1 // SPDX-License-Identifier: GPL-2.0
3 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
5 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
6 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
7 * Copyright (C) 1999 - 2001 Kanoj Sarcar
12 #include <linux/init.h>
13 #include <linux/irq.h>
14 #include <linux/errno.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/random.h>
23 #include <linux/kernel.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/delay.h>
26 #include <linux/bitops.h>
28 #include <asm/bootinfo.h>
30 #include <asm/mipsregs.h>
32 #include <asm/processor.h>
33 #include <asm/sn/addrs.h>
34 #include <asm/sn/agent.h>
35 #include <asm/sn/arch.h>
36 #include <asm/sn/hub.h>
37 #include <asm/sn/intr.h>
40 * Linux has a controller-independent x86 interrupt architecture.
41 * every controller has a 'controller-template', that is used
42 * by the main code to do the right thing. Each driver-visible
43 * interrupt source is transparently wired to the appropriate
44 * controller. Thus drivers need not be aware of the
45 * interrupt-controller.
47 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
48 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
49 * (IO-APICs assumed to be messaging to Pentium local-APICs)
51 * the code is designed to be easily extended with new/different
52 * interrupt controllers, without having to do assembly magic.
55 extern asmlinkage
void ip27_irq(void);
60 static int ms1bit(unsigned long x
)
64 s
= 16; if (x
>> 16 == 0) s
= 0; b
+= s
; x
>>= s
;
65 s
= 8; if (x
>> 8 == 0) s
= 0; b
+= s
; x
>>= s
;
66 s
= 4; if (x
>> 4 == 0) s
= 0; b
+= s
; x
>>= s
;
67 s
= 2; if (x
>> 2 == 0) s
= 0; b
+= s
; x
>>= s
;
68 s
= 1; if (x
>> 1 == 0) s
= 0; b
+= s
;
74 * This code is unnecessarily complex, because we do
75 * intr enabling. Basically, once we grab the set of intrs we need
76 * to service, we must mask _all_ these interrupts; firstly, to make
77 * sure the same intr does not intr again, causing recursion that
78 * can lead to stack overflow. Secondly, we can not just mask the
79 * one intr we are do_IRQing, because the non-masked intrs in the
80 * first set might intr again, causing multiple servicings of the
81 * same intr. This effect is mostly seen for intercpu intrs.
85 static void ip27_do_irq_mask0(void)
88 hubreg_t pend0
, mask0
;
89 cpuid_t cpu
= smp_processor_id();
91 (cputoslice(cpu
) == 0) ? PI_INT_MASK0_A
: PI_INT_MASK0_B
;
93 /* copied from Irix intpend0() */
94 pend0
= LOCAL_HUB_L(PI_INT_PEND0
);
95 mask0
= LOCAL_HUB_L(pi_int_mask0
);
97 pend0
&= mask0
; /* Pick intrs we should look at */
101 swlevel
= ms1bit(pend0
);
103 if (pend0
& (1UL << CPU_RESCHED_A_IRQ
)) {
104 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
106 } else if (pend0
& (1UL << CPU_RESCHED_B_IRQ
)) {
107 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
109 } else if (pend0
& (1UL << CPU_CALL_A_IRQ
)) {
110 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
112 generic_smp_call_function_interrupt();
114 } else if (pend0
& (1UL << CPU_CALL_B_IRQ
)) {
115 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
117 generic_smp_call_function_interrupt();
122 /* "map" swlevel to irq */
123 struct slice_data
*si
= cpu_data
[cpu
].data
;
125 irq
= si
->level_to_irq
[swlevel
];
129 LOCAL_HUB_L(PI_INT_PEND0
);
132 static void ip27_do_irq_mask1(void)
135 hubreg_t pend1
, mask1
;
136 cpuid_t cpu
= smp_processor_id();
137 int pi_int_mask1
= (cputoslice(cpu
) == 0) ? PI_INT_MASK1_A
: PI_INT_MASK1_B
;
138 struct slice_data
*si
= cpu_data
[cpu
].data
;
140 /* copied from Irix intpend0() */
141 pend1
= LOCAL_HUB_L(PI_INT_PEND1
);
142 mask1
= LOCAL_HUB_L(pi_int_mask1
);
144 pend1
&= mask1
; /* Pick intrs we should look at */
148 swlevel
= ms1bit(pend1
);
149 /* "map" swlevel to irq */
150 irq
= si
->level_to_irq
[swlevel
];
151 LOCAL_HUB_CLR_INTR(swlevel
);
154 LOCAL_HUB_L(PI_INT_PEND1
);
157 static void ip27_prof_timer(void)
159 panic("CPU %d got a profiling interrupt", smp_processor_id());
162 static void ip27_hub_error(void)
164 panic("CPU %d got a hub error interrupt", smp_processor_id());
167 asmlinkage
void plat_irq_dispatch(void)
169 unsigned long pending
= read_c0_cause() & read_c0_status();
170 extern unsigned int rt_timer_irq
;
172 if (pending
& CAUSEF_IP4
)
173 do_IRQ(rt_timer_irq
);
174 else if (pending
& CAUSEF_IP2
) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
176 else if (pending
& CAUSEF_IP3
) /* PI_INT_PEND_1 */
178 else if (pending
& CAUSEF_IP5
)
180 else if (pending
& CAUSEF_IP6
)
184 void __init
arch_init_irq(void)
188 void install_ipi(void)
190 int slice
= LOCAL_HUB_L(PI_CPU_NUM
);
191 int cpu
= smp_processor_id();
192 struct slice_data
*si
= cpu_data
[cpu
].data
;
193 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
196 resched
= CPU_RESCHED_A_IRQ
+ slice
;
197 __set_bit(resched
, hub
->irq_alloc_mask
);
198 __set_bit(resched
, si
->irq_enable_mask
);
199 LOCAL_HUB_CLR_INTR(resched
);
201 call
= CPU_CALL_A_IRQ
+ slice
;
202 __set_bit(call
, hub
->irq_alloc_mask
);
203 __set_bit(call
, si
->irq_enable_mask
);
204 LOCAL_HUB_CLR_INTR(call
);
207 LOCAL_HUB_S(PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
208 LOCAL_HUB_S(PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
210 LOCAL_HUB_S(PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
211 LOCAL_HUB_S(PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);