2 * Pressure stall information for CPU, memory and IO
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
39 * SOME = nr_delayed_tasks != 0
40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
42 * The percentage of wallclock time spent in those compound stall
43 * states gives pressure numbers between 0 and 100 for each resource,
44 * where the SOME percentage indicates workload slowdowns and the FULL
45 * percentage indicates reduced CPU utilization:
47 * %SOME = time(SOME) / period
48 * %FULL = time(FULL) / period
52 * The more tasks and available CPUs there are, the more work can be
53 * performed concurrently. This means that the potential that can go
54 * unrealized due to resource contention *also* scales with non-idle
57 * Consider a scenario where 257 number crunching tasks are trying to
58 * run concurrently on 256 CPUs. If we simply aggregated the task
59 * states, we would have to conclude a CPU SOME pressure number of
60 * 100%, since *somebody* is waiting on a runqueue at all
61 * times. However, that is clearly not the amount of contention the
62 * workload is experiencing: only one out of 256 possible exceution
63 * threads will be contended at any given time, or about 0.4%.
65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66 * given time *one* of the tasks is delayed due to a lack of memory.
67 * Again, looking purely at the task state would yield a memory FULL
68 * pressure number of 0%, since *somebody* is always making forward
69 * progress. But again this wouldn't capture the amount of execution
70 * potential lost, which is 1 out of 4 CPUs, or 25%.
72 * To calculate wasted potential (pressure) with multiple processors,
73 * we have to base our calculation on the number of non-idle tasks in
74 * conjunction with the number of available CPUs, which is the number
75 * of potential execution threads. SOME becomes then the proportion of
76 * delayed tasks to possibe threads, and FULL is the share of possible
77 * threads that are unproductive due to delays:
79 * threads = min(nr_nonidle_tasks, nr_cpus)
80 * SOME = min(nr_delayed_tasks / threads, 1)
81 * FULL = (threads - min(nr_running_tasks, threads)) / threads
83 * For the 257 number crunchers on 256 CPUs, this yields:
85 * threads = min(257, 256)
86 * SOME = min(1 / 256, 1) = 0.4%
87 * FULL = (256 - min(257, 256)) / 256 = 0%
89 * For the 1 out of 4 memory-delayed tasks, this yields:
92 * SOME = min(1 / 4, 1) = 25%
93 * FULL = (4 - min(3, 4)) / 4 = 25%
95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
96 * extension of the single-CPU model. ]
100 * To assess the precise time spent in each such state, we would have
101 * to freeze the system on task changes and start/stop the state
102 * clocks accordingly. Obviously that doesn't scale in practice.
104 * Because the scheduler aims to distribute the compute load evenly
105 * among the available CPUs, we can track task state locally to each
106 * CPU and, at much lower frequency, extrapolate the global state for
107 * the cumulative stall times and the running averages.
109 * For each runqueue, we track:
111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
115 * and then periodically aggregate:
117 * tNONIDLE = sum(tNONIDLE[i])
119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
122 * %SOME = tSOME / period
123 * %FULL = tFULL / period
125 * This gives us an approximation of pressure that is practical
126 * cost-wise, yet way more sensitive and accurate than periodic
127 * sampling of the aggregate task states would be.
130 #include "../workqueue_internal.h"
131 #include <linux/sched/loadavg.h>
132 #include <linux/seq_file.h>
133 #include <linux/proc_fs.h>
134 #include <linux/seqlock.h>
135 #include <linux/uaccess.h>
136 #include <linux/cgroup.h>
137 #include <linux/module.h>
138 #include <linux/sched.h>
139 #include <linux/ctype.h>
140 #include <linux/file.h>
141 #include <linux/poll.h>
142 #include <linux/psi.h>
145 static int psi_bug __read_mostly
;
147 DEFINE_STATIC_KEY_FALSE(psi_disabled
);
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable
;
152 static bool psi_enable
= true;
154 static int __init
setup_psi(char *str
)
156 return kstrtobool(str
, &psi_enable
) == 0;
158 __setup("psi=", setup_psi
);
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s 1981 /* 1/exp(2s/60s) */
164 #define EXP_300s 2034 /* 1/exp(2s/300s) */
166 /* PSI trigger definitions */
167 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
168 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
169 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
171 /* Sampling frequency in nanoseconds */
172 static u64 psi_period __read_mostly
;
174 /* System-level pressure and stall tracking */
175 static DEFINE_PER_CPU(struct psi_group_cpu
, system_group_pcpu
);
176 struct psi_group psi_system
= {
177 .pcpu
= &system_group_pcpu
,
180 static void psi_avgs_work(struct work_struct
*work
);
182 static void group_init(struct psi_group
*group
)
186 for_each_possible_cpu(cpu
)
187 seqcount_init(&per_cpu_ptr(group
->pcpu
, cpu
)->seq
);
188 group
->avg_last_update
= sched_clock();
189 group
->avg_next_update
= group
->avg_last_update
+ psi_period
;
190 INIT_DELAYED_WORK(&group
->avgs_work
, psi_avgs_work
);
191 mutex_init(&group
->avgs_lock
);
192 /* Init trigger-related members */
193 mutex_init(&group
->trigger_lock
);
194 INIT_LIST_HEAD(&group
->triggers
);
195 memset(group
->nr_triggers
, 0, sizeof(group
->nr_triggers
));
196 group
->poll_states
= 0;
197 group
->poll_min_period
= U32_MAX
;
198 memset(group
->polling_total
, 0, sizeof(group
->polling_total
));
199 group
->polling_next_update
= ULLONG_MAX
;
200 group
->polling_until
= 0;
201 rcu_assign_pointer(group
->poll_task
, NULL
);
204 void __init
psi_init(void)
207 static_branch_enable(&psi_disabled
);
211 psi_period
= jiffies_to_nsecs(PSI_FREQ
);
212 group_init(&psi_system
);
215 static bool test_state(unsigned int *tasks
, enum psi_states state
)
219 return tasks
[NR_IOWAIT
];
221 return tasks
[NR_IOWAIT
] && !tasks
[NR_RUNNING
];
223 return tasks
[NR_MEMSTALL
];
225 return tasks
[NR_MEMSTALL
] && !tasks
[NR_RUNNING
];
227 return tasks
[NR_RUNNING
] > tasks
[NR_ONCPU
];
229 return tasks
[NR_IOWAIT
] || tasks
[NR_MEMSTALL
] ||
236 static void get_recent_times(struct psi_group
*group
, int cpu
,
237 enum psi_aggregators aggregator
, u32
*times
,
238 u32
*pchanged_states
)
240 struct psi_group_cpu
*groupc
= per_cpu_ptr(group
->pcpu
, cpu
);
241 u64 now
, state_start
;
246 *pchanged_states
= 0;
248 /* Snapshot a coherent view of the CPU state */
250 seq
= read_seqcount_begin(&groupc
->seq
);
251 now
= cpu_clock(cpu
);
252 memcpy(times
, groupc
->times
, sizeof(groupc
->times
));
253 state_mask
= groupc
->state_mask
;
254 state_start
= groupc
->state_start
;
255 } while (read_seqcount_retry(&groupc
->seq
, seq
));
257 /* Calculate state time deltas against the previous snapshot */
258 for (s
= 0; s
< NR_PSI_STATES
; s
++) {
261 * In addition to already concluded states, we also
262 * incorporate currently active states on the CPU,
263 * since states may last for many sampling periods.
265 * This way we keep our delta sampling buckets small
266 * (u32) and our reported pressure close to what's
267 * actually happening.
269 if (state_mask
& (1 << s
))
270 times
[s
] += now
- state_start
;
272 delta
= times
[s
] - groupc
->times_prev
[aggregator
][s
];
273 groupc
->times_prev
[aggregator
][s
] = times
[s
];
277 *pchanged_states
|= (1 << s
);
281 static void calc_avgs(unsigned long avg
[3], int missed_periods
,
282 u64 time
, u64 period
)
286 /* Fill in zeroes for periods of no activity */
287 if (missed_periods
) {
288 avg
[0] = calc_load_n(avg
[0], EXP_10s
, 0, missed_periods
);
289 avg
[1] = calc_load_n(avg
[1], EXP_60s
, 0, missed_periods
);
290 avg
[2] = calc_load_n(avg
[2], EXP_300s
, 0, missed_periods
);
293 /* Sample the most recent active period */
294 pct
= div_u64(time
* 100, period
);
296 avg
[0] = calc_load(avg
[0], EXP_10s
, pct
);
297 avg
[1] = calc_load(avg
[1], EXP_60s
, pct
);
298 avg
[2] = calc_load(avg
[2], EXP_300s
, pct
);
301 static void collect_percpu_times(struct psi_group
*group
,
302 enum psi_aggregators aggregator
,
303 u32
*pchanged_states
)
305 u64 deltas
[NR_PSI_STATES
- 1] = { 0, };
306 unsigned long nonidle_total
= 0;
307 u32 changed_states
= 0;
312 * Collect the per-cpu time buckets and average them into a
313 * single time sample that is normalized to wallclock time.
315 * For averaging, each CPU is weighted by its non-idle time in
316 * the sampling period. This eliminates artifacts from uneven
317 * loading, or even entirely idle CPUs.
319 for_each_possible_cpu(cpu
) {
320 u32 times
[NR_PSI_STATES
];
322 u32 cpu_changed_states
;
324 get_recent_times(group
, cpu
, aggregator
, times
,
325 &cpu_changed_states
);
326 changed_states
|= cpu_changed_states
;
328 nonidle
= nsecs_to_jiffies(times
[PSI_NONIDLE
]);
329 nonidle_total
+= nonidle
;
331 for (s
= 0; s
< PSI_NONIDLE
; s
++)
332 deltas
[s
] += (u64
)times
[s
] * nonidle
;
336 * Integrate the sample into the running statistics that are
337 * reported to userspace: the cumulative stall times and the
340 * Pressure percentages are sampled at PSI_FREQ. We might be
341 * called more often when the user polls more frequently than
342 * that; we might be called less often when there is no task
343 * activity, thus no data, and clock ticks are sporadic. The
344 * below handles both.
348 for (s
= 0; s
< NR_PSI_STATES
- 1; s
++)
349 group
->total
[aggregator
][s
] +=
350 div_u64(deltas
[s
], max(nonidle_total
, 1UL));
353 *pchanged_states
= changed_states
;
356 static u64
update_averages(struct psi_group
*group
, u64 now
)
358 unsigned long missed_periods
= 0;
364 expires
= group
->avg_next_update
;
365 if (now
- expires
>= psi_period
)
366 missed_periods
= div_u64(now
- expires
, psi_period
);
369 * The periodic clock tick can get delayed for various
370 * reasons, especially on loaded systems. To avoid clock
371 * drift, we schedule the clock in fixed psi_period intervals.
372 * But the deltas we sample out of the per-cpu buckets above
373 * are based on the actual time elapsing between clock ticks.
375 avg_next_update
= expires
+ ((1 + missed_periods
) * psi_period
);
376 period
= now
- (group
->avg_last_update
+ (missed_periods
* psi_period
));
377 group
->avg_last_update
= now
;
379 for (s
= 0; s
< NR_PSI_STATES
- 1; s
++) {
382 sample
= group
->total
[PSI_AVGS
][s
] - group
->avg_total
[s
];
384 * Due to the lockless sampling of the time buckets,
385 * recorded time deltas can slip into the next period,
386 * which under full pressure can result in samples in
387 * excess of the period length.
389 * We don't want to report non-sensical pressures in
390 * excess of 100%, nor do we want to drop such events
391 * on the floor. Instead we punt any overage into the
392 * future until pressure subsides. By doing this we
393 * don't underreport the occurring pressure curve, we
394 * just report it delayed by one period length.
396 * The error isn't cumulative. As soon as another
397 * delta slips from a period P to P+1, by definition
398 * it frees up its time T in P.
402 group
->avg_total
[s
] += sample
;
403 calc_avgs(group
->avg
[s
], missed_periods
, sample
, period
);
406 return avg_next_update
;
409 static void psi_avgs_work(struct work_struct
*work
)
411 struct delayed_work
*dwork
;
412 struct psi_group
*group
;
417 dwork
= to_delayed_work(work
);
418 group
= container_of(dwork
, struct psi_group
, avgs_work
);
420 mutex_lock(&group
->avgs_lock
);
424 collect_percpu_times(group
, PSI_AVGS
, &changed_states
);
425 nonidle
= changed_states
& (1 << PSI_NONIDLE
);
427 * If there is task activity, periodically fold the per-cpu
428 * times and feed samples into the running averages. If things
429 * are idle and there is no data to process, stop the clock.
430 * Once restarted, we'll catch up the running averages in one
431 * go - see calc_avgs() and missed_periods.
433 if (now
>= group
->avg_next_update
)
434 group
->avg_next_update
= update_averages(group
, now
);
437 schedule_delayed_work(dwork
, nsecs_to_jiffies(
438 group
->avg_next_update
- now
) + 1);
441 mutex_unlock(&group
->avgs_lock
);
444 /* Trigger tracking window manupulations */
445 static void window_reset(struct psi_window
*win
, u64 now
, u64 value
,
448 win
->start_time
= now
;
449 win
->start_value
= value
;
450 win
->prev_growth
= prev_growth
;
454 * PSI growth tracking window update and growth calculation routine.
456 * This approximates a sliding tracking window by interpolating
457 * partially elapsed windows using historical growth data from the
458 * previous intervals. This minimizes memory requirements (by not storing
459 * all the intermediate values in the previous window) and simplifies
460 * the calculations. It works well because PSI signal changes only in
461 * positive direction and over relatively small window sizes the growth
462 * is close to linear.
464 static u64
window_update(struct psi_window
*win
, u64 now
, u64 value
)
469 elapsed
= now
- win
->start_time
;
470 growth
= value
- win
->start_value
;
472 * After each tracking window passes win->start_value and
473 * win->start_time get reset and win->prev_growth stores
474 * the average per-window growth of the previous window.
475 * win->prev_growth is then used to interpolate additional
476 * growth from the previous window assuming it was linear.
478 if (elapsed
> win
->size
)
479 window_reset(win
, now
, value
, growth
);
483 remaining
= win
->size
- elapsed
;
484 growth
+= div64_u64(win
->prev_growth
* remaining
, win
->size
);
490 static void init_triggers(struct psi_group
*group
, u64 now
)
492 struct psi_trigger
*t
;
494 list_for_each_entry(t
, &group
->triggers
, node
)
495 window_reset(&t
->win
, now
,
496 group
->total
[PSI_POLL
][t
->state
], 0);
497 memcpy(group
->polling_total
, group
->total
[PSI_POLL
],
498 sizeof(group
->polling_total
));
499 group
->polling_next_update
= now
+ group
->poll_min_period
;
502 static u64
update_triggers(struct psi_group
*group
, u64 now
)
504 struct psi_trigger
*t
;
505 bool new_stall
= false;
506 u64
*total
= group
->total
[PSI_POLL
];
509 * On subsequent updates, calculate growth deltas and let
510 * watchers know when their specified thresholds are exceeded.
512 list_for_each_entry(t
, &group
->triggers
, node
) {
515 /* Check for stall activity */
516 if (group
->polling_total
[t
->state
] == total
[t
->state
])
520 * Multiple triggers might be looking at the same state,
521 * remember to update group->polling_total[] once we've
522 * been through all of them. Also remember to extend the
523 * polling time if we see new stall activity.
527 /* Calculate growth since last update */
528 growth
= window_update(&t
->win
, now
, total
[t
->state
]);
529 if (growth
< t
->threshold
)
532 /* Limit event signaling to once per window */
533 if (now
< t
->last_event_time
+ t
->win
.size
)
536 /* Generate an event */
537 if (cmpxchg(&t
->event
, 0, 1) == 0)
538 wake_up_interruptible(&t
->event_wait
);
539 t
->last_event_time
= now
;
543 memcpy(group
->polling_total
, total
,
544 sizeof(group
->polling_total
));
546 return now
+ group
->poll_min_period
;
549 /* Schedule polling if it's not already scheduled. */
550 static void psi_schedule_poll_work(struct psi_group
*group
, unsigned long delay
)
552 struct task_struct
*task
;
555 * Do not reschedule if already scheduled.
556 * Possible race with a timer scheduled after this check but before
557 * mod_timer below can be tolerated because group->polling_next_update
558 * will keep updates on schedule.
560 if (timer_pending(&group
->poll_timer
))
565 task
= rcu_dereference(group
->poll_task
);
567 * kworker might be NULL in case psi_trigger_destroy races with
568 * psi_task_change (hotpath) which can't use locks
571 mod_timer(&group
->poll_timer
, jiffies
+ delay
);
576 static void psi_poll_work(struct psi_group
*group
)
581 mutex_lock(&group
->trigger_lock
);
585 collect_percpu_times(group
, PSI_POLL
, &changed_states
);
587 if (changed_states
& group
->poll_states
) {
588 /* Initialize trigger windows when entering polling mode */
589 if (now
> group
->polling_until
)
590 init_triggers(group
, now
);
593 * Keep the monitor active for at least the duration of the
594 * minimum tracking window as long as monitor states are
597 group
->polling_until
= now
+
598 group
->poll_min_period
* UPDATES_PER_WINDOW
;
601 if (now
> group
->polling_until
) {
602 group
->polling_next_update
= ULLONG_MAX
;
606 if (now
>= group
->polling_next_update
)
607 group
->polling_next_update
= update_triggers(group
, now
);
609 psi_schedule_poll_work(group
,
610 nsecs_to_jiffies(group
->polling_next_update
- now
) + 1);
613 mutex_unlock(&group
->trigger_lock
);
616 static int psi_poll_worker(void *data
)
618 struct psi_group
*group
= (struct psi_group
*)data
;
620 sched_set_fifo_low(current
);
623 wait_event_interruptible(group
->poll_wait
,
624 atomic_cmpxchg(&group
->poll_wakeup
, 1, 0) ||
625 kthread_should_stop());
626 if (kthread_should_stop())
629 psi_poll_work(group
);
634 static void poll_timer_fn(struct timer_list
*t
)
636 struct psi_group
*group
= from_timer(group
, t
, poll_timer
);
638 atomic_set(&group
->poll_wakeup
, 1);
639 wake_up_interruptible(&group
->poll_wait
);
642 static void record_times(struct psi_group_cpu
*groupc
, int cpu
,
648 now
= cpu_clock(cpu
);
649 delta
= now
- groupc
->state_start
;
650 groupc
->state_start
= now
;
652 if (groupc
->state_mask
& (1 << PSI_IO_SOME
)) {
653 groupc
->times
[PSI_IO_SOME
] += delta
;
654 if (groupc
->state_mask
& (1 << PSI_IO_FULL
))
655 groupc
->times
[PSI_IO_FULL
] += delta
;
658 if (groupc
->state_mask
& (1 << PSI_MEM_SOME
)) {
659 groupc
->times
[PSI_MEM_SOME
] += delta
;
660 if (groupc
->state_mask
& (1 << PSI_MEM_FULL
))
661 groupc
->times
[PSI_MEM_FULL
] += delta
;
662 else if (memstall_tick
) {
665 * Since we care about lost potential, a
666 * memstall is FULL when there are no other
667 * working tasks, but also when the CPU is
668 * actively reclaiming and nothing productive
669 * could run even if it were runnable.
671 * When the timer tick sees a reclaiming CPU,
672 * regardless of runnable tasks, sample a FULL
673 * tick (or less if it hasn't been a full tick
674 * since the last state change).
676 sample
= min(delta
, (u32
)jiffies_to_nsecs(1));
677 groupc
->times
[PSI_MEM_FULL
] += sample
;
681 if (groupc
->state_mask
& (1 << PSI_CPU_SOME
))
682 groupc
->times
[PSI_CPU_SOME
] += delta
;
684 if (groupc
->state_mask
& (1 << PSI_NONIDLE
))
685 groupc
->times
[PSI_NONIDLE
] += delta
;
688 static void psi_group_change(struct psi_group
*group
, int cpu
,
689 unsigned int clear
, unsigned int set
,
692 struct psi_group_cpu
*groupc
;
697 groupc
= per_cpu_ptr(group
->pcpu
, cpu
);
700 * First we assess the aggregate resource states this CPU's
701 * tasks have been in since the last change, and account any
702 * SOME and FULL time these may have resulted in.
704 * Then we update the task counts according to the state
705 * change requested through the @clear and @set bits.
707 write_seqcount_begin(&groupc
->seq
);
709 record_times(groupc
, cpu
, false);
711 for (t
= 0, m
= clear
; m
; m
&= ~(1 << t
), t
++) {
714 if (groupc
->tasks
[t
] == 0 && !psi_bug
) {
715 printk_deferred(KERN_ERR
"psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
716 cpu
, t
, groupc
->tasks
[0],
717 groupc
->tasks
[1], groupc
->tasks
[2],
718 groupc
->tasks
[3], clear
, set
);
724 for (t
= 0; set
; set
&= ~(1 << t
), t
++)
728 /* Calculate state mask representing active states */
729 for (s
= 0; s
< NR_PSI_STATES
; s
++) {
730 if (test_state(groupc
->tasks
, s
))
731 state_mask
|= (1 << s
);
733 groupc
->state_mask
= state_mask
;
735 write_seqcount_end(&groupc
->seq
);
737 if (state_mask
& group
->poll_states
)
738 psi_schedule_poll_work(group
, 1);
740 if (wake_clock
&& !delayed_work_pending(&group
->avgs_work
))
741 schedule_delayed_work(&group
->avgs_work
, PSI_FREQ
);
744 static struct psi_group
*iterate_groups(struct task_struct
*task
, void **iter
)
746 #ifdef CONFIG_CGROUPS
747 struct cgroup
*cgroup
= NULL
;
750 cgroup
= task
->cgroups
->dfl_cgrp
;
751 else if (*iter
== &psi_system
)
754 cgroup
= cgroup_parent(*iter
);
756 if (cgroup
&& cgroup_parent(cgroup
)) {
758 return cgroup_psi(cgroup
);
768 static void psi_flags_change(struct task_struct
*task
, int clear
, int set
)
770 if (((task
->psi_flags
& set
) ||
771 (task
->psi_flags
& clear
) != clear
) &&
773 printk_deferred(KERN_ERR
"psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
774 task
->pid
, task
->comm
, task_cpu(task
),
775 task
->psi_flags
, clear
, set
);
779 task
->psi_flags
&= ~clear
;
780 task
->psi_flags
|= set
;
783 void psi_task_change(struct task_struct
*task
, int clear
, int set
)
785 int cpu
= task_cpu(task
);
786 struct psi_group
*group
;
787 bool wake_clock
= true;
793 psi_flags_change(task
, clear
, set
);
796 * Periodic aggregation shuts off if there is a period of no
797 * task changes, so we wake it back up if necessary. However,
798 * don't do this if the task change is the aggregation worker
799 * itself going to sleep, or we'll ping-pong forever.
801 if (unlikely((clear
& TSK_RUNNING
) &&
802 (task
->flags
& PF_WQ_WORKER
) &&
803 wq_worker_last_func(task
) == psi_avgs_work
))
806 while ((group
= iterate_groups(task
, &iter
)))
807 psi_group_change(group
, cpu
, clear
, set
, wake_clock
);
810 void psi_task_switch(struct task_struct
*prev
, struct task_struct
*next
,
813 struct psi_group
*group
, *common
= NULL
;
814 int cpu
= task_cpu(prev
);
818 psi_flags_change(next
, 0, TSK_ONCPU
);
820 * When moving state between tasks, the group that
821 * contains them both does not change: we can stop
822 * updating the tree once we reach the first common
823 * ancestor. Iterate @next's ancestors until we
824 * encounter @prev's state.
827 while ((group
= iterate_groups(next
, &iter
))) {
828 if (per_cpu_ptr(group
->pcpu
, cpu
)->tasks
[NR_ONCPU
]) {
833 psi_group_change(group
, cpu
, 0, TSK_ONCPU
, true);
838 * If this is a voluntary sleep, dequeue will have taken care
839 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We
840 * only need to deal with it during preemption.
846 psi_flags_change(prev
, TSK_ONCPU
, 0);
849 while ((group
= iterate_groups(prev
, &iter
)) && group
!= common
)
850 psi_group_change(group
, cpu
, TSK_ONCPU
, 0, true);
854 void psi_memstall_tick(struct task_struct
*task
, int cpu
)
856 struct psi_group
*group
;
859 while ((group
= iterate_groups(task
, &iter
))) {
860 struct psi_group_cpu
*groupc
;
862 groupc
= per_cpu_ptr(group
->pcpu
, cpu
);
863 write_seqcount_begin(&groupc
->seq
);
864 record_times(groupc
, cpu
, true);
865 write_seqcount_end(&groupc
->seq
);
870 * psi_memstall_enter - mark the beginning of a memory stall section
871 * @flags: flags to handle nested sections
873 * Marks the calling task as being stalled due to a lack of memory,
874 * such as waiting for a refault or performing reclaim.
876 void psi_memstall_enter(unsigned long *flags
)
881 if (static_branch_likely(&psi_disabled
))
884 *flags
= current
->in_memstall
;
888 * in_memstall setting & accounting needs to be atomic wrt
889 * changes to the task's scheduling state, otherwise we can
890 * race with CPU migration.
892 rq
= this_rq_lock_irq(&rf
);
894 current
->in_memstall
= 1;
895 psi_task_change(current
, 0, TSK_MEMSTALL
);
897 rq_unlock_irq(rq
, &rf
);
901 * psi_memstall_leave - mark the end of an memory stall section
902 * @flags: flags to handle nested memdelay sections
904 * Marks the calling task as no longer stalled due to lack of memory.
906 void psi_memstall_leave(unsigned long *flags
)
911 if (static_branch_likely(&psi_disabled
))
917 * in_memstall clearing & accounting needs to be atomic wrt
918 * changes to the task's scheduling state, otherwise we could
919 * race with CPU migration.
921 rq
= this_rq_lock_irq(&rf
);
923 current
->in_memstall
= 0;
924 psi_task_change(current
, TSK_MEMSTALL
, 0);
926 rq_unlock_irq(rq
, &rf
);
929 #ifdef CONFIG_CGROUPS
930 int psi_cgroup_alloc(struct cgroup
*cgroup
)
932 if (static_branch_likely(&psi_disabled
))
935 cgroup
->psi
.pcpu
= alloc_percpu(struct psi_group_cpu
);
936 if (!cgroup
->psi
.pcpu
)
938 group_init(&cgroup
->psi
);
942 void psi_cgroup_free(struct cgroup
*cgroup
)
944 if (static_branch_likely(&psi_disabled
))
947 cancel_delayed_work_sync(&cgroup
->psi
.avgs_work
);
948 free_percpu(cgroup
->psi
.pcpu
);
949 /* All triggers must be removed by now */
950 WARN_ONCE(cgroup
->psi
.poll_states
, "psi: trigger leak\n");
954 * cgroup_move_task - move task to a different cgroup
956 * @to: the target css_set
958 * Move task to a new cgroup and safely migrate its associated stall
959 * state between the different groups.
961 * This function acquires the task's rq lock to lock out concurrent
962 * changes to the task's scheduling state and - in case the task is
963 * running - concurrent changes to its stall state.
965 void cgroup_move_task(struct task_struct
*task
, struct css_set
*to
)
967 unsigned int task_flags
= 0;
971 if (static_branch_likely(&psi_disabled
)) {
973 * Lame to do this here, but the scheduler cannot be locked
974 * from the outside, so we move cgroups from inside sched/.
976 rcu_assign_pointer(task
->cgroups
, to
);
980 rq
= task_rq_lock(task
, &rf
);
982 if (task_on_rq_queued(task
)) {
983 task_flags
= TSK_RUNNING
;
984 if (task_current(rq
, task
))
985 task_flags
|= TSK_ONCPU
;
986 } else if (task
->in_iowait
)
987 task_flags
= TSK_IOWAIT
;
989 if (task
->in_memstall
)
990 task_flags
|= TSK_MEMSTALL
;
993 psi_task_change(task
, task_flags
, 0);
995 /* See comment above */
996 rcu_assign_pointer(task
->cgroups
, to
);
999 psi_task_change(task
, 0, task_flags
);
1001 task_rq_unlock(rq
, task
, &rf
);
1003 #endif /* CONFIG_CGROUPS */
1005 int psi_show(struct seq_file
*m
, struct psi_group
*group
, enum psi_res res
)
1010 if (static_branch_likely(&psi_disabled
))
1013 /* Update averages before reporting them */
1014 mutex_lock(&group
->avgs_lock
);
1015 now
= sched_clock();
1016 collect_percpu_times(group
, PSI_AVGS
, NULL
);
1017 if (now
>= group
->avg_next_update
)
1018 group
->avg_next_update
= update_averages(group
, now
);
1019 mutex_unlock(&group
->avgs_lock
);
1021 for (full
= 0; full
< 2 - (res
== PSI_CPU
); full
++) {
1022 unsigned long avg
[3];
1026 for (w
= 0; w
< 3; w
++)
1027 avg
[w
] = group
->avg
[res
* 2 + full
][w
];
1028 total
= div_u64(group
->total
[PSI_AVGS
][res
* 2 + full
],
1031 seq_printf(m
, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1032 full
? "full" : "some",
1033 LOAD_INT(avg
[0]), LOAD_FRAC(avg
[0]),
1034 LOAD_INT(avg
[1]), LOAD_FRAC(avg
[1]),
1035 LOAD_INT(avg
[2]), LOAD_FRAC(avg
[2]),
1042 static int psi_io_show(struct seq_file
*m
, void *v
)
1044 return psi_show(m
, &psi_system
, PSI_IO
);
1047 static int psi_memory_show(struct seq_file
*m
, void *v
)
1049 return psi_show(m
, &psi_system
, PSI_MEM
);
1052 static int psi_cpu_show(struct seq_file
*m
, void *v
)
1054 return psi_show(m
, &psi_system
, PSI_CPU
);
1057 static int psi_io_open(struct inode
*inode
, struct file
*file
)
1059 return single_open(file
, psi_io_show
, NULL
);
1062 static int psi_memory_open(struct inode
*inode
, struct file
*file
)
1064 return single_open(file
, psi_memory_show
, NULL
);
1067 static int psi_cpu_open(struct inode
*inode
, struct file
*file
)
1069 return single_open(file
, psi_cpu_show
, NULL
);
1072 struct psi_trigger
*psi_trigger_create(struct psi_group
*group
,
1073 char *buf
, size_t nbytes
, enum psi_res res
)
1075 struct psi_trigger
*t
;
1076 enum psi_states state
;
1080 if (static_branch_likely(&psi_disabled
))
1081 return ERR_PTR(-EOPNOTSUPP
);
1083 if (sscanf(buf
, "some %u %u", &threshold_us
, &window_us
) == 2)
1084 state
= PSI_IO_SOME
+ res
* 2;
1085 else if (sscanf(buf
, "full %u %u", &threshold_us
, &window_us
) == 2)
1086 state
= PSI_IO_FULL
+ res
* 2;
1088 return ERR_PTR(-EINVAL
);
1090 if (state
>= PSI_NONIDLE
)
1091 return ERR_PTR(-EINVAL
);
1093 if (window_us
< WINDOW_MIN_US
||
1094 window_us
> WINDOW_MAX_US
)
1095 return ERR_PTR(-EINVAL
);
1097 /* Check threshold */
1098 if (threshold_us
== 0 || threshold_us
> window_us
)
1099 return ERR_PTR(-EINVAL
);
1101 t
= kmalloc(sizeof(*t
), GFP_KERNEL
);
1103 return ERR_PTR(-ENOMEM
);
1107 t
->threshold
= threshold_us
* NSEC_PER_USEC
;
1108 t
->win
.size
= window_us
* NSEC_PER_USEC
;
1109 window_reset(&t
->win
, 0, 0, 0);
1112 t
->last_event_time
= 0;
1113 init_waitqueue_head(&t
->event_wait
);
1114 kref_init(&t
->refcount
);
1116 mutex_lock(&group
->trigger_lock
);
1118 if (!rcu_access_pointer(group
->poll_task
)) {
1119 struct task_struct
*task
;
1121 task
= kthread_create(psi_poll_worker
, group
, "psimon");
1124 mutex_unlock(&group
->trigger_lock
);
1125 return ERR_CAST(task
);
1127 atomic_set(&group
->poll_wakeup
, 0);
1128 init_waitqueue_head(&group
->poll_wait
);
1129 wake_up_process(task
);
1130 timer_setup(&group
->poll_timer
, poll_timer_fn
, 0);
1131 rcu_assign_pointer(group
->poll_task
, task
);
1134 list_add(&t
->node
, &group
->triggers
);
1135 group
->poll_min_period
= min(group
->poll_min_period
,
1136 div_u64(t
->win
.size
, UPDATES_PER_WINDOW
));
1137 group
->nr_triggers
[t
->state
]++;
1138 group
->poll_states
|= (1 << t
->state
);
1140 mutex_unlock(&group
->trigger_lock
);
1145 static void psi_trigger_destroy(struct kref
*ref
)
1147 struct psi_trigger
*t
= container_of(ref
, struct psi_trigger
, refcount
);
1148 struct psi_group
*group
= t
->group
;
1149 struct task_struct
*task_to_destroy
= NULL
;
1151 if (static_branch_likely(&psi_disabled
))
1155 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1156 * from under a polling process.
1158 wake_up_interruptible(&t
->event_wait
);
1160 mutex_lock(&group
->trigger_lock
);
1162 if (!list_empty(&t
->node
)) {
1163 struct psi_trigger
*tmp
;
1164 u64 period
= ULLONG_MAX
;
1167 group
->nr_triggers
[t
->state
]--;
1168 if (!group
->nr_triggers
[t
->state
])
1169 group
->poll_states
&= ~(1 << t
->state
);
1170 /* reset min update period for the remaining triggers */
1171 list_for_each_entry(tmp
, &group
->triggers
, node
)
1172 period
= min(period
, div_u64(tmp
->win
.size
,
1173 UPDATES_PER_WINDOW
));
1174 group
->poll_min_period
= period
;
1175 /* Destroy poll_task when the last trigger is destroyed */
1176 if (group
->poll_states
== 0) {
1177 group
->polling_until
= 0;
1178 task_to_destroy
= rcu_dereference_protected(
1180 lockdep_is_held(&group
->trigger_lock
));
1181 rcu_assign_pointer(group
->poll_task
, NULL
);
1185 mutex_unlock(&group
->trigger_lock
);
1188 * Wait for both *trigger_ptr from psi_trigger_replace and
1189 * poll_task RCUs to complete their read-side critical sections
1190 * before destroying the trigger and optionally the poll_task
1194 * Destroy the kworker after releasing trigger_lock to prevent a
1195 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1197 if (task_to_destroy
) {
1199 * After the RCU grace period has expired, the worker
1200 * can no longer be found through group->poll_task.
1201 * But it might have been already scheduled before
1202 * that - deschedule it cleanly before destroying it.
1204 del_timer_sync(&group
->poll_timer
);
1205 kthread_stop(task_to_destroy
);
1210 void psi_trigger_replace(void **trigger_ptr
, struct psi_trigger
*new)
1212 struct psi_trigger
*old
= *trigger_ptr
;
1214 if (static_branch_likely(&psi_disabled
))
1217 rcu_assign_pointer(*trigger_ptr
, new);
1219 kref_put(&old
->refcount
, psi_trigger_destroy
);
1222 __poll_t
psi_trigger_poll(void **trigger_ptr
,
1223 struct file
*file
, poll_table
*wait
)
1225 __poll_t ret
= DEFAULT_POLLMASK
;
1226 struct psi_trigger
*t
;
1228 if (static_branch_likely(&psi_disabled
))
1229 return DEFAULT_POLLMASK
| EPOLLERR
| EPOLLPRI
;
1233 t
= rcu_dereference(*(void __rcu __force
**)trigger_ptr
);
1236 return DEFAULT_POLLMASK
| EPOLLERR
| EPOLLPRI
;
1238 kref_get(&t
->refcount
);
1242 poll_wait(file
, &t
->event_wait
, wait
);
1244 if (cmpxchg(&t
->event
, 1, 0) == 1)
1247 kref_put(&t
->refcount
, psi_trigger_destroy
);
1252 static ssize_t
psi_write(struct file
*file
, const char __user
*user_buf
,
1253 size_t nbytes
, enum psi_res res
)
1257 struct seq_file
*seq
;
1258 struct psi_trigger
*new;
1260 if (static_branch_likely(&psi_disabled
))
1266 buf_size
= min(nbytes
, sizeof(buf
));
1267 if (copy_from_user(buf
, user_buf
, buf_size
))
1270 buf
[buf_size
- 1] = '\0';
1272 new = psi_trigger_create(&psi_system
, buf
, nbytes
, res
);
1274 return PTR_ERR(new);
1276 seq
= file
->private_data
;
1277 /* Take seq->lock to protect seq->private from concurrent writes */
1278 mutex_lock(&seq
->lock
);
1279 psi_trigger_replace(&seq
->private, new);
1280 mutex_unlock(&seq
->lock
);
1285 static ssize_t
psi_io_write(struct file
*file
, const char __user
*user_buf
,
1286 size_t nbytes
, loff_t
*ppos
)
1288 return psi_write(file
, user_buf
, nbytes
, PSI_IO
);
1291 static ssize_t
psi_memory_write(struct file
*file
, const char __user
*user_buf
,
1292 size_t nbytes
, loff_t
*ppos
)
1294 return psi_write(file
, user_buf
, nbytes
, PSI_MEM
);
1297 static ssize_t
psi_cpu_write(struct file
*file
, const char __user
*user_buf
,
1298 size_t nbytes
, loff_t
*ppos
)
1300 return psi_write(file
, user_buf
, nbytes
, PSI_CPU
);
1303 static __poll_t
psi_fop_poll(struct file
*file
, poll_table
*wait
)
1305 struct seq_file
*seq
= file
->private_data
;
1307 return psi_trigger_poll(&seq
->private, file
, wait
);
1310 static int psi_fop_release(struct inode
*inode
, struct file
*file
)
1312 struct seq_file
*seq
= file
->private_data
;
1314 psi_trigger_replace(&seq
->private, NULL
);
1315 return single_release(inode
, file
);
1318 static const struct proc_ops psi_io_proc_ops
= {
1319 .proc_open
= psi_io_open
,
1320 .proc_read
= seq_read
,
1321 .proc_lseek
= seq_lseek
,
1322 .proc_write
= psi_io_write
,
1323 .proc_poll
= psi_fop_poll
,
1324 .proc_release
= psi_fop_release
,
1327 static const struct proc_ops psi_memory_proc_ops
= {
1328 .proc_open
= psi_memory_open
,
1329 .proc_read
= seq_read
,
1330 .proc_lseek
= seq_lseek
,
1331 .proc_write
= psi_memory_write
,
1332 .proc_poll
= psi_fop_poll
,
1333 .proc_release
= psi_fop_release
,
1336 static const struct proc_ops psi_cpu_proc_ops
= {
1337 .proc_open
= psi_cpu_open
,
1338 .proc_read
= seq_read
,
1339 .proc_lseek
= seq_lseek
,
1340 .proc_write
= psi_cpu_write
,
1341 .proc_poll
= psi_fop_poll
,
1342 .proc_release
= psi_fop_release
,
1345 static int __init
psi_proc_init(void)
1348 proc_mkdir("pressure", NULL
);
1349 proc_create("pressure/io", 0, NULL
, &psi_io_proc_ops
);
1350 proc_create("pressure/memory", 0, NULL
, &psi_memory_proc_ops
);
1351 proc_create("pressure/cpu", 0, NULL
, &psi_cpu_proc_ops
);
1355 module_init(psi_proc_init
);