 return ret;
6004 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6005 struct extent_buffer *eb)
6007 struct btrfs_file_extent_item *item;
6008 struct btrfs_key key;
6009 int found_type;
6010 int i;
6012 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6013 return 0;
6015 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6016 btrfs_item_key_to_cpu(eb, &key, i);
6017 if (key.type != BTRFS_EXTENT_DATA_KEY)
6018 continue;
6019 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6020 found_type = btrfs_file_extent_type(eb, item);
6021 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6022 continue;
6023 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6024 continue;
6025 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6026 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6027 __exclude_logged_extent(log, key.objectid, key.offset);
6030 return 0;
6034 * btrfs_update_reserved_bytes - update the block_group and space info counters
6035 * @cache: The cache we are manipulating
6036 * @num_bytes: The number of bytes in question
6037 * @reserve: One of the reservation enums
6038 * @delalloc: The blocks are allocated for the delalloc write
6040 * This is called by the allocator when it reserves space, or by somebody who is
6041 * freeing space that was never actually used on disk. For example if you
6042 * reserve some space for a new leaf in transaction A and before transaction A
6043 * commits you free that leaf, you call this with reserve set to 0 in order to
6044 * clear the reservation.
6046 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6047 * ENOSPC accounting. For data we handle the reservation through clearing the
6048 * delalloc bits in the io_tree. We have to do this since we could end up
6049 * allocating less disk space for the amount of data we have reserved in the
6050 * case of compression.
6052 * If this is a reservation and the block group has become read only we cannot
6053 * make the reservation and return -EAGAIN, otherwise this function always
6054 * succeeds.
6056 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6057 u64 num_bytes, int reserve, int delalloc)
6059 struct btrfs_space_info *space_info = cache->space_info;
6060 int ret = 0;
6062 spin_lock(&space_info->lock);
6063 spin_lock(&cache->lock);
6064 if (reserve != RESERVE_FREE) {
6065 if (cache->ro) {
6066 ret = -EAGAIN;
6067 } else {
6068 cache->reserved += num_bytes;
6069 space_info->bytes_reserved += num_bytes;
6070 if (reserve == RESERVE_ALLOC) {
6071 trace_btrfs_space_reservation(cache->fs_info,
6072 "space_info", space_info->flags,
6073 num_bytes, 0);
6074 space_info->bytes_may_use -= num_bytes;
6077 if (delalloc)
6078 cache->delalloc_bytes += num_bytes;
6080 } else {
6081 if (cache->ro)
6082 space_info->bytes_readonly += num_bytes;
6083 cache->reserved -= num_bytes;
6084 space_info->bytes_reserved -= num_bytes;
6086 if (delalloc)
6087 cache->delalloc_bytes -= num_bytes;
6089 spin_unlock(&cache->lock);
6090 spin_unlock(&space_info->lock);
6091 return ret;
6094 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6095 struct btrfs_root *root)
6097 struct btrfs_fs_info *fs_info = root->fs_info;
6098 struct btrfs_caching_control *next;
6099 struct btrfs_caching_control *caching_ctl;
6100 struct btrfs_block_group_cache *cache;
6102 down_write(&fs_info->commit_root_sem);
6104 list_for_each_entry_safe(caching_ctl, next,
6105 &fs_info->caching_block_groups, list) {
6106 cache = caching_ctl->block_group;
6107 if (block_group_cache_done(cache)) {
6108 cache->last_byte_to_unpin = (u64)-1;
6109 list_del_init(&caching_ctl->list);
6110 put_caching_control(caching_ctl);
6111 } else {
6112 cache->last_byte_to_unpin = caching_ctl->progress;
6116 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6117 fs_info->pinned_extents = &fs_info->freed_extents[1];
6118 else
6119 fs_info->pinned_extents = &fs_info->freed_extents[0];
6121 up_write(&fs_info->commit_root_sem);
6123 update_global_block_rsv(fs_info);
6126 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6127 const bool return_free_space)
6129 struct btrfs_fs_info *fs_info = root->fs_info;
6130 struct btrfs_block_group_cache *cache = NULL;
6131 struct btrfs_space_info *space_info;
6132 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6133 u64 len;
6134 bool readonly;
6136 while (start <= end) {
6137 readonly = false;
6138 if (!cache ||
6139 start >= cache->key.objectid + cache->key.offset) {
6140 if (cache)
6141 btrfs_put_block_group(cache);
6142 cache = btrfs_lookup_block_group(fs_info, start);
6143 BUG_ON(!cache); /* Logic error */
6146 len = cache->key.objectid + cache->key.offset - start;
6147 len = min(len, end + 1 - start);
6149 if (start < cache->last_byte_to_unpin) {
6150 len = min(len, cache->last_byte_to_unpin - start);
6151 if (return_free_space)
6152 btrfs_add_free_space(cache, start, len);
6155 start += len;
6156 space_info = cache->space_info;
6158 spin_lock(&space_info->lock);
6159 spin_lock(&cache->lock);
6160 cache->pinned -= len;
6161 space_info->bytes_pinned -= len;
6162 space_info->max_extent_size = 0;
6163 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6164 if (cache->ro) {
6165 space_info->bytes_readonly += len;
6166 readonly = true;
6168 spin_unlock(&cache->lock);
6169 if (!readonly && global_rsv->space_info == space_info) {
6170 spin_lock(&global_rsv->lock);
6171 if (!global_rsv->full) {
6172 len = min(len, global_rsv->size -
6173 global_rsv->reserved);
6174 global_rsv->reserved += len;
6175 space_info->bytes_may_use += len;
6176 if (global_rsv->reserved >= global_rsv->size)
6177 global_rsv->full = 1;
6179 spin_unlock(&global_rsv->lock);
6181 spin_unlock(&space_info->lock);
6184 if (cache)
6185 btrfs_put_block_group(cache);
6186 return 0;
6189 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6190 struct btrfs_root *root)
6192 struct btrfs_fs_info *fs_info = root->fs_info;
6193 struct btrfs_block_group_cache *block_group, *tmp;
6194 struct list_head *deleted_bgs;
6195 struct extent_io_tree *unpin;
6196 u64 start;
6197 u64 end;
6198 int ret;
6200 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6201 unpin = &fs_info->freed_extents[1];
6202 else
6203 unpin = &fs_info->freed_extents[0];
6205 while (!trans->aborted) {
6206 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6207 ret = find_first_extent_bit(unpin, 0, &start, &end,
6208 EXTENT_DIRTY, NULL);
6209 if (ret) {
6210 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6211 break;
6214 if (btrfs_test_opt(root, DISCARD))
6215 ret = btrfs_discard_extent(root, start,
6216 end + 1 - start, NULL);
6218 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6219 unpin_extent_range(root, start, end, true);
6220 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6221 cond_resched();
6225 * Transaction is finished. We don't need the lock anymore. We
6226 * do need to clean up the block groups in case of a transaction
6227 * abort.
6229 deleted_bgs = &trans->transaction->deleted_bgs;
6230 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6231 u64 trimmed = 0;
6233 ret = -EROFS;
6234 if (!trans->aborted)
6235 ret = btrfs_discard_extent(root,
6236 block_group->key.objectid,
6237 block_group->key.offset,
6238 &trimmed);
6240 list_del_init(&block_group->bg_list);
6241 btrfs_put_block_group_trimming(block_group);
6242 btrfs_put_block_group(block_group);
6244 if (ret) {
6245 const char *errstr = btrfs_decode_error(ret);
6246 btrfs_warn(fs_info,
6247 "Discard failed while removing blockgroup: errno=%d %s\n",
6248 ret, errstr);
6252 return 0;
6255 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6256 u64 owner, u64 root_objectid)
6258 struct btrfs_space_info *space_info;
6259 u64 flags;
6261 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6262 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6263 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6264 else
6265 flags = BTRFS_BLOCK_GROUP_METADATA;
6266 } else {
6267 flags = BTRFS_BLOCK_GROUP_DATA;
6270 space_info = __find_space_info(fs_info, flags);
6271 BUG_ON(!space_info); /* Logic bug */
6272 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6276 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6277 struct btrfs_root *root,
6278 struct btrfs_delayed_ref_node *node, u64 parent,
6279 u64 root_objectid, u64 owner_objectid,
6280 u64 owner_offset, int refs_to_drop,
6281 struct btrfs_delayed_extent_op *extent_op)
6283 struct btrfs_key key;
6284 struct btrfs_path *path;
6285 struct btrfs_fs_info *info = root->fs_info;
6286 struct btrfs_root *extent_root = info->extent_root;
6287 struct extent_buffer *leaf;
6288 struct btrfs_extent_item *ei;
6289 struct btrfs_extent_inline_ref *iref;
6290 int ret;
6291 int is_data;
6292 int extent_slot = 0;
6293 int found_extent = 0;
6294 int num_to_del = 1;
6295 int no_quota = node->no_quota;
6296 u32 item_size;
6297 u64 refs;
6298 u64 bytenr = node->bytenr;
6299 u64 num_bytes = node->num_bytes;
6300 int last_ref = 0;
6301 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6302 SKINNY_METADATA);
6304 if (!info->quota_enabled || !is_fstree(root_objectid))
6305 no_quota = 1;
6307 path = btrfs_alloc_path();
6308 if (!path)
6309 return -ENOMEM;
6311 path->reada = 1;
6312 path->leave_spinning = 1;
6314 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6315 BUG_ON(!is_data && refs_to_drop != 1);
6317 if (is_data)
6318 skinny_metadata = 0;
6320 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6321 bytenr, num_bytes, parent,
6322 root_objectid, owner_objectid,
6323 owner_offset);
6324 if (ret == 0) {
6325 extent_slot = path->slots[0];
6326 while (extent_slot >= 0) {
6327 btrfs_item_key_to_cpu(path->nodes[0], &key,
6328 extent_slot);
6329 if (key.objectid != bytenr)
6330 break;
6331 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6332 key.offset == num_bytes) {
6333 found_extent = 1;
6334 break;
6336 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6337 key.offset == owner_objectid) {
6338 found_extent = 1;
6339 break;
6341 if (path->slots[0] - extent_slot > 5)
6342 break;
6343 extent_slot--;
6345 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6346 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6347 if (found_extent && item_size < sizeof(*ei))
6348 found_extent = 0;
6349 #endif
6350 if (!found_extent) {
6351 BUG_ON(iref);
6352 ret = remove_extent_backref(trans, extent_root, path,
6353 NULL, refs_to_drop,
6354 is_data, &last_ref);
6355 if (ret) {
6356 btrfs_abort_transaction(trans, extent_root, ret);
6357 goto out;
6359 btrfs_release_path(path);
6360 path->leave_spinning = 1;
6362 key.objectid = bytenr;
6363 key.type = BTRFS_EXTENT_ITEM_KEY;
6364 key.offset = num_bytes;
6366 if (!is_data && skinny_metadata) {
6367 key.type = BTRFS_METADATA_ITEM_KEY;
6368 key.offset = owner_objectid;
6371 ret = btrfs_search_slot(trans, extent_root,
6372 &key, path, -1, 1);
6373 if (ret > 0 && skinny_metadata && path->slots[0]) {
6375 * Couldn't find our skinny metadata item,
6376 * see if we have ye olde extent item.
6378 path->slots[0]--;
6379 btrfs_item_key_to_cpu(path->nodes[0], &key,
6380 path->slots[0]);
6381 if (key.objectid == bytenr &&
6382 key.type == BTRFS_EXTENT_ITEM_KEY &&
6383 key.offset == num_bytes)
6384 ret = 0;
6387 if (ret > 0 && skinny_metadata) {
6388 skinny_metadata = false;
6389 key.objectid = bytenr;
6390 key.type = BTRFS_EXTENT_ITEM_KEY;
6391 key.offset = num_bytes;
6392 btrfs_release_path(path);
6393 ret = btrfs_search_slot(trans, extent_root,
6394 &key, path, -1, 1);
6397 if (ret) {
6398 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6399 ret, bytenr);
6400 if (ret > 0)
6401 btrfs_print_leaf(extent_root,
6402 path->nodes[0]);
6404 if (ret < 0) {
6405 btrfs_abort_transaction(trans, extent_root, ret);
6406 goto out;
6408 extent_slot = path->slots[0];
6410 } else if (WARN_ON(ret == -ENOENT)) {
6411 btrfs_print_leaf(extent_root, path->nodes[0]);
6412 btrfs_err(info,
6413 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6414 bytenr, parent, root_objectid, owner_objectid,
6415 owner_offset);
6416 btrfs_abort_transaction(trans, extent_root, ret);
6417 goto out;
6418 } else {
6419 btrfs_abort_transaction(trans, extent_root, ret);
6420 goto out;
6423 leaf = path->nodes[0];
6424 item_size = btrfs_item_size_nr(leaf, extent_slot);
6425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6426 if (item_size < sizeof(*ei)) {
6427 BUG_ON(found_extent || extent_slot != path->slots[0]);
6428 ret = convert_extent_item_v0(trans, extent_root, path,
6429 owner_objectid, 0);
6430 if (ret < 0) {
6431 btrfs_abort_transaction(trans, extent_root, ret);
6432 goto out;
6435 btrfs_release_path(path);
6436 path->leave_spinning = 1;
6438 key.objectid = bytenr;
6439 key.type = BTRFS_EXTENT_ITEM_KEY;
6440 key.offset = num_bytes;
6442 ret = btrfs_search_slot(trans, extent_root, &key, path,
6443 -1, 1);
6444 if (ret) {
6445 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6446 ret, bytenr);
6447 btrfs_print_leaf(extent_root, path->nodes[0]);
6449 if (ret < 0) {
6450 btrfs_abort_transaction(trans, extent_root, ret);
6451 goto out;
6454 extent_slot = path->slots[0];
6455 leaf = path->nodes[0];
6456 item_size = btrfs_item_size_nr(leaf, extent_slot);
6458 #endif
6459 BUG_ON(item_size < sizeof(*ei));
6460 ei = btrfs_item_ptr(leaf, extent_slot,
6461 struct btrfs_extent_item);
6462 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6463 key.type == BTRFS_EXTENT_ITEM_KEY) {
6464 struct btrfs_tree_block_info *bi;
6465 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6466 bi = (struct btrfs_tree_block_info *)(ei + 1);
6467 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6470 refs = btrfs_extent_refs(leaf, ei);
6471 if (refs < refs_to_drop) {
6472 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6473 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6474 ret = -EINVAL;
6475 btrfs_abort_transaction(trans, extent_root, ret);
6476 goto out;
6478 refs -= refs_to_drop;
6480 if (refs > 0) {
6481 if (extent_op)
6482 __run_delayed_extent_op(extent_op, leaf, ei);
6484 * In the case of inline back ref, reference count will
6485 * be updated by remove_extent_backref
6487 if (iref) {
6488 BUG_ON(!found_extent);
6489 } else {
6490 btrfs_set_extent_refs(leaf, ei, refs);
6491 btrfs_mark_buffer_dirty(leaf);
6493 if (found_extent) {
6494 ret = remove_extent_backref(trans, extent_root, path,
6495 iref, refs_to_drop,
6496 is_data, &last_ref);
6497 if (ret) {
6498 btrfs_abort_transaction(trans, extent_root, ret);
6499 goto out;
6502 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6503 root_objectid);
6504 } else {
6505 if (found_extent) {
6506 BUG_ON(is_data && refs_to_drop !=
6507 extent_data_ref_count(path, iref));
6508 if (iref) {
6509 BUG_ON(path->slots[0] != extent_slot);
6510 } else {
6511 BUG_ON(path->slots[0] != extent_slot + 1);
6512 path->slots[0] = extent_slot;
6513 num_to_del = 2;
6517 last_ref = 1;
6518 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6519 num_to_del);
6520 if (ret) {
6521 btrfs_abort_transaction(trans, extent_root, ret);
6522 goto out;
6524 btrfs_release_path(path);
6526 if (is_data) {
6527 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6528 if (ret) {
6529 btrfs_abort_transaction(trans, extent_root, ret);
6530 goto out;
6534 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6535 if (ret) {
6536 btrfs_abort_transaction(trans, extent_root, ret);
6537 goto out;
6540 btrfs_release_path(path);
6542 out:
6543 btrfs_free_path(path);
6544 return ret;
6548 * when we free an block, it is possible (and likely) that we free the last
6549 * delayed ref for that extent as well. This searches the delayed ref tree for
6550 * a given extent, and if there are no other delayed refs to be processed, it
6551 * removes it from the tree.
6553 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6554 struct btrfs_root *root, u64 bytenr)
6556 struct btrfs_delayed_ref_head *head;
6557 struct btrfs_delayed_ref_root *delayed_refs;
6558 int ret = 0;
6560 delayed_refs = &trans->transaction->delayed_refs;
6561 spin_lock(&delayed_refs->lock);
6562 head = btrfs_find_delayed_ref_head(trans, bytenr);
6563 if (!head)
6564 goto out_delayed_unlock;
6566 spin_lock(&head->lock);
6567 if (!list_empty(&head->ref_list))
6568 goto out;
6570 if (head->extent_op) {
6571 if (!head->must_insert_reserved)
6572 goto out;
6573 btrfs_free_delayed_extent_op(head->extent_op);
6574 head->extent_op = NULL;
6578 * waiting for the lock here would deadlock. If someone else has it
6579 * locked they are already in the process of dropping it anyway
6581 if (!mutex_trylock(&head->mutex))
6582 goto out;
6585 * at this point we have a head with no other entries. Go
6586 * ahead and process it.
6588 head->node.in_tree = 0;
6589 rb_erase(&head->href_node, &delayed_refs->href_root);
6591 atomic_dec(&delayed_refs->num_entries);
6594 * we don't take a ref on the node because we're removing it from the
6595 * tree, so we just steal the ref the tree was holding.
6597 delayed_refs->num_heads--;
6598 if (head->processing == 0)
6599 delayed_refs->num_heads_ready--;
6600 head->processing = 0;
6601 spin_unlock(&head->lock);
6602 spin_unlock(&delayed_refs->lock);
6604 BUG_ON(head->extent_op);
6605 if (head->must_insert_reserved)
6606 ret = 1;
6608 mutex_unlock(&head->mutex);
6609 btrfs_put_delayed_ref(&head->node);
6610 return ret;
6611 out:
6612 spin_unlock(&head->lock);
6614 out_delayed_unlock:
6615 spin_unlock(&delayed_refs->lock);
6616 return 0;
6619 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6620 struct btrfs_root *root,
6621 struct extent_buffer *buf,
6622 u64 parent, int last_ref)
6624 int pin = 1;
6625 int ret;
6627 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6628 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6629 buf->start, buf->len,
6630 parent, root->root_key.objectid,
6631 btrfs_header_level(buf),
6632 BTRFS_DROP_DELAYED_REF, NULL, 0);
6633 BUG_ON(ret); /* -ENOMEM */
6636 if (!last_ref)
6637 return;
6639 if (btrfs_header_generation(buf) == trans->transid) {
6640 struct btrfs_block_group_cache *cache;
6642 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6643 ret = check_ref_cleanup(trans, root, buf->start);
6644 if (!ret)
6645 goto out;
6648 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6650 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6651 pin_down_extent(root, cache, buf->start, buf->len, 1);
6652 btrfs_put_block_group(cache);
6653 goto out;
6656 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6658 btrfs_add_free_space(cache, buf->start, buf->len);
6659 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6660 btrfs_put_block_group(cache);
6661 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6662 pin = 0;
6664 out:
6665 if (pin)
6666 add_pinned_bytes(root->fs_info, buf->len,
6667 btrfs_header_level(buf),
6668 root->root_key.objectid);
6671 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6672 * anymore.
6674 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6677 /* Can return -ENOMEM */
6678 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6679 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6680 u64 owner, u64 offset, int no_quota)
6682 int ret;
6683 struct btrfs_fs_info *fs_info = root->fs_info;
6685 if (btrfs_test_is_dummy_root(root))
6686 return 0;
6688 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6691 * tree log blocks never actually go into the extent allocation
6692 * tree, just update pinning info and exit early.
6694 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6695 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6696 /* unlocks the pinned mutex */
6697 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6698 ret = 0;
6699 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6700 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6701 num_bytes,
6702 parent, root_objectid, (int)owner,
6703 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6704 } else {
6705 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6706 num_bytes,
6707 parent, root_objectid, owner,
6708 offset, BTRFS_DROP_DELAYED_REF,
6709 NULL, no_quota);
6711 return ret;
6715 * when we wait for progress in the block group caching, its because
6716 * our allocation attempt failed at least once. So, we must sleep
6717 * and let some progress happen before we try again.
6719 * This function will sleep at least once waiting for new free space to
6720 * show up, and then it will check the block group free space numbers
6721 * for our min num_bytes. Another option is to have it go ahead
6722 * and look in the rbtree for a free extent of a given size, but this
6723 * is a good start.
6725 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6726 * any of the information in this block group.
6728 static noinline void
6729 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6730 u64 num_bytes)
6732 struct btrfs_caching_control *caching_ctl;
6734 caching_ctl = get_caching_control(cache);
6735 if (!caching_ctl)
6736 return;
6738 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6739 (cache->free_space_ctl->free_space >= num_bytes));
6741 put_caching_control(caching_ctl);
6744 static noinline int
6745 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6747 struct btrfs_caching_control *caching_ctl;
6748 int ret = 0;
6750 caching_ctl = get_caching_control(cache);
6751 if (!caching_ctl)
6752 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6754 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6755 if (cache->cached == BTRFS_CACHE_ERROR)
6756 ret = -EIO;
6757 put_caching_control(caching_ctl);
6758 return ret;
6761 int __get_raid_index(u64 flags)
6763 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6764 return BTRFS_RAID_RAID10;
6765 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6766 return BTRFS_RAID_RAID1;
6767 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6768 return BTRFS_RAID_DUP;
6769 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6770 return BTRFS_RAID_RAID0;
6771 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6772 return BTRFS_RAID_RAID5;
6773 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6774 return BTRFS_RAID_RAID6;
6776 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6779 int get_block_group_index(struct btrfs_block_group_cache *cache)
6781 return __get_raid_index(cache->flags);
6784 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6785 [BTRFS_RAID_RAID10] = "raid10",
6786 [BTRFS_RAID_RAID1] = "raid1",
6787 [BTRFS_RAID_DUP] = "dup",
6788 [BTRFS_RAID_RAID0] = "raid0",
6789 [BTRFS_RAID_SINGLE] = "single",
6790 [BTRFS_RAID_RAID5] = "raid5",
6791 [BTRFS_RAID_RAID6] = "raid6",
6794 static const char *get_raid_name(enum btrfs_raid_types type)
6796 if (type >= BTRFS_NR_RAID_TYPES)
6797 return NULL;
6799 return btrfs_raid_type_names[type];
6802 enum btrfs_loop_type {
6803 LOOP_CACHING_NOWAIT = 0,
6804 LOOP_CACHING_WAIT = 1,
6805 LOOP_ALLOC_CHUNK = 2,
6806 LOOP_NO_EMPTY_SIZE = 3,
6809 static inline void
6810 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6811 int delalloc)
6813 if (delalloc)
6814 down_read(&cache->data_rwsem);
6817 static inline void
6818 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6819 int delalloc)
6821 btrfs_get_block_group(cache);
6822 if (delalloc)
6823 down_read(&cache->data_rwsem);
6826 static struct btrfs_block_group_cache *
6827 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6828 struct btrfs_free_cluster *cluster,
6829 int delalloc)
6831 struct btrfs_block_group_cache *used_bg;
6832 bool locked = false;
6833 again:
6834 spin_lock(&cluster->refill_lock);
6835 if (locked) {
6836 if (used_bg == cluster->block_group)
6837 return used_bg;
6839 up_read(&used_bg->data_rwsem);
6840 btrfs_put_block_group(used_bg);
6843 used_bg = cluster->block_group;
6844 if (!used_bg)
6845 return NULL;
6847 if (used_bg == block_group)
6848 return used_bg;
6850 btrfs_get_block_group(used_bg);
6852 if (!delalloc)
6853 return used_bg;
6855 if (down_read_trylock(&used_bg->data_rwsem))
6856 return used_bg;
6858 spin_unlock(&cluster->refill_lock);
6859 down_read(&used_bg->data_rwsem);
6860 locked = true;
6861 goto again;
6864 static inline void
6865 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6866 int delalloc)
6868 if (delalloc)
6869 up_read(&cache->data_rwsem);
6870 btrfs_put_block_group(cache);
6874 * walks the btree of allocated extents and find a hole of a given size.
6875 * The key ins is changed to record the hole:
6876 * ins->objectid == start position
6877 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6878 * ins->offset == the size of the hole.
6879 * Any available blocks before search_start are skipped.
6881 * If there is no suitable free space, we will record the max size of
6882 * the free space extent currently.
6884 static noinline int find_free_extent(struct btrfs_root *orig_root,
6885 u64 num_bytes, u64 empty_size,
6886 u64 hint_byte, struct btrfs_key *ins,
6887 u64 flags, int delalloc)
6889 int ret = 0;
6890 struct btrfs_root *root = orig_root->fs_info->extent_root;
6891 struct btrfs_free_cluster *last_ptr = NULL;
6892 struct btrfs_block_group_cache *block_group = NULL;
6893 u64 search_start = 0;
6894 u64 max_extent_size = 0;
6895 int empty_cluster = 2 * 1024 * 1024;
6896 struct btrfs_space_info *space_info;
6897 int loop = 0;
6898 int index = __get_raid_index(flags);
6899 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6900 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6901 bool failed_cluster_refill = false;
6902 bool failed_alloc = false;
6903 bool use_cluster = true;
6904 bool have_caching_bg = false;
6906 WARN_ON(num_bytes < root->sectorsize);
6907 ins->type = BTRFS_EXTENT_ITEM_KEY;
6908 ins->objectid = 0;
6909 ins->offset = 0;
6911 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6913 space_info = __find_space_info(root->fs_info, flags);
6914 if (!space_info) {
6915 btrfs_err(root->fs_info, "No space info for %llu", flags);
6916 return -ENOSPC;
6920 * If our free space is heavily fragmented we may not be able to make
6921 * big contiguous allocations, so instead of doing the expensive search
6922 * for free space, simply return ENOSPC with our max_extent_size so we
6923 * can go ahead and search for a more manageable chunk.
6925 * If our max_extent_size is large enough for our allocation simply
6926 * disable clustering since we will likely not be able to find enough
6927 * space to create a cluster and induce latency trying.
6929 if (unlikely(space_info->max_extent_size)) {
6930 spin_lock(&space_info->lock);
6931 if (space_info->max_extent_size &&
6932 num_bytes > space_info->max_extent_size) {
6933 ins->offset = space_info->max_extent_size;
6934 spin_unlock(&space_info->lock);
6935 return -ENOSPC;
6936 } else if (space_info->max_extent_size) {
6937 use_cluster = false;
6939 spin_unlock(&space_info->lock);
6943 * If the space info is for both data and metadata it means we have a
6944 * small filesystem and we can't use the clustering stuff.
6946 if (btrfs_mixed_space_info(space_info))
6947 use_cluster = false;
6949 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6950 last_ptr = &root->fs_info->meta_alloc_cluster;
6951 if (!btrfs_test_opt(root, SSD))
6952 empty_cluster = 64 * 1024;
6955 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6956 btrfs_test_opt(root, SSD)) {
6957 last_ptr = &root->fs_info->data_alloc_cluster;
6960 if (last_ptr) {
6961 spin_lock(&last_ptr->lock);
6962 if (last_ptr->block_group)
6963 hint_byte = last_ptr->window_start;
6964 spin_unlock(&last_ptr->lock);
6967 search_start = max(search_start, first_logical_byte(root, 0));
6968 search_start = max(search_start, hint_byte);
6970 if (!last_ptr)
6971 empty_cluster = 0;
6973 if (search_start == hint_byte) {
6974 block_group = btrfs_lookup_block_group(root->fs_info,
6975 search_start);
6977 * we don't want to use the block group if it doesn't match our
6978 * allocation bits, or if its not cached.
6980 * However if we are re-searching with an ideal block group
6981 * picked out then we don't care that the block group is cached.
6983 if (block_group && block_group_bits(block_group, flags) &&
6984 block_group->cached != BTRFS_CACHE_NO) {
6985 down_read(&space_info->groups_sem);
6986 if (list_empty(&block_group->list) ||
6987 block_group->ro) {
6989 * someone is removing this block group,
6990 * we can't jump into the have_block_group
6991 * target because our list pointers are not
6992 * valid
6994 btrfs_put_block_group(block_group);
6995 up_read(&space_info->groups_sem);
6996 } else {
6997 index = get_block_group_index(block_group);
6998 btrfs_lock_block_group(block_group, delalloc);
6999 goto have_block_group;
7001 } else if (block_group) {
7002 btrfs_put_block_group(block_group);
7005 search:
7006 have_caching_bg = false;
7007 down_read(&space_info->groups_sem);
7008 list_for_each_entry(block_group, &space_info->block_groups[index],
7009 list) {
7010 u64 offset;
7011 int cached;
7013 btrfs_grab_block_group(block_group, delalloc);
7014 search_start = block_group->key.objectid;
7017 * this can happen if we end up cycling through all the
7018 * raid types, but we want to make sure we only allocate
7019 * for the proper type.
7021 if (!block_group_bits(block_group, flags)) {
7022 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7023 BTRFS_BLOCK_GROUP_RAID1 |
7024 BTRFS_BLOCK_GROUP_RAID5 |
7025 BTRFS_BLOCK_GROUP_RAID6 |
7026 BTRFS_BLOCK_GROUP_RAID10;
7029 * if they asked for extra copies and this block group
7030 * doesn't provide them, bail. This does allow us to
7031 * fill raid0 from raid1.
7033 if ((flags & extra) && !(block_group->flags & extra))
7034 goto loop;
7037 have_block_group:
7038 cached = block_group_cache_done(block_group);
7039 if (unlikely(!cached)) {
7040 ret = cache_block_group(block_group, 0);
7041 BUG_ON(ret < 0);
7042 ret = 0;
7045 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7046 goto loop;
7047 if (unlikely(block_group->ro))
7048 goto loop;
7051 * Ok we want to try and use the cluster allocator, so
7052 * lets look there
7054 if (last_ptr) {
7055 struct btrfs_block_group_cache *used_block_group;
7056 unsigned long aligned_cluster;
7058 * the refill lock keeps out other
7059 * people trying to start a new cluster
7061 used_block_group = btrfs_lock_cluster(block_group,
7062 last_ptr,
7063 delalloc);
7064 if (!used_block_group)
7065 goto refill_cluster;
7067 if (used_block_group != block_group &&
7068 (used_block_group->ro ||
7069 !block_group_bits(used_block_group, flags)))
7070 goto release_cluster;
7072 offset = btrfs_alloc_from_cluster(used_block_group,
7073 last_ptr,
7074 num_bytes,
7075 used_block_group->key.objectid,
7076 &max_extent_size);
7077 if (offset) {
7078 /* we have a block, we're done */
7079 spin_unlock(&last_ptr->refill_lock);
7080 trace_btrfs_reserve_extent_cluster(root,
7081 used_block_group,
7082 search_start, num_bytes);
7083 if (used_block_group != block_group) {
7084 btrfs_release_block_group(block_group,
7085 delalloc);
7086 block_group = used_block_group;
7088 goto checks;
7091 WARN_ON(last_ptr->block_group != used_block_group);
7092 release_cluster:
7093 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7094 * set up a new clusters, so lets just skip it
7095 * and let the allocator find whatever block
7096 * it can find. If we reach this point, we
7097 * will have tried the cluster allocator
7098 * plenty of times and not have found
7099 * anything, so we are likely way too
7100 * fragmented for the clustering stuff to find
7101 * anything.
7103 * However, if the cluster is taken from the
7104 * current block group, release the cluster
7105 * first, so that we stand a better chance of
7106 * succeeding in the unclustered
7107 * allocation. */
7108 if (loop >= LOOP_NO_EMPTY_SIZE &&
7109 used_block_group != block_group) {
7110 spin_unlock(&last_ptr->refill_lock);
7111 btrfs_release_block_group(used_block_group,
7112 delalloc);
7113 goto unclustered_alloc;
7117 * this cluster didn't work out, free it and
7118 * start over
7120 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7122 if (used_block_group != block_group)
7123 btrfs_release_block_group(used_block_group,
7124 delalloc);
7125 refill_cluster:
7126 if (loop >= LOOP_NO_EMPTY_SIZE) {
7127 spin_unlock(&last_ptr->refill_lock);
7128 goto unclustered_alloc;
7131 aligned_cluster = max_t(unsigned long,
7132 empty_cluster + empty_size,
7133 block_group->full_stripe_len);
7135 /* allocate a cluster in this block group */
7136 ret = btrfs_find_space_cluster(root, block_group,
7137 last_ptr, search_start,
7138 num_bytes,
7139 aligned_cluster);
7140 if (ret == 0) {
7142 * now pull our allocation out of this
7143 * cluster
7145 offset = btrfs_alloc_from_cluster(block_group,
7146 last_ptr,
7147 num_bytes,
7148 search_start,
7149 &max_extent_size);
7150 if (offset) {
7151 /* we found one, proceed */
7152 spin_unlock(&last_ptr->refill_lock);
7153 trace_btrfs_reserve_extent_cluster(root,
7154 block_group, search_start,
7155 num_bytes);
7156 goto checks;
7158 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7159 && !failed_cluster_refill) {
7160 spin_unlock(&last_ptr->refill_lock);
7162 failed_cluster_refill = true;
7163 wait_block_group_cache_progress(block_group,
7164 num_bytes + empty_cluster + empty_size);
7165 goto have_block_group;
7169 * at this point we either didn't find a cluster
7170 * or we weren't able to allocate a block from our
7171 * cluster. Free the cluster we've been trying
7172 * to use, and go to the next block group
7174 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7175 spin_unlock(&last_ptr->refill_lock);
7176 goto loop;
7179 unclustered_alloc:
7180 spin_lock(&block_group->free_space_ctl->tree_lock);
7181 if (cached &&
7182 block_group->free_space_ctl->free_space <
7183 num_bytes + empty_cluster + empty_size) {
7184 if (block_group->free_space_ctl->free_space >
7185 max_extent_size)
7186 max_extent_size =
7187 block_group->free_space_ctl->free_space;
7188 spin_unlock(&block_group->free_space_ctl->tree_lock);
7189 goto loop;
7191 spin_unlock(&block_group->free_space_ctl->tree_lock);
7193 offset = btrfs_find_space_for_alloc(block_group, search_start,
7194 num_bytes, empty_size,
7195 &max_extent_size);
7197 * If we didn't find a chunk, and we haven't failed on this
7198 * block group before, and this block group is in the middle of
7199 * caching and we are ok with waiting, then go ahead and wait
7200 * for progress to be made, and set failed_alloc to true.
7202 * If failed_alloc is true then we've already waited on this
7203 * block group once and should move on to the next block group.
7205 if (!offset && !failed_alloc && !cached &&
7206 loop > LOOP_CACHING_NOWAIT) {
7207 wait_block_group_cache_progress(block_group,
7208 num_bytes + empty_size);
7209 failed_alloc = true;
7210 goto have_block_group;
7211 } else if (!offset) {
7212 if (!cached)
7213 have_caching_bg = true;
7214 goto loop;
7216 checks:
7217 search_start = ALIGN(offset, root->stripesize);
7219 /* move on to the next group */
7220 if (search_start + num_bytes >
7221 block_group->key.objectid + block_group->key.offset) {
7222 btrfs_add_free_space(block_group, offset, num_bytes);
7223 goto loop;
7226 if (offset < search_start)
7227 btrfs_add_free_space(block_group, offset,
7228 search_start - offset);
7229 BUG_ON(offset > search_start);
7231 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7232 alloc_type, delalloc);
7233 if (ret == -EAGAIN) {
7234 btrfs_add_free_space(block_group, offset, num_bytes);
7235 goto loop;
7238 /* we are all good, lets return */
7239 ins->objectid = search_start;
7240 ins->offset = num_bytes;
7242 trace_btrfs_reserve_extent(orig_root, block_group,
7243 search_start, num_bytes);
7244 btrfs_release_block_group(block_group, delalloc);
7245 break;
7246 loop:
7247 failed_cluster_refill = false;
7248 failed_alloc = false;
7249 BUG_ON(index != get_block_group_index(block_group));
7250 btrfs_release_block_group(block_group, delalloc);
7252 up_read(&space_info->groups_sem);
7254 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7255 goto search;
7257 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7258 goto search;
7261 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7262 * caching kthreads as we move along
7263 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7264 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7265 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7266 * again
7268 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7269 index = 0;
7270 loop++;
7271 if (loop == LOOP_ALLOC_CHUNK) {
7272 struct btrfs_trans_handle *trans;
7273 int exist = 0;
7275 trans = current->journal_info;
7276 if (trans)
7277 exist = 1;
7278 else
7279 trans = btrfs_join_transaction(root);
7281 if (IS_ERR(trans)) {
7282 ret = PTR_ERR(trans);
7283 goto out;
7286 ret = do_chunk_alloc(trans, root, flags,
7287 CHUNK_ALLOC_FORCE);
7289 * Do not bail out on ENOSPC since we
7290 * can do more things.
7292 if (ret < 0 && ret != -ENOSPC)
7293 btrfs_abort_transaction(trans,
7294 root, ret);
7295 else
7296 ret = 0;
7297 if (!exist)
7298 btrfs_end_transaction(trans, root);
7299 if (ret)
7300 goto out;
7303 if (loop == LOOP_NO_EMPTY_SIZE) {
7304 empty_size = 0;
7305 empty_cluster = 0;
7308 goto search;
7309 } else if (!ins->objectid) {
7310 ret = -ENOSPC;
7311 } else if (ins->objectid) {
7312 ret = 0;
7314 out:
7315 if (ret == -ENOSPC) {
7316 spin_lock(&space_info->lock);
7317 space_info->max_extent_size = max_extent_size;
7318 spin_unlock(&space_info->lock);
7319 ins->offset = max_extent_size;
7321 return ret;
7324 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7325 int dump_block_groups)
7327 struct btrfs_block_group_cache *cache;
7328 int index = 0;
7330 spin_lock(&info->lock);
7331 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7332 info->flags,
7333 info->total_bytes - info->bytes_used - info->bytes_pinned -
7334 info->bytes_reserved - info->bytes_readonly,
7335 (info->full) ? "" : "not ");
7336 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7337 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7338 info->total_bytes, info->bytes_used, info->bytes_pinned,
7339 info->bytes_reserved, info->bytes_may_use,
7340 info->bytes_readonly);
7341 spin_unlock(&info->lock);
7343 if (!dump_block_groups)
7344 return;
7346 down_read(&info->groups_sem);
7347 again:
7348 list_for_each_entry(cache, &info->block_groups[index], list) {
7349 spin_lock(&cache->lock);
7350 printk(KERN_INFO "BTRFS: "
7351 "block group %llu has %llu bytes, "
7352 "%llu used %llu pinned %llu reserved %s\n",
7353 cache->key.objectid, cache->key.offset,
7354 btrfs_block_group_used(&cache->item), cache->pinned,
7355 cache->reserved, cache->ro ? "[readonly]" : "");
7356 btrfs_dump_free_space(cache, bytes);
7357 spin_unlock(&cache->lock);
7359 if (++index < BTRFS_NR_RAID_TYPES)
7360 goto again;
7361 up_read(&info->groups_sem);
7364 int btrfs_reserve_extent(struct btrfs_root *root,
7365 u64 num_bytes, u64 min_alloc_size,
7366 u64 empty_size, u64 hint_byte,
7367 struct btrfs_key *ins, int is_data, int delalloc)
7369 bool final_tried = num_bytes == min_alloc_size;
7370 u64 flags;
7371 int ret;
7373 flags = btrfs_get_alloc_profile(root, is_data);
7374 again:
7375 WARN_ON(num_bytes < root->sectorsize);
7376 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7377 flags, delalloc);
7379 if (ret == -ENOSPC) {
7380 if (!final_tried && ins->offset) {
7381 num_bytes = min(num_bytes >> 1, ins->offset);
7382 num_bytes = round_down(num_bytes, root->sectorsize);
7383 num_bytes = max(num_bytes, min_alloc_size);
7384 if (num_bytes == min_alloc_size)
7385 final_tried = true;
7386 goto again;
7387 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7388 struct btrfs_space_info *sinfo;
7390 sinfo = __find_space_info(root->fs_info, flags);
7391 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7392 flags, num_bytes);
7393 if (sinfo)
7394 dump_space_info(sinfo, num_bytes, 1);
7398 return ret;
7401 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7402 u64 start, u64 len,
7403 int pin, int delalloc)
7405 struct btrfs_block_group_cache *cache;
7406 int ret = 0;
7408 cache = btrfs_lookup_block_group(root->fs_info, start);
7409 if (!cache) {
7410 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7411 start);
7412 return -ENOSPC;
7415 if (pin)
7416 pin_down_extent(root, cache, start, len, 1);
7417 else {
7418 if (btrfs_test_opt(root, DISCARD))
7419 ret = btrfs_discard_extent(root, start, len, NULL);
7420 btrfs_add_free_space(cache, start, len);
7421 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7424 btrfs_put_block_group(cache);
7426 trace_btrfs_reserved_extent_free(root, start, len);
7428 return ret;
7431 int btrfs_free_reserved_extent(struct btrfs_root *root,
7432 u64 start, u64 len, int delalloc)
7434 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7437 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7438 u64 start, u64 len)
7440 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7443 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7444 struct btrfs_root *root,
7445 u64 parent, u64 root_objectid,
7446 u64 flags, u64 owner, u64 offset,
7447 struct btrfs_key *ins, int ref_mod)
7449 int ret;
7450 struct btrfs_fs_info *fs_info = root->fs_info;
7451 struct btrfs_extent_item *extent_item;
7452 struct btrfs_extent_inline_ref *iref;
7453 struct btrfs_path *path;
7454 struct extent_buffer *leaf;
7455 int type;
7456 u32 size;
7458 if (parent > 0)
7459 type = BTRFS_SHARED_DATA_REF_KEY;
7460 else
7461 type = BTRFS_EXTENT_DATA_REF_KEY;
7463 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7465 path = btrfs_alloc_path();
7466 if (!path)
7467 return -ENOMEM;
7469 path->leave_spinning = 1;
7470 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7471 ins, size);
7472 if (ret) {
7473 btrfs_free_path(path);
7474 return ret;
7477 leaf = path->nodes[0];
7478 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7479 struct btrfs_extent_item);
7480 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7481 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7482 btrfs_set_extent_flags(leaf, extent_item,
7483 flags | BTRFS_EXTENT_FLAG_DATA);
7485 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7486 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7487 if (parent > 0) {
7488 struct btrfs_shared_data_ref *ref;
7489 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7490 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7491 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7492 } else {
7493 struct btrfs_extent_data_ref *ref;
7494 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7495 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7496 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7497 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7498 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7501 btrfs_mark_buffer_dirty(path->nodes[0]);
7502 btrfs_free_path(path);
7504 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7505 if (ret) { /* -ENOENT, logic error */
7506 btrfs_err(fs_info, "update block group failed for %llu %llu",
7507 ins->objectid, ins->offset);
7508 BUG();
7510 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7511 return ret;
7514 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7515 struct btrfs_root *root,
7516 u64 parent, u64 root_objectid,
7517 u64 flags, struct btrfs_disk_key *key,
7518 int level, struct btrfs_key *ins,
7519 int no_quota)
7521 int ret;
7522 struct btrfs_fs_info *fs_info = root->fs_info;
7523 struct btrfs_extent_item *extent_item;
7524 struct btrfs_tree_block_info *block_info;
7525 struct btrfs_extent_inline_ref *iref;
7526 struct btrfs_path *path;
7527 struct extent_buffer *leaf;
7528 u32 size = sizeof(*extent_item) + sizeof(*iref);
7529 u64 num_bytes = ins->offset;
7530 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7531 SKINNY_METADATA);
7533 if (!skinny_metadata)
7534 size += sizeof(*block_info);
7536 path = btrfs_alloc_path();
7537 if (!path) {
7538 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7539 root->nodesize);
7540 return -ENOMEM;
7543 path->leave_spinning = 1;
7544 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7545 ins, size);
7546 if (ret) {
7547 btrfs_free_path(path);
7548 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7549 root->nodesize);
7550 return ret;
7553 leaf = path->nodes[0];
7554 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7555 struct btrfs_extent_item);
7556 btrfs_set_extent_refs(leaf, extent_item, 1);
7557 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7558 btrfs_set_extent_flags(leaf, extent_item,
7559 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7561 if (skinny_metadata) {
7562 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7563 num_bytes = root->nodesize;
7564 } else {
7565 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7566 btrfs_set_tree_block_key(leaf, block_info, key);
7567 btrfs_set_tree_block_level(leaf, block_info, level);
7568 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7571 if (parent > 0) {
7572 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7573 btrfs_set_extent_inline_ref_type(leaf, iref,
7574 BTRFS_SHARED_BLOCK_REF_KEY);
7575 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7576 } else {
7577 btrfs_set_extent_inline_ref_type(leaf, iref,
7578 BTRFS_TREE_BLOCK_REF_KEY);
7579 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7582 btrfs_mark_buffer_dirty(leaf);
7583 btrfs_free_path(path);
7585 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7587 if (ret) { /* -ENOENT, logic error */
7588 btrfs_err(fs_info, "update block group failed for %llu %llu",
7589 ins->objectid, ins->offset);
7590 BUG();
7593 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7594 return ret;
7597 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7598 struct btrfs_root *root,
7599 u64 root_objectid, u64 owner,
7600 u64 offset, struct btrfs_key *ins)
7602 int ret;
7604 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7606 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7607 ins->offset, 0,
7608 root_objectid, owner, offset,
7609 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7610 return ret;
7614 * this is used by the tree logging recovery code. It records that
7615 * an extent has been allocated and makes sure to clear the free
7616 * space cache bits as well
7618 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7619 struct btrfs_root *root,
7620 u64 root_objectid, u64 owner, u64 offset,
7621 struct btrfs_key *ins)
7623 int ret;
7624 struct btrfs_block_group_cache *block_group;
7627 * Mixed block groups will exclude before processing the log so we only
7628 * need to do the exlude dance if this fs isn't mixed.
7630 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7631 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7632 if (ret)
7633 return ret;
7636 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7637 if (!block_group)
7638 return -EINVAL;
7640 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7641 RESERVE_ALLOC_NO_ACCOUNT, 0);
7642 BUG_ON(ret); /* logic error */
7643 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7644 0, owner, offset, ins, 1);
7645 btrfs_put_block_group(block_group);
7646 return ret;
7649 static struct extent_buffer *
7650 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7651 u64 bytenr, int level)
7653 struct extent_buffer *buf;
7655 buf = btrfs_find_create_tree_block(root, bytenr);
7656 if (!buf)
7657 return ERR_PTR(-ENOMEM);
7658 btrfs_set_header_generation(buf, trans->transid);
7659 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7660 btrfs_tree_lock(buf);
7661 clean_tree_block(trans, root->fs_info, buf);
7662 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7664 btrfs_set_lock_blocking(buf);
7665 btrfs_set_buffer_uptodate(buf);
7667 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7668 buf->log_index = root->log_transid % 2;
7670 * we allow two log transactions at a time, use different
7671 * EXENT bit to differentiate dirty pages.
7673 if (buf->log_index == 0)
7674 set_extent_dirty(&root->dirty_log_pages, buf->start,
7675 buf->start + buf->len - 1, GFP_NOFS);
7676 else
7677 set_extent_new(&root->dirty_log_pages, buf->start,
7678 buf->start + buf->len - 1, GFP_NOFS);
7679 } else {
7680 buf->log_index = -1;
7681 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7682 buf->start + buf->len - 1, GFP_NOFS);
7684 trans->blocks_used++;
7685 /* this returns a buffer locked for blocking */
7686 return buf;
7689 static struct btrfs_block_rsv *
7690 use_block_rsv(struct btrfs_trans_handle *trans,
7691 struct btrfs_root *root, u32 blocksize)
7693 struct btrfs_block_rsv *block_rsv;
7694 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7695 int ret;
7696 bool global_updated = false;
7698 block_rsv = get_block_rsv(trans, root);
7700 if (unlikely(block_rsv->size == 0))
7701 goto try_reserve;
7702 again:
7703 ret = block_rsv_use_bytes(block_rsv, blocksize);
7704 if (!ret)
7705 return block_rsv;
7707 if (block_rsv->failfast)
7708 return ERR_PTR(ret);
7710 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7711 global_updated = true;
7712 update_global_block_rsv(root->fs_info);
7713 goto again;
7716 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7717 static DEFINE_RATELIMIT_STATE(_rs,
7718 DEFAULT_RATELIMIT_INTERVAL * 10,
7719 /*DEFAULT_RATELIMIT_BURST*/ 1);
7720 if (__ratelimit(&_rs))
7721 WARN(1, KERN_DEBUG
7722 "BTRFS: block rsv returned %d\n", ret);
7724 try_reserve:
7725 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7726 BTRFS_RESERVE_NO_FLUSH);
7727 if (!ret)
7728 return block_rsv;
7730 * If we couldn't reserve metadata bytes try and use some from
7731 * the global reserve if its space type is the same as the global
7732 * reservation.
7734 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7735 block_rsv->space_info == global_rsv->space_info) {
7736 ret = block_rsv_use_bytes(global_rsv, blocksize);
7737 if (!ret)
7738 return global_rsv;
7740 return ERR_PTR(ret);
7743 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7744 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7746 block_rsv_add_bytes(block_rsv, blocksize, 0);
7747 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7751 * finds a free extent and does all the dirty work required for allocation
7752 * returns the tree buffer or an ERR_PTR on error.
7754 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7755 struct btrfs_root *root,
7756 u64 parent, u64 root_objectid,
7757 struct btrfs_disk_key *key, int level,
7758 u64 hint, u64 empty_size)
7760 struct btrfs_key ins;
7761 struct btrfs_block_rsv *block_rsv;
7762 struct extent_buffer *buf;
7763 struct btrfs_delayed_extent_op *extent_op;
7764 u64 flags = 0;
7765 int ret;
7766 u32 blocksize = root->nodesize;
7767 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7768 SKINNY_METADATA);
7770 if (btrfs_test_is_dummy_root(root)) {
7771 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7772 level);
7773 if (!IS_ERR(buf))
7774 root->alloc_bytenr += blocksize;
7775 return buf;
7778 block_rsv = use_block_rsv(trans, root, blocksize);
7779 if (IS_ERR(block_rsv))
7780 return ERR_CAST(block_rsv);
7782 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7783 empty_size, hint, &ins, 0, 0);
7784 if (ret)
7785 goto out_unuse;
7787 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7788 if (IS_ERR(buf)) {
7789 ret = PTR_ERR(buf);
7790 goto out_free_reserved;
7793 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7794 if (parent == 0)
7795 parent = ins.objectid;
7796 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7797 } else
7798 BUG_ON(parent > 0);
7800 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7801 extent_op = btrfs_alloc_delayed_extent_op();
7802 if (!extent_op) {
7803 ret = -ENOMEM;
7804 goto out_free_buf;
7806 if (key)
7807 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7808 else
7809 memset(&extent_op->key, 0, sizeof(extent_op->key));
7810 extent_op->flags_to_set = flags;
7811 if (skinny_metadata)
7812 extent_op->update_key = 0;
7813 else
7814 extent_op->update_key = 1;
7815 extent_op->update_flags = 1;
7816 extent_op->is_data = 0;
7817 extent_op->level = level;
7819 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7820 ins.objectid, ins.offset,
7821 parent, root_objectid, level,
7822 BTRFS_ADD_DELAYED_EXTENT,
7823 extent_op, 0);
7824 if (ret)
7825 goto out_free_delayed;
7827 return buf;
7829 out_free_delayed:
7830 btrfs_free_delayed_extent_op(extent_op);
7831 out_free_buf:
7832 free_extent_buffer(buf);
7833 out_free_reserved:
7834 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7835 out_unuse:
7836 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7837 return ERR_PTR(ret);
7840 struct walk_control {
7841 u64 refs[BTRFS_MAX_LEVEL];
7842 u64 flags[BTRFS_MAX_LEVEL];
7843 struct btrfs_key update_progress;
7844 int stage;
7845 int level;
7846 int shared_level;
7847 int update_ref;
7848 int keep_locks;
7849 int reada_slot;
7850 int reada_count;
7851 int for_reloc;
7854 #define DROP_REFERENCE 1
7855 #define UPDATE_BACKREF 2
7857 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7858 struct btrfs_root *root,
7859 struct walk_control *wc,
7860 struct btrfs_path *path)
7862 u64 bytenr;
7863 u64 generation;
7864 u64 refs;
7865 u64 flags;
7866 u32 nritems;
7867 u32 blocksize;
7868 struct btrfs_key key;
7869 struct extent_buffer *eb;
7870 int ret;
7871 int slot;
7872 int nread = 0;
7874 if (path->slots[wc->level] < wc->reada_slot) {
7875 wc->reada_count = wc->reada_count * 2 / 3;
7876 wc->reada_count = max(wc->reada_count, 2);
7877 } else {
7878 wc->reada_count = wc->reada_count * 3 / 2;
7879 wc->reada_count = min_t(int, wc->reada_count,
7880 BTRFS_NODEPTRS_PER_BLOCK(root));
7883 eb = path->nodes[wc->level];
7884 nritems = btrfs_header_nritems(eb);
7885 blocksize = root->nodesize;
7887 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7888 if (nread >= wc->reada_count)
7889 break;
7891 cond_resched();
7892 bytenr = btrfs_node_blockptr(eb, slot);
7893 generation = btrfs_node_ptr_generation(eb, slot);
7895 if (slot == path->slots[wc->level])
7896 goto reada;
7898 if (wc->stage == UPDATE_BACKREF &&
7899 generation <= root->root_key.offset)
7900 continue;
7902 /* We don't lock the tree block, it's OK to be racy here */
7903 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7904 wc->level - 1, 1, &refs,
7905 &flags);
7906 /* We don't care about errors in readahead. */
7907 if (ret < 0)
7908 continue;
7909 BUG_ON(refs == 0);
7911 if (wc->stage == DROP_REFERENCE) {
7912 if (refs == 1)
7913 goto reada;
7915 if (wc->level == 1 &&
7916 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7917 continue;
7918 if (!wc->update_ref ||
7919 generation <= root->root_key.offset)
7920 continue;
7921 btrfs_node_key_to_cpu(eb, &key, slot);
7922 ret = btrfs_comp_cpu_keys(&key,
7923 &wc->update_progress);
7924 if (ret < 0)
7925 continue;
7926 } else {
7927 if (wc->level == 1 &&
7928 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7929 continue;
7931 reada:
7932 readahead_tree_block(root, bytenr);
7933 nread++;
7935 wc->reada_slot = slot;
7939 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7940 * for later qgroup accounting.
7942 * Current, this function does nothing.
7944 static int account_leaf_items(struct btrfs_trans_handle *trans,
7945 struct btrfs_root *root,
7946 struct extent_buffer *eb)
7948 int nr = btrfs_header_nritems(eb);
7949 int i, extent_type;
7950 struct btrfs_key key;
7951 struct btrfs_file_extent_item *fi;
7952 u64 bytenr, num_bytes;
7954 for (i = 0; i < nr; i++) {
7955 btrfs_item_key_to_cpu(eb, &key, i);
7957 if (key.type != BTRFS_EXTENT_DATA_KEY)
7958 continue;
7960 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7961 /* filter out non qgroup-accountable extents */
7962 extent_type = btrfs_file_extent_type(eb, fi);
7964 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7965 continue;
7967 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7968 if (!bytenr)
7969 continue;
7971 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7973 return 0;
7977 * Walk up the tree from the bottom, freeing leaves and any interior
7978 * nodes which have had all slots visited. If a node (leaf or
7979 * interior) is freed, the node above it will have it's slot
7980 * incremented. The root node will never be freed.
7982 * At the end of this function, we should have a path which has all
7983 * slots incremented to the next position for a search. If we need to
7984 * read a new node it will be NULL and the node above it will have the
7985 * correct slot selected for a later read.
7987 * If we increment the root nodes slot counter past the number of
7988 * elements, 1 is returned to signal completion of the search.
7990 static int adjust_slots_upwards(struct btrfs_root *root,
7991 struct btrfs_path *path, int root_level)
7993 int level = 0;
7994 int nr, slot;
7995 struct extent_buffer *eb;
7997 if (root_level == 0)
7998 return 1;
8000 while (level <= root_level) {
8001 eb = path->nodes[level];
8002 nr = btrfs_header_nritems(eb);
8003 path->slots[level]++;
8004 slot = path->slots[level];
8005 if (slot >= nr || level == 0) {
8007 * Don't free the root - we will detect this
8008 * condition after our loop and return a
8009 * positive value for caller to stop walking the tree.
8011 if (level != root_level) {
8012 btrfs_tree_unlock_rw(eb, path->locks[level]);
8013 path->locks[level] = 0;
8015 free_extent_buffer(eb);
8016 path->nodes[level] = NULL;
8017 path->slots[level] = 0;
8019 } else {
8021 * We have a valid slot to walk back down
8022 * from. Stop here so caller can process these
8023 * new nodes.
8025 break;
8028 level++;
8031 eb = path->nodes[root_level];
8032 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8033 return 1;
8035 return 0;
8039 * root_eb is the subtree root and is locked before this function is called.
8040 * TODO: Modify this function to mark all (including complete shared node)
8041 * to dirty_extent_root to allow it get accounted in qgroup.
8043 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8044 struct btrfs_root *root,
8045 struct extent_buffer *root_eb,
8046 u64 root_gen,
8047 int root_level)
8049 int ret = 0;
8050 int level;
8051 struct extent_buffer *eb = root_eb;
8052 struct btrfs_path *path = NULL;
8054 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8055 BUG_ON(root_eb == NULL);
8057 if (!root->fs_info->quota_enabled)
8058 return 0;
8060 if (!extent_buffer_uptodate(root_eb)) {
8061 ret = btrfs_read_buffer(root_eb, root_gen);
8062 if (ret)
8063 goto out;
8066 if (root_level == 0) {
8067 ret = account_leaf_items(trans, root, root_eb);
8068 goto out;
8071 path = btrfs_alloc_path();
8072 if (!path)
8073 return -ENOMEM;
8076 * Walk down the tree. Missing extent blocks are filled in as
8077 * we go. Metadata is accounted every time we read a new
8078 * extent block.
8080 * When we reach a leaf, we account for file extent items in it,
8081 * walk back up the tree (adjusting slot pointers as we go)
8082 * and restart the search process.
8084 extent_buffer_get(root_eb); /* For path */
8085 path->nodes[root_level] = root_eb;
8086 path->slots[root_level] = 0;
8087 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8088 walk_down:
8089 level = root_level;
8090 while (level >= 0) {
8091 if (path->nodes[level] == NULL) {
8092 int parent_slot;
8093 u64 child_gen;
8094 u64 child_bytenr;
8096 /* We need to get child blockptr/gen from
8097 * parent before we can read it. */
8098 eb = path->nodes[level + 1];
8099 parent_slot = path->slots[level + 1];
8100 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8101 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8103 eb = read_tree_block(root, child_bytenr, child_gen);
8104 if (IS_ERR(eb)) {
8105 ret = PTR_ERR(eb);
8106 goto out;
8107 } else if (!extent_buffer_uptodate(eb)) {
8108 free_extent_buffer(eb);
8109 ret = -EIO;
8110 goto out;
8113 path->nodes[level] = eb;
8114 path->slots[level] = 0;
8116 btrfs_tree_read_lock(eb);
8117 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8118 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8121 if (level == 0) {
8122 ret = account_leaf_items(trans, root, path->nodes[level]);
8123 if (ret)
8124 goto out;
8126 /* Nonzero return here means we completed our search */
8127 ret = adjust_slots_upwards(root, path, root_level);
8128 if (ret)
8129 break;
8131 /* Restart search with new slots */
8132 goto walk_down;
8135 level--;
8138 ret = 0;
8139 out:
8140 btrfs_free_path(path);
8142 return ret;
8146 * helper to process tree block while walking down the tree.
8148 * when wc->stage == UPDATE_BACKREF, this function updates
8149 * back refs for pointers in the block.
8151 * NOTE: return value 1 means we should stop walking down.
8153 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8154 struct btrfs_root *root,
8155 struct btrfs_path *path,
8156 struct walk_control *wc, int lookup_info)
8158 int level = wc->level;
8159 struct extent_buffer *eb = path->nodes[level];
8160 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8161 int ret;
8163 if (wc->stage == UPDATE_BACKREF &&
8164 btrfs_header_owner(eb) != root->root_key.objectid)
8165 return 1;
8168 * when reference count of tree block is 1, it won't increase
8169 * again. once full backref flag is set, we never clear it.
8171 if (lookup_info &&
8172 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8173 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8174 BUG_ON(!path->locks[level]);
8175 ret = btrfs_lookup_extent_info(trans, root,
8176 eb->start, level, 1,
8177 &wc->refs[level],
8178 &wc->flags[level]);
8179 BUG_ON(ret == -ENOMEM);
8180 if (ret)
8181 return ret;
8182 BUG_ON(wc->refs[level] == 0);
8185 if (wc->stage == DROP_REFERENCE) {
8186 if (wc->refs[level] > 1)
8187 return 1;
8189 if (path->locks[level] && !wc->keep_locks) {
8190 btrfs_tree_unlock_rw(eb, path->locks[level]);
8191 path->locks[level] = 0;
8193 return 0;
8196 /* wc->stage == UPDATE_BACKREF */
8197 if (!(wc->flags[level] & flag)) {
8198 BUG_ON(!path->locks[level]);
8199 ret = btrfs_inc_ref(trans, root, eb, 1);
8200 BUG_ON(ret); /* -ENOMEM */
8201 ret = btrfs_dec_ref(trans, root, eb, 0);
8202 BUG_ON(ret); /* -ENOMEM */
8203 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8204 eb->len, flag,
8205 btrfs_header_level(eb), 0);
8206 BUG_ON(ret); /* -ENOMEM */
8207 wc->flags[level] |= flag;
8211 * the block is shared by multiple trees, so it's not good to
8212 * keep the tree lock
8214 if (path->locks[level] && level > 0) {
8215 btrfs_tree_unlock_rw(eb, path->locks[level]);
8216 path->locks[level] = 0;
8218 return 0;
8222 * helper to process tree block pointer.
8224 * when wc->stage == DROP_REFERENCE, this function checks
8225 * reference count of the block pointed to. if the block
8226 * is shared and we need update back refs for the subtree
8227 * rooted at the block, this function changes wc->stage to
8228 * UPDATE_BACKREF. if the block is shared and there is no
8229 * need to update back, this function drops the reference
8230 * to the block.
8232 * NOTE: return value 1 means we should stop walking down.
8234 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8235 struct btrfs_root *root,
8236 struct btrfs_path *path,
8237 struct walk_control *wc, int *lookup_info)
8239 u64 bytenr;
8240 u64 generation;
8241 u64 parent;
8242 u32 blocksize;
8243 struct btrfs_key key;
8244 struct extent_buffer *next;
8245 int level = wc->level;
8246 int reada = 0;
8247 int ret = 0;
8248 bool need_account = false;
8250 generation = btrfs_node_ptr_generation(path->nodes[level],
8251 path->slots[level]);
8253 * if the lower level block was created before the snapshot
8254 * was created, we know there is no need to update back refs
8255 * for the subtree
8257 if (wc->stage == UPDATE_BACKREF &&
8258 generation <= root->root_key.offset) {
8259 *lookup_info = 1;
8260 return 1;
8263 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8264 blocksize = root->nodesize;
8266 next = btrfs_find_tree_block(root->fs_info, bytenr);
8267 if (!next) {
8268 next = btrfs_find_create_tree_block(root, bytenr);
8269 if (!next)
8270 return -ENOMEM;
8271 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8272 level - 1);
8273 reada = 1;
8275 btrfs_tree_lock(next);
8276 btrfs_set_lock_blocking(next);
8278 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8279 &wc->refs[level - 1],
8280 &wc->flags[level - 1]);
8281 if (ret < 0) {
8282 btrfs_tree_unlock(next);
8283 return ret;
8286 if (unlikely(wc->refs[level - 1] == 0)) {
8287 btrfs_err(root->fs_info, "Missing references.");
8288 BUG();
8290 *lookup_info = 0;
8292 if (wc->stage == DROP_REFERENCE) {
8293 if (wc->refs[level - 1] > 1) {
8294 need_account = true;
8295 if (level == 1 &&
8296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8297 goto skip;
8299 if (!wc->update_ref ||
8300 generation <= root->root_key.offset)
8301 goto skip;
8303 btrfs_node_key_to_cpu(path->nodes[level], &key,
8304 path->slots[level]);
8305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8306 if (ret < 0)
8307 goto skip;
8309 wc->stage = UPDATE_BACKREF;
8310 wc->shared_level = level - 1;
8312 } else {
8313 if (level == 1 &&
8314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8315 goto skip;
8318 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8319 btrfs_tree_unlock(next);
8320 free_extent_buffer(next);
8321 next = NULL;
8322 *lookup_info = 1;
8325 if (!next) {
8326 if (reada && level == 1)
8327 reada_walk_down(trans, root, wc, path);
8328 next = read_tree_block(root, bytenr, generation);
8329 if (IS_ERR(next)) {
8330 return PTR_ERR(next);
8331 } else if (!extent_buffer_uptodate(next)) {
8332 free_extent_buffer(next);
8333 return -EIO;
8335 btrfs_tree_lock(next);
8336 btrfs_set_lock_blocking(next);
8339 level--;
8340 BUG_ON(level != btrfs_header_level(next));
8341 path->nodes[level] = next;
8342 path->slots[level] = 0;
8343 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8344 wc->level = level;
8345 if (wc->level == 1)
8346 wc->reada_slot = 0;
8347 return 0;
8348 skip:
8349 wc->refs[level - 1] = 0;
8350 wc->flags[level - 1] = 0;
8351 if (wc->stage == DROP_REFERENCE) {
8352 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8353 parent = path->nodes[level]->start;
8354 } else {
8355 BUG_ON(root->root_key.objectid !=
8356 btrfs_header_owner(path->nodes[level]));
8357 parent = 0;
8360 if (need_account) {
8361 ret = account_shared_subtree(trans, root, next,
8362 generation, level - 1);
8363 if (ret) {
8364 btrfs_err_rl(root->fs_info,
8365 "Error "
8366 "%d accounting shared subtree. Quota "
8367 "is out of sync, rescan required.",
8368 ret);
8371 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8372 root->root_key.objectid, level - 1, 0, 0);
8373 BUG_ON(ret); /* -ENOMEM */
8375 btrfs_tree_unlock(next);
8376 free_extent_buffer(next);
8377 *lookup_info = 1;
8378 return 1;
8382 * helper to process tree block while walking up the tree.
8384 * when wc->stage == DROP_REFERENCE, this function drops
8385 * reference count on the block.
8387 * when wc->stage == UPDATE_BACKREF, this function changes
8388 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8389 * to UPDATE_BACKREF previously while processing the block.
8391 * NOTE: return value 1 means we should stop walking up.
8393 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8394 struct btrfs_root *root,
8395 struct btrfs_path *path,
8396 struct walk_control *wc)
8398 int ret;
8399 int level = wc->level;
8400 struct extent_buffer *eb = path->nodes[level];
8401 u64 parent = 0;
8403 if (wc->stage == UPDATE_BACKREF) {
8404 BUG_ON(wc->shared_level < level);
8405 if (level < wc->shared_level)
8406 goto out;
8408 ret = find_next_key(path, level + 1, &wc->update_progress);
8409 if (ret > 0)
8410 wc->update_ref = 0;
8412 wc->stage = DROP_REFERENCE;
8413 wc->shared_level = -1;
8414 path->slots[level] = 0;
8417 * check reference count again if the block isn't locked.
8418 * we should start walking down the tree again if reference
8419 * count is one.
8421 if (!path->locks[level]) {
8422 BUG_ON(level == 0);
8423 btrfs_tree_lock(eb);
8424 btrfs_set_lock_blocking(eb);
8425 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8427 ret = btrfs_lookup_extent_info(trans, root,
8428 eb->start, level, 1,
8429 &wc->refs[level],
8430 &wc->flags[level]);
8431 if (ret < 0) {
8432 btrfs_tree_unlock_rw(eb, path->locks[level]);
8433 path->locks[level] = 0;
8434 return ret;
8436 BUG_ON(wc->refs[level] == 0);
8437 if (wc->refs[level] == 1) {
8438 btrfs_tree_unlock_rw(eb, path->locks[level]);
8439 path->locks[level] = 0;
8440 return 1;
8445 /* wc->stage == DROP_REFERENCE */
8446 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8448 if (wc->refs[level] == 1) {
8449 if (level == 0) {
8450 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8451 ret = btrfs_dec_ref(trans, root, eb, 1);
8452 else
8453 ret = btrfs_dec_ref(trans, root, eb, 0);
8454 BUG_ON(ret); /* -ENOMEM */
8455 ret = account_leaf_items(trans, root, eb);
8456 if (ret) {
8457 btrfs_err_rl(root->fs_info,
8458 "error "
8459 "%d accounting leaf items. Quota "
8460 "is out of sync, rescan required.",
8461 ret);
8464 /* make block locked assertion in clean_tree_block happy */
8465 if (!path->locks[level] &&
8466 btrfs_header_generation(eb) == trans->transid) {
8467 btrfs_tree_lock(eb);
8468 btrfs_set_lock_blocking(eb);
8469 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8471 clean_tree_block(trans, root->fs_info, eb);
8474 if (eb == root->node) {
8475 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8476 parent = eb->start;
8477 else
8478 BUG_ON(root->root_key.objectid !=
8479 btrfs_header_owner(eb));
8480 } else {
8481 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8482 parent = path->nodes[level + 1]->start;
8483 else
8484 BUG_ON(root->root_key.objectid !=
8485 btrfs_header_owner(path->nodes[level + 1]));
8488 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8489 out:
8490 wc->refs[level] = 0;
8491 wc->flags[level] = 0;
8492 return 0;
8495 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8496 struct btrfs_root *root,
8497 struct btrfs_path *path,
8498 struct walk_control *wc)
8500 int level = wc->level;
8501 int lookup_info = 1;
8502 int ret;
8504 while (level >= 0) {
8505 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8506 if (ret > 0)
8507 break;
8509 if (level == 0)
8510 break;
8512 if (path->slots[level] >=
8513 btrfs_header_nritems(path->nodes[level]))
8514 break;
8516 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8517 if (ret > 0) {
8518 path->slots[level]++;
8519 continue;
8520 } else if (ret < 0)
8521 return ret;
8522 level = wc->level;
8524 return 0;
8527 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8528 struct btrfs_root *root,
8529 struct btrfs_path *path,
8530 struct walk_control *wc, int max_level)
8532 int level = wc->level;
8533 int ret;
8535 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8536 while (level < max_level && path->nodes[level]) {
8537 wc->level = level;
8538 if (path->slots[level] + 1 <
8539 btrfs_header_nritems(path->nodes[level])) {
8540 path->slots[level]++;
8541 return 0;
8542 } else {
8543 ret = walk_up_proc(trans, root, path, wc);
8544 if (ret > 0)
8545 return 0;
8547 if (path->locks[level]) {
8548 btrfs_tree_unlock_rw(path->nodes[level],
8549 path->locks[level]);
8550 path->locks[level] = 0;
8552 free_extent_buffer(path->nodes[level]);
8553 path->nodes[level] = NULL;
8554 level++;
8557 return 1;
8561 * drop a subvolume tree.
8563 * this function traverses the tree freeing any blocks that only
8564 * referenced by the tree.
8566 * when a shared tree block is found. this function decreases its
8567 * reference count by one. if update_ref is true, this function
8568 * also make sure backrefs for the shared block and all lower level
8569 * blocks are properly updated.
8571 * If called with for_reloc == 0, may exit early with -EAGAIN
8573 int btrfs_drop_snapshot(struct btrfs_root *root,
8574 struct btrfs_block_rsv *block_rsv, int update_ref,
8575 int for_reloc)
8577 struct btrfs_path *path;
8578 struct btrfs_trans_handle *trans;
8579 struct btrfs_root *tree_root = root->fs_info->tree_root;
8580 struct btrfs_root_item *root_item = &root->root_item;
8581 struct walk_control *wc;
8582 struct btrfs_key key;
8583 int err = 0;
8584 int ret;
8585 int level;
8586 bool root_dropped = false;
8588 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8590 path = btrfs_alloc_path();
8591 if (!path) {
8592 err = -ENOMEM;
8593 goto out;
8596 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8597 if (!wc) {
8598 btrfs_free_path(path);
8599 err = -ENOMEM;
8600 goto out;
8603 trans = btrfs_start_transaction(tree_root, 0);
8604 if (IS_ERR(trans)) {
8605 err = PTR_ERR(trans);
8606 goto out_free;
8609 if (block_rsv)
8610 trans->block_rsv = block_rsv;
8612 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8613 level = btrfs_header_level(root->node);
8614 path->nodes[level] = btrfs_lock_root_node(root);
8615 btrfs_set_lock_blocking(path->nodes[level]);
8616 path->slots[level] = 0;
8617 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8618 memset(&wc->update_progress, 0,
8619 sizeof(wc->update_progress));
8620 } else {
8621 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8622 memcpy(&wc->update_progress, &key,
8623 sizeof(wc->update_progress));
8625 level = root_item->drop_level;
8626 BUG_ON(level == 0);
8627 path->lowest_level = level;
8628 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8629 path->lowest_level = 0;
8630 if (ret < 0) {
8631 err = ret;
8632 goto out_end_trans;
8634 WARN_ON(ret > 0);
8637 * unlock our path, this is safe because only this
8638 * function is allowed to delete this snapshot
8640 btrfs_unlock_up_safe(path, 0);
8642 level = btrfs_header_level(root->node);
8643 while (1) {
8644 btrfs_tree_lock(path->nodes[level]);
8645 btrfs_set_lock_blocking(path->nodes[level]);
8646 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8648 ret = btrfs_lookup_extent_info(trans, root,
8649 path->nodes[level]->start,
8650 level, 1, &wc->refs[level],
8651 &wc->flags[level]);
8652 if (ret < 0) {
8653 err = ret;
8654 goto out_end_trans;
8656 BUG_ON(wc->refs[level] == 0);
8658 if (level == root_item->drop_level)
8659 break;
8661 btrfs_tree_unlock(path->nodes[level]);
8662 path->locks[level] = 0;
8663 WARN_ON(wc->refs[level] != 1);
8664 level--;
8668 wc->level = level;
8669 wc->shared_level = -1;
8670 wc->stage = DROP_REFERENCE;
8671 wc->update_ref = update_ref;
8672 wc->keep_locks = 0;
8673 wc->for_reloc = for_reloc;
8674 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8676 while (1) {
8678 ret = walk_down_tree(trans, root, path, wc);
8679 if (ret < 0) {
8680 err = ret;
8681 break;
8684 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8685 if (ret < 0) {
8686 err = ret;
8687 break;
8690 if (ret > 0) {
8691 BUG_ON(wc->stage != DROP_REFERENCE);
8692 break;
8695 if (wc->stage == DROP_REFERENCE) {
8696 level = wc->level;
8697 btrfs_node_key(path->nodes[level],
8698 &root_item->drop_progress,
8699 path->slots[level]);
8700 root_item->drop_level = level;
8703 BUG_ON(wc->level == 0);
8704 if (btrfs_should_end_transaction(trans, tree_root) ||
8705 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8706 ret = btrfs_update_root(trans, tree_root,
8707 &root->root_key,
8708 root_item);
8709 if (ret) {
8710 btrfs_abort_transaction(trans, tree_root, ret);
8711 err = ret;
8712 goto out_end_trans;
8715 btrfs_end_transaction_throttle(trans, tree_root);
8716 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8717 pr_debug("BTRFS: drop snapshot early exit\n");
8718 err = -EAGAIN;
8719 goto out_free;
8722 trans = btrfs_start_transaction(tree_root, 0);
8723 if (IS_ERR(trans)) {
8724 err = PTR_ERR(trans);
8725 goto out_free;
8727 if (block_rsv)
8728 trans->block_rsv = block_rsv;
8731 btrfs_release_path(path);
8732 if (err)
8733 goto out_end_trans;
8735 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8736 if (ret) {
8737 btrfs_abort_transaction(trans, tree_root, ret);
8738 goto out_end_trans;
8741 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8742 ret = btrfs_find_root(tree_root, &root->root_key, path,
8743 NULL, NULL);
8744 if (ret < 0) {
8745 btrfs_abort_transaction(trans, tree_root, ret);
8746 err = ret;
8747 goto out_end_trans;
8748 } else if (ret > 0) {
8749 /* if we fail to delete the orphan item this time
8750 * around, it'll get picked up the next time.
8752 * The most common failure here is just -ENOENT.
8754 btrfs_del_orphan_item(trans, tree_root,
8755 root->root_key.objectid);
8759 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8760 btrfs_add_dropped_root(trans, root);
8761 } else {
8762 free_extent_buffer(root->node);
8763 free_extent_buffer(root->commit_root);
8764 btrfs_put_fs_root(root);
8766 root_dropped = true;
8767 out_end_trans:
8768 btrfs_end_transaction_throttle(trans, tree_root);
8769 out_free:
8770 kfree(wc);
8771 btrfs_free_path(path);
8772 out:
8774 * So if we need to stop dropping the snapshot for whatever reason we
8775 * need to make sure to add it back to the dead root list so that we
8776 * keep trying to do the work later. This also cleans up roots if we
8777 * don't have it in the radix (like when we recover after a power fail
8778 * or unmount) so we don't leak memory.
8780 if (!for_reloc && root_dropped == false)
8781 btrfs_add_dead_root(root);
8782 if (err && err != -EAGAIN)
8783 btrfs_std_error(root->fs_info, err, NULL);
8784 return err;
8788 * drop subtree rooted at tree block 'node'.
8790 * NOTE: this function will unlock and release tree block 'node'
8791 * only used by relocation code
8793 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8794 struct btrfs_root *root,
8795 struct extent_buffer *node,
8796 struct extent_buffer *parent)
8798 struct btrfs_path *path;
8799 struct walk_control *wc;
8800 int level;
8801 int parent_level;
8802 int ret = 0;
8803 int wret;
8805 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8807 path = btrfs_alloc_path();
8808 if (!path)
8809 return -ENOMEM;
8811 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8812 if (!wc) {
8813 btrfs_free_path(path);
8814 return -ENOMEM;
8817 btrfs_assert_tree_locked(parent);
8818 parent_level = btrfs_header_level(parent);
8819 extent_buffer_get(parent);
8820 path->nodes[parent_level] = parent;
8821 path->slots[parent_level] = btrfs_header_nritems(parent);
8823 btrfs_assert_tree_locked(node);
8824 level = btrfs_header_level(node);
8825 path->nodes[level] = node;
8826 path->slots[level] = 0;
8827 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8829 wc->refs[parent_level] = 1;
8830 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8831 wc->level = level;
8832 wc->shared_level = -1;
8833 wc->stage = DROP_REFERENCE;
8834 wc->update_ref = 0;
8835 wc->keep_locks = 1;
8836 wc->for_reloc = 1;
8837 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8839 while (1) {
8840 wret = walk_down_tree(trans, root, path, wc);
8841 if (wret < 0) {
8842 ret = wret;
8843 break;
8846 wret = walk_up_tree(trans, root, path, wc, parent_level);
8847 if (wret < 0)
8848 ret = wret;
8849 if (wret != 0)
8850 break;
8853 kfree(wc);
8854 btrfs_free_path(path);
8855 return ret;
8858 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8860 u64 num_devices;
8861 u64 stripped;
8864 * if restripe for this chunk_type is on pick target profile and
8865 * return, otherwise do the usual balance
8867 stripped = get_restripe_target(root->fs_info, flags);
8868 if (stripped)
8869 return extended_to_chunk(stripped);
8871 num_devices = root->fs_info->fs_devices->rw_devices;
8873 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8874 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8875 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8877 if (num_devices == 1) {
8878 stripped |= BTRFS_BLOCK_GROUP_DUP;
8879 stripped = flags & ~stripped;
8881 /* turn raid0 into single device chunks */
8882 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8883 return stripped;
8885 /* turn mirroring into duplication */
8886 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8887 BTRFS_BLOCK_GROUP_RAID10))
8888 return stripped | BTRFS_BLOCK_GROUP_DUP;
8889 } else {
8890 /* they already had raid on here, just return */
8891 if (flags & stripped)
8892 return flags;
8894 stripped |= BTRFS_BLOCK_GROUP_DUP;
8895 stripped = flags & ~stripped;
8897 /* switch duplicated blocks with raid1 */
8898 if (flags & BTRFS_BLOCK_GROUP_DUP)
8899 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8901 /* this is drive concat, leave it alone */
8904 return flags;
8907 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8909 struct btrfs_space_info *sinfo = cache->space_info;
8910 u64 num_bytes;
8911 u64 min_allocable_bytes;
8912 int ret = -ENOSPC;
8915 * We need some metadata space and system metadata space for
8916 * allocating chunks in some corner cases until we force to set
8917 * it to be readonly.
8919 if ((sinfo->flags &
8920 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8921 !force)
8922 min_allocable_bytes = 1 * 1024 * 1024;
8923 else
8924 min_allocable_bytes = 0;
8926 spin_lock(&sinfo->lock);
8927 spin_lock(&cache->lock);
8929 if (cache->ro) {
8930 cache->ro++;
8931 ret = 0;
8932 goto out;
8935 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8936 cache->bytes_super - btrfs_block_group_used(&cache->item);
8938 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8939 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8940 min_allocable_bytes <= sinfo->total_bytes) {
8941 sinfo->bytes_readonly += num_bytes;
8942 cache->ro++;
8943 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8944 ret = 0;
8946 out:
8947 spin_unlock(&cache->lock);
8948 spin_unlock(&sinfo->lock);
8949 return ret;
8952 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8953 struct btrfs_block_group_cache *cache)
8956 struct btrfs_trans_handle *trans;
8957 u64 alloc_flags;
8958 int ret;
8960 again:
8961 trans = btrfs_join_transaction(root);
8962 if (IS_ERR(trans))
8963 return PTR_ERR(trans);
8966 * we're not allowed to set block groups readonly after the dirty
8967 * block groups cache has started writing. If it already started,
8968 * back off and let this transaction commit
8970 mutex_lock(&root->fs_info->ro_block_group_mutex);
8971 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
8972 u64 transid = trans->transid;
8974 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8975 btrfs_end_transaction(trans, root);
8977 ret = btrfs_wait_for_commit(root, transid);
8978 if (ret)
8979 return ret;
8980 goto again;
8984 * if we are changing raid levels, try to allocate a corresponding
8985 * block group with the new raid level.
8987 alloc_flags = update_block_group_flags(root, cache->flags);
8988 if (alloc_flags != cache->flags) {
8989 ret = do_chunk_alloc(trans, root, alloc_flags,
8990 CHUNK_ALLOC_FORCE);
8992 * ENOSPC is allowed here, we may have enough space
8993 * already allocated at the new raid level to
8994 * carry on
8996 if (ret == -ENOSPC)
8997 ret = 0;
8998 if (ret < 0)
8999 goto out;
9002 ret = inc_block_group_ro(cache, 0);
9003 if (!ret)
9004 goto out;
9005 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9006 ret = do_chunk_alloc(trans, root, alloc_flags,
9007 CHUNK_ALLOC_FORCE);
9008 if (ret < 0)
9009 goto out;
9010 ret = inc_block_group_ro(cache, 0);
9011 out:
9012 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9013 alloc_flags = update_block_group_flags(root, cache->flags);
9014 lock_chunks(root->fs_info->chunk_root);
9015 check_system_chunk(trans, root, alloc_flags);
9016 unlock_chunks(root->fs_info->chunk_root);
9018 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9020 btrfs_end_transaction(trans, root);
9021 return ret;
9024 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9025 struct btrfs_root *root, u64 type)
9027 u64 alloc_flags = get_alloc_profile(root, type);
9028 return do_chunk_alloc(trans, root, alloc_flags,
9029 CHUNK_ALLOC_FORCE);
9033 * helper to account the unused space of all the readonly block group in the
9034 * space_info. takes mirrors into account.
9036 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9038 struct btrfs_block_group_cache *block_group;
9039 u64 free_bytes = 0;
9040 int factor;
9042 /* It's df, we don't care if it's racey */
9043 if (list_empty(&sinfo->ro_bgs))
9044 return 0;
9046 spin_lock(&sinfo->lock);
9047 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9048 spin_lock(&block_group->lock);
9050 if (!block_group->ro) {
9051 spin_unlock(&block_group->lock);
9052 continue;
9055 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9056 BTRFS_BLOCK_GROUP_RAID10 |
9057 BTRFS_BLOCK_GROUP_DUP))
9058 factor = 2;
9059 else
9060 factor = 1;
9062 free_bytes += (block_group->key.offset -
9063 btrfs_block_group_used(&block_group->item)) *
9064 factor;
9066 spin_unlock(&block_group->lock);
9068 spin_unlock(&sinfo->lock);
9070 return free_bytes;
9073 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9074 struct btrfs_block_group_cache *cache)
9076 struct btrfs_space_info *sinfo = cache->space_info;
9077 u64 num_bytes;
9079 BUG_ON(!cache->ro);
9081 spin_lock(&sinfo->lock);
9082 spin_lock(&cache->lock);
9083 if (!--cache->ro) {
9084 num_bytes = cache->key.offset - cache->reserved -
9085 cache->pinned - cache->bytes_super -
9086 btrfs_block_group_used(&cache->item);
9087 sinfo->bytes_readonly -= num_bytes;
9088 list_del_init(&cache->ro_list);
9090 spin_unlock(&cache->lock);
9091 spin_unlock(&sinfo->lock);
9095 * checks to see if its even possible to relocate this block group.
9097 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9098 * ok to go ahead and try.
9100 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9102 struct btrfs_block_group_cache *block_group;
9103 struct btrfs_space_info *space_info;
9104 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9105 struct btrfs_device *device;
9106 struct btrfs_trans_handle *trans;
9107 u64 min_free;
9108 u64 dev_min = 1;
9109 u64 dev_nr = 0;
9110 u64 target;
9111 int index;
9112 int full = 0;
9113 int ret = 0;
9115 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9117 /* odd, couldn't find the block group, leave it alone */
9118 if (!block_group)
9119 return -1;
9121 min_free = btrfs_block_group_used(&block_group->item);
9123 /* no bytes used, we're good */
9124 if (!min_free)
9125 goto out;
9127 space_info = block_group->space_info;
9128 spin_lock(&space_info->lock);
9130 full = space_info->full;
9133 * if this is the last block group we have in this space, we can't
9134 * relocate it unless we're able to allocate a new chunk below.
9136 * Otherwise, we need to make sure we have room in the space to handle
9137 * all of the extents from this block group. If we can, we're good
9139 if ((space_info->total_bytes != block_group->key.offset) &&
9140 (space_info->bytes_used + space_info->bytes_reserved +
9141 space_info->bytes_pinned + space_info->bytes_readonly +
9142 min_free < space_info->total_bytes)) {
9143 spin_unlock(&space_info->lock);
9144 goto out;
9146 spin_unlock(&space_info->lock);
9149 * ok we don't have enough space, but maybe we have free space on our
9150 * devices to allocate new chunks for relocation, so loop through our
9151 * alloc devices and guess if we have enough space. if this block
9152 * group is going to be restriped, run checks against the target
9153 * profile instead of the current one.
9155 ret = -1;
9158 * index:
9159 * 0: raid10
9160 * 1: raid1
9161 * 2: dup
9162 * 3: raid0
9163 * 4: single
9165 target = get_restripe_target(root->fs_info, block_group->flags);
9166 if (target) {
9167 index = __get_raid_index(extended_to_chunk(target));
9168 } else {
9170 * this is just a balance, so if we were marked as full
9171 * we know there is no space for a new chunk
9173 if (full)
9174 goto out;
9176 index = get_block_group_index(block_group);
9179 if (index == BTRFS_RAID_RAID10) {
9180 dev_min = 4;
9181 /* Divide by 2 */
9182 min_free >>= 1;
9183 } else if (index == BTRFS_RAID_RAID1) {
9184 dev_min = 2;
9185 } else if (index == BTRFS_RAID_DUP) {
9186 /* Multiply by 2 */
9187 min_free <<= 1;
9188 } else if (index == BTRFS_RAID_RAID0) {
9189 dev_min = fs_devices->rw_devices;
9190 min_free = div64_u64(min_free, dev_min);
9193 /* We need to do this so that we can look at pending chunks */
9194 trans = btrfs_join_transaction(root);
9195 if (IS_ERR(trans)) {
9196 ret = PTR_ERR(trans);
9197 goto out;
9200 mutex_lock(&root->fs_info->chunk_mutex);
9201 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9202 u64 dev_offset;
9205 * check to make sure we can actually find a chunk with enough
9206 * space to fit our block group in.
9208 if (device->total_bytes > device->bytes_used + min_free &&
9209 !device->is_tgtdev_for_dev_replace) {
9210 ret = find_free_dev_extent(trans, device, min_free,
9211 &dev_offset, NULL);
9212 if (!ret)
9213 dev_nr++;
9215 if (dev_nr >= dev_min)
9216 break;
9218 ret = -1;
9221 mutex_unlock(&root->fs_info->chunk_mutex);
9222 btrfs_end_transaction(trans, root);
9223 out:
9224 btrfs_put_block_group(block_group);
9225 return ret;
9228 static int find_first_block_group(struct btrfs_root *root,
9229 struct btrfs_path *path, struct btrfs_key *key)
9231 int ret = 0;
9232 struct btrfs_key found_key;
9233 struct extent_buffer *leaf;
9234 int slot;
9236 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9237 if (ret < 0)
9238 goto out;
9240 while (1) {
9241 slot = path->slots[0];
9242 leaf = path->nodes[0];
9243 if (slot >= btrfs_header_nritems(leaf)) {
9244 ret = btrfs_next_leaf(root, path);
9245 if (ret == 0)
9246 continue;
9247 if (ret < 0)
9248 goto out;
9249 break;
9251 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9253 if (found_key.objectid >= key->objectid &&
9254 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9255 ret = 0;
9256 goto out;
9258 path->slots[0]++;
9260 out:
9261 return ret;
9264 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9266 struct btrfs_block_group_cache *block_group;
9267 u64 last = 0;
9269 while (1) {
9270 struct inode *inode;
9272 block_group = btrfs_lookup_first_block_group(info, last);
9273 while (block_group) {
9274 spin_lock(&block_group->lock);
9275 if (block_group->iref)
9276 break;
9277 spin_unlock(&block_group->lock);
9278 block_group = next_block_group(info->tree_root,
9279 block_group);
9281 if (!block_group) {
9282 if (last == 0)
9283 break;
9284 last = 0;
9285 continue;
9288 inode = block_group->inode;
9289 block_group->iref = 0;
9290 block_group->inode = NULL;
9291 spin_unlock(&block_group->lock);
9292 iput(inode);
9293 last = block_group->key.objectid + block_group->key.offset;
9294 btrfs_put_block_group(block_group);
9298 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9300 struct btrfs_block_group_cache *block_group;
9301 struct btrfs_space_info *space_info;
9302 struct btrfs_caching_control *caching_ctl;
9303 struct rb_node *n;
9305 down_write(&info->commit_root_sem);
9306 while (!list_empty(&info->caching_block_groups)) {
9307 caching_ctl = list_entry(info->caching_block_groups.next,
9308 struct btrfs_caching_control, list);
9309 list_del(&caching_ctl->list);
9310 put_caching_control(caching_ctl);
9312 up_write(&info->commit_root_sem);
9314 spin_lock(&info->unused_bgs_lock);
9315 while (!list_empty(&info->unused_bgs)) {
9316 block_group = list_first_entry(&info->unused_bgs,
9317 struct btrfs_block_group_cache,
9318 bg_list);
9319 list_del_init(&block_group->bg_list);
9320 btrfs_put_block_group(block_group);
9322 spin_unlock(&info->unused_bgs_lock);
9324 spin_lock(&info->block_group_cache_lock);
9325 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9326 block_group = rb_entry(n, struct btrfs_block_group_cache,
9327 cache_node);
9328 rb_erase(&block_group->cache_node,
9329 &info->block_group_cache_tree);
9330 RB_CLEAR_NODE(&block_group->cache_node);
9331 spin_unlock(&info->block_group_cache_lock);
9333 down_write(&block_group->space_info->groups_sem);
9334 list_del(&block_group->list);
9335 up_write(&block_group->space_info->groups_sem);
9337 if (block_group->cached == BTRFS_CACHE_STARTED)
9338 wait_block_group_cache_done(block_group);
9341 * We haven't cached this block group, which means we could
9342 * possibly have excluded extents on this block group.
9344 if (block_group->cached == BTRFS_CACHE_NO ||
9345 block_group->cached == BTRFS_CACHE_ERROR)
9346 free_excluded_extents(info->extent_root, block_group);
9348 btrfs_remove_free_space_cache(block_group);
9349 btrfs_put_block_group(block_group);
9351 spin_lock(&info->block_group_cache_lock);
9353 spin_unlock(&info->block_group_cache_lock);
9355 /* now that all the block groups are freed, go through and
9356 * free all the space_info structs. This is only called during
9357 * the final stages of unmount, and so we know nobody is
9358 * using them. We call synchronize_rcu() once before we start,
9359 * just to be on the safe side.
9361 synchronize_rcu();
9363 release_global_block_rsv(info);
9365 while (!list_empty(&info->space_info)) {
9366 int i;
9368 space_info = list_entry(info->space_info.next,
9369 struct btrfs_space_info,
9370 list);
9371 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9372 if (WARN_ON(space_info->bytes_pinned > 0 ||
9373 space_info->bytes_reserved > 0 ||
9374 space_info->bytes_may_use > 0)) {
9375 dump_space_info(space_info, 0, 0);
9378 list_del(&space_info->list);
9379 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9380 struct kobject *kobj;
9381 kobj = space_info->block_group_kobjs[i];
9382 space_info->block_group_kobjs[i] = NULL;
9383 if (kobj) {
9384 kobject_del(kobj);
9385 kobject_put(kobj);
9388 kobject_del(&space_info->kobj);
9389 kobject_put(&space_info->kobj);
9391 return 0;
9394 static void __link_block_group(struct btrfs_space_info *space_info,
9395 struct btrfs_block_group_cache *cache)
9397 int index = get_block_group_index(cache);
9398 bool first = false;
9400 down_write(&space_info->groups_sem);
9401 if (list_empty(&space_info->block_groups[index]))
9402 first = true;
9403 list_add_tail(&cache->list, &space_info->block_groups[index]);
9404 up_write(&space_info->groups_sem);
9406 if (first) {
9407 struct raid_kobject *rkobj;
9408 int ret;
9410 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9411 if (!rkobj)
9412 goto out_err;
9413 rkobj->raid_type = index;
9414 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9415 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9416 "%s", get_raid_name(index));
9417 if (ret) {
9418 kobject_put(&rkobj->kobj);
9419 goto out_err;
9421 space_info->block_group_kobjs[index] = &rkobj->kobj;
9424 return;
9425 out_err:
9426 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9429 static struct btrfs_block_group_cache *
9430 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9432 struct btrfs_block_group_cache *cache;
9434 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9435 if (!cache)
9436 return NULL;
9438 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9439 GFP_NOFS);
9440 if (!cache->free_space_ctl) {
9441 kfree(cache);
9442 return NULL;
9445 cache->key.objectid = start;
9446 cache->key.offset = size;
9447 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9449 cache->sectorsize = root->sectorsize;
9450 cache->fs_info = root->fs_info;
9451 cache->full_stripe_len = btrfs_full_stripe_len(root,
9452 &root->fs_info->mapping_tree,
9453 start);
9454 atomic_set(&cache->count, 1);
9455 spin_lock_init(&cache->lock);
9456 init_rwsem(&cache->data_rwsem);
9457 INIT_LIST_HEAD(&cache->list);
9458 INIT_LIST_HEAD(&cache->cluster_list);
9459 INIT_LIST_HEAD(&cache->bg_list);
9460 INIT_LIST_HEAD(&cache->ro_list);
9461 INIT_LIST_HEAD(&cache->dirty_list);
9462 INIT_LIST_HEAD(&cache->io_list);
9463 btrfs_init_free_space_ctl(cache);
9464 atomic_set(&cache->trimming, 0);
9466 return cache;
9469 int btrfs_read_block_groups(struct btrfs_root *root)
9471 struct btrfs_path *path;
9472 int ret;
9473 struct btrfs_block_group_cache *cache;
9474 struct btrfs_fs_info *info = root->fs_info;
9475 struct btrfs_space_info *space_info;
9476 struct btrfs_key key;
9477 struct btrfs_key found_key;
9478 struct extent_buffer *leaf;
9479 int need_clear = 0;
9480 u64 cache_gen;
9482 root = info->extent_root;
9483 key.objectid = 0;
9484 key.offset = 0;
9485 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9486 path = btrfs_alloc_path();
9487 if (!path)
9488 return -ENOMEM;
9489 path->reada = 1;
9491 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9492 if (btrfs_test_opt(root, SPACE_CACHE) &&
9493 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9494 need_clear = 1;
9495 if (btrfs_test_opt(root, CLEAR_CACHE))
9496 need_clear = 1;
9498 while (1) {
9499 ret = find_first_block_group(root, path, &key);
9500 if (ret > 0)
9501 break;
9502 if (ret != 0)
9503 goto error;
9505 leaf = path->nodes[0];
9506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9508 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9509 found_key.offset);
9510 if (!cache) {
9511 ret = -ENOMEM;
9512 goto error;
9515 if (need_clear) {
9517 * When we mount with old space cache, we need to
9518 * set BTRFS_DC_CLEAR and set dirty flag.
9520 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9521 * truncate the old free space cache inode and
9522 * setup a new one.
9523 * b) Setting 'dirty flag' makes sure that we flush
9524 * the new space cache info onto disk.
9526 if (btrfs_test_opt(root, SPACE_CACHE))
9527 cache->disk_cache_state = BTRFS_DC_CLEAR;
9530 read_extent_buffer(leaf, &cache->item,
9531 btrfs_item_ptr_offset(leaf, path->slots[0]),
9532 sizeof(cache->item));
9533 cache->flags = btrfs_block_group_flags(&cache->item);
9535 key.objectid = found_key.objectid + found_key.offset;
9536 btrfs_release_path(path);
9539 * We need to exclude the super stripes now so that the space
9540 * info has super bytes accounted for, otherwise we'll think
9541 * we have more space than we actually do.
9543 ret = exclude_super_stripes(root, cache);
9544 if (ret) {
9546 * We may have excluded something, so call this just in
9547 * case.
9549 free_excluded_extents(root, cache);
9550 btrfs_put_block_group(cache);
9551 goto error;
9555 * check for two cases, either we are full, and therefore
9556 * don't need to bother with the caching work since we won't
9557 * find any space, or we are empty, and we can just add all
9558 * the space in and be done with it. This saves us _alot_ of
9559 * time, particularly in the full case.
9561 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9562 cache->last_byte_to_unpin = (u64)-1;
9563 cache->cached = BTRFS_CACHE_FINISHED;
9564 free_excluded_extents(root, cache);
9565 } else if (btrfs_block_group_used(&cache->item) == 0) {
9566 cache->last_byte_to_unpin = (u64)-1;
9567 cache->cached = BTRFS_CACHE_FINISHED;
9568 add_new_free_space(cache, root->fs_info,
9569 found_key.objectid,
9570 found_key.objectid +
9571 found_key.offset);
9572 free_excluded_extents(root, cache);
9575 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9576 if (ret) {
9577 btrfs_remove_free_space_cache(cache);
9578 btrfs_put_block_group(cache);
9579 goto error;
9582 ret = update_space_info(info, cache->flags, found_key.offset,
9583 btrfs_block_group_used(&cache->item),
9584 &space_info);
9585 if (ret) {
9586 btrfs_remove_free_space_cache(cache);
9587 spin_lock(&info->block_group_cache_lock);
9588 rb_erase(&cache->cache_node,
9589 &info->block_group_cache_tree);
9590 RB_CLEAR_NODE(&cache->cache_node);
9591 spin_unlock(&info->block_group_cache_lock);
9592 btrfs_put_block_group(cache);
9593 goto error;
9596 cache->space_info = space_info;
9597 spin_lock(&cache->space_info->lock);
9598 cache->space_info->bytes_readonly += cache->bytes_super;
9599 spin_unlock(&cache->space_info->lock);
9601 __link_block_group(space_info, cache);
9603 set_avail_alloc_bits(root->fs_info, cache->flags);
9604 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9605 inc_block_group_ro(cache, 1);
9606 } else if (btrfs_block_group_used(&cache->item) == 0) {
9607 spin_lock(&info->unused_bgs_lock);
9608 /* Should always be true but just in case. */
9609 if (list_empty(&cache->bg_list)) {
9610 btrfs_get_block_group(cache);
9611 list_add_tail(&cache->bg_list,
9612 &info->unused_bgs);
9614 spin_unlock(&info->unused_bgs_lock);
9618 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9619 if (!(get_alloc_profile(root, space_info->flags) &
9620 (BTRFS_BLOCK_GROUP_RAID10 |
9621 BTRFS_BLOCK_GROUP_RAID1 |
9622 BTRFS_BLOCK_GROUP_RAID5 |
9623 BTRFS_BLOCK_GROUP_RAID6 |
9624 BTRFS_BLOCK_GROUP_DUP)))
9625 continue;
9627 * avoid allocating from un-mirrored block group if there are
9628 * mirrored block groups.
9630 list_for_each_entry(cache,
9631 &space_info->block_groups[BTRFS_RAID_RAID0],
9632 list)
9633 inc_block_group_ro(cache, 1);
9634 list_for_each_entry(cache,
9635 &space_info->block_groups[BTRFS_RAID_SINGLE],
9636 list)
9637 inc_block_group_ro(cache, 1);
9640 init_global_block_rsv(info);
9641 ret = 0;
9642 error:
9643 btrfs_free_path(path);
9644 return ret;
9647 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9648 struct btrfs_root *root)
9650 struct btrfs_block_group_cache *block_group, *tmp;
9651 struct btrfs_root *extent_root = root->fs_info->extent_root;
9652 struct btrfs_block_group_item item;
9653 struct btrfs_key key;
9654 int ret = 0;
9655 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9657 trans->can_flush_pending_bgs = false;
9658 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9659 if (ret)
9660 goto next;
9662 spin_lock(&block_group->lock);
9663 memcpy(&item, &block_group->item, sizeof(item));
9664 memcpy(&key, &block_group->key, sizeof(key));
9665 spin_unlock(&block_group->lock);
9667 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9668 sizeof(item));
9669 if (ret)
9670 btrfs_abort_transaction(trans, extent_root, ret);
9671 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9672 key.objectid, key.offset);
9673 if (ret)
9674 btrfs_abort_transaction(trans, extent_root, ret);
9675 next:
9676 list_del_init(&block_group->bg_list);
9678 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9681 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9682 struct btrfs_root *root, u64 bytes_used,
9683 u64 type, u64 chunk_objectid, u64 chunk_offset,
9684 u64 size)
9686 int ret;
9687 struct btrfs_root *extent_root;
9688 struct btrfs_block_group_cache *cache;
9690 extent_root = root->fs_info->extent_root;
9692 btrfs_set_log_full_commit(root->fs_info, trans);
9694 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9695 if (!cache)
9696 return -ENOMEM;
9698 btrfs_set_block_group_used(&cache->item, bytes_used);
9699 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9700 btrfs_set_block_group_flags(&cache->item, type);
9702 cache->flags = type;
9703 cache->last_byte_to_unpin = (u64)-1;
9704 cache->cached = BTRFS_CACHE_FINISHED;
9705 ret = exclude_super_stripes(root, cache);
9706 if (ret) {
9708 * We may have excluded something, so call this just in
9709 * case.
9711 free_excluded_extents(root, cache);
9712 btrfs_put_block_group(cache);
9713 return ret;
9716 add_new_free_space(cache, root->fs_info, chunk_offset,
9717 chunk_offset + size);
9719 free_excluded_extents(root, cache);
9721 #ifdef CONFIG_BTRFS_DEBUG
9722 if (btrfs_should_fragment_free_space(root, cache)) {
9723 u64 new_bytes_used = size - bytes_used;
9725 bytes_used += new_bytes_used >> 1;
9726 fragment_free_space(root, cache);
9728 #endif
9730 * Call to ensure the corresponding space_info object is created and
9731 * assigned to our block group, but don't update its counters just yet.
9732 * We want our bg to be added to the rbtree with its ->space_info set.
9734 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9735 &cache->space_info);
9736 if (ret) {
9737 btrfs_remove_free_space_cache(cache);
9738 btrfs_put_block_group(cache);
9739 return ret;
9742 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9743 if (ret) {
9744 btrfs_remove_free_space_cache(cache);
9745 btrfs_put_block_group(cache);
9746 return ret;
9750 * Now that our block group has its ->space_info set and is inserted in
9751 * the rbtree, update the space info's counters.
9753 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9754 &cache->space_info);
9755 if (ret) {
9756 btrfs_remove_free_space_cache(cache);
9757 spin_lock(&root->fs_info->block_group_cache_lock);
9758 rb_erase(&cache->cache_node,
9759 &root->fs_info->block_group_cache_tree);
9760 RB_CLEAR_NODE(&cache->cache_node);
9761 spin_unlock(&root->fs_info->block_group_cache_lock);
9762 btrfs_put_block_group(cache);
9763 return ret;
9765 update_global_block_rsv(root->fs_info);
9767 spin_lock(&cache->space_info->lock);
9768 cache->space_info->bytes_readonly += cache->bytes_super;
9769 spin_unlock(&cache->space_info->lock);
9771 __link_block_group(cache->space_info, cache);
9773 list_add_tail(&cache->bg_list, &trans->new_bgs);
9775 set_avail_alloc_bits(extent_root->fs_info, type);
9777 return 0;
9780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9782 u64 extra_flags = chunk_to_extended(flags) &
9783 BTRFS_EXTENDED_PROFILE_MASK;
9785 write_seqlock(&fs_info->profiles_lock);
9786 if (flags & BTRFS_BLOCK_GROUP_DATA)
9787 fs_info->avail_data_alloc_bits &= ~extra_flags;
9788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9791 fs_info->avail_system_alloc_bits &= ~extra_flags;
9792 write_sequnlock(&fs_info->profiles_lock);
9795 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9796 struct btrfs_root *root, u64 group_start,
9797 struct extent_map *em)
9799 struct btrfs_path *path;
9800 struct btrfs_block_group_cache *block_group;
9801 struct btrfs_free_cluster *cluster;
9802 struct btrfs_root *tree_root = root->fs_info->tree_root;
9803 struct btrfs_key key;
9804 struct inode *inode;
9805 struct kobject *kobj = NULL;
9806 int ret;
9807 int index;
9808 int factor;
9809 struct btrfs_caching_control *caching_ctl = NULL;
9810 bool remove_em;
9812 root = root->fs_info->extent_root;
9814 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9815 BUG_ON(!block_group);
9816 BUG_ON(!block_group->ro);
9819 * Free the reserved super bytes from this block group before
9820 * remove it.
9822 free_excluded_extents(root, block_group);
9824 memcpy(&key, &block_group->key, sizeof(key));
9825 index = get_block_group_index(block_group);
9826 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9827 BTRFS_BLOCK_GROUP_RAID1 |
9828 BTRFS_BLOCK_GROUP_RAID10))
9829 factor = 2;
9830 else
9831 factor = 1;
9833 /* make sure this block group isn't part of an allocation cluster */
9834 cluster = &root->fs_info->data_alloc_cluster;
9835 spin_lock(&cluster->refill_lock);
9836 btrfs_return_cluster_to_free_space(block_group, cluster);
9837 spin_unlock(&cluster->refill_lock);
9840 * make sure this block group isn't part of a metadata
9841 * allocation cluster
9843 cluster = &root->fs_info->meta_alloc_cluster;
9844 spin_lock(&cluster->refill_lock);
9845 btrfs_return_cluster_to_free_space(block_group, cluster);
9846 spin_unlock(&cluster->refill_lock);
9848 path = btrfs_alloc_path();
9849 if (!path) {
9850 ret = -ENOMEM;
9851 goto out;
9855 * get the inode first so any iput calls done for the io_list
9856 * aren't the final iput (no unlinks allowed now)
9858 inode = lookup_free_space_inode(tree_root, block_group, path);
9860 mutex_lock(&trans->transaction->cache_write_mutex);
9862 * make sure our free spache cache IO is done before remove the
9863 * free space inode
9865 spin_lock(&trans->transaction->dirty_bgs_lock);
9866 if (!list_empty(&block_group->io_list)) {
9867 list_del_init(&block_group->io_list);
9869 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9871 spin_unlock(&trans->transaction->dirty_bgs_lock);
9872 btrfs_wait_cache_io(root, trans, block_group,
9873 &block_group->io_ctl, path,
9874 block_group->key.objectid);
9875 btrfs_put_block_group(block_group);
9876 spin_lock(&trans->transaction->dirty_bgs_lock);
9879 if (!list_empty(&block_group->dirty_list)) {
9880 list_del_init(&block_group->dirty_list);
9881 btrfs_put_block_group(block_group);
9883 spin_unlock(&trans->transaction->dirty_bgs_lock);
9884 mutex_unlock(&trans->transaction->cache_write_mutex);
9886 if (!IS_ERR(inode)) {
9887 ret = btrfs_orphan_add(trans, inode);
9888 if (ret) {
9889 btrfs_add_delayed_iput(inode);
9890 goto out;
9892 clear_nlink(inode);
9893 /* One for the block groups ref */
9894 spin_lock(&block_group->lock);
9895 if (block_group->iref) {
9896 block_group->iref = 0;
9897 block_group->inode = NULL;
9898 spin_unlock(&block_group->lock);
9899 iput(inode);
9900 } else {
9901 spin_unlock(&block_group->lock);
9903 /* One for our lookup ref */
9904 btrfs_add_delayed_iput(inode);
9907 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9908 key.offset = block_group->key.objectid;
9909 key.type = 0;
9911 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9912 if (ret < 0)
9913 goto out;
9914 if (ret > 0)
9915 btrfs_release_path(path);
9916 if (ret == 0) {
9917 ret = btrfs_del_item(trans, tree_root, path);
9918 if (ret)
9919 goto out;
9920 btrfs_release_path(path);
9923 spin_lock(&root->fs_info->block_group_cache_lock);
9924 rb_erase(&block_group->cache_node,
9925 &root->fs_info->block_group_cache_tree);
9926 RB_CLEAR_NODE(&block_group->cache_node);
9928 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9929 root->fs_info->first_logical_byte = (u64)-1;
9930 spin_unlock(&root->fs_info->block_group_cache_lock);
9932 down_write(&block_group->space_info->groups_sem);
9934 * we must use list_del_init so people can check to see if they
9935 * are still on the list after taking the semaphore
9937 list_del_init(&block_group->list);
9938 if (list_empty(&block_group->space_info->block_groups[index])) {
9939 kobj = block_group->space_info->block_group_kobjs[index];
9940 block_group->space_info->block_group_kobjs[index] = NULL;
9941 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9943 up_write(&block_group->space_info->groups_sem);
9944 if (kobj) {
9945 kobject_del(kobj);
9946 kobject_put(kobj);
9949 if (block_group->has_caching_ctl)
9950 caching_ctl = get_caching_control(block_group);
9951 if (block_group->cached == BTRFS_CACHE_STARTED)
9952 wait_block_group_cache_done(block_group);
9953 if (block_group->has_caching_ctl) {
9954 down_write(&root->fs_info->commit_root_sem);
9955 if (!caching_ctl) {
9956 struct btrfs_caching_control *ctl;
9958 list_for_each_entry(ctl,
9959 &root->fs_info->caching_block_groups, list)
9960 if (ctl->block_group == block_group) {
9961 caching_ctl = ctl;
9962 atomic_inc(&caching_ctl->count);
9963 break;
9966 if (caching_ctl)
9967 list_del_init(&caching_ctl->list);
9968 up_write(&root->fs_info->commit_root_sem);
9969 if (caching_ctl) {
9970 /* Once for the caching bgs list and once for us. */
9971 put_caching_control(caching_ctl);
9972 put_caching_control(caching_ctl);
9976 spin_lock(&trans->transaction->dirty_bgs_lock);
9977 if (!list_empty(&block_group->dirty_list)) {
9978 WARN_ON(1);
9980 if (!list_empty(&block_group->io_list)) {
9981 WARN_ON(1);
9983 spin_unlock(&trans->transaction->dirty_bgs_lock);
9984 btrfs_remove_free_space_cache(block_group);
9986 spin_lock(&block_group->space_info->lock);
9987 list_del_init(&block_group->ro_list);
9989 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9990 WARN_ON(block_group->space_info->total_bytes
9991 < block_group->key.offset);
9992 WARN_ON(block_group->space_info->bytes_readonly
9993 < block_group->key.offset);
9994 WARN_ON(block_group->space_info->disk_total
9995 < block_group->key.offset * factor);
9997 block_group->space_info->total_bytes -= block_group->key.offset;
9998 block_group->space_info->bytes_readonly -= block_group->key.offset;
9999 block_group->space_info->disk_total -= block_group->key.offset * factor;
10001 spin_unlock(&block_group->space_info->lock);
10003 memcpy(&key, &block_group->key, sizeof(key));
10005 lock_chunks(root);
10006 if (!list_empty(&em->list)) {
10007 /* We're in the transaction->pending_chunks list. */
10008 free_extent_map(em);
10010 spin_lock(&block_group->lock);
10011 block_group->removed = 1;
10013 * At this point trimming can't start on this block group, because we
10014 * removed the block group from the tree fs_info->block_group_cache_tree
10015 * so no one can't find it anymore and even if someone already got this
10016 * block group before we removed it from the rbtree, they have already
10017 * incremented block_group->trimming - if they didn't, they won't find
10018 * any free space entries because we already removed them all when we
10019 * called btrfs_remove_free_space_cache().
10021 * And we must not remove the extent map from the fs_info->mapping_tree
10022 * to prevent the same logical address range and physical device space
10023 * ranges from being reused for a new block group. This is because our
10024 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10025 * completely transactionless, so while it is trimming a range the
10026 * currently running transaction might finish and a new one start,
10027 * allowing for new block groups to be created that can reuse the same
10028 * physical device locations unless we take this special care.
10030 * There may also be an implicit trim operation if the file system
10031 * is mounted with -odiscard. The same protections must remain
10032 * in place until the extents have been discarded completely when
10033 * the transaction commit has completed.
10035 remove_em = (atomic_read(&block_group->trimming) == 0);
10037 * Make sure a trimmer task always sees the em in the pinned_chunks list
10038 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10039 * before checking block_group->removed).
10041 if (!remove_em) {
10043 * Our em might be in trans->transaction->pending_chunks which
10044 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10045 * and so is the fs_info->pinned_chunks list.
10047 * So at this point we must be holding the chunk_mutex to avoid
10048 * any races with chunk allocation (more specifically at
10049 * volumes.c:contains_pending_extent()), to ensure it always
10050 * sees the em, either in the pending_chunks list or in the
10051 * pinned_chunks list.
10053 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10055 spin_unlock(&block_group->lock);
10057 if (remove_em) {
10058 struct extent_map_tree *em_tree;
10060 em_tree = &root->fs_info->mapping_tree.map_tree;
10061 write_lock(&em_tree->lock);
10063 * The em might be in the pending_chunks list, so make sure the
10064 * chunk mutex is locked, since remove_extent_mapping() will
10065 * delete us from that list.
10067 remove_extent_mapping(em_tree, em);
10068 write_unlock(&em_tree->lock);
10069 /* once for the tree */
10070 free_extent_map(em);
10073 unlock_chunks(root);
10075 btrfs_put_block_group(block_group);
10076 btrfs_put_block_group(block_group);
10078 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10079 if (ret > 0)
10080 ret = -EIO;
10081 if (ret < 0)
10082 goto out;
10084 ret = btrfs_del_item(trans, root, path);
10085 out:
10086 btrfs_free_path(path);
10087 return ret;
10091 * Process the unused_bgs list and remove any that don't have any allocated
10092 * space inside of them.
10094 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10096 struct btrfs_block_group_cache *block_group;
10097 struct btrfs_space_info *space_info;
10098 struct btrfs_root *root = fs_info->extent_root;
10099 struct btrfs_trans_handle *trans;
10100 int ret = 0;
10102 if (!fs_info->open)
10103 return;
10105 spin_lock(&fs_info->unused_bgs_lock);
10106 while (!list_empty(&fs_info->unused_bgs)) {
10107 u64 start, end;
10108 int trimming;
10110 block_group = list_first_entry(&fs_info->unused_bgs,
10111 struct btrfs_block_group_cache,
10112 bg_list);
10113 space_info = block_group->space_info;
10114 list_del_init(&block_group->bg_list);
10115 if (ret || btrfs_mixed_space_info(space_info)) {
10116 btrfs_put_block_group(block_group);
10117 continue;
10119 spin_unlock(&fs_info->unused_bgs_lock);
10121 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10123 /* Don't want to race with allocators so take the groups_sem */
10124 down_write(&space_info->groups_sem);
10125 spin_lock(&block_group->lock);
10126 if (block_group->reserved ||
10127 btrfs_block_group_used(&block_group->item) ||
10128 block_group->ro) {
10130 * We want to bail if we made new allocations or have
10131 * outstanding allocations in this block group. We do
10132 * the ro check in case balance is currently acting on
10133 * this block group.
10135 spin_unlock(&block_group->lock);
10136 up_write(&space_info->groups_sem);
10137 goto next;
10139 spin_unlock(&block_group->lock);
10141 /* We don't want to force the issue, only flip if it's ok. */
10142 ret = inc_block_group_ro(block_group, 0);
10143 up_write(&space_info->groups_sem);
10144 if (ret < 0) {
10145 ret = 0;
10146 goto next;
10150 * Want to do this before we do anything else so we can recover
10151 * properly if we fail to join the transaction.
10153 /* 1 for btrfs_orphan_reserve_metadata() */
10154 trans = btrfs_start_transaction(root, 1);
10155 if (IS_ERR(trans)) {
10156 btrfs_dec_block_group_ro(root, block_group);
10157 ret = PTR_ERR(trans);
10158 goto next;
10162 * We could have pending pinned extents for this block group,
10163 * just delete them, we don't care about them anymore.
10165 start = block_group->key.objectid;
10166 end = start + block_group->key.offset - 1;
10168 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10169 * btrfs_finish_extent_commit(). If we are at transaction N,
10170 * another task might be running finish_extent_commit() for the
10171 * previous transaction N - 1, and have seen a range belonging
10172 * to the block group in freed_extents[] before we were able to
10173 * clear the whole block group range from freed_extents[]. This
10174 * means that task can lookup for the block group after we
10175 * unpinned it from freed_extents[] and removed it, leading to
10176 * a BUG_ON() at btrfs_unpin_extent_range().
10178 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10179 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10180 EXTENT_DIRTY, GFP_NOFS);
10181 if (ret) {
10182 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10183 btrfs_dec_block_group_ro(root, block_group);
10184 goto end_trans;
10186 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10187 EXTENT_DIRTY, GFP_NOFS);
10188 if (ret) {
10189 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10190 btrfs_dec_block_group_ro(root, block_group);
10191 goto end_trans;
10193 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10195 /* Reset pinned so btrfs_put_block_group doesn't complain */
10196 spin_lock(&space_info->lock);
10197 spin_lock(&block_group->lock);
10199 space_info->bytes_pinned -= block_group->pinned;
10200 space_info->bytes_readonly += block_group->pinned;
10201 percpu_counter_add(&space_info->total_bytes_pinned,
10202 -block_group->pinned);
10203 block_group->pinned = 0;
10205 spin_unlock(&block_group->lock);
10206 spin_unlock(&space_info->lock);
10208 /* DISCARD can flip during remount */
10209 trimming = btrfs_test_opt(root, DISCARD);
10211 /* Implicit trim during transaction commit. */
10212 if (trimming)
10213 btrfs_get_block_group_trimming(block_group);
10216 * Btrfs_remove_chunk will abort the transaction if things go
10217 * horribly wrong.
10219 ret = btrfs_remove_chunk(trans, root,
10220 block_group->key.objectid);
10222 if (ret) {
10223 if (trimming)
10224 btrfs_put_block_group_trimming(block_group);
10225 goto end_trans;
10229 * If we're not mounted with -odiscard, we can just forget
10230 * about this block group. Otherwise we'll need to wait
10231 * until transaction commit to do the actual discard.
10233 if (trimming) {
10234 WARN_ON(!list_empty(&block_group->bg_list));
10235 spin_lock(&trans->transaction->deleted_bgs_lock);
10236 list_move(&block_group->bg_list,
10237 &trans->transaction->deleted_bgs);
10238 spin_unlock(&trans->transaction->deleted_bgs_lock);
10239 btrfs_get_block_group(block_group);
10241 end_trans:
10242 btrfs_end_transaction(trans, root);
10243 next:
10244 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10245 btrfs_put_block_group(block_group);
10246 spin_lock(&fs_info->unused_bgs_lock);
10248 spin_unlock(&fs_info->unused_bgs_lock);
10251 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10253 struct btrfs_space_info *space_info;
10254 struct btrfs_super_block *disk_super;
10255 u64 features;
10256 u64 flags;
10257 int mixed = 0;
10258 int ret;
10260 disk_super = fs_info->super_copy;
10261 if (!btrfs_super_root(disk_super))
10262 return 1;
10264 features = btrfs_super_incompat_flags(disk_super);
10265 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10266 mixed = 1;
10268 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10269 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10270 if (ret)
10271 goto out;
10273 if (mixed) {
10274 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10275 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10276 } else {
10277 flags = BTRFS_BLOCK_GROUP_METADATA;
10278 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10279 if (ret)
10280 goto out;
10282 flags = BTRFS_BLOCK_GROUP_DATA;
10283 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10285 out:
10286 return ret;
10289 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10291 return unpin_extent_range(root, start, end, false);
10295 * It used to be that old block groups would be left around forever.
10296 * Iterating over them would be enough to trim unused space. Since we
10297 * now automatically remove them, we also need to iterate over unallocated
10298 * space.
10300 * We don't want a transaction for this since the discard may take a
10301 * substantial amount of time. We don't require that a transaction be
10302 * running, but we do need to take a running transaction into account
10303 * to ensure that we're not discarding chunks that were released in
10304 * the current transaction.
10306 * Holding the chunks lock will prevent other threads from allocating
10307 * or releasing chunks, but it won't prevent a running transaction
10308 * from committing and releasing the memory that the pending chunks
10309 * list head uses. For that, we need to take a reference to the
10310 * transaction.
10312 static int btrfs_trim_free_extents(struct btrfs_device *device,
10313 u64 minlen, u64 *trimmed)
10315 u64 start = 0, len = 0;
10316 int ret;
10318 *trimmed = 0;
10320 /* Not writeable = nothing to do. */
10321 if (!device->writeable)
10322 return 0;
10324 /* No free space = nothing to do. */
10325 if (device->total_bytes <= device->bytes_used)
10326 return 0;
10328 ret = 0;
10330 while (1) {
10331 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10332 struct btrfs_transaction *trans;
10333 u64 bytes;
10335 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10336 if (ret)
10337 return ret;
10339 down_read(&fs_info->commit_root_sem);
10341 spin_lock(&fs_info->trans_lock);
10342 trans = fs_info->running_transaction;
10343 if (trans)
10344 atomic_inc(&trans->use_count);
10345 spin_unlock(&fs_info->trans_lock);
10347 ret = find_free_dev_extent_start(trans, device, minlen, start,
10348 &start, &len);
10349 if (trans)
10350 btrfs_put_transaction(trans);
10352 if (ret) {
10353 up_read(&fs_info->commit_root_sem);
10354 mutex_unlock(&fs_info->chunk_mutex);
10355 if (ret == -ENOSPC)
10356 ret = 0;
10357 break;
10360 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10361 up_read(&fs_info->commit_root_sem);
10362 mutex_unlock(&fs_info->chunk_mutex);
10364 if (ret)
10365 break;
10367 start += len;
10368 *trimmed += bytes;
10370 if (fatal_signal_pending(current)) {
10371 ret = -ERESTARTSYS;
10372 break;
10375 cond_resched();
10378 return ret;
10381 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10383 struct btrfs_fs_info *fs_info = root->fs_info;
10384 struct btrfs_block_group_cache *cache = NULL;
10385 struct btrfs_device *device;
10386 struct list_head *devices;
10387 u64 group_trimmed;
10388 u64 start;
10389 u64 end;
10390 u64 trimmed = 0;
10391 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10392 int ret = 0;
10395 * try to trim all FS space, our block group may start from non-zero.
10397 if (range->len == total_bytes)
10398 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10399 else
10400 cache = btrfs_lookup_block_group(fs_info, range->start);
10402 while (cache) {
10403 if (cache->key.objectid >= (range->start + range->len)) {
10404 btrfs_put_block_group(cache);
10405 break;
10408 start = max(range->start, cache->key.objectid);
10409 end = min(range->start + range->len,
10410 cache->key.objectid + cache->key.offset);
10412 if (end - start >= range->minlen) {
10413 if (!block_group_cache_done(cache)) {
10414 ret = cache_block_group(cache, 0);
10415 if (ret) {
10416 btrfs_put_block_group(cache);
10417 break;
10419 ret = wait_block_group_cache_done(cache);
10420 if (ret) {
10421 btrfs_put_block_group(cache);
10422 break;
10425 ret = btrfs_trim_block_group(cache,
10426 &group_trimmed,
10427 start,
10428 end,
10429 range->minlen);
10431 trimmed += group_trimmed;
10432 if (ret) {
10433 btrfs_put_block_group(cache);
10434 break;
10438 cache = next_block_group(fs_info->tree_root, cache);
10441 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10442 devices = &root->fs_info->fs_devices->alloc_list;
10443 list_for_each_entry(device, devices, dev_alloc_list) {
10444 ret = btrfs_trim_free_extents(device, range->minlen,
10445 &group_trimmed);
10446 if (ret)
10447 break;
10449 trimmed += group_trimmed;
10451 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10453 range->len = trimmed;
10454 return ret;
10458 * btrfs_{start,end}_write_no_snapshoting() are similar to
10459 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10460 * data into the page cache through nocow before the subvolume is snapshoted,
10461 * but flush the data into disk after the snapshot creation, or to prevent
10462 * operations while snapshoting is ongoing and that cause the snapshot to be
10463 * inconsistent (writes followed by expanding truncates for example).
10465 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10467 percpu_counter_dec(&root->subv_writers->counter);
10469 * Make sure counter is updated before we wake up waiters.
10471 smp_mb();
10472 if (waitqueue_active(&root->subv_writers->wait))
10473 wake_up(&root->subv_writers->wait);
10476 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10478 if (atomic_read(&root->will_be_snapshoted))
10479 return 0;
10481 percpu_counter_inc(&root->subv_writers->counter);
10483 * Make sure counter is updated before we check for snapshot creation.
10485 smp_mb();
10486 if (atomic_read(&root->will_be_snapshoted)) {
10487 btrfs_end_write_no_snapshoting(root);
10488 return 0;
10490 return 1;