1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
36 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include "../kernel/entry.h"
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
47 #define VM_FAULT_BADCONTEXT 0x010000
48 #define VM_FAULT_BADMAP 0x020000
49 #define VM_FAULT_BADACCESS 0x040000
50 #define VM_FAULT_SIGNAL 0x080000
51 #define VM_FAULT_PFAULT 0x100000
60 static unsigned long store_indication __read_mostly
;
62 static int __init
fault_init(void)
64 if (test_facility(75))
65 store_indication
= 0xc00;
68 early_initcall(fault_init
);
70 static inline int notify_page_fault(struct pt_regs
*regs
)
74 /* kprobe_running() needs smp_processor_id() */
75 if (kprobes_built_in() && !user_mode(regs
)) {
77 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
86 * Unlock any spinlocks which will prevent us from getting the
89 void bust_spinlocks(int yes
)
94 int loglevel_save
= console_loglevel
;
98 * OK, the message is on the console. Now we call printk()
99 * without oops_in_progress set so that printk will give klogd
100 * a poke. Hold onto your hats...
102 console_loglevel
= 15;
104 console_loglevel
= loglevel_save
;
109 * Find out which address space caused the exception.
110 * Access register mode is impossible, ignore space == 3.
112 static inline enum fault_type
get_fault_type(struct pt_regs
*regs
)
114 unsigned long trans_exc_code
;
116 trans_exc_code
= regs
->int_parm_long
& 3;
117 if (likely(trans_exc_code
== 0)) {
118 /* primary space exception */
119 if (IS_ENABLED(CONFIG_PGSTE
) &&
120 test_pt_regs_flag(regs
, PIF_GUEST_FAULT
))
122 if (current
->thread
.mm_segment
== USER_DS
)
126 if (trans_exc_code
== 2) {
127 /* secondary space exception */
128 if (current
->thread
.mm_segment
& 1) {
129 if (current
->thread
.mm_segment
== USER_DS_SACF
)
135 /* home space exception -> access via kernel ASCE */
139 static int bad_address(void *p
)
143 return probe_kernel_address((unsigned long *)p
, dummy
);
146 static void dump_pagetable(unsigned long asce
, unsigned long address
)
148 unsigned long *table
= __va(asce
& _ASCE_ORIGIN
);
150 pr_alert("AS:%016lx ", asce
);
151 switch (asce
& _ASCE_TYPE_MASK
) {
152 case _ASCE_TYPE_REGION1
:
153 table
+= (address
& _REGION1_INDEX
) >> _REGION1_SHIFT
;
154 if (bad_address(table
))
156 pr_cont("R1:%016lx ", *table
);
157 if (*table
& _REGION_ENTRY_INVALID
)
159 table
= (unsigned long *)(*table
& _REGION_ENTRY_ORIGIN
);
161 case _ASCE_TYPE_REGION2
:
162 table
+= (address
& _REGION2_INDEX
) >> _REGION2_SHIFT
;
163 if (bad_address(table
))
165 pr_cont("R2:%016lx ", *table
);
166 if (*table
& _REGION_ENTRY_INVALID
)
168 table
= (unsigned long *)(*table
& _REGION_ENTRY_ORIGIN
);
170 case _ASCE_TYPE_REGION3
:
171 table
+= (address
& _REGION3_INDEX
) >> _REGION3_SHIFT
;
172 if (bad_address(table
))
174 pr_cont("R3:%016lx ", *table
);
175 if (*table
& (_REGION_ENTRY_INVALID
| _REGION3_ENTRY_LARGE
))
177 table
= (unsigned long *)(*table
& _REGION_ENTRY_ORIGIN
);
179 case _ASCE_TYPE_SEGMENT
:
180 table
+= (address
& _SEGMENT_INDEX
) >> _SEGMENT_SHIFT
;
181 if (bad_address(table
))
183 pr_cont("S:%016lx ", *table
);
184 if (*table
& (_SEGMENT_ENTRY_INVALID
| _SEGMENT_ENTRY_LARGE
))
186 table
= (unsigned long *)(*table
& _SEGMENT_ENTRY_ORIGIN
);
188 table
+= (address
& _PAGE_INDEX
) >> _PAGE_SHIFT
;
189 if (bad_address(table
))
191 pr_cont("P:%016lx ", *table
);
199 static void dump_fault_info(struct pt_regs
*regs
)
203 pr_alert("Failing address: %016lx TEID: %016lx\n",
204 regs
->int_parm_long
& __FAIL_ADDR_MASK
, regs
->int_parm_long
);
205 pr_alert("Fault in ");
206 switch (regs
->int_parm_long
& 3) {
208 pr_cont("home space ");
211 pr_cont("secondary space ");
214 pr_cont("access register ");
217 pr_cont("primary space ");
220 pr_cont("mode while using ");
221 switch (get_fault_type(regs
)) {
223 asce
= S390_lowcore
.user_asce
;
227 asce
= S390_lowcore
.vdso_asce
;
231 asce
= ((struct gmap
*) S390_lowcore
.gmap
)->asce
;
235 asce
= S390_lowcore
.kernel_asce
;
240 dump_pagetable(asce
, regs
->int_parm_long
& __FAIL_ADDR_MASK
);
243 int show_unhandled_signals
= 1;
245 void report_user_fault(struct pt_regs
*regs
, long signr
, int is_mm_fault
)
247 if ((task_pid_nr(current
) > 1) && !show_unhandled_signals
)
249 if (!unhandled_signal(current
, signr
))
251 if (!printk_ratelimit())
253 printk(KERN_ALERT
"User process fault: interruption code %04x ilc:%d ",
254 regs
->int_code
& 0xffff, regs
->int_code
>> 17);
255 print_vma_addr(KERN_CONT
"in ", regs
->psw
.addr
);
256 printk(KERN_CONT
"\n");
258 dump_fault_info(regs
);
263 * Send SIGSEGV to task. This is an external routine
264 * to keep the stack usage of do_page_fault small.
266 static noinline
void do_sigsegv(struct pt_regs
*regs
, int si_code
)
268 report_user_fault(regs
, SIGSEGV
, 1);
269 force_sig_fault(SIGSEGV
, si_code
,
270 (void __user
*)(regs
->int_parm_long
& __FAIL_ADDR_MASK
),
274 static noinline
void do_no_context(struct pt_regs
*regs
)
276 const struct exception_table_entry
*fixup
;
278 /* Are we prepared to handle this kernel fault? */
279 fixup
= search_exception_tables(regs
->psw
.addr
);
281 regs
->psw
.addr
= extable_fixup(fixup
);
286 * Oops. The kernel tried to access some bad page. We'll have to
287 * terminate things with extreme prejudice.
289 if (get_fault_type(regs
) == KERNEL_FAULT
)
290 printk(KERN_ALERT
"Unable to handle kernel pointer dereference"
291 " in virtual kernel address space\n");
293 printk(KERN_ALERT
"Unable to handle kernel paging request"
294 " in virtual user address space\n");
295 dump_fault_info(regs
);
300 static noinline
void do_low_address(struct pt_regs
*regs
)
302 /* Low-address protection hit in kernel mode means
303 NULL pointer write access in kernel mode. */
304 if (regs
->psw
.mask
& PSW_MASK_PSTATE
) {
305 /* Low-address protection hit in user mode 'cannot happen'. */
306 die (regs
, "Low-address protection");
313 static noinline
void do_sigbus(struct pt_regs
*regs
)
316 * Send a sigbus, regardless of whether we were in kernel
319 force_sig_fault(SIGBUS
, BUS_ADRERR
,
320 (void __user
*)(regs
->int_parm_long
& __FAIL_ADDR_MASK
),
324 static noinline
int signal_return(struct pt_regs
*regs
)
329 rc
= __get_user(instruction
, (u16 __user
*) regs
->psw
.addr
);
332 if (instruction
== 0x0a77) {
333 set_pt_regs_flag(regs
, PIF_SYSCALL
);
334 regs
->int_code
= 0x00040077;
336 } else if (instruction
== 0x0aad) {
337 set_pt_regs_flag(regs
, PIF_SYSCALL
);
338 regs
->int_code
= 0x000400ad;
344 static noinline
void do_fault_error(struct pt_regs
*regs
, int access
,
350 case VM_FAULT_BADACCESS
:
351 if (access
== VM_EXEC
&& signal_return(regs
) == 0)
353 case VM_FAULT_BADMAP
:
354 /* Bad memory access. Check if it is kernel or user space. */
355 if (user_mode(regs
)) {
356 /* User mode accesses just cause a SIGSEGV */
357 si_code
= (fault
== VM_FAULT_BADMAP
) ?
358 SEGV_MAPERR
: SEGV_ACCERR
;
359 do_sigsegv(regs
, si_code
);
362 case VM_FAULT_BADCONTEXT
:
363 case VM_FAULT_PFAULT
:
366 case VM_FAULT_SIGNAL
:
367 if (!user_mode(regs
))
370 default: /* fault & VM_FAULT_ERROR */
371 if (fault
& VM_FAULT_OOM
) {
372 if (!user_mode(regs
))
375 pagefault_out_of_memory();
376 } else if (fault
& VM_FAULT_SIGSEGV
) {
377 /* Kernel mode? Handle exceptions or die */
378 if (!user_mode(regs
))
381 do_sigsegv(regs
, SEGV_MAPERR
);
382 } else if (fault
& VM_FAULT_SIGBUS
) {
383 /* Kernel mode? Handle exceptions or die */
384 if (!user_mode(regs
))
395 * This routine handles page faults. It determines the address,
396 * and the problem, and then passes it off to one of the appropriate
399 * interruption code (int_code):
400 * 04 Protection -> Write-Protection (suprression)
401 * 10 Segment translation -> Not present (nullification)
402 * 11 Page translation -> Not present (nullification)
403 * 3b Region third trans. -> Not present (nullification)
405 static inline vm_fault_t
do_exception(struct pt_regs
*regs
, int access
)
408 struct task_struct
*tsk
;
409 struct mm_struct
*mm
;
410 struct vm_area_struct
*vma
;
411 enum fault_type type
;
412 unsigned long trans_exc_code
;
413 unsigned long address
;
419 * The instruction that caused the program check has
420 * been nullified. Don't signal single step via SIGTRAP.
422 clear_pt_regs_flag(regs
, PIF_PER_TRAP
);
424 if (notify_page_fault(regs
))
428 trans_exc_code
= regs
->int_parm_long
;
431 * Verify that the fault happened in user space, that
432 * we are not in an interrupt and that there is a
435 fault
= VM_FAULT_BADCONTEXT
;
436 type
= get_fault_type(regs
);
441 fault
= VM_FAULT_BADMAP
;
445 if (faulthandler_disabled() || !mm
)
450 address
= trans_exc_code
& __FAIL_ADDR_MASK
;
451 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
452 flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
454 flags
|= FAULT_FLAG_USER
;
455 if (access
== VM_WRITE
|| (trans_exc_code
& store_indication
) == 0x400)
456 flags
|= FAULT_FLAG_WRITE
;
457 down_read(&mm
->mmap_sem
);
460 if (IS_ENABLED(CONFIG_PGSTE
) && type
== GMAP_FAULT
) {
461 gmap
= (struct gmap
*) S390_lowcore
.gmap
;
462 current
->thread
.gmap_addr
= address
;
463 current
->thread
.gmap_write_flag
= !!(flags
& FAULT_FLAG_WRITE
);
464 current
->thread
.gmap_int_code
= regs
->int_code
& 0xffff;
465 address
= __gmap_translate(gmap
, address
);
466 if (address
== -EFAULT
) {
467 fault
= VM_FAULT_BADMAP
;
470 if (gmap
->pfault_enabled
)
471 flags
|= FAULT_FLAG_RETRY_NOWAIT
;
475 fault
= VM_FAULT_BADMAP
;
476 vma
= find_vma(mm
, address
);
480 if (unlikely(vma
->vm_start
> address
)) {
481 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
483 if (expand_stack(vma
, address
))
488 * Ok, we have a good vm_area for this memory access, so
491 fault
= VM_FAULT_BADACCESS
;
492 if (unlikely(!(vma
->vm_flags
& access
)))
495 if (is_vm_hugetlb_page(vma
))
496 address
&= HPAGE_MASK
;
498 * If for any reason at all we couldn't handle the fault,
499 * make sure we exit gracefully rather than endlessly redo
502 fault
= handle_mm_fault(vma
, address
, flags
);
503 /* No reason to continue if interrupted by SIGKILL. */
504 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
)) {
505 fault
= VM_FAULT_SIGNAL
;
506 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
510 if (unlikely(fault
& VM_FAULT_ERROR
))
514 * Major/minor page fault accounting is only done on the
515 * initial attempt. If we go through a retry, it is extremely
516 * likely that the page will be found in page cache at that point.
518 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
519 if (fault
& VM_FAULT_MAJOR
) {
521 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
525 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
528 if (fault
& VM_FAULT_RETRY
) {
529 if (IS_ENABLED(CONFIG_PGSTE
) && gmap
&&
530 (flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
531 /* FAULT_FLAG_RETRY_NOWAIT has been set,
532 * mmap_sem has not been released */
533 current
->thread
.gmap_pfault
= 1;
534 fault
= VM_FAULT_PFAULT
;
537 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
539 flags
&= ~(FAULT_FLAG_ALLOW_RETRY
|
540 FAULT_FLAG_RETRY_NOWAIT
);
541 flags
|= FAULT_FLAG_TRIED
;
542 down_read(&mm
->mmap_sem
);
546 if (IS_ENABLED(CONFIG_PGSTE
) && gmap
) {
547 address
= __gmap_link(gmap
, current
->thread
.gmap_addr
,
549 if (address
== -EFAULT
) {
550 fault
= VM_FAULT_BADMAP
;
553 if (address
== -ENOMEM
) {
554 fault
= VM_FAULT_OOM
;
560 up_read(&mm
->mmap_sem
);
565 void do_protection_exception(struct pt_regs
*regs
)
567 unsigned long trans_exc_code
;
571 trans_exc_code
= regs
->int_parm_long
;
573 * Protection exceptions are suppressing, decrement psw address.
574 * The exception to this rule are aborted transactions, for these
575 * the PSW already points to the correct location.
577 if (!(regs
->int_code
& 0x200))
578 regs
->psw
.addr
= __rewind_psw(regs
->psw
, regs
->int_code
>> 16);
580 * Check for low-address protection. This needs to be treated
581 * as a special case because the translation exception code
582 * field is not guaranteed to contain valid data in this case.
584 if (unlikely(!(trans_exc_code
& 4))) {
585 do_low_address(regs
);
588 if (unlikely(MACHINE_HAS_NX
&& (trans_exc_code
& 0x80))) {
589 regs
->int_parm_long
= (trans_exc_code
& ~PAGE_MASK
) |
590 (regs
->psw
.addr
& PAGE_MASK
);
592 fault
= VM_FAULT_BADACCESS
;
595 fault
= do_exception(regs
, access
);
598 do_fault_error(regs
, access
, fault
);
600 NOKPROBE_SYMBOL(do_protection_exception
);
602 void do_dat_exception(struct pt_regs
*regs
)
607 access
= VM_READ
| VM_EXEC
| VM_WRITE
;
608 fault
= do_exception(regs
, access
);
610 do_fault_error(regs
, access
, fault
);
612 NOKPROBE_SYMBOL(do_dat_exception
);
616 * 'pfault' pseudo page faults routines.
618 static int pfault_disable
;
620 static int __init
nopfault(char *str
)
626 __setup("nopfault", nopfault
);
628 struct pfault_refbk
{
637 } __attribute__ ((packed
, aligned(8)));
639 static struct pfault_refbk pfault_init_refbk
= {
644 .refgaddr
= __LC_LPP
,
645 .refselmk
= 1ULL << 48,
646 .refcmpmk
= 1ULL << 48,
647 .reserved
= __PF_RES_FIELD
650 int pfault_init(void)
656 diag_stat_inc(DIAG_STAT_X258
);
658 " diag %1,%0,0x258\n"
664 : "a" (&pfault_init_refbk
), "m" (pfault_init_refbk
) : "cc");
668 static struct pfault_refbk pfault_fini_refbk
= {
675 void pfault_fini(void)
680 diag_stat_inc(DIAG_STAT_X258
);
685 : : "a" (&pfault_fini_refbk
), "m" (pfault_fini_refbk
) : "cc");
688 static DEFINE_SPINLOCK(pfault_lock
);
689 static LIST_HEAD(pfault_list
);
691 #define PF_COMPLETE 0x0080
694 * The mechanism of our pfault code: if Linux is running as guest, runs a user
695 * space process and the user space process accesses a page that the host has
696 * paged out we get a pfault interrupt.
698 * This allows us, within the guest, to schedule a different process. Without
699 * this mechanism the host would have to suspend the whole virtual cpu until
700 * the page has been paged in.
702 * So when we get such an interrupt then we set the state of the current task
703 * to uninterruptible and also set the need_resched flag. Both happens within
704 * interrupt context(!). If we later on want to return to user space we
705 * recognize the need_resched flag and then call schedule(). It's not very
706 * obvious how this works...
708 * Of course we have a lot of additional fun with the completion interrupt (->
709 * host signals that a page of a process has been paged in and the process can
710 * continue to run). This interrupt can arrive on any cpu and, since we have
711 * virtual cpus, actually appear before the interrupt that signals that a page
714 static void pfault_interrupt(struct ext_code ext_code
,
715 unsigned int param32
, unsigned long param64
)
717 struct task_struct
*tsk
;
722 * Get the external interruption subcode & pfault initial/completion
723 * signal bit. VM stores this in the 'cpu address' field associated
724 * with the external interrupt.
726 subcode
= ext_code
.subcode
;
727 if ((subcode
& 0xff00) != __SUBCODE_MASK
)
729 inc_irq_stat(IRQEXT_PFL
);
730 /* Get the token (= pid of the affected task). */
731 pid
= param64
& LPP_PID_MASK
;
733 tsk
= find_task_by_pid_ns(pid
, &init_pid_ns
);
735 get_task_struct(tsk
);
739 spin_lock(&pfault_lock
);
740 if (subcode
& PF_COMPLETE
) {
741 /* signal bit is set -> a page has been swapped in by VM */
742 if (tsk
->thread
.pfault_wait
== 1) {
743 /* Initial interrupt was faster than the completion
744 * interrupt. pfault_wait is valid. Set pfault_wait
745 * back to zero and wake up the process. This can
746 * safely be done because the task is still sleeping
747 * and can't produce new pfaults. */
748 tsk
->thread
.pfault_wait
= 0;
749 list_del(&tsk
->thread
.list
);
750 wake_up_process(tsk
);
751 put_task_struct(tsk
);
753 /* Completion interrupt was faster than initial
754 * interrupt. Set pfault_wait to -1 so the initial
755 * interrupt doesn't put the task to sleep.
756 * If the task is not running, ignore the completion
757 * interrupt since it must be a leftover of a PFAULT
758 * CANCEL operation which didn't remove all pending
759 * completion interrupts. */
760 if (tsk
->state
== TASK_RUNNING
)
761 tsk
->thread
.pfault_wait
= -1;
764 /* signal bit not set -> a real page is missing. */
765 if (WARN_ON_ONCE(tsk
!= current
))
767 if (tsk
->thread
.pfault_wait
== 1) {
768 /* Already on the list with a reference: put to sleep */
770 } else if (tsk
->thread
.pfault_wait
== -1) {
771 /* Completion interrupt was faster than the initial
772 * interrupt (pfault_wait == -1). Set pfault_wait
773 * back to zero and exit. */
774 tsk
->thread
.pfault_wait
= 0;
776 /* Initial interrupt arrived before completion
777 * interrupt. Let the task sleep.
778 * An extra task reference is needed since a different
779 * cpu may set the task state to TASK_RUNNING again
780 * before the scheduler is reached. */
781 get_task_struct(tsk
);
782 tsk
->thread
.pfault_wait
= 1;
783 list_add(&tsk
->thread
.list
, &pfault_list
);
785 /* Since this must be a userspace fault, there
786 * is no kernel task state to trample. Rely on the
787 * return to userspace schedule() to block. */
788 __set_current_state(TASK_UNINTERRUPTIBLE
);
789 set_tsk_need_resched(tsk
);
790 set_preempt_need_resched();
794 spin_unlock(&pfault_lock
);
795 put_task_struct(tsk
);
798 static int pfault_cpu_dead(unsigned int cpu
)
800 struct thread_struct
*thread
, *next
;
801 struct task_struct
*tsk
;
803 spin_lock_irq(&pfault_lock
);
804 list_for_each_entry_safe(thread
, next
, &pfault_list
, list
) {
805 thread
->pfault_wait
= 0;
806 list_del(&thread
->list
);
807 tsk
= container_of(thread
, struct task_struct
, thread
);
808 wake_up_process(tsk
);
809 put_task_struct(tsk
);
811 spin_unlock_irq(&pfault_lock
);
815 static int __init
pfault_irq_init(void)
819 rc
= register_external_irq(EXT_IRQ_CP_SERVICE
, pfault_interrupt
);
822 rc
= pfault_init() == 0 ? 0 : -EOPNOTSUPP
;
825 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL
);
826 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD
, "s390/pfault:dead",
827 NULL
, pfault_cpu_dead
);
831 unregister_external_irq(EXT_IRQ_CP_SERVICE
, pfault_interrupt
);
836 early_initcall(pfault_irq_init
);
838 #endif /* CONFIG_PFAULT */