perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / arch / s390 / net / bpf_jit_comp.c
blobd7052cbe984f81c02d203a6b34e7af6d658bd4f9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
5 * Minimum build requirements:
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
13 * Copyright IBM Corp. 2012,2015
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <asm/cacheflush.h>
27 #include <asm/dis.h>
28 #include <asm/facility.h>
29 #include <asm/nospec-branch.h>
30 #include <asm/set_memory.h>
31 #include "bpf_jit.h"
33 struct bpf_jit {
34 u32 seen; /* Flags to remember seen eBPF instructions */
35 u32 seen_reg[16]; /* Array to remember which registers are used */
36 u32 *addrs; /* Array with relative instruction addresses */
37 u8 *prg_buf; /* Start of program */
38 int size; /* Size of program and literal pool */
39 int size_prg; /* Size of program */
40 int prg; /* Current position in program */
41 int lit_start; /* Start of literal pool */
42 int lit; /* Current position in literal pool */
43 int base_ip; /* Base address for literal pool */
44 int ret0_ip; /* Address of return 0 */
45 int exit_ip; /* Address of exit */
46 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
47 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
48 int tail_call_start; /* Tail call start offset */
49 int labels[1]; /* Labels for local jumps */
52 #define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
54 #define SEEN_MEM (1 << 0) /* use mem[] for temporary storage */
55 #define SEEN_RET0 (1 << 1) /* ret0_ip points to a valid return 0 */
56 #define SEEN_LITERAL (1 << 2) /* code uses literals */
57 #define SEEN_FUNC (1 << 3) /* calls C functions */
58 #define SEEN_TAIL_CALL (1 << 4) /* code uses tail calls */
59 #define SEEN_REG_AX (1 << 5) /* code uses constant blinding */
60 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
63 * s390 registers
65 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
66 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
67 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
68 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
69 #define REG_0 REG_W0 /* Register 0 */
70 #define REG_1 REG_W1 /* Register 1 */
71 #define REG_2 BPF_REG_1 /* Register 2 */
72 #define REG_14 BPF_REG_0 /* Register 14 */
75 * Mapping of BPF registers to s390 registers
77 static const int reg2hex[] = {
78 /* Return code */
79 [BPF_REG_0] = 14,
80 /* Function parameters */
81 [BPF_REG_1] = 2,
82 [BPF_REG_2] = 3,
83 [BPF_REG_3] = 4,
84 [BPF_REG_4] = 5,
85 [BPF_REG_5] = 6,
86 /* Call saved registers */
87 [BPF_REG_6] = 7,
88 [BPF_REG_7] = 8,
89 [BPF_REG_8] = 9,
90 [BPF_REG_9] = 10,
91 /* BPF stack pointer */
92 [BPF_REG_FP] = 13,
93 /* Register for blinding */
94 [BPF_REG_AX] = 12,
95 /* Work registers for s390x backend */
96 [REG_W0] = 0,
97 [REG_W1] = 1,
98 [REG_L] = 11,
99 [REG_15] = 15,
102 static inline u32 reg(u32 dst_reg, u32 src_reg)
104 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
107 static inline u32 reg_high(u32 reg)
109 return reg2hex[reg] << 4;
112 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
114 u32 r1 = reg2hex[b1];
116 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 jit->seen_reg[r1] = 1;
120 #define REG_SET_SEEN(b1) \
121 ({ \
122 reg_set_seen(jit, b1); \
125 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
128 * EMIT macros for code generation
131 #define _EMIT2(op) \
132 ({ \
133 if (jit->prg_buf) \
134 *(u16 *) (jit->prg_buf + jit->prg) = op; \
135 jit->prg += 2; \
138 #define EMIT2(op, b1, b2) \
139 ({ \
140 _EMIT2(op | reg(b1, b2)); \
141 REG_SET_SEEN(b1); \
142 REG_SET_SEEN(b2); \
145 #define _EMIT4(op) \
146 ({ \
147 if (jit->prg_buf) \
148 *(u32 *) (jit->prg_buf + jit->prg) = op; \
149 jit->prg += 4; \
152 #define EMIT4(op, b1, b2) \
153 ({ \
154 _EMIT4(op | reg(b1, b2)); \
155 REG_SET_SEEN(b1); \
156 REG_SET_SEEN(b2); \
159 #define EMIT4_RRF(op, b1, b2, b3) \
160 ({ \
161 _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
162 REG_SET_SEEN(b1); \
163 REG_SET_SEEN(b2); \
164 REG_SET_SEEN(b3); \
167 #define _EMIT4_DISP(op, disp) \
168 ({ \
169 unsigned int __disp = (disp) & 0xfff; \
170 _EMIT4(op | __disp); \
173 #define EMIT4_DISP(op, b1, b2, disp) \
174 ({ \
175 _EMIT4_DISP(op | reg_high(b1) << 16 | \
176 reg_high(b2) << 8, disp); \
177 REG_SET_SEEN(b1); \
178 REG_SET_SEEN(b2); \
181 #define EMIT4_IMM(op, b1, imm) \
182 ({ \
183 unsigned int __imm = (imm) & 0xffff; \
184 _EMIT4(op | reg_high(b1) << 16 | __imm); \
185 REG_SET_SEEN(b1); \
188 #define EMIT4_PCREL(op, pcrel) \
189 ({ \
190 long __pcrel = ((pcrel) >> 1) & 0xffff; \
191 _EMIT4(op | __pcrel); \
194 #define _EMIT6(op1, op2) \
195 ({ \
196 if (jit->prg_buf) { \
197 *(u32 *) (jit->prg_buf + jit->prg) = op1; \
198 *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
200 jit->prg += 6; \
203 #define _EMIT6_DISP(op1, op2, disp) \
204 ({ \
205 unsigned int __disp = (disp) & 0xfff; \
206 _EMIT6(op1 | __disp, op2); \
209 #define _EMIT6_DISP_LH(op1, op2, disp) \
210 ({ \
211 u32 _disp = (u32) disp; \
212 unsigned int __disp_h = _disp & 0xff000; \
213 unsigned int __disp_l = _disp & 0x00fff; \
214 _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
218 ({ \
219 _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
220 reg_high(b3) << 8, op2, disp); \
221 REG_SET_SEEN(b1); \
222 REG_SET_SEEN(b2); \
223 REG_SET_SEEN(b3); \
226 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
227 ({ \
228 int rel = (jit->labels[label] - jit->prg) >> 1; \
229 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
230 op2 | mask << 12); \
231 REG_SET_SEEN(b1); \
232 REG_SET_SEEN(b2); \
235 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
236 ({ \
237 int rel = (jit->labels[label] - jit->prg) >> 1; \
238 _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
239 (rel & 0xffff), op2 | (imm & 0xff) << 8); \
240 REG_SET_SEEN(b1); \
241 BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
244 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
245 ({ \
246 /* Branch instruction needs 6 bytes */ \
247 int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
248 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
249 REG_SET_SEEN(b1); \
250 REG_SET_SEEN(b2); \
253 #define EMIT6_PCREL_RILB(op, b, target) \
254 ({ \
255 int rel = (target - jit->prg) / 2; \
256 _EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff); \
257 REG_SET_SEEN(b); \
260 #define EMIT6_PCREL_RIL(op, target) \
261 ({ \
262 int rel = (target - jit->prg) / 2; \
263 _EMIT6(op | rel >> 16, rel & 0xffff); \
266 #define _EMIT6_IMM(op, imm) \
267 ({ \
268 unsigned int __imm = (imm); \
269 _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
272 #define EMIT6_IMM(op, b1, imm) \
273 ({ \
274 _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
275 REG_SET_SEEN(b1); \
278 #define EMIT_CONST_U32(val) \
279 ({ \
280 unsigned int ret; \
281 ret = jit->lit - jit->base_ip; \
282 jit->seen |= SEEN_LITERAL; \
283 if (jit->prg_buf) \
284 *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
285 jit->lit += 4; \
286 ret; \
289 #define EMIT_CONST_U64(val) \
290 ({ \
291 unsigned int ret; \
292 ret = jit->lit - jit->base_ip; \
293 jit->seen |= SEEN_LITERAL; \
294 if (jit->prg_buf) \
295 *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
296 jit->lit += 8; \
297 ret; \
300 #define EMIT_ZERO(b1) \
301 ({ \
302 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
303 EMIT4(0xb9160000, b1, b1); \
304 REG_SET_SEEN(b1); \
308 * Fill whole space with illegal instructions
310 static void jit_fill_hole(void *area, unsigned int size)
312 memset(area, 0, size);
316 * Save registers from "rs" (register start) to "re" (register end) on stack
318 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
320 u32 off = STK_OFF_R6 + (rs - 6) * 8;
322 if (rs == re)
323 /* stg %rs,off(%r15) */
324 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
325 else
326 /* stmg %rs,%re,off(%r15) */
327 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
331 * Restore registers from "rs" (register start) to "re" (register end) on stack
333 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
335 u32 off = STK_OFF_R6 + (rs - 6) * 8;
337 if (jit->seen & SEEN_STACK)
338 off += STK_OFF + stack_depth;
340 if (rs == re)
341 /* lg %rs,off(%r15) */
342 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
343 else
344 /* lmg %rs,%re,off(%r15) */
345 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
349 * Return first seen register (from start)
351 static int get_start(struct bpf_jit *jit, int start)
353 int i;
355 for (i = start; i <= 15; i++) {
356 if (jit->seen_reg[i])
357 return i;
359 return 0;
363 * Return last seen register (from start) (gap >= 2)
365 static int get_end(struct bpf_jit *jit, int start)
367 int i;
369 for (i = start; i < 15; i++) {
370 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
371 return i - 1;
373 return jit->seen_reg[15] ? 15 : 14;
376 #define REGS_SAVE 1
377 #define REGS_RESTORE 0
379 * Save and restore clobbered registers (6-15) on stack.
380 * We save/restore registers in chunks with gap >= 2 registers.
382 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
385 int re = 6, rs;
387 do {
388 rs = get_start(jit, re);
389 if (!rs)
390 break;
391 re = get_end(jit, rs + 1);
392 if (op == REGS_SAVE)
393 save_regs(jit, rs, re);
394 else
395 restore_regs(jit, rs, re, stack_depth);
396 re++;
397 } while (re <= 15);
401 * Emit function prologue
403 * Save registers and create stack frame if necessary.
404 * See stack frame layout desription in "bpf_jit.h"!
406 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
408 if (jit->seen & SEEN_TAIL_CALL) {
409 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
410 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
411 } else {
412 /* j tail_call_start: NOP if no tail calls are used */
413 EMIT4_PCREL(0xa7f40000, 6);
414 _EMIT2(0);
416 /* Tail calls have to skip above initialization */
417 jit->tail_call_start = jit->prg;
418 /* Save registers */
419 save_restore_regs(jit, REGS_SAVE, stack_depth);
420 /* Setup literal pool */
421 if (jit->seen & SEEN_LITERAL) {
422 /* basr %r13,0 */
423 EMIT2(0x0d00, REG_L, REG_0);
424 jit->base_ip = jit->prg;
426 /* Setup stack and backchain */
427 if (jit->seen & SEEN_STACK) {
428 if (jit->seen & SEEN_FUNC)
429 /* lgr %w1,%r15 (backchain) */
430 EMIT4(0xb9040000, REG_W1, REG_15);
431 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
432 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
433 /* aghi %r15,-STK_OFF */
434 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
435 if (jit->seen & SEEN_FUNC)
436 /* stg %w1,152(%r15) (backchain) */
437 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
438 REG_15, 152);
443 * Function epilogue
445 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
447 /* Return 0 */
448 if (jit->seen & SEEN_RET0) {
449 jit->ret0_ip = jit->prg;
450 /* lghi %b0,0 */
451 EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
453 jit->exit_ip = jit->prg;
454 /* Load exit code: lgr %r2,%b0 */
455 EMIT4(0xb9040000, REG_2, BPF_REG_0);
456 /* Restore registers */
457 save_restore_regs(jit, REGS_RESTORE, stack_depth);
458 if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable) {
459 jit->r14_thunk_ip = jit->prg;
460 /* Generate __s390_indirect_jump_r14 thunk */
461 if (test_facility(35)) {
462 /* exrl %r0,.+10 */
463 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
464 } else {
465 /* larl %r1,.+14 */
466 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
467 /* ex 0,0(%r1) */
468 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
470 /* j . */
471 EMIT4_PCREL(0xa7f40000, 0);
473 /* br %r14 */
474 _EMIT2(0x07fe);
476 if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable &&
477 (jit->seen & SEEN_FUNC)) {
478 jit->r1_thunk_ip = jit->prg;
479 /* Generate __s390_indirect_jump_r1 thunk */
480 if (test_facility(35)) {
481 /* exrl %r0,.+10 */
482 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
483 /* j . */
484 EMIT4_PCREL(0xa7f40000, 0);
485 /* br %r1 */
486 _EMIT2(0x07f1);
487 } else {
488 /* ex 0,S390_lowcore.br_r1_tampoline */
489 EMIT4_DISP(0x44000000, REG_0, REG_0,
490 offsetof(struct lowcore, br_r1_trampoline));
491 /* j . */
492 EMIT4_PCREL(0xa7f40000, 0);
498 * Compile one eBPF instruction into s390x code
500 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
501 * stack space for the large switch statement.
503 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
505 struct bpf_insn *insn = &fp->insnsi[i];
506 int jmp_off, last, insn_count = 1;
507 u32 dst_reg = insn->dst_reg;
508 u32 src_reg = insn->src_reg;
509 u32 *addrs = jit->addrs;
510 s32 imm = insn->imm;
511 s16 off = insn->off;
512 unsigned int mask;
514 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
515 jit->seen |= SEEN_REG_AX;
516 switch (insn->code) {
518 * BPF_MOV
520 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
521 /* llgfr %dst,%src */
522 EMIT4(0xb9160000, dst_reg, src_reg);
523 break;
524 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
525 /* lgr %dst,%src */
526 EMIT4(0xb9040000, dst_reg, src_reg);
527 break;
528 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
529 /* llilf %dst,imm */
530 EMIT6_IMM(0xc00f0000, dst_reg, imm);
531 break;
532 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
533 /* lgfi %dst,imm */
534 EMIT6_IMM(0xc0010000, dst_reg, imm);
535 break;
537 * BPF_LD 64
539 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
541 /* 16 byte instruction that uses two 'struct bpf_insn' */
542 u64 imm64;
544 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
545 /* lg %dst,<d(imm)>(%l) */
546 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
547 EMIT_CONST_U64(imm64));
548 insn_count = 2;
549 break;
552 * BPF_ADD
554 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
555 /* ar %dst,%src */
556 EMIT2(0x1a00, dst_reg, src_reg);
557 EMIT_ZERO(dst_reg);
558 break;
559 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
560 /* agr %dst,%src */
561 EMIT4(0xb9080000, dst_reg, src_reg);
562 break;
563 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
564 if (!imm)
565 break;
566 /* alfi %dst,imm */
567 EMIT6_IMM(0xc20b0000, dst_reg, imm);
568 EMIT_ZERO(dst_reg);
569 break;
570 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
571 if (!imm)
572 break;
573 /* agfi %dst,imm */
574 EMIT6_IMM(0xc2080000, dst_reg, imm);
575 break;
577 * BPF_SUB
579 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
580 /* sr %dst,%src */
581 EMIT2(0x1b00, dst_reg, src_reg);
582 EMIT_ZERO(dst_reg);
583 break;
584 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
585 /* sgr %dst,%src */
586 EMIT4(0xb9090000, dst_reg, src_reg);
587 break;
588 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
589 if (!imm)
590 break;
591 /* alfi %dst,-imm */
592 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
593 EMIT_ZERO(dst_reg);
594 break;
595 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
596 if (!imm)
597 break;
598 /* agfi %dst,-imm */
599 EMIT6_IMM(0xc2080000, dst_reg, -imm);
600 break;
602 * BPF_MUL
604 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
605 /* msr %dst,%src */
606 EMIT4(0xb2520000, dst_reg, src_reg);
607 EMIT_ZERO(dst_reg);
608 break;
609 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
610 /* msgr %dst,%src */
611 EMIT4(0xb90c0000, dst_reg, src_reg);
612 break;
613 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
614 if (imm == 1)
615 break;
616 /* msfi %r5,imm */
617 EMIT6_IMM(0xc2010000, dst_reg, imm);
618 EMIT_ZERO(dst_reg);
619 break;
620 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
621 if (imm == 1)
622 break;
623 /* msgfi %dst,imm */
624 EMIT6_IMM(0xc2000000, dst_reg, imm);
625 break;
627 * BPF_DIV / BPF_MOD
629 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
630 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
632 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
634 /* lhi %w0,0 */
635 EMIT4_IMM(0xa7080000, REG_W0, 0);
636 /* lr %w1,%dst */
637 EMIT2(0x1800, REG_W1, dst_reg);
638 /* dlr %w0,%src */
639 EMIT4(0xb9970000, REG_W0, src_reg);
640 /* llgfr %dst,%rc */
641 EMIT4(0xb9160000, dst_reg, rc_reg);
642 break;
644 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
645 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
647 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
649 /* lghi %w0,0 */
650 EMIT4_IMM(0xa7090000, REG_W0, 0);
651 /* lgr %w1,%dst */
652 EMIT4(0xb9040000, REG_W1, dst_reg);
653 /* dlgr %w0,%dst */
654 EMIT4(0xb9870000, REG_W0, src_reg);
655 /* lgr %dst,%rc */
656 EMIT4(0xb9040000, dst_reg, rc_reg);
657 break;
659 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
660 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
662 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
664 if (imm == 1) {
665 if (BPF_OP(insn->code) == BPF_MOD)
666 /* lhgi %dst,0 */
667 EMIT4_IMM(0xa7090000, dst_reg, 0);
668 break;
670 /* lhi %w0,0 */
671 EMIT4_IMM(0xa7080000, REG_W0, 0);
672 /* lr %w1,%dst */
673 EMIT2(0x1800, REG_W1, dst_reg);
674 /* dl %w0,<d(imm)>(%l) */
675 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
676 EMIT_CONST_U32(imm));
677 /* llgfr %dst,%rc */
678 EMIT4(0xb9160000, dst_reg, rc_reg);
679 break;
681 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
682 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
684 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
686 if (imm == 1) {
687 if (BPF_OP(insn->code) == BPF_MOD)
688 /* lhgi %dst,0 */
689 EMIT4_IMM(0xa7090000, dst_reg, 0);
690 break;
692 /* lghi %w0,0 */
693 EMIT4_IMM(0xa7090000, REG_W0, 0);
694 /* lgr %w1,%dst */
695 EMIT4(0xb9040000, REG_W1, dst_reg);
696 /* dlg %w0,<d(imm)>(%l) */
697 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
698 EMIT_CONST_U64(imm));
699 /* lgr %dst,%rc */
700 EMIT4(0xb9040000, dst_reg, rc_reg);
701 break;
704 * BPF_AND
706 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
707 /* nr %dst,%src */
708 EMIT2(0x1400, dst_reg, src_reg);
709 EMIT_ZERO(dst_reg);
710 break;
711 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
712 /* ngr %dst,%src */
713 EMIT4(0xb9800000, dst_reg, src_reg);
714 break;
715 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
716 /* nilf %dst,imm */
717 EMIT6_IMM(0xc00b0000, dst_reg, imm);
718 EMIT_ZERO(dst_reg);
719 break;
720 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
721 /* ng %dst,<d(imm)>(%l) */
722 EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
723 EMIT_CONST_U64(imm));
724 break;
726 * BPF_OR
728 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
729 /* or %dst,%src */
730 EMIT2(0x1600, dst_reg, src_reg);
731 EMIT_ZERO(dst_reg);
732 break;
733 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
734 /* ogr %dst,%src */
735 EMIT4(0xb9810000, dst_reg, src_reg);
736 break;
737 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
738 /* oilf %dst,imm */
739 EMIT6_IMM(0xc00d0000, dst_reg, imm);
740 EMIT_ZERO(dst_reg);
741 break;
742 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
743 /* og %dst,<d(imm)>(%l) */
744 EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
745 EMIT_CONST_U64(imm));
746 break;
748 * BPF_XOR
750 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
751 /* xr %dst,%src */
752 EMIT2(0x1700, dst_reg, src_reg);
753 EMIT_ZERO(dst_reg);
754 break;
755 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
756 /* xgr %dst,%src */
757 EMIT4(0xb9820000, dst_reg, src_reg);
758 break;
759 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
760 if (!imm)
761 break;
762 /* xilf %dst,imm */
763 EMIT6_IMM(0xc0070000, dst_reg, imm);
764 EMIT_ZERO(dst_reg);
765 break;
766 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
767 /* xg %dst,<d(imm)>(%l) */
768 EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
769 EMIT_CONST_U64(imm));
770 break;
772 * BPF_LSH
774 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
775 /* sll %dst,0(%src) */
776 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
777 EMIT_ZERO(dst_reg);
778 break;
779 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
780 /* sllg %dst,%dst,0(%src) */
781 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
782 break;
783 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
784 if (imm == 0)
785 break;
786 /* sll %dst,imm(%r0) */
787 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
788 EMIT_ZERO(dst_reg);
789 break;
790 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
791 if (imm == 0)
792 break;
793 /* sllg %dst,%dst,imm(%r0) */
794 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
795 break;
797 * BPF_RSH
799 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
800 /* srl %dst,0(%src) */
801 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
802 EMIT_ZERO(dst_reg);
803 break;
804 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
805 /* srlg %dst,%dst,0(%src) */
806 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
807 break;
808 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
809 if (imm == 0)
810 break;
811 /* srl %dst,imm(%r0) */
812 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
813 EMIT_ZERO(dst_reg);
814 break;
815 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
816 if (imm == 0)
817 break;
818 /* srlg %dst,%dst,imm(%r0) */
819 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
820 break;
822 * BPF_ARSH
824 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
825 /* srag %dst,%dst,0(%src) */
826 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
827 break;
828 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
829 if (imm == 0)
830 break;
831 /* srag %dst,%dst,imm(%r0) */
832 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
833 break;
835 * BPF_NEG
837 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
838 /* lcr %dst,%dst */
839 EMIT2(0x1300, dst_reg, dst_reg);
840 EMIT_ZERO(dst_reg);
841 break;
842 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
843 /* lcgr %dst,%dst */
844 EMIT4(0xb9130000, dst_reg, dst_reg);
845 break;
847 * BPF_FROM_BE/LE
849 case BPF_ALU | BPF_END | BPF_FROM_BE:
850 /* s390 is big endian, therefore only clear high order bytes */
851 switch (imm) {
852 case 16: /* dst = (u16) cpu_to_be16(dst) */
853 /* llghr %dst,%dst */
854 EMIT4(0xb9850000, dst_reg, dst_reg);
855 break;
856 case 32: /* dst = (u32) cpu_to_be32(dst) */
857 /* llgfr %dst,%dst */
858 EMIT4(0xb9160000, dst_reg, dst_reg);
859 break;
860 case 64: /* dst = (u64) cpu_to_be64(dst) */
861 break;
863 break;
864 case BPF_ALU | BPF_END | BPF_FROM_LE:
865 switch (imm) {
866 case 16: /* dst = (u16) cpu_to_le16(dst) */
867 /* lrvr %dst,%dst */
868 EMIT4(0xb91f0000, dst_reg, dst_reg);
869 /* srl %dst,16(%r0) */
870 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
871 /* llghr %dst,%dst */
872 EMIT4(0xb9850000, dst_reg, dst_reg);
873 break;
874 case 32: /* dst = (u32) cpu_to_le32(dst) */
875 /* lrvr %dst,%dst */
876 EMIT4(0xb91f0000, dst_reg, dst_reg);
877 /* llgfr %dst,%dst */
878 EMIT4(0xb9160000, dst_reg, dst_reg);
879 break;
880 case 64: /* dst = (u64) cpu_to_le64(dst) */
881 /* lrvgr %dst,%dst */
882 EMIT4(0xb90f0000, dst_reg, dst_reg);
883 break;
885 break;
887 * BPF_ST(X)
889 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
890 /* stcy %src,off(%dst) */
891 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
892 jit->seen |= SEEN_MEM;
893 break;
894 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
895 /* sthy %src,off(%dst) */
896 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
897 jit->seen |= SEEN_MEM;
898 break;
899 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
900 /* sty %src,off(%dst) */
901 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
902 jit->seen |= SEEN_MEM;
903 break;
904 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
905 /* stg %src,off(%dst) */
906 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
907 jit->seen |= SEEN_MEM;
908 break;
909 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
910 /* lhi %w0,imm */
911 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
912 /* stcy %w0,off(dst) */
913 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
914 jit->seen |= SEEN_MEM;
915 break;
916 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
917 /* lhi %w0,imm */
918 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
919 /* sthy %w0,off(dst) */
920 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
921 jit->seen |= SEEN_MEM;
922 break;
923 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
924 /* llilf %w0,imm */
925 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
926 /* sty %w0,off(%dst) */
927 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
928 jit->seen |= SEEN_MEM;
929 break;
930 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
931 /* lgfi %w0,imm */
932 EMIT6_IMM(0xc0010000, REG_W0, imm);
933 /* stg %w0,off(%dst) */
934 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
935 jit->seen |= SEEN_MEM;
936 break;
938 * BPF_STX XADD (atomic_add)
940 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
941 /* laal %w0,%src,off(%dst) */
942 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
943 dst_reg, off);
944 jit->seen |= SEEN_MEM;
945 break;
946 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
947 /* laalg %w0,%src,off(%dst) */
948 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
949 dst_reg, off);
950 jit->seen |= SEEN_MEM;
951 break;
953 * BPF_LDX
955 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
956 /* llgc %dst,0(off,%src) */
957 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
958 jit->seen |= SEEN_MEM;
959 break;
960 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
961 /* llgh %dst,0(off,%src) */
962 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
963 jit->seen |= SEEN_MEM;
964 break;
965 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
966 /* llgf %dst,off(%src) */
967 jit->seen |= SEEN_MEM;
968 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
969 break;
970 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
971 /* lg %dst,0(off,%src) */
972 jit->seen |= SEEN_MEM;
973 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
974 break;
976 * BPF_JMP / CALL
978 case BPF_JMP | BPF_CALL:
981 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
983 const u64 func = (u64)__bpf_call_base + imm;
985 REG_SET_SEEN(BPF_REG_5);
986 jit->seen |= SEEN_FUNC;
987 /* lg %w1,<d(imm)>(%l) */
988 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
989 EMIT_CONST_U64(func));
990 if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable) {
991 /* brasl %r14,__s390_indirect_jump_r1 */
992 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
993 } else {
994 /* basr %r14,%w1 */
995 EMIT2(0x0d00, REG_14, REG_W1);
997 /* lgr %b0,%r2: load return value into %b0 */
998 EMIT4(0xb9040000, BPF_REG_0, REG_2);
999 break;
1001 case BPF_JMP | BPF_TAIL_CALL:
1003 * Implicit input:
1004 * B1: pointer to ctx
1005 * B2: pointer to bpf_array
1006 * B3: index in bpf_array
1008 jit->seen |= SEEN_TAIL_CALL;
1011 * if (index >= array->map.max_entries)
1012 * goto out;
1015 /* llgf %w1,map.max_entries(%b2) */
1016 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1017 offsetof(struct bpf_array, map.max_entries));
1018 /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1019 EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1020 REG_W1, 0, 0xa);
1023 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1024 * goto out;
1027 if (jit->seen & SEEN_STACK)
1028 off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1029 else
1030 off = STK_OFF_TCCNT;
1031 /* lhi %w0,1 */
1032 EMIT4_IMM(0xa7080000, REG_W0, 1);
1033 /* laal %w1,%w0,off(%r15) */
1034 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1035 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1036 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1037 MAX_TAIL_CALL_CNT, 0, 0x2);
1040 * prog = array->ptrs[index];
1041 * if (prog == NULL)
1042 * goto out;
1045 /* sllg %r1,%b3,3: %r1 = index * 8 */
1046 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1047 /* lg %r1,prog(%b2,%r1) */
1048 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1049 REG_1, offsetof(struct bpf_array, ptrs));
1050 /* clgij %r1,0,0x8,label0 */
1051 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1054 * Restore registers before calling function
1056 save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1059 * goto *(prog->bpf_func + tail_call_start);
1062 /* lg %r1,bpf_func(%r1) */
1063 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1064 offsetof(struct bpf_prog, bpf_func));
1065 /* bc 0xf,tail_call_start(%r1) */
1066 _EMIT4(0x47f01000 + jit->tail_call_start);
1067 /* out: */
1068 jit->labels[0] = jit->prg;
1069 break;
1070 case BPF_JMP | BPF_EXIT: /* return b0 */
1071 last = (i == fp->len - 1) ? 1 : 0;
1072 if (last && !(jit->seen & SEEN_RET0))
1073 break;
1074 /* j <exit> */
1075 EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1076 break;
1078 * Branch relative (number of skipped instructions) to offset on
1079 * condition.
1081 * Condition code to mask mapping:
1083 * CC | Description | Mask
1084 * ------------------------------
1085 * 0 | Operands equal | 8
1086 * 1 | First operand low | 4
1087 * 2 | First operand high | 2
1088 * 3 | Unused | 1
1090 * For s390x relative branches: ip = ip + off_bytes
1091 * For BPF relative branches: insn = insn + off_insns + 1
1093 * For example for s390x with offset 0 we jump to the branch
1094 * instruction itself (loop) and for BPF with offset 0 we
1095 * branch to the instruction behind the branch.
1097 case BPF_JMP | BPF_JA: /* if (true) */
1098 mask = 0xf000; /* j */
1099 goto branch_oc;
1100 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1101 mask = 0x2000; /* jh */
1102 goto branch_ks;
1103 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1104 mask = 0x4000; /* jl */
1105 goto branch_ks;
1106 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1107 mask = 0xa000; /* jhe */
1108 goto branch_ks;
1109 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1110 mask = 0xc000; /* jle */
1111 goto branch_ks;
1112 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1113 mask = 0x2000; /* jh */
1114 goto branch_ku;
1115 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1116 mask = 0x4000; /* jl */
1117 goto branch_ku;
1118 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1119 mask = 0xa000; /* jhe */
1120 goto branch_ku;
1121 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1122 mask = 0xc000; /* jle */
1123 goto branch_ku;
1124 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1125 mask = 0x7000; /* jne */
1126 goto branch_ku;
1127 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1128 mask = 0x8000; /* je */
1129 goto branch_ku;
1130 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1131 mask = 0x7000; /* jnz */
1132 /* lgfi %w1,imm (load sign extend imm) */
1133 EMIT6_IMM(0xc0010000, REG_W1, imm);
1134 /* ngr %w1,%dst */
1135 EMIT4(0xb9800000, REG_W1, dst_reg);
1136 goto branch_oc;
1138 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1139 mask = 0x2000; /* jh */
1140 goto branch_xs;
1141 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1142 mask = 0x4000; /* jl */
1143 goto branch_xs;
1144 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1145 mask = 0xa000; /* jhe */
1146 goto branch_xs;
1147 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1148 mask = 0xc000; /* jle */
1149 goto branch_xs;
1150 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1151 mask = 0x2000; /* jh */
1152 goto branch_xu;
1153 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1154 mask = 0x4000; /* jl */
1155 goto branch_xu;
1156 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1157 mask = 0xa000; /* jhe */
1158 goto branch_xu;
1159 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1160 mask = 0xc000; /* jle */
1161 goto branch_xu;
1162 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1163 mask = 0x7000; /* jne */
1164 goto branch_xu;
1165 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1166 mask = 0x8000; /* je */
1167 goto branch_xu;
1168 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1169 mask = 0x7000; /* jnz */
1170 /* ngrk %w1,%dst,%src */
1171 EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1172 goto branch_oc;
1173 branch_ks:
1174 /* lgfi %w1,imm (load sign extend imm) */
1175 EMIT6_IMM(0xc0010000, REG_W1, imm);
1176 /* cgrj %dst,%w1,mask,off */
1177 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1178 break;
1179 branch_ku:
1180 /* lgfi %w1,imm (load sign extend imm) */
1181 EMIT6_IMM(0xc0010000, REG_W1, imm);
1182 /* clgrj %dst,%w1,mask,off */
1183 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1184 break;
1185 branch_xs:
1186 /* cgrj %dst,%src,mask,off */
1187 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1188 break;
1189 branch_xu:
1190 /* clgrj %dst,%src,mask,off */
1191 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1192 break;
1193 branch_oc:
1194 /* brc mask,jmp_off (branch instruction needs 4 bytes) */
1195 jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1196 EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1197 break;
1198 default: /* too complex, give up */
1199 pr_err("Unknown opcode %02x\n", insn->code);
1200 return -1;
1202 return insn_count;
1206 * Compile eBPF program into s390x code
1208 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1210 int i, insn_count;
1212 jit->lit = jit->lit_start;
1213 jit->prg = 0;
1215 bpf_jit_prologue(jit, fp->aux->stack_depth);
1216 for (i = 0; i < fp->len; i += insn_count) {
1217 insn_count = bpf_jit_insn(jit, fp, i);
1218 if (insn_count < 0)
1219 return -1;
1220 /* Next instruction address */
1221 jit->addrs[i + insn_count] = jit->prg;
1223 bpf_jit_epilogue(jit, fp->aux->stack_depth);
1225 jit->lit_start = jit->prg;
1226 jit->size = jit->lit;
1227 jit->size_prg = jit->prg;
1228 return 0;
1232 * Compile eBPF program "fp"
1234 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1236 struct bpf_prog *tmp, *orig_fp = fp;
1237 struct bpf_binary_header *header;
1238 bool tmp_blinded = false;
1239 struct bpf_jit jit;
1240 int pass;
1242 if (!fp->jit_requested)
1243 return orig_fp;
1245 tmp = bpf_jit_blind_constants(fp);
1247 * If blinding was requested and we failed during blinding,
1248 * we must fall back to the interpreter.
1250 if (IS_ERR(tmp))
1251 return orig_fp;
1252 if (tmp != fp) {
1253 tmp_blinded = true;
1254 fp = tmp;
1257 memset(&jit, 0, sizeof(jit));
1258 jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1259 if (jit.addrs == NULL) {
1260 fp = orig_fp;
1261 goto out;
1264 * Three initial passes:
1265 * - 1/2: Determine clobbered registers
1266 * - 3: Calculate program size and addrs arrray
1268 for (pass = 1; pass <= 3; pass++) {
1269 if (bpf_jit_prog(&jit, fp)) {
1270 fp = orig_fp;
1271 goto free_addrs;
1275 * Final pass: Allocate and generate program
1277 if (jit.size >= BPF_SIZE_MAX) {
1278 fp = orig_fp;
1279 goto free_addrs;
1281 header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1282 if (!header) {
1283 fp = orig_fp;
1284 goto free_addrs;
1286 if (bpf_jit_prog(&jit, fp)) {
1287 bpf_jit_binary_free(header);
1288 fp = orig_fp;
1289 goto free_addrs;
1291 if (bpf_jit_enable > 1) {
1292 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1293 print_fn_code(jit.prg_buf, jit.size_prg);
1295 bpf_jit_binary_lock_ro(header);
1296 fp->bpf_func = (void *) jit.prg_buf;
1297 fp->jited = 1;
1298 fp->jited_len = jit.size;
1299 free_addrs:
1300 kfree(jit.addrs);
1301 out:
1302 if (tmp_blinded)
1303 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1304 tmp : orig_fp);
1305 return fp;