1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly
= 100000;
40 static unsigned int m_hash_mask __read_mostly
;
41 static unsigned int m_hash_shift __read_mostly
;
42 static unsigned int mp_hash_mask __read_mostly
;
43 static unsigned int mp_hash_shift __read_mostly
;
45 static __initdata
unsigned long mhash_entries
;
46 static int __init
set_mhash_entries(char *str
)
50 mhash_entries
= simple_strtoul(str
, &str
, 0);
53 __setup("mhash_entries=", set_mhash_entries
);
55 static __initdata
unsigned long mphash_entries
;
56 static int __init
set_mphash_entries(char *str
)
60 mphash_entries
= simple_strtoul(str
, &str
, 0);
63 __setup("mphash_entries=", set_mphash_entries
);
66 static DEFINE_IDA(mnt_id_ida
);
67 static DEFINE_IDA(mnt_group_ida
);
69 static struct hlist_head
*mount_hashtable __read_mostly
;
70 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
71 static struct kmem_cache
*mnt_cache __read_mostly
;
72 static DECLARE_RWSEM(namespace_sem
);
73 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints
); /* protected by namespace_sem */
77 struct kobject
*fs_kobj
;
78 EXPORT_SYMBOL_GPL(fs_kobj
);
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
88 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
90 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
92 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
93 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
94 tmp
= tmp
+ (tmp
>> m_hash_shift
);
95 return &mount_hashtable
[tmp
& m_hash_mask
];
98 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
100 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
101 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
102 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
105 static int mnt_alloc_id(struct mount
*mnt
)
107 int res
= ida_alloc(&mnt_id_ida
, GFP_KERNEL
);
115 static void mnt_free_id(struct mount
*mnt
)
117 ida_free(&mnt_id_ida
, mnt
->mnt_id
);
121 * Allocate a new peer group ID
123 static int mnt_alloc_group_id(struct mount
*mnt
)
125 int res
= ida_alloc_min(&mnt_group_ida
, 1, GFP_KERNEL
);
129 mnt
->mnt_group_id
= res
;
134 * Release a peer group ID
136 void mnt_release_group_id(struct mount
*mnt
)
138 ida_free(&mnt_group_ida
, mnt
->mnt_group_id
);
139 mnt
->mnt_group_id
= 0;
143 * vfsmount lock must be held for read
145 static inline void mnt_add_count(struct mount
*mnt
, int n
)
148 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
157 * vfsmount lock must be held for write
159 unsigned int mnt_get_count(struct mount
*mnt
)
162 unsigned int count
= 0;
165 for_each_possible_cpu(cpu
) {
166 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
171 return mnt
->mnt_count
;
175 static struct mount
*alloc_vfsmnt(const char *name
)
177 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
181 err
= mnt_alloc_id(mnt
);
186 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
187 if (!mnt
->mnt_devname
)
192 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
194 goto out_free_devname
;
196 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
199 mnt
->mnt_writers
= 0;
202 INIT_HLIST_NODE(&mnt
->mnt_hash
);
203 INIT_LIST_HEAD(&mnt
->mnt_child
);
204 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
205 INIT_LIST_HEAD(&mnt
->mnt_list
);
206 INIT_LIST_HEAD(&mnt
->mnt_expire
);
207 INIT_LIST_HEAD(&mnt
->mnt_share
);
208 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
209 INIT_LIST_HEAD(&mnt
->mnt_slave
);
210 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
211 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
212 INIT_HLIST_HEAD(&mnt
->mnt_stuck_children
);
218 kfree_const(mnt
->mnt_devname
);
223 kmem_cache_free(mnt_cache
, mnt
);
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
246 bool __mnt_is_readonly(struct vfsmount
*mnt
)
248 return (mnt
->mnt_flags
& MNT_READONLY
) || sb_rdonly(mnt
->mnt_sb
);
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
252 static inline void mnt_inc_writers(struct mount
*mnt
)
255 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
261 static inline void mnt_dec_writers(struct mount
*mnt
)
264 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
270 static unsigned int mnt_get_writers(struct mount
*mnt
)
273 unsigned int count
= 0;
276 for_each_possible_cpu(cpu
) {
277 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
282 return mnt
->mnt_writers
;
286 static int mnt_is_readonly(struct vfsmount
*mnt
)
288 if (mnt
->mnt_sb
->s_readonly_remount
)
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
292 return __mnt_is_readonly(mnt
);
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
311 int __mnt_want_write(struct vfsmount
*m
)
313 struct mount
*mnt
= real_mount(m
);
317 mnt_inc_writers(mnt
);
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
324 while (READ_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
332 if (mnt_is_readonly(m
)) {
333 mnt_dec_writers(mnt
);
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
350 int mnt_want_write(struct vfsmount
*m
)
354 sb_start_write(m
->mnt_sb
);
355 ret
= __mnt_want_write(m
);
357 sb_end_write(m
->mnt_sb
);
360 EXPORT_SYMBOL_GPL(mnt_want_write
);
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
374 int mnt_clone_write(struct vfsmount
*mnt
)
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt
))
380 mnt_inc_writers(real_mount(mnt
));
384 EXPORT_SYMBOL_GPL(mnt_clone_write
);
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
393 int __mnt_want_write_file(struct file
*file
)
395 if (!(file
->f_mode
& FMODE_WRITER
))
396 return __mnt_want_write(file
->f_path
.mnt
);
398 return mnt_clone_write(file
->f_path
.mnt
);
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
408 int mnt_want_write_file(struct file
*file
)
412 sb_start_write(file_inode(file
)->i_sb
);
413 ret
= __mnt_want_write_file(file
);
415 sb_end_write(file_inode(file
)->i_sb
);
418 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
428 void __mnt_drop_write(struct vfsmount
*mnt
)
431 mnt_dec_writers(real_mount(mnt
));
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
443 void mnt_drop_write(struct vfsmount
*mnt
)
445 __mnt_drop_write(mnt
);
446 sb_end_write(mnt
->mnt_sb
);
448 EXPORT_SYMBOL_GPL(mnt_drop_write
);
450 void __mnt_drop_write_file(struct file
*file
)
452 __mnt_drop_write(file
->f_path
.mnt
);
455 void mnt_drop_write_file(struct file
*file
)
457 __mnt_drop_write_file(file
);
458 sb_end_write(file_inode(file
)->i_sb
);
460 EXPORT_SYMBOL(mnt_drop_write_file
);
462 static int mnt_make_readonly(struct mount
*mnt
)
467 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
490 if (mnt_get_writers(mnt
) > 0)
493 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
499 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
504 static int __mnt_unmake_readonly(struct mount
*mnt
)
507 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
512 int sb_prepare_remount_readonly(struct super_block
*sb
)
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb
->s_remove_count
))
522 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
523 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
524 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
526 if (mnt_get_writers(mnt
) > 0) {
532 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
536 sb
->s_readonly_remount
= 1;
539 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
540 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
541 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
548 static void free_vfsmnt(struct mount
*mnt
)
550 kfree_const(mnt
->mnt_devname
);
552 free_percpu(mnt
->mnt_pcp
);
554 kmem_cache_free(mnt_cache
, mnt
);
557 static void delayed_free_vfsmnt(struct rcu_head
*head
)
559 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
566 if (read_seqretry(&mount_lock
, seq
))
570 mnt
= real_mount(bastard
);
571 mnt_add_count(mnt
, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock
, seq
)))
575 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
576 mnt_add_count(mnt
, -1);
580 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
581 mnt_add_count(mnt
, -1);
586 /* caller will mntput() */
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
593 int res
= __legitimize_mnt(bastard
, seq
);
596 if (unlikely(res
< 0)) {
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
608 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
610 struct hlist_head
*head
= m_hash(mnt
, dentry
);
613 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
614 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
620 * lookup_mnt - Return the first child mount mounted at path
622 * "First" means first mounted chronologically. If you create the
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
633 * lookup_mnt takes a reference to the found vfsmount.
635 struct vfsmount
*lookup_mnt(const struct path
*path
)
637 struct mount
*child_mnt
;
643 seq
= read_seqbegin(&mount_lock
);
644 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
645 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
646 } while (!legitimize_mnt(m
, seq
));
651 static inline void lock_ns_list(struct mnt_namespace
*ns
)
653 spin_lock(&ns
->ns_lock
);
656 static inline void unlock_ns_list(struct mnt_namespace
*ns
)
658 spin_unlock(&ns
->ns_lock
);
661 static inline bool mnt_is_cursor(struct mount
*mnt
)
663 return mnt
->mnt
.mnt_flags
& MNT_CURSOR
;
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
681 bool __is_local_mountpoint(struct dentry
*dentry
)
683 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
685 bool is_covered
= false;
687 down_read(&namespace_sem
);
689 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
690 if (mnt_is_cursor(mnt
))
692 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
697 up_read(&namespace_sem
);
702 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
704 struct hlist_head
*chain
= mp_hash(dentry
);
705 struct mountpoint
*mp
;
707 hlist_for_each_entry(mp
, chain
, m_hash
) {
708 if (mp
->m_dentry
== dentry
) {
716 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
718 struct mountpoint
*mp
, *new = NULL
;
721 if (d_mountpoint(dentry
)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry
))
724 return ERR_PTR(-ENOENT
);
726 read_seqlock_excl(&mount_lock
);
727 mp
= lookup_mountpoint(dentry
);
728 read_sequnlock_excl(&mount_lock
);
734 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
736 return ERR_PTR(-ENOMEM
);
739 /* Exactly one processes may set d_mounted */
740 ret
= d_set_mounted(dentry
);
742 /* Someone else set d_mounted? */
746 /* The dentry is not available as a mountpoint? */
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock
);
753 new->m_dentry
= dget(dentry
);
755 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
756 INIT_HLIST_HEAD(&new->m_list
);
757 read_sequnlock_excl(&mount_lock
);
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
770 static void __put_mountpoint(struct mountpoint
*mp
, struct list_head
*list
)
772 if (!--mp
->m_count
) {
773 struct dentry
*dentry
= mp
->m_dentry
;
774 BUG_ON(!hlist_empty(&mp
->m_list
));
775 spin_lock(&dentry
->d_lock
);
776 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
777 spin_unlock(&dentry
->d_lock
);
778 dput_to_list(dentry
, list
);
779 hlist_del(&mp
->m_hash
);
784 /* called with namespace_lock and vfsmount lock */
785 static void put_mountpoint(struct mountpoint
*mp
)
787 __put_mountpoint(mp
, &ex_mountpoints
);
790 static inline int check_mnt(struct mount
*mnt
)
792 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
796 * vfsmount lock must be held for write
798 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
802 wake_up_interruptible(&ns
->poll
);
807 * vfsmount lock must be held for write
809 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
811 if (ns
&& ns
->event
!= event
) {
813 wake_up_interruptible(&ns
->poll
);
818 * vfsmount lock must be held for write
820 static struct mountpoint
*unhash_mnt(struct mount
*mnt
)
822 struct mountpoint
*mp
;
823 mnt
->mnt_parent
= mnt
;
824 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
825 list_del_init(&mnt
->mnt_child
);
826 hlist_del_init_rcu(&mnt
->mnt_hash
);
827 hlist_del_init(&mnt
->mnt_mp_list
);
834 * vfsmount lock must be held for write
836 static void umount_mnt(struct mount
*mnt
)
838 put_mountpoint(unhash_mnt(mnt
));
842 * vfsmount lock must be held for write
844 void mnt_set_mountpoint(struct mount
*mnt
,
845 struct mountpoint
*mp
,
846 struct mount
*child_mnt
)
849 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
850 child_mnt
->mnt_mountpoint
= mp
->m_dentry
;
851 child_mnt
->mnt_parent
= mnt
;
852 child_mnt
->mnt_mp
= mp
;
853 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
856 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
858 hlist_add_head_rcu(&mnt
->mnt_hash
,
859 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
860 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
864 * vfsmount lock must be held for write
866 static void attach_mnt(struct mount
*mnt
,
867 struct mount
*parent
,
868 struct mountpoint
*mp
)
870 mnt_set_mountpoint(parent
, mp
, mnt
);
871 __attach_mnt(mnt
, parent
);
874 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
876 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
877 struct mount
*old_parent
= mnt
->mnt_parent
;
879 list_del_init(&mnt
->mnt_child
);
880 hlist_del_init(&mnt
->mnt_mp_list
);
881 hlist_del_init_rcu(&mnt
->mnt_hash
);
883 attach_mnt(mnt
, parent
, mp
);
885 put_mountpoint(old_mp
);
886 mnt_add_count(old_parent
, -1);
890 * vfsmount lock must be held for write
892 static void commit_tree(struct mount
*mnt
)
894 struct mount
*parent
= mnt
->mnt_parent
;
897 struct mnt_namespace
*n
= parent
->mnt_ns
;
899 BUG_ON(parent
== mnt
);
901 list_add_tail(&head
, &mnt
->mnt_list
);
902 list_for_each_entry(m
, &head
, mnt_list
)
905 list_splice(&head
, n
->list
.prev
);
907 n
->mounts
+= n
->pending_mounts
;
908 n
->pending_mounts
= 0;
910 __attach_mnt(mnt
, parent
);
911 touch_mnt_namespace(n
);
914 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
916 struct list_head
*next
= p
->mnt_mounts
.next
;
917 if (next
== &p
->mnt_mounts
) {
921 next
= p
->mnt_child
.next
;
922 if (next
!= &p
->mnt_parent
->mnt_mounts
)
927 return list_entry(next
, struct mount
, mnt_child
);
930 static struct mount
*skip_mnt_tree(struct mount
*p
)
932 struct list_head
*prev
= p
->mnt_mounts
.prev
;
933 while (prev
!= &p
->mnt_mounts
) {
934 p
= list_entry(prev
, struct mount
, mnt_child
);
935 prev
= p
->mnt_mounts
.prev
;
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
947 * Note that this does not attach the mount to anything.
949 struct vfsmount
*vfs_create_mount(struct fs_context
*fc
)
954 return ERR_PTR(-EINVAL
);
956 mnt
= alloc_vfsmnt(fc
->source
?: "none");
958 return ERR_PTR(-ENOMEM
);
960 if (fc
->sb_flags
& SB_KERNMOUNT
)
961 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
963 atomic_inc(&fc
->root
->d_sb
->s_active
);
964 mnt
->mnt
.mnt_sb
= fc
->root
->d_sb
;
965 mnt
->mnt
.mnt_root
= dget(fc
->root
);
966 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
967 mnt
->mnt_parent
= mnt
;
970 list_add_tail(&mnt
->mnt_instance
, &mnt
->mnt
.mnt_sb
->s_mounts
);
974 EXPORT_SYMBOL(vfs_create_mount
);
976 struct vfsmount
*fc_mount(struct fs_context
*fc
)
978 int err
= vfs_get_tree(fc
);
980 up_write(&fc
->root
->d_sb
->s_umount
);
981 return vfs_create_mount(fc
);
985 EXPORT_SYMBOL(fc_mount
);
987 struct vfsmount
*vfs_kern_mount(struct file_system_type
*type
,
988 int flags
, const char *name
,
991 struct fs_context
*fc
;
992 struct vfsmount
*mnt
;
996 return ERR_PTR(-EINVAL
);
998 fc
= fs_context_for_mount(type
, flags
);
1000 return ERR_CAST(fc
);
1003 ret
= vfs_parse_fs_string(fc
, "source",
1004 name
, strlen(name
));
1006 ret
= parse_monolithic_mount_data(fc
, data
);
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1018 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1019 const char *name
, void *data
)
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1025 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1026 return ERR_PTR(-EPERM
);
1028 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
1030 EXPORT_SYMBOL_GPL(vfs_submount
);
1032 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1035 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1039 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1041 return ERR_PTR(-ENOMEM
);
1043 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1044 mnt
->mnt_group_id
= 0; /* not a peer of original */
1046 mnt
->mnt_group_id
= old
->mnt_group_id
;
1048 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1049 err
= mnt_alloc_group_id(mnt
);
1054 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1055 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1057 atomic_inc(&sb
->s_active
);
1058 mnt
->mnt
.mnt_sb
= sb
;
1059 mnt
->mnt
.mnt_root
= dget(root
);
1060 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1061 mnt
->mnt_parent
= mnt
;
1063 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1064 unlock_mount_hash();
1066 if ((flag
& CL_SLAVE
) ||
1067 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1068 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1069 mnt
->mnt_master
= old
;
1070 CLEAR_MNT_SHARED(mnt
);
1071 } else if (!(flag
& CL_PRIVATE
)) {
1072 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1073 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1074 if (IS_MNT_SLAVE(old
))
1075 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1076 mnt
->mnt_master
= old
->mnt_master
;
1078 CLEAR_MNT_SHARED(mnt
);
1080 if (flag
& CL_MAKE_SHARED
)
1081 set_mnt_shared(mnt
);
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag
& CL_EXPIRE
) {
1086 if (!list_empty(&old
->mnt_expire
))
1087 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1095 return ERR_PTR(err
);
1098 static void cleanup_mnt(struct mount
*mnt
)
1100 struct hlist_node
*p
;
1103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1109 WARN_ON(mnt_get_writers(mnt
));
1110 if (unlikely(mnt
->mnt_pins
.first
))
1112 hlist_for_each_entry_safe(m
, p
, &mnt
->mnt_stuck_children
, mnt_umount
) {
1113 hlist_del(&m
->mnt_umount
);
1116 fsnotify_vfsmount_delete(&mnt
->mnt
);
1117 dput(mnt
->mnt
.mnt_root
);
1118 deactivate_super(mnt
->mnt
.mnt_sb
);
1120 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1123 static void __cleanup_mnt(struct rcu_head
*head
)
1125 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1128 static LLIST_HEAD(delayed_mntput_list
);
1129 static void delayed_mntput(struct work_struct
*unused
)
1131 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1132 struct mount
*m
, *t
;
1134 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1139 static void mntput_no_expire(struct mount
*mnt
)
1144 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1146 * Since we don't do lock_mount_hash() here,
1147 * ->mnt_ns can change under us. However, if it's
1148 * non-NULL, then there's a reference that won't
1149 * be dropped until after an RCU delay done after
1150 * turning ->mnt_ns NULL. So if we observe it
1151 * non-NULL under rcu_read_lock(), the reference
1152 * we are dropping is not the final one.
1154 mnt_add_count(mnt
, -1);
1160 * make sure that if __legitimize_mnt() has not seen us grab
1161 * mount_lock, we'll see their refcount increment here.
1164 mnt_add_count(mnt
, -1);
1165 if (mnt_get_count(mnt
)) {
1167 unlock_mount_hash();
1170 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1172 unlock_mount_hash();
1175 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1178 list_del(&mnt
->mnt_instance
);
1180 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1181 struct mount
*p
, *tmp
;
1182 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1183 __put_mountpoint(unhash_mnt(p
), &list
);
1184 hlist_add_head(&p
->mnt_umount
, &mnt
->mnt_stuck_children
);
1187 unlock_mount_hash();
1188 shrink_dentry_list(&list
);
1190 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1191 struct task_struct
*task
= current
;
1192 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1193 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1194 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1197 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1198 schedule_delayed_work(&delayed_mntput_work
, 1);
1204 void mntput(struct vfsmount
*mnt
)
1207 struct mount
*m
= real_mount(mnt
);
1208 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1209 if (unlikely(m
->mnt_expiry_mark
))
1210 m
->mnt_expiry_mark
= 0;
1211 mntput_no_expire(m
);
1214 EXPORT_SYMBOL(mntput
);
1216 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1219 mnt_add_count(real_mount(mnt
), 1);
1222 EXPORT_SYMBOL(mntget
);
1224 /* path_is_mountpoint() - Check if path is a mount in the current
1227 * d_mountpoint() can only be used reliably to establish if a dentry is
1228 * not mounted in any namespace and that common case is handled inline.
1229 * d_mountpoint() isn't aware of the possibility there may be multiple
1230 * mounts using a given dentry in a different namespace. This function
1231 * checks if the passed in path is a mountpoint rather than the dentry
1234 bool path_is_mountpoint(const struct path
*path
)
1239 if (!d_mountpoint(path
->dentry
))
1244 seq
= read_seqbegin(&mount_lock
);
1245 res
= __path_is_mountpoint(path
);
1246 } while (read_seqretry(&mount_lock
, seq
));
1251 EXPORT_SYMBOL(path_is_mountpoint
);
1253 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1256 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1259 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1263 #ifdef CONFIG_PROC_FS
1264 static struct mount
*mnt_list_next(struct mnt_namespace
*ns
,
1265 struct list_head
*p
)
1267 struct mount
*mnt
, *ret
= NULL
;
1270 list_for_each_continue(p
, &ns
->list
) {
1271 mnt
= list_entry(p
, typeof(*mnt
), mnt_list
);
1272 if (!mnt_is_cursor(mnt
)) {
1282 /* iterator; we want it to have access to namespace_sem, thus here... */
1283 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1285 struct proc_mounts
*p
= m
->private;
1286 struct list_head
*prev
;
1288 down_read(&namespace_sem
);
1290 prev
= &p
->ns
->list
;
1292 prev
= &p
->cursor
.mnt_list
;
1294 /* Read after we'd reached the end? */
1295 if (list_empty(prev
))
1299 return mnt_list_next(p
->ns
, prev
);
1302 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1304 struct proc_mounts
*p
= m
->private;
1305 struct mount
*mnt
= v
;
1308 return mnt_list_next(p
->ns
, &mnt
->mnt_list
);
1311 static void m_stop(struct seq_file
*m
, void *v
)
1313 struct proc_mounts
*p
= m
->private;
1314 struct mount
*mnt
= v
;
1316 lock_ns_list(p
->ns
);
1318 list_move_tail(&p
->cursor
.mnt_list
, &mnt
->mnt_list
);
1320 list_del_init(&p
->cursor
.mnt_list
);
1321 unlock_ns_list(p
->ns
);
1322 up_read(&namespace_sem
);
1325 static int m_show(struct seq_file
*m
, void *v
)
1327 struct proc_mounts
*p
= m
->private;
1328 struct mount
*r
= v
;
1329 return p
->show(m
, &r
->mnt
);
1332 const struct seq_operations mounts_op
= {
1339 void mnt_cursor_del(struct mnt_namespace
*ns
, struct mount
*cursor
)
1341 down_read(&namespace_sem
);
1343 list_del(&cursor
->mnt_list
);
1345 up_read(&namespace_sem
);
1347 #endif /* CONFIG_PROC_FS */
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1357 int may_umount_tree(struct vfsmount
*m
)
1359 struct mount
*mnt
= real_mount(m
);
1360 int actual_refs
= 0;
1361 int minimum_refs
= 0;
1365 /* write lock needed for mnt_get_count */
1367 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1368 actual_refs
+= mnt_get_count(p
);
1371 unlock_mount_hash();
1373 if (actual_refs
> minimum_refs
)
1379 EXPORT_SYMBOL(may_umount_tree
);
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1394 int may_umount(struct vfsmount
*mnt
)
1397 down_read(&namespace_sem
);
1399 if (propagate_mount_busy(real_mount(mnt
), 2))
1401 unlock_mount_hash();
1402 up_read(&namespace_sem
);
1406 EXPORT_SYMBOL(may_umount
);
1408 static void namespace_unlock(void)
1410 struct hlist_head head
;
1411 struct hlist_node
*p
;
1415 hlist_move_list(&unmounted
, &head
);
1416 list_splice_init(&ex_mountpoints
, &list
);
1418 up_write(&namespace_sem
);
1420 shrink_dentry_list(&list
);
1422 if (likely(hlist_empty(&head
)))
1425 synchronize_rcu_expedited();
1427 hlist_for_each_entry_safe(m
, p
, &head
, mnt_umount
) {
1428 hlist_del(&m
->mnt_umount
);
1433 static inline void namespace_lock(void)
1435 down_write(&namespace_sem
);
1438 enum umount_tree_flags
{
1440 UMOUNT_PROPAGATE
= 2,
1441 UMOUNT_CONNECTED
= 4,
1444 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1446 /* Leaving mounts connected is only valid for lazy umounts */
1447 if (how
& UMOUNT_SYNC
)
1450 /* A mount without a parent has nothing to be connected to */
1451 if (!mnt_has_parent(mnt
))
1454 /* Because the reference counting rules change when mounts are
1455 * unmounted and connected, umounted mounts may not be
1456 * connected to mounted mounts.
1458 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1461 /* Has it been requested that the mount remain connected? */
1462 if (how
& UMOUNT_CONNECTED
)
1465 /* Is the mount locked such that it needs to remain connected? */
1466 if (IS_MNT_LOCKED(mnt
))
1469 /* By default disconnect the mount */
1474 * mount_lock must be held
1475 * namespace_sem must be held for write
1477 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1479 LIST_HEAD(tmp_list
);
1482 if (how
& UMOUNT_PROPAGATE
)
1483 propagate_mount_unlock(mnt
);
1485 /* Gather the mounts to umount */
1486 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1487 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1488 list_move(&p
->mnt_list
, &tmp_list
);
1491 /* Hide the mounts from mnt_mounts */
1492 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1493 list_del_init(&p
->mnt_child
);
1496 /* Add propogated mounts to the tmp_list */
1497 if (how
& UMOUNT_PROPAGATE
)
1498 propagate_umount(&tmp_list
);
1500 while (!list_empty(&tmp_list
)) {
1501 struct mnt_namespace
*ns
;
1503 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1504 list_del_init(&p
->mnt_expire
);
1505 list_del_init(&p
->mnt_list
);
1509 __touch_mnt_namespace(ns
);
1512 if (how
& UMOUNT_SYNC
)
1513 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1515 disconnect
= disconnect_mount(p
, how
);
1516 if (mnt_has_parent(p
)) {
1517 mnt_add_count(p
->mnt_parent
, -1);
1519 /* Don't forget about p */
1520 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1525 change_mnt_propagation(p
, MS_PRIVATE
);
1527 hlist_add_head(&p
->mnt_umount
, &unmounted
);
1531 static void shrink_submounts(struct mount
*mnt
);
1533 static int do_umount_root(struct super_block
*sb
)
1537 down_write(&sb
->s_umount
);
1538 if (!sb_rdonly(sb
)) {
1539 struct fs_context
*fc
;
1541 fc
= fs_context_for_reconfigure(sb
->s_root
, SB_RDONLY
,
1546 ret
= parse_monolithic_mount_data(fc
, NULL
);
1548 ret
= reconfigure_super(fc
);
1552 up_write(&sb
->s_umount
);
1556 static int do_umount(struct mount
*mnt
, int flags
)
1558 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1561 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1566 * Allow userspace to request a mountpoint be expired rather than
1567 * unmounting unconditionally. Unmount only happens if:
1568 * (1) the mark is already set (the mark is cleared by mntput())
1569 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1571 if (flags
& MNT_EXPIRE
) {
1572 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1573 flags
& (MNT_FORCE
| MNT_DETACH
))
1577 * probably don't strictly need the lock here if we examined
1578 * all race cases, but it's a slowpath.
1581 if (mnt_get_count(mnt
) != 2) {
1582 unlock_mount_hash();
1585 unlock_mount_hash();
1587 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1592 * If we may have to abort operations to get out of this
1593 * mount, and they will themselves hold resources we must
1594 * allow the fs to do things. In the Unix tradition of
1595 * 'Gee thats tricky lets do it in userspace' the umount_begin
1596 * might fail to complete on the first run through as other tasks
1597 * must return, and the like. Thats for the mount program to worry
1598 * about for the moment.
1601 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1602 sb
->s_op
->umount_begin(sb
);
1606 * No sense to grab the lock for this test, but test itself looks
1607 * somewhat bogus. Suggestions for better replacement?
1608 * Ho-hum... In principle, we might treat that as umount + switch
1609 * to rootfs. GC would eventually take care of the old vfsmount.
1610 * Actually it makes sense, especially if rootfs would contain a
1611 * /reboot - static binary that would close all descriptors and
1612 * call reboot(9). Then init(8) could umount root and exec /reboot.
1614 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1616 * Special case for "unmounting" root ...
1617 * we just try to remount it readonly.
1619 if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
1621 return do_umount_root(sb
);
1627 /* Recheck MNT_LOCKED with the locks held */
1629 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1633 if (flags
& MNT_DETACH
) {
1634 if (!list_empty(&mnt
->mnt_list
))
1635 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1638 shrink_submounts(mnt
);
1640 if (!propagate_mount_busy(mnt
, 2)) {
1641 if (!list_empty(&mnt
->mnt_list
))
1642 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1647 unlock_mount_hash();
1653 * __detach_mounts - lazily unmount all mounts on the specified dentry
1655 * During unlink, rmdir, and d_drop it is possible to loose the path
1656 * to an existing mountpoint, and wind up leaking the mount.
1657 * detach_mounts allows lazily unmounting those mounts instead of
1660 * The caller may hold dentry->d_inode->i_mutex.
1662 void __detach_mounts(struct dentry
*dentry
)
1664 struct mountpoint
*mp
;
1669 mp
= lookup_mountpoint(dentry
);
1674 while (!hlist_empty(&mp
->m_list
)) {
1675 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1676 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1678 hlist_add_head(&mnt
->mnt_umount
, &unmounted
);
1680 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1684 unlock_mount_hash();
1689 * Is the caller allowed to modify his namespace?
1691 static inline bool may_mount(void)
1693 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1696 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1697 static inline bool may_mandlock(void)
1699 return capable(CAP_SYS_ADMIN
);
1702 static inline bool may_mandlock(void)
1704 pr_warn("VFS: \"mand\" mount option not supported");
1709 static int can_umount(const struct path
*path
, int flags
)
1711 struct mount
*mnt
= real_mount(path
->mnt
);
1713 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1717 if (path
->dentry
!= path
->mnt
->mnt_root
)
1719 if (!check_mnt(mnt
))
1721 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
) /* Check optimistically */
1723 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1728 int path_umount(struct path
*path
, int flags
)
1730 struct mount
*mnt
= real_mount(path
->mnt
);
1733 ret
= can_umount(path
, flags
);
1735 ret
= do_umount(mnt
, flags
);
1737 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1739 mntput_no_expire(mnt
);
1743 static int ksys_umount(char __user
*name
, int flags
)
1745 int lookup_flags
= LOOKUP_MOUNTPOINT
;
1749 if (!(flags
& UMOUNT_NOFOLLOW
))
1750 lookup_flags
|= LOOKUP_FOLLOW
;
1751 ret
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1754 return path_umount(&path
, flags
);
1757 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1759 return ksys_umount(name
, flags
);
1762 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1765 * The 2.0 compatible umount. No flags.
1767 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1769 return ksys_umount(name
, 0);
1774 static bool is_mnt_ns_file(struct dentry
*dentry
)
1776 /* Is this a proxy for a mount namespace? */
1777 return dentry
->d_op
== &ns_dentry_operations
&&
1778 dentry
->d_fsdata
== &mntns_operations
;
1781 static struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1783 return container_of(ns
, struct mnt_namespace
, ns
);
1786 struct ns_common
*from_mnt_ns(struct mnt_namespace
*mnt
)
1791 static bool mnt_ns_loop(struct dentry
*dentry
)
1793 /* Could bind mounting the mount namespace inode cause a
1794 * mount namespace loop?
1796 struct mnt_namespace
*mnt_ns
;
1797 if (!is_mnt_ns_file(dentry
))
1800 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1801 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1804 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1807 struct mount
*res
, *p
, *q
, *r
, *parent
;
1809 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1810 return ERR_PTR(-EINVAL
);
1812 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1813 return ERR_PTR(-EINVAL
);
1815 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1819 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1822 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1824 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1827 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1828 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1829 IS_MNT_UNBINDABLE(s
)) {
1830 if (s
->mnt
.mnt_flags
& MNT_LOCKED
) {
1831 /* Both unbindable and locked. */
1832 q
= ERR_PTR(-EPERM
);
1835 s
= skip_mnt_tree(s
);
1839 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1840 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1841 s
= skip_mnt_tree(s
);
1844 while (p
!= s
->mnt_parent
) {
1850 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1854 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1855 attach_mnt(q
, parent
, p
->mnt_mp
);
1856 unlock_mount_hash();
1863 umount_tree(res
, UMOUNT_SYNC
);
1864 unlock_mount_hash();
1869 /* Caller should check returned pointer for errors */
1871 struct vfsmount
*collect_mounts(const struct path
*path
)
1875 if (!check_mnt(real_mount(path
->mnt
)))
1876 tree
= ERR_PTR(-EINVAL
);
1878 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1879 CL_COPY_ALL
| CL_PRIVATE
);
1882 return ERR_CAST(tree
);
1886 static void free_mnt_ns(struct mnt_namespace
*);
1887 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*, bool);
1889 void dissolve_on_fput(struct vfsmount
*mnt
)
1891 struct mnt_namespace
*ns
;
1894 ns
= real_mount(mnt
)->mnt_ns
;
1897 umount_tree(real_mount(mnt
), UMOUNT_CONNECTED
);
1901 unlock_mount_hash();
1907 void drop_collected_mounts(struct vfsmount
*mnt
)
1911 umount_tree(real_mount(mnt
), 0);
1912 unlock_mount_hash();
1917 * clone_private_mount - create a private clone of a path
1919 * This creates a new vfsmount, which will be the clone of @path. The new will
1920 * not be attached anywhere in the namespace and will be private (i.e. changes
1921 * to the originating mount won't be propagated into this).
1923 * Release with mntput().
1925 struct vfsmount
*clone_private_mount(const struct path
*path
)
1927 struct mount
*old_mnt
= real_mount(path
->mnt
);
1928 struct mount
*new_mnt
;
1930 if (IS_MNT_UNBINDABLE(old_mnt
))
1931 return ERR_PTR(-EINVAL
);
1933 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1934 if (IS_ERR(new_mnt
))
1935 return ERR_CAST(new_mnt
);
1937 /* Longterm mount to be removed by kern_unmount*() */
1938 new_mnt
->mnt_ns
= MNT_NS_INTERNAL
;
1940 return &new_mnt
->mnt
;
1942 EXPORT_SYMBOL_GPL(clone_private_mount
);
1944 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1945 struct vfsmount
*root
)
1948 int res
= f(root
, arg
);
1951 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1952 res
= f(&mnt
->mnt
, arg
);
1959 static void lock_mnt_tree(struct mount
*mnt
)
1963 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1964 int flags
= p
->mnt
.mnt_flags
;
1965 /* Don't allow unprivileged users to change mount flags */
1966 flags
|= MNT_LOCK_ATIME
;
1968 if (flags
& MNT_READONLY
)
1969 flags
|= MNT_LOCK_READONLY
;
1971 if (flags
& MNT_NODEV
)
1972 flags
|= MNT_LOCK_NODEV
;
1974 if (flags
& MNT_NOSUID
)
1975 flags
|= MNT_LOCK_NOSUID
;
1977 if (flags
& MNT_NOEXEC
)
1978 flags
|= MNT_LOCK_NOEXEC
;
1979 /* Don't allow unprivileged users to reveal what is under a mount */
1980 if (list_empty(&p
->mnt_expire
))
1981 flags
|= MNT_LOCKED
;
1982 p
->mnt
.mnt_flags
= flags
;
1986 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1990 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1991 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1992 mnt_release_group_id(p
);
1996 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
2000 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
2001 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
2002 int err
= mnt_alloc_group_id(p
);
2004 cleanup_group_ids(mnt
, p
);
2013 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
2015 unsigned int max
= READ_ONCE(sysctl_mount_max
);
2016 unsigned int mounts
= 0, old
, pending
, sum
;
2019 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
2023 pending
= ns
->pending_mounts
;
2024 sum
= old
+ pending
;
2028 (mounts
> (max
- sum
)))
2031 ns
->pending_mounts
= pending
+ mounts
;
2036 * @source_mnt : mount tree to be attached
2037 * @nd : place the mount tree @source_mnt is attached
2038 * @parent_nd : if non-null, detach the source_mnt from its parent and
2039 * store the parent mount and mountpoint dentry.
2040 * (done when source_mnt is moved)
2042 * NOTE: in the table below explains the semantics when a source mount
2043 * of a given type is attached to a destination mount of a given type.
2044 * ---------------------------------------------------------------------------
2045 * | BIND MOUNT OPERATION |
2046 * |**************************************************************************
2047 * | source-->| shared | private | slave | unbindable |
2051 * |**************************************************************************
2052 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2054 * |non-shared| shared (+) | private | slave (*) | invalid |
2055 * ***************************************************************************
2056 * A bind operation clones the source mount and mounts the clone on the
2057 * destination mount.
2059 * (++) the cloned mount is propagated to all the mounts in the propagation
2060 * tree of the destination mount and the cloned mount is added to
2061 * the peer group of the source mount.
2062 * (+) the cloned mount is created under the destination mount and is marked
2063 * as shared. The cloned mount is added to the peer group of the source
2065 * (+++) the mount is propagated to all the mounts in the propagation tree
2066 * of the destination mount and the cloned mount is made slave
2067 * of the same master as that of the source mount. The cloned mount
2068 * is marked as 'shared and slave'.
2069 * (*) the cloned mount is made a slave of the same master as that of the
2072 * ---------------------------------------------------------------------------
2073 * | MOVE MOUNT OPERATION |
2074 * |**************************************************************************
2075 * | source-->| shared | private | slave | unbindable |
2079 * |**************************************************************************
2080 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2082 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2083 * ***************************************************************************
2085 * (+) the mount is moved to the destination. And is then propagated to
2086 * all the mounts in the propagation tree of the destination mount.
2087 * (+*) the mount is moved to the destination.
2088 * (+++) the mount is moved to the destination and is then propagated to
2089 * all the mounts belonging to the destination mount's propagation tree.
2090 * the mount is marked as 'shared and slave'.
2091 * (*) the mount continues to be a slave at the new location.
2093 * if the source mount is a tree, the operations explained above is
2094 * applied to each mount in the tree.
2095 * Must be called without spinlocks held, since this function can sleep
2098 static int attach_recursive_mnt(struct mount
*source_mnt
,
2099 struct mount
*dest_mnt
,
2100 struct mountpoint
*dest_mp
,
2103 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2104 HLIST_HEAD(tree_list
);
2105 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
2106 struct mountpoint
*smp
;
2107 struct mount
*child
, *p
;
2108 struct hlist_node
*n
;
2111 /* Preallocate a mountpoint in case the new mounts need
2112 * to be tucked under other mounts.
2114 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2116 return PTR_ERR(smp
);
2118 /* Is there space to add these mounts to the mount namespace? */
2120 err
= count_mounts(ns
, source_mnt
);
2125 if (IS_MNT_SHARED(dest_mnt
)) {
2126 err
= invent_group_ids(source_mnt
, true);
2129 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2132 goto out_cleanup_ids
;
2133 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2139 unhash_mnt(source_mnt
);
2140 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2141 touch_mnt_namespace(source_mnt
->mnt_ns
);
2143 if (source_mnt
->mnt_ns
) {
2144 /* move from anon - the caller will destroy */
2145 list_del_init(&source_mnt
->mnt_ns
->list
);
2147 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2148 commit_tree(source_mnt
);
2151 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2153 hlist_del_init(&child
->mnt_hash
);
2154 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2155 child
->mnt_mountpoint
);
2157 mnt_change_mountpoint(child
, smp
, q
);
2158 /* Notice when we are propagating across user namespaces */
2159 if (child
->mnt_parent
->mnt_ns
->user_ns
!= user_ns
)
2160 lock_mnt_tree(child
);
2161 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2164 put_mountpoint(smp
);
2165 unlock_mount_hash();
2170 while (!hlist_empty(&tree_list
)) {
2171 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2172 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2173 umount_tree(child
, UMOUNT_SYNC
);
2175 unlock_mount_hash();
2176 cleanup_group_ids(source_mnt
, NULL
);
2178 ns
->pending_mounts
= 0;
2180 read_seqlock_excl(&mount_lock
);
2181 put_mountpoint(smp
);
2182 read_sequnlock_excl(&mount_lock
);
2187 static struct mountpoint
*lock_mount(struct path
*path
)
2189 struct vfsmount
*mnt
;
2190 struct dentry
*dentry
= path
->dentry
;
2192 inode_lock(dentry
->d_inode
);
2193 if (unlikely(cant_mount(dentry
))) {
2194 inode_unlock(dentry
->d_inode
);
2195 return ERR_PTR(-ENOENT
);
2198 mnt
= lookup_mnt(path
);
2200 struct mountpoint
*mp
= get_mountpoint(dentry
);
2203 inode_unlock(dentry
->d_inode
);
2209 inode_unlock(path
->dentry
->d_inode
);
2212 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2216 static void unlock_mount(struct mountpoint
*where
)
2218 struct dentry
*dentry
= where
->m_dentry
;
2220 read_seqlock_excl(&mount_lock
);
2221 put_mountpoint(where
);
2222 read_sequnlock_excl(&mount_lock
);
2225 inode_unlock(dentry
->d_inode
);
2228 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2230 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2233 if (d_is_dir(mp
->m_dentry
) !=
2234 d_is_dir(mnt
->mnt
.mnt_root
))
2237 return attach_recursive_mnt(mnt
, p
, mp
, false);
2241 * Sanity check the flags to change_mnt_propagation.
2244 static int flags_to_propagation_type(int ms_flags
)
2246 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2248 /* Fail if any non-propagation flags are set */
2249 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2251 /* Only one propagation flag should be set */
2252 if (!is_power_of_2(type
))
2258 * recursively change the type of the mountpoint.
2260 static int do_change_type(struct path
*path
, int ms_flags
)
2263 struct mount
*mnt
= real_mount(path
->mnt
);
2264 int recurse
= ms_flags
& MS_REC
;
2268 if (path
->dentry
!= path
->mnt
->mnt_root
)
2271 type
= flags_to_propagation_type(ms_flags
);
2276 if (type
== MS_SHARED
) {
2277 err
= invent_group_ids(mnt
, recurse
);
2283 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2284 change_mnt_propagation(m
, type
);
2285 unlock_mount_hash();
2292 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2294 struct mount
*child
;
2295 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2296 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2299 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2305 static struct mount
*__do_loopback(struct path
*old_path
, int recurse
)
2307 struct mount
*mnt
= ERR_PTR(-EINVAL
), *old
= real_mount(old_path
->mnt
);
2309 if (IS_MNT_UNBINDABLE(old
))
2312 if (!check_mnt(old
) && old_path
->dentry
->d_op
!= &ns_dentry_operations
)
2315 if (!recurse
&& has_locked_children(old
, old_path
->dentry
))
2319 mnt
= copy_tree(old
, old_path
->dentry
, CL_COPY_MNT_NS_FILE
);
2321 mnt
= clone_mnt(old
, old_path
->dentry
, 0);
2324 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2330 * do loopback mount.
2332 static int do_loopback(struct path
*path
, const char *old_name
,
2335 struct path old_path
;
2336 struct mount
*mnt
= NULL
, *parent
;
2337 struct mountpoint
*mp
;
2339 if (!old_name
|| !*old_name
)
2341 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2346 if (mnt_ns_loop(old_path
.dentry
))
2349 mp
= lock_mount(path
);
2355 parent
= real_mount(path
->mnt
);
2356 if (!check_mnt(parent
))
2359 mnt
= __do_loopback(&old_path
, recurse
);
2365 err
= graft_tree(mnt
, parent
, mp
);
2368 umount_tree(mnt
, UMOUNT_SYNC
);
2369 unlock_mount_hash();
2374 path_put(&old_path
);
2378 static struct file
*open_detached_copy(struct path
*path
, bool recursive
)
2380 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2381 struct mnt_namespace
*ns
= alloc_mnt_ns(user_ns
, true);
2382 struct mount
*mnt
, *p
;
2386 return ERR_CAST(ns
);
2389 mnt
= __do_loopback(path
, recursive
);
2393 return ERR_CAST(mnt
);
2397 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2402 list_add_tail(&ns
->list
, &mnt
->mnt_list
);
2404 unlock_mount_hash();
2408 path
->mnt
= &mnt
->mnt
;
2409 file
= dentry_open(path
, O_PATH
, current_cred());
2411 dissolve_on_fput(path
->mnt
);
2413 file
->f_mode
|= FMODE_NEED_UNMOUNT
;
2417 SYSCALL_DEFINE3(open_tree
, int, dfd
, const char __user
*, filename
, unsigned, flags
)
2421 int lookup_flags
= LOOKUP_AUTOMOUNT
| LOOKUP_FOLLOW
;
2422 bool detached
= flags
& OPEN_TREE_CLONE
;
2426 BUILD_BUG_ON(OPEN_TREE_CLOEXEC
!= O_CLOEXEC
);
2428 if (flags
& ~(AT_EMPTY_PATH
| AT_NO_AUTOMOUNT
| AT_RECURSIVE
|
2429 AT_SYMLINK_NOFOLLOW
| OPEN_TREE_CLONE
|
2433 if ((flags
& (AT_RECURSIVE
| OPEN_TREE_CLONE
)) == AT_RECURSIVE
)
2436 if (flags
& AT_NO_AUTOMOUNT
)
2437 lookup_flags
&= ~LOOKUP_AUTOMOUNT
;
2438 if (flags
& AT_SYMLINK_NOFOLLOW
)
2439 lookup_flags
&= ~LOOKUP_FOLLOW
;
2440 if (flags
& AT_EMPTY_PATH
)
2441 lookup_flags
|= LOOKUP_EMPTY
;
2443 if (detached
&& !may_mount())
2446 fd
= get_unused_fd_flags(flags
& O_CLOEXEC
);
2450 error
= user_path_at(dfd
, filename
, lookup_flags
, &path
);
2451 if (unlikely(error
)) {
2452 file
= ERR_PTR(error
);
2455 file
= open_detached_copy(&path
, flags
& AT_RECURSIVE
);
2457 file
= dentry_open(&path
, O_PATH
, current_cred());
2462 return PTR_ERR(file
);
2464 fd_install(fd
, file
);
2469 * Don't allow locked mount flags to be cleared.
2471 * No locks need to be held here while testing the various MNT_LOCK
2472 * flags because those flags can never be cleared once they are set.
2474 static bool can_change_locked_flags(struct mount
*mnt
, unsigned int mnt_flags
)
2476 unsigned int fl
= mnt
->mnt
.mnt_flags
;
2478 if ((fl
& MNT_LOCK_READONLY
) &&
2479 !(mnt_flags
& MNT_READONLY
))
2482 if ((fl
& MNT_LOCK_NODEV
) &&
2483 !(mnt_flags
& MNT_NODEV
))
2486 if ((fl
& MNT_LOCK_NOSUID
) &&
2487 !(mnt_flags
& MNT_NOSUID
))
2490 if ((fl
& MNT_LOCK_NOEXEC
) &&
2491 !(mnt_flags
& MNT_NOEXEC
))
2494 if ((fl
& MNT_LOCK_ATIME
) &&
2495 ((fl
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
)))
2501 static int change_mount_ro_state(struct mount
*mnt
, unsigned int mnt_flags
)
2503 bool readonly_request
= (mnt_flags
& MNT_READONLY
);
2505 if (readonly_request
== __mnt_is_readonly(&mnt
->mnt
))
2508 if (readonly_request
)
2509 return mnt_make_readonly(mnt
);
2511 return __mnt_unmake_readonly(mnt
);
2515 * Update the user-settable attributes on a mount. The caller must hold
2516 * sb->s_umount for writing.
2518 static void set_mount_attributes(struct mount
*mnt
, unsigned int mnt_flags
)
2521 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2522 mnt
->mnt
.mnt_flags
= mnt_flags
;
2523 touch_mnt_namespace(mnt
->mnt_ns
);
2524 unlock_mount_hash();
2527 static void mnt_warn_timestamp_expiry(struct path
*mountpoint
, struct vfsmount
*mnt
)
2529 struct super_block
*sb
= mnt
->mnt_sb
;
2531 if (!__mnt_is_readonly(mnt
) &&
2532 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX
> sb
->s_time_max
)) {
2533 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
2534 char *mntpath
= buf
? d_path(mountpoint
, buf
, PAGE_SIZE
) : ERR_PTR(-ENOMEM
);
2537 time64_to_tm(sb
->s_time_max
, 0, &tm
);
2539 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2541 is_mounted(mnt
) ? "remounted" : "mounted",
2543 tm
.tm_year
+1900, (unsigned long long)sb
->s_time_max
);
2545 free_page((unsigned long)buf
);
2550 * Handle reconfiguration of the mountpoint only without alteration of the
2551 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2554 static int do_reconfigure_mnt(struct path
*path
, unsigned int mnt_flags
)
2556 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2557 struct mount
*mnt
= real_mount(path
->mnt
);
2560 if (!check_mnt(mnt
))
2563 if (path
->dentry
!= mnt
->mnt
.mnt_root
)
2566 if (!can_change_locked_flags(mnt
, mnt_flags
))
2569 down_write(&sb
->s_umount
);
2570 ret
= change_mount_ro_state(mnt
, mnt_flags
);
2572 set_mount_attributes(mnt
, mnt_flags
);
2573 up_write(&sb
->s_umount
);
2575 mnt_warn_timestamp_expiry(path
, &mnt
->mnt
);
2581 * change filesystem flags. dir should be a physical root of filesystem.
2582 * If you've mounted a non-root directory somewhere and want to do remount
2583 * on it - tough luck.
2585 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2586 int mnt_flags
, void *data
)
2589 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2590 struct mount
*mnt
= real_mount(path
->mnt
);
2591 struct fs_context
*fc
;
2593 if (!check_mnt(mnt
))
2596 if (path
->dentry
!= path
->mnt
->mnt_root
)
2599 if (!can_change_locked_flags(mnt
, mnt_flags
))
2602 fc
= fs_context_for_reconfigure(path
->dentry
, sb_flags
, MS_RMT_MASK
);
2607 err
= parse_monolithic_mount_data(fc
, data
);
2609 down_write(&sb
->s_umount
);
2611 if (ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
)) {
2612 err
= reconfigure_super(fc
);
2614 set_mount_attributes(mnt
, mnt_flags
);
2616 up_write(&sb
->s_umount
);
2619 mnt_warn_timestamp_expiry(path
, &mnt
->mnt
);
2625 static inline int tree_contains_unbindable(struct mount
*mnt
)
2628 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2629 if (IS_MNT_UNBINDABLE(p
))
2636 * Check that there aren't references to earlier/same mount namespaces in the
2637 * specified subtree. Such references can act as pins for mount namespaces
2638 * that aren't checked by the mount-cycle checking code, thereby allowing
2639 * cycles to be made.
2641 static bool check_for_nsfs_mounts(struct mount
*subtree
)
2647 for (p
= subtree
; p
; p
= next_mnt(p
, subtree
))
2648 if (mnt_ns_loop(p
->mnt
.mnt_root
))
2653 unlock_mount_hash();
2657 static int do_move_mount(struct path
*old_path
, struct path
*new_path
)
2659 struct mnt_namespace
*ns
;
2662 struct mount
*parent
;
2663 struct mountpoint
*mp
, *old_mp
;
2667 mp
= lock_mount(new_path
);
2671 old
= real_mount(old_path
->mnt
);
2672 p
= real_mount(new_path
->mnt
);
2673 parent
= old
->mnt_parent
;
2674 attached
= mnt_has_parent(old
);
2675 old_mp
= old
->mnt_mp
;
2679 /* The mountpoint must be in our namespace. */
2683 /* The thing moved must be mounted... */
2684 if (!is_mounted(&old
->mnt
))
2687 /* ... and either ours or the root of anon namespace */
2688 if (!(attached
? check_mnt(old
) : is_anon_ns(ns
)))
2691 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2694 if (old_path
->dentry
!= old_path
->mnt
->mnt_root
)
2697 if (d_is_dir(new_path
->dentry
) !=
2698 d_is_dir(old_path
->dentry
))
2701 * Don't move a mount residing in a shared parent.
2703 if (attached
&& IS_MNT_SHARED(parent
))
2706 * Don't move a mount tree containing unbindable mounts to a destination
2707 * mount which is shared.
2709 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2712 if (!check_for_nsfs_mounts(old
))
2714 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2718 err
= attach_recursive_mnt(old
, real_mount(new_path
->mnt
), mp
,
2723 /* if the mount is moved, it should no longer be expire
2725 list_del_init(&old
->mnt_expire
);
2727 put_mountpoint(old_mp
);
2732 mntput_no_expire(parent
);
2739 static int do_move_mount_old(struct path
*path
, const char *old_name
)
2741 struct path old_path
;
2744 if (!old_name
|| !*old_name
)
2747 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2751 err
= do_move_mount(&old_path
, path
);
2752 path_put(&old_path
);
2757 * add a mount into a namespace's mount tree
2759 static int do_add_mount(struct mount
*newmnt
, struct mountpoint
*mp
,
2760 struct path
*path
, int mnt_flags
)
2762 struct mount
*parent
= real_mount(path
->mnt
);
2764 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2766 if (unlikely(!check_mnt(parent
))) {
2767 /* that's acceptable only for automounts done in private ns */
2768 if (!(mnt_flags
& MNT_SHRINKABLE
))
2770 /* ... and for those we'd better have mountpoint still alive */
2771 if (!parent
->mnt_ns
)
2775 /* Refuse the same filesystem on the same mount point */
2776 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2777 path
->mnt
->mnt_root
== path
->dentry
)
2780 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2783 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2784 return graft_tree(newmnt
, parent
, mp
);
2787 static bool mount_too_revealing(const struct super_block
*sb
, int *new_mnt_flags
);
2790 * Create a new mount using a superblock configuration and request it
2791 * be added to the namespace tree.
2793 static int do_new_mount_fc(struct fs_context
*fc
, struct path
*mountpoint
,
2794 unsigned int mnt_flags
)
2796 struct vfsmount
*mnt
;
2797 struct mountpoint
*mp
;
2798 struct super_block
*sb
= fc
->root
->d_sb
;
2801 error
= security_sb_kern_mount(sb
);
2802 if (!error
&& mount_too_revealing(sb
, &mnt_flags
))
2805 if (unlikely(error
)) {
2810 up_write(&sb
->s_umount
);
2812 mnt
= vfs_create_mount(fc
);
2814 return PTR_ERR(mnt
);
2816 mnt_warn_timestamp_expiry(mountpoint
, mnt
);
2818 mp
= lock_mount(mountpoint
);
2823 error
= do_add_mount(real_mount(mnt
), mp
, mountpoint
, mnt_flags
);
2831 * create a new mount for userspace and request it to be added into the
2834 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2835 int mnt_flags
, const char *name
, void *data
)
2837 struct file_system_type
*type
;
2838 struct fs_context
*fc
;
2839 const char *subtype
= NULL
;
2845 type
= get_fs_type(fstype
);
2849 if (type
->fs_flags
& FS_HAS_SUBTYPE
) {
2850 subtype
= strchr(fstype
, '.');
2854 put_filesystem(type
);
2860 fc
= fs_context_for_mount(type
, sb_flags
);
2861 put_filesystem(type
);
2866 err
= vfs_parse_fs_string(fc
, "subtype",
2867 subtype
, strlen(subtype
));
2869 err
= vfs_parse_fs_string(fc
, "source", name
, strlen(name
));
2871 err
= parse_monolithic_mount_data(fc
, data
);
2872 if (!err
&& !mount_capable(fc
))
2875 err
= vfs_get_tree(fc
);
2877 err
= do_new_mount_fc(fc
, path
, mnt_flags
);
2883 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2885 struct dentry
*dentry
= path
->dentry
;
2886 struct mountpoint
*mp
;
2895 mnt
= real_mount(m
);
2896 /* The new mount record should have at least 2 refs to prevent it being
2897 * expired before we get a chance to add it
2899 BUG_ON(mnt_get_count(mnt
) < 2);
2901 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2902 m
->mnt_root
== dentry
) {
2908 * we don't want to use lock_mount() - in this case finding something
2909 * that overmounts our mountpoint to be means "quitely drop what we've
2910 * got", not "try to mount it on top".
2912 inode_lock(dentry
->d_inode
);
2914 if (unlikely(cant_mount(dentry
))) {
2916 goto discard_locked
;
2919 if (unlikely(__lookup_mnt(path
->mnt
, dentry
))) {
2922 goto discard_locked
;
2925 mp
= get_mountpoint(dentry
);
2928 goto discard_locked
;
2931 err
= do_add_mount(mnt
, mp
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2940 inode_unlock(dentry
->d_inode
);
2942 /* remove m from any expiration list it may be on */
2943 if (!list_empty(&mnt
->mnt_expire
)) {
2945 list_del_init(&mnt
->mnt_expire
);
2954 * mnt_set_expiry - Put a mount on an expiration list
2955 * @mnt: The mount to list.
2956 * @expiry_list: The list to add the mount to.
2958 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2962 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2966 EXPORT_SYMBOL(mnt_set_expiry
);
2969 * process a list of expirable mountpoints with the intent of discarding any
2970 * mountpoints that aren't in use and haven't been touched since last we came
2973 void mark_mounts_for_expiry(struct list_head
*mounts
)
2975 struct mount
*mnt
, *next
;
2976 LIST_HEAD(graveyard
);
2978 if (list_empty(mounts
))
2984 /* extract from the expiration list every vfsmount that matches the
2985 * following criteria:
2986 * - only referenced by its parent vfsmount
2987 * - still marked for expiry (marked on the last call here; marks are
2988 * cleared by mntput())
2990 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2991 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2992 propagate_mount_busy(mnt
, 1))
2994 list_move(&mnt
->mnt_expire
, &graveyard
);
2996 while (!list_empty(&graveyard
)) {
2997 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2998 touch_mnt_namespace(mnt
->mnt_ns
);
2999 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
3001 unlock_mount_hash();
3005 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
3008 * Ripoff of 'select_parent()'
3010 * search the list of submounts for a given mountpoint, and move any
3011 * shrinkable submounts to the 'graveyard' list.
3013 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
3015 struct mount
*this_parent
= parent
;
3016 struct list_head
*next
;
3020 next
= this_parent
->mnt_mounts
.next
;
3022 while (next
!= &this_parent
->mnt_mounts
) {
3023 struct list_head
*tmp
= next
;
3024 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
3027 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
3030 * Descend a level if the d_mounts list is non-empty.
3032 if (!list_empty(&mnt
->mnt_mounts
)) {
3037 if (!propagate_mount_busy(mnt
, 1)) {
3038 list_move_tail(&mnt
->mnt_expire
, graveyard
);
3043 * All done at this level ... ascend and resume the search
3045 if (this_parent
!= parent
) {
3046 next
= this_parent
->mnt_child
.next
;
3047 this_parent
= this_parent
->mnt_parent
;
3054 * process a list of expirable mountpoints with the intent of discarding any
3055 * submounts of a specific parent mountpoint
3057 * mount_lock must be held for write
3059 static void shrink_submounts(struct mount
*mnt
)
3061 LIST_HEAD(graveyard
);
3064 /* extract submounts of 'mountpoint' from the expiration list */
3065 while (select_submounts(mnt
, &graveyard
)) {
3066 while (!list_empty(&graveyard
)) {
3067 m
= list_first_entry(&graveyard
, struct mount
,
3069 touch_mnt_namespace(m
->mnt_ns
);
3070 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
3075 void *copy_mount_options(const void __user
* data
)
3083 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3085 return ERR_PTR(-ENOMEM
);
3087 size
= PAGE_SIZE
- offset_in_page(data
);
3089 if (copy_from_user(copy
, data
, size
)) {
3091 return ERR_PTR(-EFAULT
);
3093 if (size
!= PAGE_SIZE
) {
3094 if (copy_from_user(copy
+ size
, data
+ size
, PAGE_SIZE
- size
))
3095 memset(copy
+ size
, 0, PAGE_SIZE
- size
);
3100 char *copy_mount_string(const void __user
*data
)
3102 return data
? strndup_user(data
, PATH_MAX
) : NULL
;
3106 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3107 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3109 * data is a (void *) that can point to any structure up to
3110 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3111 * information (or be NULL).
3113 * Pre-0.97 versions of mount() didn't have a flags word.
3114 * When the flags word was introduced its top half was required
3115 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3116 * Therefore, if this magic number is present, it carries no information
3117 * and must be discarded.
3119 int path_mount(const char *dev_name
, struct path
*path
,
3120 const char *type_page
, unsigned long flags
, void *data_page
)
3122 unsigned int mnt_flags
= 0, sb_flags
;
3126 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
3127 flags
&= ~MS_MGC_MSK
;
3129 /* Basic sanity checks */
3131 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
3133 if (flags
& MS_NOUSER
)
3136 ret
= security_sb_mount(dev_name
, path
, type_page
, flags
, data_page
);
3141 if ((flags
& SB_MANDLOCK
) && !may_mandlock())
3144 /* Default to relatime unless overriden */
3145 if (!(flags
& MS_NOATIME
))
3146 mnt_flags
|= MNT_RELATIME
;
3148 /* Separate the per-mountpoint flags */
3149 if (flags
& MS_NOSUID
)
3150 mnt_flags
|= MNT_NOSUID
;
3151 if (flags
& MS_NODEV
)
3152 mnt_flags
|= MNT_NODEV
;
3153 if (flags
& MS_NOEXEC
)
3154 mnt_flags
|= MNT_NOEXEC
;
3155 if (flags
& MS_NOATIME
)
3156 mnt_flags
|= MNT_NOATIME
;
3157 if (flags
& MS_NODIRATIME
)
3158 mnt_flags
|= MNT_NODIRATIME
;
3159 if (flags
& MS_STRICTATIME
)
3160 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
3161 if (flags
& MS_RDONLY
)
3162 mnt_flags
|= MNT_READONLY
;
3164 /* The default atime for remount is preservation */
3165 if ((flags
& MS_REMOUNT
) &&
3166 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
3167 MS_STRICTATIME
)) == 0)) {
3168 mnt_flags
&= ~MNT_ATIME_MASK
;
3169 mnt_flags
|= path
->mnt
->mnt_flags
& MNT_ATIME_MASK
;
3172 sb_flags
= flags
& (SB_RDONLY
|
3181 if ((flags
& (MS_REMOUNT
| MS_BIND
)) == (MS_REMOUNT
| MS_BIND
))
3182 return do_reconfigure_mnt(path
, mnt_flags
);
3183 if (flags
& MS_REMOUNT
)
3184 return do_remount(path
, flags
, sb_flags
, mnt_flags
, data_page
);
3185 if (flags
& MS_BIND
)
3186 return do_loopback(path
, dev_name
, flags
& MS_REC
);
3187 if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
3188 return do_change_type(path
, flags
);
3189 if (flags
& MS_MOVE
)
3190 return do_move_mount_old(path
, dev_name
);
3192 return do_new_mount(path
, type_page
, sb_flags
, mnt_flags
, dev_name
,
3196 long do_mount(const char *dev_name
, const char __user
*dir_name
,
3197 const char *type_page
, unsigned long flags
, void *data_page
)
3202 ret
= user_path_at(AT_FDCWD
, dir_name
, LOOKUP_FOLLOW
, &path
);
3205 ret
= path_mount(dev_name
, &path
, type_page
, flags
, data_page
);
3210 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
3212 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
3215 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
3217 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
3220 static void free_mnt_ns(struct mnt_namespace
*ns
)
3222 if (!is_anon_ns(ns
))
3223 ns_free_inum(&ns
->ns
);
3224 dec_mnt_namespaces(ns
->ucounts
);
3225 put_user_ns(ns
->user_ns
);
3230 * Assign a sequence number so we can detect when we attempt to bind
3231 * mount a reference to an older mount namespace into the current
3232 * mount namespace, preventing reference counting loops. A 64bit
3233 * number incrementing at 10Ghz will take 12,427 years to wrap which
3234 * is effectively never, so we can ignore the possibility.
3236 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
3238 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
, bool anon
)
3240 struct mnt_namespace
*new_ns
;
3241 struct ucounts
*ucounts
;
3244 ucounts
= inc_mnt_namespaces(user_ns
);
3246 return ERR_PTR(-ENOSPC
);
3248 new_ns
= kzalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
3250 dec_mnt_namespaces(ucounts
);
3251 return ERR_PTR(-ENOMEM
);
3254 ret
= ns_alloc_inum(&new_ns
->ns
);
3257 dec_mnt_namespaces(ucounts
);
3258 return ERR_PTR(ret
);
3261 new_ns
->ns
.ops
= &mntns_operations
;
3263 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
3264 atomic_set(&new_ns
->count
, 1);
3265 INIT_LIST_HEAD(&new_ns
->list
);
3266 init_waitqueue_head(&new_ns
->poll
);
3267 spin_lock_init(&new_ns
->ns_lock
);
3268 new_ns
->user_ns
= get_user_ns(user_ns
);
3269 new_ns
->ucounts
= ucounts
;
3274 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
3275 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
3277 struct mnt_namespace
*new_ns
;
3278 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
3279 struct mount
*p
, *q
;
3286 if (likely(!(flags
& CLONE_NEWNS
))) {
3293 new_ns
= alloc_mnt_ns(user_ns
, false);
3298 /* First pass: copy the tree topology */
3299 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
3300 if (user_ns
!= ns
->user_ns
)
3301 copy_flags
|= CL_SHARED_TO_SLAVE
;
3302 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
3305 free_mnt_ns(new_ns
);
3306 return ERR_CAST(new);
3308 if (user_ns
!= ns
->user_ns
) {
3311 unlock_mount_hash();
3314 list_add_tail(&new_ns
->list
, &new->mnt_list
);
3317 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3318 * as belonging to new namespace. We have already acquired a private
3319 * fs_struct, so tsk->fs->lock is not needed.
3327 if (&p
->mnt
== new_fs
->root
.mnt
) {
3328 new_fs
->root
.mnt
= mntget(&q
->mnt
);
3331 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
3332 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
3336 p
= next_mnt(p
, old
);
3337 q
= next_mnt(q
, new);
3340 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
3341 p
= next_mnt(p
, old
);
3353 struct dentry
*mount_subtree(struct vfsmount
*m
, const char *name
)
3355 struct mount
*mnt
= real_mount(m
);
3356 struct mnt_namespace
*ns
;
3357 struct super_block
*s
;
3361 ns
= alloc_mnt_ns(&init_user_ns
, true);
3364 return ERR_CAST(ns
);
3369 list_add(&mnt
->mnt_list
, &ns
->list
);
3371 err
= vfs_path_lookup(m
->mnt_root
, m
,
3372 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3377 return ERR_PTR(err
);
3379 /* trade a vfsmount reference for active sb one */
3380 s
= path
.mnt
->mnt_sb
;
3381 atomic_inc(&s
->s_active
);
3383 /* lock the sucker */
3384 down_write(&s
->s_umount
);
3385 /* ... and return the root of (sub)tree on it */
3388 EXPORT_SYMBOL(mount_subtree
);
3390 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3391 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3398 kernel_type
= copy_mount_string(type
);
3399 ret
= PTR_ERR(kernel_type
);
3400 if (IS_ERR(kernel_type
))
3403 kernel_dev
= copy_mount_string(dev_name
);
3404 ret
= PTR_ERR(kernel_dev
);
3405 if (IS_ERR(kernel_dev
))
3408 options
= copy_mount_options(data
);
3409 ret
= PTR_ERR(options
);
3410 if (IS_ERR(options
))
3413 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3425 * Create a kernel mount representation for a new, prepared superblock
3426 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3428 SYSCALL_DEFINE3(fsmount
, int, fs_fd
, unsigned int, flags
,
3429 unsigned int, attr_flags
)
3431 struct mnt_namespace
*ns
;
3432 struct fs_context
*fc
;
3434 struct path newmount
;
3437 unsigned int mnt_flags
= 0;
3443 if ((flags
& ~(FSMOUNT_CLOEXEC
)) != 0)
3446 if (attr_flags
& ~(MOUNT_ATTR_RDONLY
|
3451 MOUNT_ATTR_NODIRATIME
))
3454 if (attr_flags
& MOUNT_ATTR_RDONLY
)
3455 mnt_flags
|= MNT_READONLY
;
3456 if (attr_flags
& MOUNT_ATTR_NOSUID
)
3457 mnt_flags
|= MNT_NOSUID
;
3458 if (attr_flags
& MOUNT_ATTR_NODEV
)
3459 mnt_flags
|= MNT_NODEV
;
3460 if (attr_flags
& MOUNT_ATTR_NOEXEC
)
3461 mnt_flags
|= MNT_NOEXEC
;
3462 if (attr_flags
& MOUNT_ATTR_NODIRATIME
)
3463 mnt_flags
|= MNT_NODIRATIME
;
3465 switch (attr_flags
& MOUNT_ATTR__ATIME
) {
3466 case MOUNT_ATTR_STRICTATIME
:
3468 case MOUNT_ATTR_NOATIME
:
3469 mnt_flags
|= MNT_NOATIME
;
3471 case MOUNT_ATTR_RELATIME
:
3472 mnt_flags
|= MNT_RELATIME
;
3483 if (f
.file
->f_op
!= &fscontext_fops
)
3486 fc
= f
.file
->private_data
;
3488 ret
= mutex_lock_interruptible(&fc
->uapi_mutex
);
3492 /* There must be a valid superblock or we can't mount it */
3498 if (mount_too_revealing(fc
->root
->d_sb
, &mnt_flags
)) {
3499 pr_warn("VFS: Mount too revealing\n");
3504 if (fc
->phase
!= FS_CONTEXT_AWAITING_MOUNT
)
3508 if ((fc
->sb_flags
& SB_MANDLOCK
) && !may_mandlock())
3511 newmount
.mnt
= vfs_create_mount(fc
);
3512 if (IS_ERR(newmount
.mnt
)) {
3513 ret
= PTR_ERR(newmount
.mnt
);
3516 newmount
.dentry
= dget(fc
->root
);
3517 newmount
.mnt
->mnt_flags
= mnt_flags
;
3519 /* We've done the mount bit - now move the file context into more or
3520 * less the same state as if we'd done an fspick(). We don't want to
3521 * do any memory allocation or anything like that at this point as we
3522 * don't want to have to handle any errors incurred.
3524 vfs_clean_context(fc
);
3526 ns
= alloc_mnt_ns(current
->nsproxy
->mnt_ns
->user_ns
, true);
3531 mnt
= real_mount(newmount
.mnt
);
3535 list_add(&mnt
->mnt_list
, &ns
->list
);
3536 mntget(newmount
.mnt
);
3538 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3539 * it, not just simply put it.
3541 file
= dentry_open(&newmount
, O_PATH
, fc
->cred
);
3543 dissolve_on_fput(newmount
.mnt
);
3544 ret
= PTR_ERR(file
);
3547 file
->f_mode
|= FMODE_NEED_UNMOUNT
;
3549 ret
= get_unused_fd_flags((flags
& FSMOUNT_CLOEXEC
) ? O_CLOEXEC
: 0);
3551 fd_install(ret
, file
);
3556 path_put(&newmount
);
3558 mutex_unlock(&fc
->uapi_mutex
);
3565 * Move a mount from one place to another. In combination with
3566 * fsopen()/fsmount() this is used to install a new mount and in combination
3567 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3570 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3572 SYSCALL_DEFINE5(move_mount
,
3573 int, from_dfd
, const char __user
*, from_pathname
,
3574 int, to_dfd
, const char __user
*, to_pathname
,
3575 unsigned int, flags
)
3577 struct path from_path
, to_path
;
3578 unsigned int lflags
;
3584 if (flags
& ~MOVE_MOUNT__MASK
)
3587 /* If someone gives a pathname, they aren't permitted to move
3588 * from an fd that requires unmount as we can't get at the flag
3589 * to clear it afterwards.
3592 if (flags
& MOVE_MOUNT_F_SYMLINKS
) lflags
|= LOOKUP_FOLLOW
;
3593 if (flags
& MOVE_MOUNT_F_AUTOMOUNTS
) lflags
|= LOOKUP_AUTOMOUNT
;
3594 if (flags
& MOVE_MOUNT_F_EMPTY_PATH
) lflags
|= LOOKUP_EMPTY
;
3596 ret
= user_path_at(from_dfd
, from_pathname
, lflags
, &from_path
);
3601 if (flags
& MOVE_MOUNT_T_SYMLINKS
) lflags
|= LOOKUP_FOLLOW
;
3602 if (flags
& MOVE_MOUNT_T_AUTOMOUNTS
) lflags
|= LOOKUP_AUTOMOUNT
;
3603 if (flags
& MOVE_MOUNT_T_EMPTY_PATH
) lflags
|= LOOKUP_EMPTY
;
3605 ret
= user_path_at(to_dfd
, to_pathname
, lflags
, &to_path
);
3609 ret
= security_move_mount(&from_path
, &to_path
);
3613 ret
= do_move_mount(&from_path
, &to_path
);
3618 path_put(&from_path
);
3623 * Return true if path is reachable from root
3625 * namespace_sem or mount_lock is held
3627 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3628 const struct path
*root
)
3630 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3631 dentry
= mnt
->mnt_mountpoint
;
3632 mnt
= mnt
->mnt_parent
;
3634 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3637 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3640 read_seqlock_excl(&mount_lock
);
3641 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3642 read_sequnlock_excl(&mount_lock
);
3645 EXPORT_SYMBOL(path_is_under
);
3648 * pivot_root Semantics:
3649 * Moves the root file system of the current process to the directory put_old,
3650 * makes new_root as the new root file system of the current process, and sets
3651 * root/cwd of all processes which had them on the current root to new_root.
3654 * The new_root and put_old must be directories, and must not be on the
3655 * same file system as the current process root. The put_old must be
3656 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3657 * pointed to by put_old must yield the same directory as new_root. No other
3658 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3660 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3661 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3662 * in this situation.
3665 * - we don't move root/cwd if they are not at the root (reason: if something
3666 * cared enough to change them, it's probably wrong to force them elsewhere)
3667 * - it's okay to pick a root that isn't the root of a file system, e.g.
3668 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3669 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3672 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3673 const char __user
*, put_old
)
3675 struct path
new, old
, root
;
3676 struct mount
*new_mnt
, *root_mnt
, *old_mnt
, *root_parent
, *ex_parent
;
3677 struct mountpoint
*old_mp
, *root_mp
;
3683 error
= user_path_at(AT_FDCWD
, new_root
,
3684 LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
, &new);
3688 error
= user_path_at(AT_FDCWD
, put_old
,
3689 LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
, &old
);
3693 error
= security_sb_pivotroot(&old
, &new);
3697 get_fs_root(current
->fs
, &root
);
3698 old_mp
= lock_mount(&old
);
3699 error
= PTR_ERR(old_mp
);
3704 new_mnt
= real_mount(new.mnt
);
3705 root_mnt
= real_mount(root
.mnt
);
3706 old_mnt
= real_mount(old
.mnt
);
3707 ex_parent
= new_mnt
->mnt_parent
;
3708 root_parent
= root_mnt
->mnt_parent
;
3709 if (IS_MNT_SHARED(old_mnt
) ||
3710 IS_MNT_SHARED(ex_parent
) ||
3711 IS_MNT_SHARED(root_parent
))
3713 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3715 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3718 if (d_unlinked(new.dentry
))
3721 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3722 goto out4
; /* loop, on the same file system */
3724 if (root
.mnt
->mnt_root
!= root
.dentry
)
3725 goto out4
; /* not a mountpoint */
3726 if (!mnt_has_parent(root_mnt
))
3727 goto out4
; /* not attached */
3728 if (new.mnt
->mnt_root
!= new.dentry
)
3729 goto out4
; /* not a mountpoint */
3730 if (!mnt_has_parent(new_mnt
))
3731 goto out4
; /* not attached */
3732 /* make sure we can reach put_old from new_root */
3733 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3735 /* make certain new is below the root */
3736 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3739 umount_mnt(new_mnt
);
3740 root_mp
= unhash_mnt(root_mnt
); /* we'll need its mountpoint */
3741 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3742 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3743 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3745 /* mount old root on put_old */
3746 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3747 /* mount new_root on / */
3748 attach_mnt(new_mnt
, root_parent
, root_mp
);
3749 mnt_add_count(root_parent
, -1);
3750 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3751 /* A moved mount should not expire automatically */
3752 list_del_init(&new_mnt
->mnt_expire
);
3753 put_mountpoint(root_mp
);
3754 unlock_mount_hash();
3755 chroot_fs_refs(&root
, &new);
3758 unlock_mount(old_mp
);
3760 mntput_no_expire(ex_parent
);
3771 static void __init
init_mount_tree(void)
3773 struct vfsmount
*mnt
;
3775 struct mnt_namespace
*ns
;
3778 mnt
= vfs_kern_mount(&rootfs_fs_type
, 0, "rootfs", NULL
);
3780 panic("Can't create rootfs");
3782 ns
= alloc_mnt_ns(&init_user_ns
, false);
3784 panic("Can't allocate initial namespace");
3785 m
= real_mount(mnt
);
3789 list_add(&m
->mnt_list
, &ns
->list
);
3790 init_task
.nsproxy
->mnt_ns
= ns
;
3794 root
.dentry
= mnt
->mnt_root
;
3795 mnt
->mnt_flags
|= MNT_LOCKED
;
3797 set_fs_pwd(current
->fs
, &root
);
3798 set_fs_root(current
->fs
, &root
);
3801 void __init
mnt_init(void)
3805 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3806 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3808 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3809 sizeof(struct hlist_head
),
3812 &m_hash_shift
, &m_hash_mask
, 0, 0);
3813 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3814 sizeof(struct hlist_head
),
3817 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3819 if (!mount_hashtable
|| !mountpoint_hashtable
)
3820 panic("Failed to allocate mount hash table\n");
3826 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3828 fs_kobj
= kobject_create_and_add("fs", NULL
);
3830 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3836 void put_mnt_ns(struct mnt_namespace
*ns
)
3838 if (!atomic_dec_and_test(&ns
->count
))
3840 drop_collected_mounts(&ns
->root
->mnt
);
3844 struct vfsmount
*kern_mount(struct file_system_type
*type
)
3846 struct vfsmount
*mnt
;
3847 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, NULL
);
3850 * it is a longterm mount, don't release mnt until
3851 * we unmount before file sys is unregistered
3853 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3857 EXPORT_SYMBOL_GPL(kern_mount
);
3859 void kern_unmount(struct vfsmount
*mnt
)
3861 /* release long term mount so mount point can be released */
3862 if (!IS_ERR_OR_NULL(mnt
)) {
3863 real_mount(mnt
)->mnt_ns
= NULL
;
3864 synchronize_rcu(); /* yecchhh... */
3868 EXPORT_SYMBOL(kern_unmount
);
3870 void kern_unmount_array(struct vfsmount
*mnt
[], unsigned int num
)
3874 for (i
= 0; i
< num
; i
++)
3876 real_mount(mnt
[i
])->mnt_ns
= NULL
;
3877 synchronize_rcu_expedited();
3878 for (i
= 0; i
< num
; i
++)
3881 EXPORT_SYMBOL(kern_unmount_array
);
3883 bool our_mnt(struct vfsmount
*mnt
)
3885 return check_mnt(real_mount(mnt
));
3888 bool current_chrooted(void)
3890 /* Does the current process have a non-standard root */
3891 struct path ns_root
;
3892 struct path fs_root
;
3895 /* Find the namespace root */
3896 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3897 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3899 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3902 get_fs_root(current
->fs
, &fs_root
);
3904 chrooted
= !path_equal(&fs_root
, &ns_root
);
3912 static bool mnt_already_visible(struct mnt_namespace
*ns
,
3913 const struct super_block
*sb
,
3916 int new_flags
= *new_mnt_flags
;
3918 bool visible
= false;
3920 down_read(&namespace_sem
);
3922 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3923 struct mount
*child
;
3926 if (mnt_is_cursor(mnt
))
3929 if (mnt
->mnt
.mnt_sb
->s_type
!= sb
->s_type
)
3932 /* This mount is not fully visible if it's root directory
3933 * is not the root directory of the filesystem.
3935 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3938 /* A local view of the mount flags */
3939 mnt_flags
= mnt
->mnt
.mnt_flags
;
3941 /* Don't miss readonly hidden in the superblock flags */
3942 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3943 mnt_flags
|= MNT_LOCK_READONLY
;
3945 /* Verify the mount flags are equal to or more permissive
3946 * than the proposed new mount.
3948 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3949 !(new_flags
& MNT_READONLY
))
3951 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3952 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3955 /* This mount is not fully visible if there are any
3956 * locked child mounts that cover anything except for
3957 * empty directories.
3959 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3960 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3961 /* Only worry about locked mounts */
3962 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3964 /* Is the directory permanetly empty? */
3965 if (!is_empty_dir_inode(inode
))
3968 /* Preserve the locked attributes */
3969 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3977 up_read(&namespace_sem
);
3981 static bool mount_too_revealing(const struct super_block
*sb
, int *new_mnt_flags
)
3983 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3984 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3985 unsigned long s_iflags
;
3987 if (ns
->user_ns
== &init_user_ns
)
3990 /* Can this filesystem be too revealing? */
3991 s_iflags
= sb
->s_iflags
;
3992 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3995 if ((s_iflags
& required_iflags
) != required_iflags
) {
3996 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4001 return !mnt_already_visible(ns
, sb
, new_mnt_flags
);
4004 bool mnt_may_suid(struct vfsmount
*mnt
)
4007 * Foreign mounts (accessed via fchdir or through /proc
4008 * symlinks) are always treated as if they are nosuid. This
4009 * prevents namespaces from trusting potentially unsafe
4010 * suid/sgid bits, file caps, or security labels that originate
4011 * in other namespaces.
4013 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
4014 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
4017 static struct ns_common
*mntns_get(struct task_struct
*task
)
4019 struct ns_common
*ns
= NULL
;
4020 struct nsproxy
*nsproxy
;
4023 nsproxy
= task
->nsproxy
;
4025 ns
= &nsproxy
->mnt_ns
->ns
;
4026 get_mnt_ns(to_mnt_ns(ns
));
4033 static void mntns_put(struct ns_common
*ns
)
4035 put_mnt_ns(to_mnt_ns(ns
));
4038 static int mntns_install(struct nsset
*nsset
, struct ns_common
*ns
)
4040 struct nsproxy
*nsproxy
= nsset
->nsproxy
;
4041 struct fs_struct
*fs
= nsset
->fs
;
4042 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
4043 struct user_namespace
*user_ns
= nsset
->cred
->user_ns
;
4047 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
4048 !ns_capable(user_ns
, CAP_SYS_CHROOT
) ||
4049 !ns_capable(user_ns
, CAP_SYS_ADMIN
))
4052 if (is_anon_ns(mnt_ns
))
4059 old_mnt_ns
= nsproxy
->mnt_ns
;
4060 nsproxy
->mnt_ns
= mnt_ns
;
4063 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
4064 "/", LOOKUP_DOWN
, &root
);
4066 /* revert to old namespace */
4067 nsproxy
->mnt_ns
= old_mnt_ns
;
4072 put_mnt_ns(old_mnt_ns
);
4074 /* Update the pwd and root */
4075 set_fs_pwd(fs
, &root
);
4076 set_fs_root(fs
, &root
);
4082 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
4084 return to_mnt_ns(ns
)->user_ns
;
4087 const struct proc_ns_operations mntns_operations
= {
4089 .type
= CLONE_NEWNS
,
4092 .install
= mntns_install
,
4093 .owner
= mntns_owner
,