perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / block / blk-core.c
blobbc6ea87d10e02cffcaedec7cc9d4567d88cdd6b6
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58 DEFINE_IDA(blk_queue_ida);
61 * For the allocated request tables
63 struct kmem_cache *request_cachep;
66 * For queue allocation
68 struct kmem_cache *blk_requestq_cachep;
71 * Controlling structure to kblockd
73 static struct workqueue_struct *kblockd_workqueue;
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 unsigned long flags;
84 spin_lock_irqsave(q->queue_lock, flags);
85 queue_flag_set(flag, q);
86 spin_unlock_irqrestore(q->queue_lock, flags);
88 EXPORT_SYMBOL(blk_queue_flag_set);
90 /**
91 * blk_queue_flag_clear - atomically clear a queue flag
92 * @flag: flag to be cleared
93 * @q: request queue
95 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
97 unsigned long flags;
99 spin_lock_irqsave(q->queue_lock, flags);
100 queue_flag_clear(flag, q);
101 spin_unlock_irqrestore(q->queue_lock, flags);
103 EXPORT_SYMBOL(blk_queue_flag_clear);
106 * blk_queue_flag_test_and_set - atomically test and set a queue flag
107 * @flag: flag to be set
108 * @q: request queue
110 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111 * the flag was already set.
113 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
115 unsigned long flags;
116 bool res;
118 spin_lock_irqsave(q->queue_lock, flags);
119 res = queue_flag_test_and_set(flag, q);
120 spin_unlock_irqrestore(q->queue_lock, flags);
122 return res;
124 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
127 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128 * @flag: flag to be cleared
129 * @q: request queue
131 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
132 * the flag was set.
134 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
136 unsigned long flags;
137 bool res;
139 spin_lock_irqsave(q->queue_lock, flags);
140 res = queue_flag_test_and_clear(flag, q);
141 spin_unlock_irqrestore(q->queue_lock, flags);
143 return res;
145 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
147 static void blk_clear_congested(struct request_list *rl, int sync)
149 #ifdef CONFIG_CGROUP_WRITEBACK
150 clear_wb_congested(rl->blkg->wb_congested, sync);
151 #else
153 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 * flip its congestion state for events on other blkcgs.
156 if (rl == &rl->q->root_rl)
157 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
158 #endif
161 static void blk_set_congested(struct request_list *rl, int sync)
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 set_wb_congested(rl->blkg->wb_congested, sync);
165 #else
166 /* see blk_clear_congested() */
167 if (rl == &rl->q->root_rl)
168 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
169 #endif
172 void blk_queue_congestion_threshold(struct request_queue *q)
174 int nr;
176 nr = q->nr_requests - (q->nr_requests / 8) + 1;
177 if (nr > q->nr_requests)
178 nr = q->nr_requests;
179 q->nr_congestion_on = nr;
181 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
182 if (nr < 1)
183 nr = 1;
184 q->nr_congestion_off = nr;
187 void blk_rq_init(struct request_queue *q, struct request *rq)
189 memset(rq, 0, sizeof(*rq));
191 INIT_LIST_HEAD(&rq->queuelist);
192 INIT_LIST_HEAD(&rq->timeout_list);
193 rq->cpu = -1;
194 rq->q = q;
195 rq->__sector = (sector_t) -1;
196 INIT_HLIST_NODE(&rq->hash);
197 RB_CLEAR_NODE(&rq->rb_node);
198 rq->tag = -1;
199 rq->internal_tag = -1;
200 rq->start_time_ns = ktime_get_ns();
201 rq->part = NULL;
203 EXPORT_SYMBOL(blk_rq_init);
205 static const struct {
206 int errno;
207 const char *name;
208 } blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
229 blk_status_t errno_to_blk_status(int errno)
231 int i;
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
238 return BLK_STS_IOERR;
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
242 int blk_status_to_errno(blk_status_t status)
244 int idx = (__force int)status;
246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 return -EIO;
248 return blk_errors[idx].errno;
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
252 static void print_req_error(struct request *req, blk_status_t status)
254 int idx = (__force int)status;
256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 return;
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 unsigned int nbytes, blk_status_t error)
268 if (error)
269 bio->bi_status = error;
271 if (unlikely(rq->rq_flags & RQF_QUIET))
272 bio_set_flag(bio, BIO_QUIET);
274 bio_advance(bio, nbytes);
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 bio_endio(bio);
281 void blk_dump_rq_flags(struct request *rq, char *msg)
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 (unsigned long long) rq->cmd_flags);
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
293 EXPORT_SYMBOL(blk_dump_rq_flags);
295 static void blk_delay_work(struct work_struct *work)
297 struct request_queue *q;
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
301 __blk_run_queue(q);
302 spin_unlock_irq(q->queue_lock);
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
310 * Description:
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
317 lockdep_assert_held(q->queue_lock);
318 WARN_ON_ONCE(q->mq_ops);
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
324 EXPORT_SYMBOL(blk_delay_queue);
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
335 void blk_start_queue_async(struct request_queue *q)
337 lockdep_assert_held(q->queue_lock);
338 WARN_ON_ONCE(q->mq_ops);
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
343 EXPORT_SYMBOL(blk_start_queue_async);
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
354 void blk_start_queue(struct request_queue *q)
356 lockdep_assert_held(q->queue_lock);
357 WARN_ON_ONCE(q->mq_ops);
359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 __blk_run_queue(q);
362 EXPORT_SYMBOL(blk_start_queue);
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
378 void blk_stop_queue(struct request_queue *q)
380 lockdep_assert_held(q->queue_lock);
381 WARN_ON_ONCE(q->mq_ops);
383 cancel_delayed_work(&q->delay_work);
384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
386 EXPORT_SYMBOL(blk_stop_queue);
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
406 void blk_sync_queue(struct request_queue *q)
408 del_timer_sync(&q->timeout);
409 cancel_work_sync(&q->timeout_work);
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
415 cancel_delayed_work_sync(&q->requeue_work);
416 queue_for_each_hw_ctx(q, hctx, i)
417 cancel_delayed_work_sync(&hctx->run_work);
418 } else {
419 cancel_delayed_work_sync(&q->delay_work);
422 EXPORT_SYMBOL(blk_sync_queue);
425 * blk_set_pm_only - increment pm_only counter
426 * @q: request queue pointer
428 void blk_set_pm_only(struct request_queue *q)
430 atomic_inc(&q->pm_only);
432 EXPORT_SYMBOL_GPL(blk_set_pm_only);
434 void blk_clear_pm_only(struct request_queue *q)
436 int pm_only;
438 pm_only = atomic_dec_return(&q->pm_only);
439 WARN_ON_ONCE(pm_only < 0);
440 if (pm_only == 0)
441 wake_up_all(&q->mq_freeze_wq);
443 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
446 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447 * @q: The queue to run
449 * Description:
450 * Invoke request handling on a queue if there are any pending requests.
451 * May be used to restart request handling after a request has completed.
452 * This variant runs the queue whether or not the queue has been
453 * stopped. Must be called with the queue lock held and interrupts
454 * disabled. See also @blk_run_queue.
456 inline void __blk_run_queue_uncond(struct request_queue *q)
458 lockdep_assert_held(q->queue_lock);
459 WARN_ON_ONCE(q->mq_ops);
461 if (unlikely(blk_queue_dead(q)))
462 return;
465 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 * the queue lock internally. As a result multiple threads may be
467 * running such a request function concurrently. Keep track of the
468 * number of active request_fn invocations such that blk_drain_queue()
469 * can wait until all these request_fn calls have finished.
471 q->request_fn_active++;
472 q->request_fn(q);
473 q->request_fn_active--;
475 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
478 * __blk_run_queue - run a single device queue
479 * @q: The queue to run
481 * Description:
482 * See @blk_run_queue.
484 void __blk_run_queue(struct request_queue *q)
486 lockdep_assert_held(q->queue_lock);
487 WARN_ON_ONCE(q->mq_ops);
489 if (unlikely(blk_queue_stopped(q)))
490 return;
492 __blk_run_queue_uncond(q);
494 EXPORT_SYMBOL(__blk_run_queue);
497 * blk_run_queue_async - run a single device queue in workqueue context
498 * @q: The queue to run
500 * Description:
501 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
502 * of us.
504 * Note:
505 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506 * has canceled q->delay_work, callers must hold the queue lock to avoid
507 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
509 void blk_run_queue_async(struct request_queue *q)
511 lockdep_assert_held(q->queue_lock);
512 WARN_ON_ONCE(q->mq_ops);
514 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
515 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
517 EXPORT_SYMBOL(blk_run_queue_async);
520 * blk_run_queue - run a single device queue
521 * @q: The queue to run
523 * Description:
524 * Invoke request handling on this queue, if it has pending work to do.
525 * May be used to restart queueing when a request has completed.
527 void blk_run_queue(struct request_queue *q)
529 unsigned long flags;
531 WARN_ON_ONCE(q->mq_ops);
533 spin_lock_irqsave(q->queue_lock, flags);
534 __blk_run_queue(q);
535 spin_unlock_irqrestore(q->queue_lock, flags);
537 EXPORT_SYMBOL(blk_run_queue);
539 void blk_put_queue(struct request_queue *q)
541 kobject_put(&q->kobj);
543 EXPORT_SYMBOL(blk_put_queue);
546 * __blk_drain_queue - drain requests from request_queue
547 * @q: queue to drain
548 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
550 * Drain requests from @q. If @drain_all is set, all requests are drained.
551 * If not, only ELVPRIV requests are drained. The caller is responsible
552 * for ensuring that no new requests which need to be drained are queued.
554 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
555 __releases(q->queue_lock)
556 __acquires(q->queue_lock)
558 int i;
560 lockdep_assert_held(q->queue_lock);
561 WARN_ON_ONCE(q->mq_ops);
563 while (true) {
564 bool drain = false;
567 * The caller might be trying to drain @q before its
568 * elevator is initialized.
570 if (q->elevator)
571 elv_drain_elevator(q);
573 blkcg_drain_queue(q);
576 * This function might be called on a queue which failed
577 * driver init after queue creation or is not yet fully
578 * active yet. Some drivers (e.g. fd and loop) get unhappy
579 * in such cases. Kick queue iff dispatch queue has
580 * something on it and @q has request_fn set.
582 if (!list_empty(&q->queue_head) && q->request_fn)
583 __blk_run_queue(q);
585 drain |= q->nr_rqs_elvpriv;
586 drain |= q->request_fn_active;
589 * Unfortunately, requests are queued at and tracked from
590 * multiple places and there's no single counter which can
591 * be drained. Check all the queues and counters.
593 if (drain_all) {
594 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
595 drain |= !list_empty(&q->queue_head);
596 for (i = 0; i < 2; i++) {
597 drain |= q->nr_rqs[i];
598 drain |= q->in_flight[i];
599 if (fq)
600 drain |= !list_empty(&fq->flush_queue[i]);
604 if (!drain)
605 break;
607 spin_unlock_irq(q->queue_lock);
609 msleep(10);
611 spin_lock_irq(q->queue_lock);
615 * With queue marked dead, any woken up waiter will fail the
616 * allocation path, so the wakeup chaining is lost and we're
617 * left with hung waiters. We need to wake up those waiters.
619 if (q->request_fn) {
620 struct request_list *rl;
622 blk_queue_for_each_rl(rl, q)
623 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
624 wake_up_all(&rl->wait[i]);
628 void blk_drain_queue(struct request_queue *q)
630 spin_lock_irq(q->queue_lock);
631 __blk_drain_queue(q, true);
632 spin_unlock_irq(q->queue_lock);
636 * blk_queue_bypass_start - enter queue bypass mode
637 * @q: queue of interest
639 * In bypass mode, only the dispatch FIFO queue of @q is used. This
640 * function makes @q enter bypass mode and drains all requests which were
641 * throttled or issued before. On return, it's guaranteed that no request
642 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643 * inside queue or RCU read lock.
645 void blk_queue_bypass_start(struct request_queue *q)
647 WARN_ON_ONCE(q->mq_ops);
649 spin_lock_irq(q->queue_lock);
650 q->bypass_depth++;
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652 spin_unlock_irq(q->queue_lock);
655 * Queues start drained. Skip actual draining till init is
656 * complete. This avoids lenghty delays during queue init which
657 * can happen many times during boot.
659 if (blk_queue_init_done(q)) {
660 spin_lock_irq(q->queue_lock);
661 __blk_drain_queue(q, false);
662 spin_unlock_irq(q->queue_lock);
664 /* ensure blk_queue_bypass() is %true inside RCU read lock */
665 synchronize_rcu();
668 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
671 * blk_queue_bypass_end - leave queue bypass mode
672 * @q: queue of interest
674 * Leave bypass mode and restore the normal queueing behavior.
676 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677 * this function is called for both blk-sq and blk-mq queues.
679 void blk_queue_bypass_end(struct request_queue *q)
681 spin_lock_irq(q->queue_lock);
682 if (!--q->bypass_depth)
683 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
684 WARN_ON_ONCE(q->bypass_depth < 0);
685 spin_unlock_irq(q->queue_lock);
687 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
689 void blk_set_queue_dying(struct request_queue *q)
691 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
694 * When queue DYING flag is set, we need to block new req
695 * entering queue, so we call blk_freeze_queue_start() to
696 * prevent I/O from crossing blk_queue_enter().
698 blk_freeze_queue_start(q);
700 if (q->mq_ops)
701 blk_mq_wake_waiters(q);
702 else {
703 struct request_list *rl;
705 spin_lock_irq(q->queue_lock);
706 blk_queue_for_each_rl(rl, q) {
707 if (rl->rq_pool) {
708 wake_up_all(&rl->wait[BLK_RW_SYNC]);
709 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
712 spin_unlock_irq(q->queue_lock);
715 /* Make blk_queue_enter() reexamine the DYING flag. */
716 wake_up_all(&q->mq_freeze_wq);
718 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
720 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721 void blk_exit_queue(struct request_queue *q)
724 * Since the I/O scheduler exit code may access cgroup information,
725 * perform I/O scheduler exit before disassociating from the block
726 * cgroup controller.
728 if (q->elevator) {
729 ioc_clear_queue(q);
730 elevator_exit(q, q->elevator);
731 q->elevator = NULL;
735 * Remove all references to @q from the block cgroup controller before
736 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 * e.g. blkcg_print_blkgs() to crash.
739 blkcg_exit_queue(q);
742 * Since the cgroup code may dereference the @q->backing_dev_info
743 * pointer, only decrease its reference count after having removed the
744 * association with the block cgroup controller.
746 bdi_put(q->backing_dev_info);
750 * blk_cleanup_queue - shutdown a request queue
751 * @q: request queue to shutdown
753 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754 * put it. All future requests will be failed immediately with -ENODEV.
756 void blk_cleanup_queue(struct request_queue *q)
758 spinlock_t *lock = q->queue_lock;
760 /* mark @q DYING, no new request or merges will be allowed afterwards */
761 mutex_lock(&q->sysfs_lock);
762 blk_set_queue_dying(q);
763 spin_lock_irq(lock);
766 * A dying queue is permanently in bypass mode till released. Note
767 * that, unlike blk_queue_bypass_start(), we aren't performing
768 * synchronize_rcu() after entering bypass mode to avoid the delay
769 * as some drivers create and destroy a lot of queues while
770 * probing. This is still safe because blk_release_queue() will be
771 * called only after the queue refcnt drops to zero and nothing,
772 * RCU or not, would be traversing the queue by then.
774 q->bypass_depth++;
775 queue_flag_set(QUEUE_FLAG_BYPASS, q);
777 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
778 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
779 queue_flag_set(QUEUE_FLAG_DYING, q);
780 spin_unlock_irq(lock);
781 mutex_unlock(&q->sysfs_lock);
784 * Drain all requests queued before DYING marking. Set DEAD flag to
785 * prevent that q->request_fn() gets invoked after draining finished.
787 blk_freeze_queue(q);
788 spin_lock_irq(lock);
789 queue_flag_set(QUEUE_FLAG_DEAD, q);
790 spin_unlock_irq(lock);
793 * make sure all in-progress dispatch are completed because
794 * blk_freeze_queue() can only complete all requests, and
795 * dispatch may still be in-progress since we dispatch requests
796 * from more than one contexts.
798 * No need to quiesce queue if it isn't initialized yet since
799 * blk_freeze_queue() should be enough for cases of passthrough
800 * request.
802 if (q->mq_ops && blk_queue_init_done(q))
803 blk_mq_quiesce_queue(q);
805 /* for synchronous bio-based driver finish in-flight integrity i/o */
806 blk_flush_integrity();
808 /* @q won't process any more request, flush async actions */
809 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
810 blk_sync_queue(q);
813 * I/O scheduler exit is only safe after the sysfs scheduler attribute
814 * has been removed.
816 WARN_ON_ONCE(q->kobj.state_in_sysfs);
818 blk_exit_queue(q);
820 if (q->mq_ops)
821 blk_mq_free_queue(q);
822 percpu_ref_exit(&q->q_usage_counter);
824 spin_lock_irq(lock);
825 if (q->queue_lock != &q->__queue_lock)
826 q->queue_lock = &q->__queue_lock;
827 spin_unlock_irq(lock);
829 /* @q is and will stay empty, shutdown and put */
830 blk_put_queue(q);
832 EXPORT_SYMBOL(blk_cleanup_queue);
834 /* Allocate memory local to the request queue */
835 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
837 struct request_queue *q = data;
839 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
842 static void free_request_simple(void *element, void *data)
844 kmem_cache_free(request_cachep, element);
847 static void *alloc_request_size(gfp_t gfp_mask, void *data)
849 struct request_queue *q = data;
850 struct request *rq;
852 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
853 q->node);
854 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
855 kfree(rq);
856 rq = NULL;
858 return rq;
861 static void free_request_size(void *element, void *data)
863 struct request_queue *q = data;
865 if (q->exit_rq_fn)
866 q->exit_rq_fn(q, element);
867 kfree(element);
870 int blk_init_rl(struct request_list *rl, struct request_queue *q,
871 gfp_t gfp_mask)
873 if (unlikely(rl->rq_pool) || q->mq_ops)
874 return 0;
876 rl->q = q;
877 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
878 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
879 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
880 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
882 if (q->cmd_size) {
883 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
884 alloc_request_size, free_request_size,
885 q, gfp_mask, q->node);
886 } else {
887 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
888 alloc_request_simple, free_request_simple,
889 q, gfp_mask, q->node);
891 if (!rl->rq_pool)
892 return -ENOMEM;
894 if (rl != &q->root_rl)
895 WARN_ON_ONCE(!blk_get_queue(q));
897 return 0;
900 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
902 if (rl->rq_pool) {
903 mempool_destroy(rl->rq_pool);
904 if (rl != &q->root_rl)
905 blk_put_queue(q);
909 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
911 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
913 EXPORT_SYMBOL(blk_alloc_queue);
916 * blk_queue_enter() - try to increase q->q_usage_counter
917 * @q: request queue pointer
918 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
920 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
922 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
924 while (true) {
925 bool success = false;
927 rcu_read_lock();
928 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
930 * The code that increments the pm_only counter is
931 * responsible for ensuring that that counter is
932 * globally visible before the queue is unfrozen.
934 if (pm || !blk_queue_pm_only(q)) {
935 success = true;
936 } else {
937 percpu_ref_put(&q->q_usage_counter);
940 rcu_read_unlock();
942 if (success)
943 return 0;
945 if (flags & BLK_MQ_REQ_NOWAIT)
946 return -EBUSY;
949 * read pair of barrier in blk_freeze_queue_start(),
950 * we need to order reading __PERCPU_REF_DEAD flag of
951 * .q_usage_counter and reading .mq_freeze_depth or
952 * queue dying flag, otherwise the following wait may
953 * never return if the two reads are reordered.
955 smp_rmb();
957 wait_event(q->mq_freeze_wq,
958 (atomic_read(&q->mq_freeze_depth) == 0 &&
959 (pm || (blk_pm_request_resume(q),
960 !blk_queue_pm_only(q)))) ||
961 blk_queue_dying(q));
962 if (blk_queue_dying(q))
963 return -ENODEV;
967 void blk_queue_exit(struct request_queue *q)
969 percpu_ref_put(&q->q_usage_counter);
972 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
974 struct request_queue *q =
975 container_of(ref, struct request_queue, q_usage_counter);
977 wake_up_all(&q->mq_freeze_wq);
980 static void blk_rq_timed_out_timer(struct timer_list *t)
982 struct request_queue *q = from_timer(q, t, timeout);
984 kblockd_schedule_work(&q->timeout_work);
988 * blk_alloc_queue_node - allocate a request queue
989 * @gfp_mask: memory allocation flags
990 * @node_id: NUMA node to allocate memory from
991 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
992 * serialize calls to the legacy .request_fn() callback. Ignored for
993 * blk-mq request queues.
995 * Note: pass the queue lock as the third argument to this function instead of
996 * setting the queue lock pointer explicitly to avoid triggering a sporadic
997 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
998 * the queue lock pointer must be set before blkcg_init_queue() is called.
1000 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1001 spinlock_t *lock)
1003 struct request_queue *q;
1004 int ret;
1006 q = kmem_cache_alloc_node(blk_requestq_cachep,
1007 gfp_mask | __GFP_ZERO, node_id);
1008 if (!q)
1009 return NULL;
1011 INIT_LIST_HEAD(&q->queue_head);
1012 q->last_merge = NULL;
1013 q->end_sector = 0;
1014 q->boundary_rq = NULL;
1016 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1017 if (q->id < 0)
1018 goto fail_q;
1020 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1021 if (ret)
1022 goto fail_id;
1024 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1025 if (!q->backing_dev_info)
1026 goto fail_split;
1028 q->stats = blk_alloc_queue_stats();
1029 if (!q->stats)
1030 goto fail_stats;
1032 q->backing_dev_info->ra_pages =
1033 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1034 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1035 q->backing_dev_info->name = "block";
1036 q->node = node_id;
1038 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1039 laptop_mode_timer_fn, 0);
1040 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1041 INIT_WORK(&q->timeout_work, NULL);
1042 INIT_LIST_HEAD(&q->timeout_list);
1043 INIT_LIST_HEAD(&q->icq_list);
1044 #ifdef CONFIG_BLK_CGROUP
1045 INIT_LIST_HEAD(&q->blkg_list);
1046 #endif
1047 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1049 kobject_init(&q->kobj, &blk_queue_ktype);
1051 #ifdef CONFIG_BLK_DEV_IO_TRACE
1052 mutex_init(&q->blk_trace_mutex);
1053 #endif
1054 mutex_init(&q->sysfs_lock);
1055 spin_lock_init(&q->__queue_lock);
1057 q->queue_lock = lock ? : &q->__queue_lock;
1060 * A queue starts its life with bypass turned on to avoid
1061 * unnecessary bypass on/off overhead and nasty surprises during
1062 * init. The initial bypass will be finished when the queue is
1063 * registered by blk_register_queue().
1065 q->bypass_depth = 1;
1066 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1068 init_waitqueue_head(&q->mq_freeze_wq);
1071 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1072 * See blk_register_queue() for details.
1074 if (percpu_ref_init(&q->q_usage_counter,
1075 blk_queue_usage_counter_release,
1076 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1077 goto fail_bdi;
1079 if (blkcg_init_queue(q))
1080 goto fail_ref;
1082 return q;
1084 fail_ref:
1085 percpu_ref_exit(&q->q_usage_counter);
1086 fail_bdi:
1087 blk_free_queue_stats(q->stats);
1088 fail_stats:
1089 bdi_put(q->backing_dev_info);
1090 fail_split:
1091 bioset_exit(&q->bio_split);
1092 fail_id:
1093 ida_simple_remove(&blk_queue_ida, q->id);
1094 fail_q:
1095 kmem_cache_free(blk_requestq_cachep, q);
1096 return NULL;
1098 EXPORT_SYMBOL(blk_alloc_queue_node);
1101 * blk_init_queue - prepare a request queue for use with a block device
1102 * @rfn: The function to be called to process requests that have been
1103 * placed on the queue.
1104 * @lock: Request queue spin lock
1106 * Description:
1107 * If a block device wishes to use the standard request handling procedures,
1108 * which sorts requests and coalesces adjacent requests, then it must
1109 * call blk_init_queue(). The function @rfn will be called when there
1110 * are requests on the queue that need to be processed. If the device
1111 * supports plugging, then @rfn may not be called immediately when requests
1112 * are available on the queue, but may be called at some time later instead.
1113 * Plugged queues are generally unplugged when a buffer belonging to one
1114 * of the requests on the queue is needed, or due to memory pressure.
1116 * @rfn is not required, or even expected, to remove all requests off the
1117 * queue, but only as many as it can handle at a time. If it does leave
1118 * requests on the queue, it is responsible for arranging that the requests
1119 * get dealt with eventually.
1121 * The queue spin lock must be held while manipulating the requests on the
1122 * request queue; this lock will be taken also from interrupt context, so irq
1123 * disabling is needed for it.
1125 * Function returns a pointer to the initialized request queue, or %NULL if
1126 * it didn't succeed.
1128 * Note:
1129 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1130 * when the block device is deactivated (such as at module unload).
1133 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1135 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1137 EXPORT_SYMBOL(blk_init_queue);
1139 struct request_queue *
1140 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1142 struct request_queue *q;
1144 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1145 if (!q)
1146 return NULL;
1148 q->request_fn = rfn;
1149 if (blk_init_allocated_queue(q) < 0) {
1150 blk_cleanup_queue(q);
1151 return NULL;
1154 return q;
1156 EXPORT_SYMBOL(blk_init_queue_node);
1158 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1161 int blk_init_allocated_queue(struct request_queue *q)
1163 WARN_ON_ONCE(q->mq_ops);
1165 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1166 if (!q->fq)
1167 return -ENOMEM;
1169 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1170 goto out_free_flush_queue;
1172 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1173 goto out_exit_flush_rq;
1175 INIT_WORK(&q->timeout_work, blk_timeout_work);
1176 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1179 * This also sets hw/phys segments, boundary and size
1181 blk_queue_make_request(q, blk_queue_bio);
1183 q->sg_reserved_size = INT_MAX;
1185 if (elevator_init(q))
1186 goto out_exit_flush_rq;
1187 return 0;
1189 out_exit_flush_rq:
1190 if (q->exit_rq_fn)
1191 q->exit_rq_fn(q, q->fq->flush_rq);
1192 out_free_flush_queue:
1193 blk_free_flush_queue(q->fq);
1194 q->fq = NULL;
1195 return -ENOMEM;
1197 EXPORT_SYMBOL(blk_init_allocated_queue);
1199 bool blk_get_queue(struct request_queue *q)
1201 if (likely(!blk_queue_dying(q))) {
1202 __blk_get_queue(q);
1203 return true;
1206 return false;
1208 EXPORT_SYMBOL(blk_get_queue);
1210 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1212 if (rq->rq_flags & RQF_ELVPRIV) {
1213 elv_put_request(rl->q, rq);
1214 if (rq->elv.icq)
1215 put_io_context(rq->elv.icq->ioc);
1218 mempool_free(rq, rl->rq_pool);
1222 * ioc_batching returns true if the ioc is a valid batching request and
1223 * should be given priority access to a request.
1225 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1227 if (!ioc)
1228 return 0;
1231 * Make sure the process is able to allocate at least 1 request
1232 * even if the batch times out, otherwise we could theoretically
1233 * lose wakeups.
1235 return ioc->nr_batch_requests == q->nr_batching ||
1236 (ioc->nr_batch_requests > 0
1237 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1241 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1242 * will cause the process to be a "batcher" on all queues in the system. This
1243 * is the behaviour we want though - once it gets a wakeup it should be given
1244 * a nice run.
1246 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1248 if (!ioc || ioc_batching(q, ioc))
1249 return;
1251 ioc->nr_batch_requests = q->nr_batching;
1252 ioc->last_waited = jiffies;
1255 static void __freed_request(struct request_list *rl, int sync)
1257 struct request_queue *q = rl->q;
1259 if (rl->count[sync] < queue_congestion_off_threshold(q))
1260 blk_clear_congested(rl, sync);
1262 if (rl->count[sync] + 1 <= q->nr_requests) {
1263 if (waitqueue_active(&rl->wait[sync]))
1264 wake_up(&rl->wait[sync]);
1266 blk_clear_rl_full(rl, sync);
1271 * A request has just been released. Account for it, update the full and
1272 * congestion status, wake up any waiters. Called under q->queue_lock.
1274 static void freed_request(struct request_list *rl, bool sync,
1275 req_flags_t rq_flags)
1277 struct request_queue *q = rl->q;
1279 q->nr_rqs[sync]--;
1280 rl->count[sync]--;
1281 if (rq_flags & RQF_ELVPRIV)
1282 q->nr_rqs_elvpriv--;
1284 __freed_request(rl, sync);
1286 if (unlikely(rl->starved[sync ^ 1]))
1287 __freed_request(rl, sync ^ 1);
1290 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1292 struct request_list *rl;
1293 int on_thresh, off_thresh;
1295 WARN_ON_ONCE(q->mq_ops);
1297 spin_lock_irq(q->queue_lock);
1298 q->nr_requests = nr;
1299 blk_queue_congestion_threshold(q);
1300 on_thresh = queue_congestion_on_threshold(q);
1301 off_thresh = queue_congestion_off_threshold(q);
1303 blk_queue_for_each_rl(rl, q) {
1304 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1305 blk_set_congested(rl, BLK_RW_SYNC);
1306 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1307 blk_clear_congested(rl, BLK_RW_SYNC);
1309 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1310 blk_set_congested(rl, BLK_RW_ASYNC);
1311 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1312 blk_clear_congested(rl, BLK_RW_ASYNC);
1314 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1315 blk_set_rl_full(rl, BLK_RW_SYNC);
1316 } else {
1317 blk_clear_rl_full(rl, BLK_RW_SYNC);
1318 wake_up(&rl->wait[BLK_RW_SYNC]);
1321 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1322 blk_set_rl_full(rl, BLK_RW_ASYNC);
1323 } else {
1324 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1325 wake_up(&rl->wait[BLK_RW_ASYNC]);
1329 spin_unlock_irq(q->queue_lock);
1330 return 0;
1334 * __get_request - get a free request
1335 * @rl: request list to allocate from
1336 * @op: operation and flags
1337 * @bio: bio to allocate request for (can be %NULL)
1338 * @flags: BLQ_MQ_REQ_* flags
1339 * @gfp_mask: allocator flags
1341 * Get a free request from @q. This function may fail under memory
1342 * pressure or if @q is dead.
1344 * Must be called with @q->queue_lock held and,
1345 * Returns ERR_PTR on failure, with @q->queue_lock held.
1346 * Returns request pointer on success, with @q->queue_lock *not held*.
1348 static struct request *__get_request(struct request_list *rl, unsigned int op,
1349 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1351 struct request_queue *q = rl->q;
1352 struct request *rq;
1353 struct elevator_type *et = q->elevator->type;
1354 struct io_context *ioc = rq_ioc(bio);
1355 struct io_cq *icq = NULL;
1356 const bool is_sync = op_is_sync(op);
1357 int may_queue;
1358 req_flags_t rq_flags = RQF_ALLOCED;
1360 lockdep_assert_held(q->queue_lock);
1362 if (unlikely(blk_queue_dying(q)))
1363 return ERR_PTR(-ENODEV);
1365 may_queue = elv_may_queue(q, op);
1366 if (may_queue == ELV_MQUEUE_NO)
1367 goto rq_starved;
1369 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1370 if (rl->count[is_sync]+1 >= q->nr_requests) {
1372 * The queue will fill after this allocation, so set
1373 * it as full, and mark this process as "batching".
1374 * This process will be allowed to complete a batch of
1375 * requests, others will be blocked.
1377 if (!blk_rl_full(rl, is_sync)) {
1378 ioc_set_batching(q, ioc);
1379 blk_set_rl_full(rl, is_sync);
1380 } else {
1381 if (may_queue != ELV_MQUEUE_MUST
1382 && !ioc_batching(q, ioc)) {
1384 * The queue is full and the allocating
1385 * process is not a "batcher", and not
1386 * exempted by the IO scheduler
1388 return ERR_PTR(-ENOMEM);
1392 blk_set_congested(rl, is_sync);
1396 * Only allow batching queuers to allocate up to 50% over the defined
1397 * limit of requests, otherwise we could have thousands of requests
1398 * allocated with any setting of ->nr_requests
1400 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1401 return ERR_PTR(-ENOMEM);
1403 q->nr_rqs[is_sync]++;
1404 rl->count[is_sync]++;
1405 rl->starved[is_sync] = 0;
1408 * Decide whether the new request will be managed by elevator. If
1409 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1410 * prevent the current elevator from being destroyed until the new
1411 * request is freed. This guarantees icq's won't be destroyed and
1412 * makes creating new ones safe.
1414 * Flush requests do not use the elevator so skip initialization.
1415 * This allows a request to share the flush and elevator data.
1417 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1418 * it will be created after releasing queue_lock.
1420 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1421 rq_flags |= RQF_ELVPRIV;
1422 q->nr_rqs_elvpriv++;
1423 if (et->icq_cache && ioc)
1424 icq = ioc_lookup_icq(ioc, q);
1427 if (blk_queue_io_stat(q))
1428 rq_flags |= RQF_IO_STAT;
1429 spin_unlock_irq(q->queue_lock);
1431 /* allocate and init request */
1432 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1433 if (!rq)
1434 goto fail_alloc;
1436 blk_rq_init(q, rq);
1437 blk_rq_set_rl(rq, rl);
1438 rq->cmd_flags = op;
1439 rq->rq_flags = rq_flags;
1440 if (flags & BLK_MQ_REQ_PREEMPT)
1441 rq->rq_flags |= RQF_PREEMPT;
1443 /* init elvpriv */
1444 if (rq_flags & RQF_ELVPRIV) {
1445 if (unlikely(et->icq_cache && !icq)) {
1446 if (ioc)
1447 icq = ioc_create_icq(ioc, q, gfp_mask);
1448 if (!icq)
1449 goto fail_elvpriv;
1452 rq->elv.icq = icq;
1453 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1454 goto fail_elvpriv;
1456 /* @rq->elv.icq holds io_context until @rq is freed */
1457 if (icq)
1458 get_io_context(icq->ioc);
1460 out:
1462 * ioc may be NULL here, and ioc_batching will be false. That's
1463 * OK, if the queue is under the request limit then requests need
1464 * not count toward the nr_batch_requests limit. There will always
1465 * be some limit enforced by BLK_BATCH_TIME.
1467 if (ioc_batching(q, ioc))
1468 ioc->nr_batch_requests--;
1470 trace_block_getrq(q, bio, op);
1471 return rq;
1473 fail_elvpriv:
1475 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1476 * and may fail indefinitely under memory pressure and thus
1477 * shouldn't stall IO. Treat this request as !elvpriv. This will
1478 * disturb iosched and blkcg but weird is bettern than dead.
1480 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1481 __func__, dev_name(q->backing_dev_info->dev));
1483 rq->rq_flags &= ~RQF_ELVPRIV;
1484 rq->elv.icq = NULL;
1486 spin_lock_irq(q->queue_lock);
1487 q->nr_rqs_elvpriv--;
1488 spin_unlock_irq(q->queue_lock);
1489 goto out;
1491 fail_alloc:
1493 * Allocation failed presumably due to memory. Undo anything we
1494 * might have messed up.
1496 * Allocating task should really be put onto the front of the wait
1497 * queue, but this is pretty rare.
1499 spin_lock_irq(q->queue_lock);
1500 freed_request(rl, is_sync, rq_flags);
1503 * in the very unlikely event that allocation failed and no
1504 * requests for this direction was pending, mark us starved so that
1505 * freeing of a request in the other direction will notice
1506 * us. another possible fix would be to split the rq mempool into
1507 * READ and WRITE
1509 rq_starved:
1510 if (unlikely(rl->count[is_sync] == 0))
1511 rl->starved[is_sync] = 1;
1512 return ERR_PTR(-ENOMEM);
1516 * get_request - get a free request
1517 * @q: request_queue to allocate request from
1518 * @op: operation and flags
1519 * @bio: bio to allocate request for (can be %NULL)
1520 * @flags: BLK_MQ_REQ_* flags.
1521 * @gfp: allocator flags
1523 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1524 * this function keeps retrying under memory pressure and fails iff @q is dead.
1526 * Must be called with @q->queue_lock held and,
1527 * Returns ERR_PTR on failure, with @q->queue_lock held.
1528 * Returns request pointer on success, with @q->queue_lock *not held*.
1530 static struct request *get_request(struct request_queue *q, unsigned int op,
1531 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1533 const bool is_sync = op_is_sync(op);
1534 DEFINE_WAIT(wait);
1535 struct request_list *rl;
1536 struct request *rq;
1538 lockdep_assert_held(q->queue_lock);
1539 WARN_ON_ONCE(q->mq_ops);
1541 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1542 retry:
1543 rq = __get_request(rl, op, bio, flags, gfp);
1544 if (!IS_ERR(rq))
1545 return rq;
1547 if (op & REQ_NOWAIT) {
1548 blk_put_rl(rl);
1549 return ERR_PTR(-EAGAIN);
1552 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1553 blk_put_rl(rl);
1554 return rq;
1557 /* wait on @rl and retry */
1558 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1559 TASK_UNINTERRUPTIBLE);
1561 trace_block_sleeprq(q, bio, op);
1563 spin_unlock_irq(q->queue_lock);
1564 io_schedule();
1567 * After sleeping, we become a "batching" process and will be able
1568 * to allocate at least one request, and up to a big batch of them
1569 * for a small period time. See ioc_batching, ioc_set_batching
1571 ioc_set_batching(q, current->io_context);
1573 spin_lock_irq(q->queue_lock);
1574 finish_wait(&rl->wait[is_sync], &wait);
1576 goto retry;
1579 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1580 static struct request *blk_old_get_request(struct request_queue *q,
1581 unsigned int op, blk_mq_req_flags_t flags)
1583 struct request *rq;
1584 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1585 int ret = 0;
1587 WARN_ON_ONCE(q->mq_ops);
1589 /* create ioc upfront */
1590 create_io_context(gfp_mask, q->node);
1592 ret = blk_queue_enter(q, flags);
1593 if (ret)
1594 return ERR_PTR(ret);
1595 spin_lock_irq(q->queue_lock);
1596 rq = get_request(q, op, NULL, flags, gfp_mask);
1597 if (IS_ERR(rq)) {
1598 spin_unlock_irq(q->queue_lock);
1599 blk_queue_exit(q);
1600 return rq;
1603 /* q->queue_lock is unlocked at this point */
1604 rq->__data_len = 0;
1605 rq->__sector = (sector_t) -1;
1606 rq->bio = rq->biotail = NULL;
1607 return rq;
1611 * blk_get_request - allocate a request
1612 * @q: request queue to allocate a request for
1613 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1614 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1616 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1617 blk_mq_req_flags_t flags)
1619 struct request *req;
1621 WARN_ON_ONCE(op & REQ_NOWAIT);
1622 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1624 if (q->mq_ops) {
1625 req = blk_mq_alloc_request(q, op, flags);
1626 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1627 q->mq_ops->initialize_rq_fn(req);
1628 } else {
1629 req = blk_old_get_request(q, op, flags);
1630 if (!IS_ERR(req) && q->initialize_rq_fn)
1631 q->initialize_rq_fn(req);
1634 return req;
1636 EXPORT_SYMBOL(blk_get_request);
1639 * blk_requeue_request - put a request back on queue
1640 * @q: request queue where request should be inserted
1641 * @rq: request to be inserted
1643 * Description:
1644 * Drivers often keep queueing requests until the hardware cannot accept
1645 * more, when that condition happens we need to put the request back
1646 * on the queue. Must be called with queue lock held.
1648 void blk_requeue_request(struct request_queue *q, struct request *rq)
1650 lockdep_assert_held(q->queue_lock);
1651 WARN_ON_ONCE(q->mq_ops);
1653 blk_delete_timer(rq);
1654 blk_clear_rq_complete(rq);
1655 trace_block_rq_requeue(q, rq);
1656 rq_qos_requeue(q, rq);
1658 if (rq->rq_flags & RQF_QUEUED)
1659 blk_queue_end_tag(q, rq);
1661 BUG_ON(blk_queued_rq(rq));
1663 elv_requeue_request(q, rq);
1665 EXPORT_SYMBOL(blk_requeue_request);
1667 static void add_acct_request(struct request_queue *q, struct request *rq,
1668 int where)
1670 blk_account_io_start(rq, true);
1671 __elv_add_request(q, rq, where);
1674 static void part_round_stats_single(struct request_queue *q, int cpu,
1675 struct hd_struct *part, unsigned long now,
1676 unsigned int inflight)
1678 if (inflight) {
1679 __part_stat_add(cpu, part, time_in_queue,
1680 inflight * (now - part->stamp));
1681 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1683 part->stamp = now;
1687 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1688 * @q: target block queue
1689 * @cpu: cpu number for stats access
1690 * @part: target partition
1692 * The average IO queue length and utilisation statistics are maintained
1693 * by observing the current state of the queue length and the amount of
1694 * time it has been in this state for.
1696 * Normally, that accounting is done on IO completion, but that can result
1697 * in more than a second's worth of IO being accounted for within any one
1698 * second, leading to >100% utilisation. To deal with that, we call this
1699 * function to do a round-off before returning the results when reading
1700 * /proc/diskstats. This accounts immediately for all queue usage up to
1701 * the current jiffies and restarts the counters again.
1703 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1705 struct hd_struct *part2 = NULL;
1706 unsigned long now = jiffies;
1707 unsigned int inflight[2];
1708 int stats = 0;
1710 if (part->stamp != now)
1711 stats |= 1;
1713 if (part->partno) {
1714 part2 = &part_to_disk(part)->part0;
1715 if (part2->stamp != now)
1716 stats |= 2;
1719 if (!stats)
1720 return;
1722 part_in_flight(q, part, inflight);
1724 if (stats & 2)
1725 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1726 if (stats & 1)
1727 part_round_stats_single(q, cpu, part, now, inflight[0]);
1729 EXPORT_SYMBOL_GPL(part_round_stats);
1731 void __blk_put_request(struct request_queue *q, struct request *req)
1733 req_flags_t rq_flags = req->rq_flags;
1735 if (unlikely(!q))
1736 return;
1738 if (q->mq_ops) {
1739 blk_mq_free_request(req);
1740 return;
1743 lockdep_assert_held(q->queue_lock);
1745 blk_req_zone_write_unlock(req);
1746 blk_pm_put_request(req);
1747 blk_pm_mark_last_busy(req);
1749 elv_completed_request(q, req);
1751 /* this is a bio leak */
1752 WARN_ON(req->bio != NULL);
1754 rq_qos_done(q, req);
1757 * Request may not have originated from ll_rw_blk. if not,
1758 * it didn't come out of our reserved rq pools
1760 if (rq_flags & RQF_ALLOCED) {
1761 struct request_list *rl = blk_rq_rl(req);
1762 bool sync = op_is_sync(req->cmd_flags);
1764 BUG_ON(!list_empty(&req->queuelist));
1765 BUG_ON(ELV_ON_HASH(req));
1767 blk_free_request(rl, req);
1768 freed_request(rl, sync, rq_flags);
1769 blk_put_rl(rl);
1770 blk_queue_exit(q);
1773 EXPORT_SYMBOL_GPL(__blk_put_request);
1775 void blk_put_request(struct request *req)
1777 struct request_queue *q = req->q;
1779 if (q->mq_ops)
1780 blk_mq_free_request(req);
1781 else {
1782 unsigned long flags;
1784 spin_lock_irqsave(q->queue_lock, flags);
1785 __blk_put_request(q, req);
1786 spin_unlock_irqrestore(q->queue_lock, flags);
1789 EXPORT_SYMBOL(blk_put_request);
1791 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1792 struct bio *bio)
1794 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1796 if (!ll_back_merge_fn(q, req, bio))
1797 return false;
1799 trace_block_bio_backmerge(q, req, bio);
1801 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1802 blk_rq_set_mixed_merge(req);
1804 req->biotail->bi_next = bio;
1805 req->biotail = bio;
1806 req->__data_len += bio->bi_iter.bi_size;
1807 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1809 blk_account_io_start(req, false);
1810 return true;
1813 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1814 struct bio *bio)
1816 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1818 if (!ll_front_merge_fn(q, req, bio))
1819 return false;
1821 trace_block_bio_frontmerge(q, req, bio);
1823 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1824 blk_rq_set_mixed_merge(req);
1826 bio->bi_next = req->bio;
1827 req->bio = bio;
1829 req->__sector = bio->bi_iter.bi_sector;
1830 req->__data_len += bio->bi_iter.bi_size;
1831 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1833 blk_account_io_start(req, false);
1834 return true;
1837 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1838 struct bio *bio)
1840 unsigned short segments = blk_rq_nr_discard_segments(req);
1842 if (segments >= queue_max_discard_segments(q))
1843 goto no_merge;
1844 if (blk_rq_sectors(req) + bio_sectors(bio) >
1845 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1846 goto no_merge;
1848 req->biotail->bi_next = bio;
1849 req->biotail = bio;
1850 req->__data_len += bio->bi_iter.bi_size;
1851 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1852 req->nr_phys_segments = segments + 1;
1854 blk_account_io_start(req, false);
1855 return true;
1856 no_merge:
1857 req_set_nomerge(q, req);
1858 return false;
1862 * blk_attempt_plug_merge - try to merge with %current's plugged list
1863 * @q: request_queue new bio is being queued at
1864 * @bio: new bio being queued
1865 * @request_count: out parameter for number of traversed plugged requests
1866 * @same_queue_rq: pointer to &struct request that gets filled in when
1867 * another request associated with @q is found on the plug list
1868 * (optional, may be %NULL)
1870 * Determine whether @bio being queued on @q can be merged with a request
1871 * on %current's plugged list. Returns %true if merge was successful,
1872 * otherwise %false.
1874 * Plugging coalesces IOs from the same issuer for the same purpose without
1875 * going through @q->queue_lock. As such it's more of an issuing mechanism
1876 * than scheduling, and the request, while may have elvpriv data, is not
1877 * added on the elevator at this point. In addition, we don't have
1878 * reliable access to the elevator outside queue lock. Only check basic
1879 * merging parameters without querying the elevator.
1881 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1883 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1884 unsigned int *request_count,
1885 struct request **same_queue_rq)
1887 struct blk_plug *plug;
1888 struct request *rq;
1889 struct list_head *plug_list;
1891 plug = current->plug;
1892 if (!plug)
1893 return false;
1894 *request_count = 0;
1896 if (q->mq_ops)
1897 plug_list = &plug->mq_list;
1898 else
1899 plug_list = &plug->list;
1901 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1902 bool merged = false;
1904 if (rq->q == q) {
1905 (*request_count)++;
1907 * Only blk-mq multiple hardware queues case checks the
1908 * rq in the same queue, there should be only one such
1909 * rq in a queue
1911 if (same_queue_rq)
1912 *same_queue_rq = rq;
1915 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1916 continue;
1918 switch (blk_try_merge(rq, bio)) {
1919 case ELEVATOR_BACK_MERGE:
1920 merged = bio_attempt_back_merge(q, rq, bio);
1921 break;
1922 case ELEVATOR_FRONT_MERGE:
1923 merged = bio_attempt_front_merge(q, rq, bio);
1924 break;
1925 case ELEVATOR_DISCARD_MERGE:
1926 merged = bio_attempt_discard_merge(q, rq, bio);
1927 break;
1928 default:
1929 break;
1932 if (merged)
1933 return true;
1936 return false;
1939 unsigned int blk_plug_queued_count(struct request_queue *q)
1941 struct blk_plug *plug;
1942 struct request *rq;
1943 struct list_head *plug_list;
1944 unsigned int ret = 0;
1946 plug = current->plug;
1947 if (!plug)
1948 goto out;
1950 if (q->mq_ops)
1951 plug_list = &plug->mq_list;
1952 else
1953 plug_list = &plug->list;
1955 list_for_each_entry(rq, plug_list, queuelist) {
1956 if (rq->q == q)
1957 ret++;
1959 out:
1960 return ret;
1963 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1965 struct io_context *ioc = rq_ioc(bio);
1967 if (bio->bi_opf & REQ_RAHEAD)
1968 req->cmd_flags |= REQ_FAILFAST_MASK;
1970 req->__sector = bio->bi_iter.bi_sector;
1971 if (ioprio_valid(bio_prio(bio)))
1972 req->ioprio = bio_prio(bio);
1973 else if (ioc)
1974 req->ioprio = ioc->ioprio;
1975 else
1976 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1977 req->write_hint = bio->bi_write_hint;
1978 blk_rq_bio_prep(req->q, req, bio);
1980 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1982 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1984 struct blk_plug *plug;
1985 int where = ELEVATOR_INSERT_SORT;
1986 struct request *req, *free;
1987 unsigned int request_count = 0;
1990 * low level driver can indicate that it wants pages above a
1991 * certain limit bounced to low memory (ie for highmem, or even
1992 * ISA dma in theory)
1994 blk_queue_bounce(q, &bio);
1996 blk_queue_split(q, &bio);
1998 if (!bio_integrity_prep(bio))
1999 return BLK_QC_T_NONE;
2001 if (op_is_flush(bio->bi_opf)) {
2002 spin_lock_irq(q->queue_lock);
2003 where = ELEVATOR_INSERT_FLUSH;
2004 goto get_rq;
2008 * Check if we can merge with the plugged list before grabbing
2009 * any locks.
2011 if (!blk_queue_nomerges(q)) {
2012 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2013 return BLK_QC_T_NONE;
2014 } else
2015 request_count = blk_plug_queued_count(q);
2017 spin_lock_irq(q->queue_lock);
2019 switch (elv_merge(q, &req, bio)) {
2020 case ELEVATOR_BACK_MERGE:
2021 if (!bio_attempt_back_merge(q, req, bio))
2022 break;
2023 elv_bio_merged(q, req, bio);
2024 free = attempt_back_merge(q, req);
2025 if (free)
2026 __blk_put_request(q, free);
2027 else
2028 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2029 goto out_unlock;
2030 case ELEVATOR_FRONT_MERGE:
2031 if (!bio_attempt_front_merge(q, req, bio))
2032 break;
2033 elv_bio_merged(q, req, bio);
2034 free = attempt_front_merge(q, req);
2035 if (free)
2036 __blk_put_request(q, free);
2037 else
2038 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2039 goto out_unlock;
2040 default:
2041 break;
2044 get_rq:
2045 rq_qos_throttle(q, bio, q->queue_lock);
2048 * Grab a free request. This is might sleep but can not fail.
2049 * Returns with the queue unlocked.
2051 blk_queue_enter_live(q);
2052 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2053 if (IS_ERR(req)) {
2054 blk_queue_exit(q);
2055 rq_qos_cleanup(q, bio);
2056 if (PTR_ERR(req) == -ENOMEM)
2057 bio->bi_status = BLK_STS_RESOURCE;
2058 else
2059 bio->bi_status = BLK_STS_IOERR;
2060 bio_endio(bio);
2061 goto out_unlock;
2064 rq_qos_track(q, req, bio);
2067 * After dropping the lock and possibly sleeping here, our request
2068 * may now be mergeable after it had proven unmergeable (above).
2069 * We don't worry about that case for efficiency. It won't happen
2070 * often, and the elevators are able to handle it.
2072 blk_init_request_from_bio(req, bio);
2074 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2075 req->cpu = raw_smp_processor_id();
2077 plug = current->plug;
2078 if (plug) {
2080 * If this is the first request added after a plug, fire
2081 * of a plug trace.
2083 * @request_count may become stale because of schedule
2084 * out, so check plug list again.
2086 if (!request_count || list_empty(&plug->list))
2087 trace_block_plug(q);
2088 else {
2089 struct request *last = list_entry_rq(plug->list.prev);
2090 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2091 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2092 blk_flush_plug_list(plug, false);
2093 trace_block_plug(q);
2096 list_add_tail(&req->queuelist, &plug->list);
2097 blk_account_io_start(req, true);
2098 } else {
2099 spin_lock_irq(q->queue_lock);
2100 add_acct_request(q, req, where);
2101 __blk_run_queue(q);
2102 out_unlock:
2103 spin_unlock_irq(q->queue_lock);
2106 return BLK_QC_T_NONE;
2109 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2111 char b[BDEVNAME_SIZE];
2113 printk(KERN_INFO "attempt to access beyond end of device\n");
2114 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2115 bio_devname(bio, b), bio->bi_opf,
2116 (unsigned long long)bio_end_sector(bio),
2117 (long long)maxsector);
2120 #ifdef CONFIG_FAIL_MAKE_REQUEST
2122 static DECLARE_FAULT_ATTR(fail_make_request);
2124 static int __init setup_fail_make_request(char *str)
2126 return setup_fault_attr(&fail_make_request, str);
2128 __setup("fail_make_request=", setup_fail_make_request);
2130 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2132 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2135 static int __init fail_make_request_debugfs(void)
2137 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2138 NULL, &fail_make_request);
2140 return PTR_ERR_OR_ZERO(dir);
2143 late_initcall(fail_make_request_debugfs);
2145 #else /* CONFIG_FAIL_MAKE_REQUEST */
2147 static inline bool should_fail_request(struct hd_struct *part,
2148 unsigned int bytes)
2150 return false;
2153 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2155 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2157 const int op = bio_op(bio);
2159 if (part->policy && op_is_write(op)) {
2160 char b[BDEVNAME_SIZE];
2162 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2163 return false;
2165 WARN_ONCE(1,
2166 "generic_make_request: Trying to write "
2167 "to read-only block-device %s (partno %d)\n",
2168 bio_devname(bio, b), part->partno);
2169 /* Older lvm-tools actually trigger this */
2170 return false;
2173 return false;
2176 static noinline int should_fail_bio(struct bio *bio)
2178 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2179 return -EIO;
2180 return 0;
2182 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2185 * Check whether this bio extends beyond the end of the device or partition.
2186 * This may well happen - the kernel calls bread() without checking the size of
2187 * the device, e.g., when mounting a file system.
2189 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2191 unsigned int nr_sectors = bio_sectors(bio);
2193 if (nr_sectors && maxsector &&
2194 (nr_sectors > maxsector ||
2195 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2196 handle_bad_sector(bio, maxsector);
2197 return -EIO;
2199 return 0;
2203 * Remap block n of partition p to block n+start(p) of the disk.
2205 static inline int blk_partition_remap(struct bio *bio)
2207 struct hd_struct *p;
2208 int ret = -EIO;
2210 rcu_read_lock();
2211 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2212 if (unlikely(!p))
2213 goto out;
2214 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2215 goto out;
2216 if (unlikely(bio_check_ro(bio, p)))
2217 goto out;
2220 * Zone reset does not include bi_size so bio_sectors() is always 0.
2221 * Include a test for the reset op code and perform the remap if needed.
2223 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2224 if (bio_check_eod(bio, part_nr_sects_read(p)))
2225 goto out;
2226 bio->bi_iter.bi_sector += p->start_sect;
2227 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2228 bio->bi_iter.bi_sector - p->start_sect);
2230 bio->bi_partno = 0;
2231 ret = 0;
2232 out:
2233 rcu_read_unlock();
2234 return ret;
2237 static noinline_for_stack bool
2238 generic_make_request_checks(struct bio *bio)
2240 struct request_queue *q;
2241 int nr_sectors = bio_sectors(bio);
2242 blk_status_t status = BLK_STS_IOERR;
2243 char b[BDEVNAME_SIZE];
2245 might_sleep();
2247 q = bio->bi_disk->queue;
2248 if (unlikely(!q)) {
2249 printk(KERN_ERR
2250 "generic_make_request: Trying to access "
2251 "nonexistent block-device %s (%Lu)\n",
2252 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2253 goto end_io;
2257 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2258 * if queue is not a request based queue.
2260 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2261 goto not_supported;
2263 if (should_fail_bio(bio))
2264 goto end_io;
2266 if (bio->bi_partno) {
2267 if (unlikely(blk_partition_remap(bio)))
2268 goto end_io;
2269 } else {
2270 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2271 goto end_io;
2272 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2273 goto end_io;
2277 * Filter flush bio's early so that make_request based
2278 * drivers without flush support don't have to worry
2279 * about them.
2281 if (op_is_flush(bio->bi_opf) &&
2282 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2283 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2284 if (!nr_sectors) {
2285 status = BLK_STS_OK;
2286 goto end_io;
2290 switch (bio_op(bio)) {
2291 case REQ_OP_DISCARD:
2292 if (!blk_queue_discard(q))
2293 goto not_supported;
2294 break;
2295 case REQ_OP_SECURE_ERASE:
2296 if (!blk_queue_secure_erase(q))
2297 goto not_supported;
2298 break;
2299 case REQ_OP_WRITE_SAME:
2300 if (!q->limits.max_write_same_sectors)
2301 goto not_supported;
2302 break;
2303 case REQ_OP_ZONE_RESET:
2304 if (!blk_queue_is_zoned(q))
2305 goto not_supported;
2306 break;
2307 case REQ_OP_WRITE_ZEROES:
2308 if (!q->limits.max_write_zeroes_sectors)
2309 goto not_supported;
2310 break;
2311 default:
2312 break;
2316 * Various block parts want %current->io_context and lazy ioc
2317 * allocation ends up trading a lot of pain for a small amount of
2318 * memory. Just allocate it upfront. This may fail and block
2319 * layer knows how to live with it.
2321 create_io_context(GFP_ATOMIC, q->node);
2323 if (!blkcg_bio_issue_check(q, bio))
2324 return false;
2326 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2327 trace_block_bio_queue(q, bio);
2328 /* Now that enqueuing has been traced, we need to trace
2329 * completion as well.
2331 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2333 return true;
2335 not_supported:
2336 status = BLK_STS_NOTSUPP;
2337 end_io:
2338 bio->bi_status = status;
2339 bio_endio(bio);
2340 return false;
2344 * generic_make_request - hand a buffer to its device driver for I/O
2345 * @bio: The bio describing the location in memory and on the device.
2347 * generic_make_request() is used to make I/O requests of block
2348 * devices. It is passed a &struct bio, which describes the I/O that needs
2349 * to be done.
2351 * generic_make_request() does not return any status. The
2352 * success/failure status of the request, along with notification of
2353 * completion, is delivered asynchronously through the bio->bi_end_io
2354 * function described (one day) else where.
2356 * The caller of generic_make_request must make sure that bi_io_vec
2357 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2358 * set to describe the device address, and the
2359 * bi_end_io and optionally bi_private are set to describe how
2360 * completion notification should be signaled.
2362 * generic_make_request and the drivers it calls may use bi_next if this
2363 * bio happens to be merged with someone else, and may resubmit the bio to
2364 * a lower device by calling into generic_make_request recursively, which
2365 * means the bio should NOT be touched after the call to ->make_request_fn.
2367 blk_qc_t generic_make_request(struct bio *bio)
2370 * bio_list_on_stack[0] contains bios submitted by the current
2371 * make_request_fn.
2372 * bio_list_on_stack[1] contains bios that were submitted before
2373 * the current make_request_fn, but that haven't been processed
2374 * yet.
2376 struct bio_list bio_list_on_stack[2];
2377 blk_mq_req_flags_t flags = 0;
2378 struct request_queue *q = bio->bi_disk->queue;
2379 blk_qc_t ret = BLK_QC_T_NONE;
2381 if (bio->bi_opf & REQ_NOWAIT)
2382 flags = BLK_MQ_REQ_NOWAIT;
2383 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2384 blk_queue_enter_live(q);
2385 else if (blk_queue_enter(q, flags) < 0) {
2386 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2387 bio_wouldblock_error(bio);
2388 else
2389 bio_io_error(bio);
2390 return ret;
2393 if (!generic_make_request_checks(bio))
2394 goto out;
2397 * We only want one ->make_request_fn to be active at a time, else
2398 * stack usage with stacked devices could be a problem. So use
2399 * current->bio_list to keep a list of requests submited by a
2400 * make_request_fn function. current->bio_list is also used as a
2401 * flag to say if generic_make_request is currently active in this
2402 * task or not. If it is NULL, then no make_request is active. If
2403 * it is non-NULL, then a make_request is active, and new requests
2404 * should be added at the tail
2406 if (current->bio_list) {
2407 bio_list_add(&current->bio_list[0], bio);
2408 goto out;
2411 /* following loop may be a bit non-obvious, and so deserves some
2412 * explanation.
2413 * Before entering the loop, bio->bi_next is NULL (as all callers
2414 * ensure that) so we have a list with a single bio.
2415 * We pretend that we have just taken it off a longer list, so
2416 * we assign bio_list to a pointer to the bio_list_on_stack,
2417 * thus initialising the bio_list of new bios to be
2418 * added. ->make_request() may indeed add some more bios
2419 * through a recursive call to generic_make_request. If it
2420 * did, we find a non-NULL value in bio_list and re-enter the loop
2421 * from the top. In this case we really did just take the bio
2422 * of the top of the list (no pretending) and so remove it from
2423 * bio_list, and call into ->make_request() again.
2425 BUG_ON(bio->bi_next);
2426 bio_list_init(&bio_list_on_stack[0]);
2427 current->bio_list = bio_list_on_stack;
2428 do {
2429 bool enter_succeeded = true;
2431 if (unlikely(q != bio->bi_disk->queue)) {
2432 if (q)
2433 blk_queue_exit(q);
2434 q = bio->bi_disk->queue;
2435 bio_reassociate_blkg(q, bio);
2436 flags = 0;
2437 if (bio->bi_opf & REQ_NOWAIT)
2438 flags = BLK_MQ_REQ_NOWAIT;
2439 if (blk_queue_enter(q, flags) < 0) {
2440 enter_succeeded = false;
2441 q = NULL;
2445 if (enter_succeeded) {
2446 struct bio_list lower, same;
2448 /* Create a fresh bio_list for all subordinate requests */
2449 bio_list_on_stack[1] = bio_list_on_stack[0];
2450 bio_list_init(&bio_list_on_stack[0]);
2451 ret = q->make_request_fn(q, bio);
2453 /* sort new bios into those for a lower level
2454 * and those for the same level
2456 bio_list_init(&lower);
2457 bio_list_init(&same);
2458 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2459 if (q == bio->bi_disk->queue)
2460 bio_list_add(&same, bio);
2461 else
2462 bio_list_add(&lower, bio);
2463 /* now assemble so we handle the lowest level first */
2464 bio_list_merge(&bio_list_on_stack[0], &lower);
2465 bio_list_merge(&bio_list_on_stack[0], &same);
2466 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2467 } else {
2468 if (unlikely(!blk_queue_dying(q) &&
2469 (bio->bi_opf & REQ_NOWAIT)))
2470 bio_wouldblock_error(bio);
2471 else
2472 bio_io_error(bio);
2474 bio = bio_list_pop(&bio_list_on_stack[0]);
2475 } while (bio);
2476 current->bio_list = NULL; /* deactivate */
2478 out:
2479 if (q)
2480 blk_queue_exit(q);
2481 return ret;
2483 EXPORT_SYMBOL(generic_make_request);
2486 * direct_make_request - hand a buffer directly to its device driver for I/O
2487 * @bio: The bio describing the location in memory and on the device.
2489 * This function behaves like generic_make_request(), but does not protect
2490 * against recursion. Must only be used if the called driver is known
2491 * to not call generic_make_request (or direct_make_request) again from
2492 * its make_request function. (Calling direct_make_request again from
2493 * a workqueue is perfectly fine as that doesn't recurse).
2495 blk_qc_t direct_make_request(struct bio *bio)
2497 struct request_queue *q = bio->bi_disk->queue;
2498 bool nowait = bio->bi_opf & REQ_NOWAIT;
2499 blk_qc_t ret;
2501 if (!generic_make_request_checks(bio))
2502 return BLK_QC_T_NONE;
2504 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2505 if (nowait && !blk_queue_dying(q))
2506 bio->bi_status = BLK_STS_AGAIN;
2507 else
2508 bio->bi_status = BLK_STS_IOERR;
2509 bio_endio(bio);
2510 return BLK_QC_T_NONE;
2513 ret = q->make_request_fn(q, bio);
2514 blk_queue_exit(q);
2515 return ret;
2517 EXPORT_SYMBOL_GPL(direct_make_request);
2520 * submit_bio - submit a bio to the block device layer for I/O
2521 * @bio: The &struct bio which describes the I/O
2523 * submit_bio() is very similar in purpose to generic_make_request(), and
2524 * uses that function to do most of the work. Both are fairly rough
2525 * interfaces; @bio must be presetup and ready for I/O.
2528 blk_qc_t submit_bio(struct bio *bio)
2531 * If it's a regular read/write or a barrier with data attached,
2532 * go through the normal accounting stuff before submission.
2534 if (bio_has_data(bio)) {
2535 unsigned int count;
2537 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2538 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2539 else
2540 count = bio_sectors(bio);
2542 if (op_is_write(bio_op(bio))) {
2543 count_vm_events(PGPGOUT, count);
2544 } else {
2545 task_io_account_read(bio->bi_iter.bi_size);
2546 count_vm_events(PGPGIN, count);
2549 if (unlikely(block_dump)) {
2550 char b[BDEVNAME_SIZE];
2551 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2552 current->comm, task_pid_nr(current),
2553 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2554 (unsigned long long)bio->bi_iter.bi_sector,
2555 bio_devname(bio, b), count);
2559 return generic_make_request(bio);
2561 EXPORT_SYMBOL(submit_bio);
2563 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2565 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2566 return false;
2568 if (current->plug)
2569 blk_flush_plug_list(current->plug, false);
2570 return q->poll_fn(q, cookie);
2572 EXPORT_SYMBOL_GPL(blk_poll);
2575 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2576 * for new the queue limits
2577 * @q: the queue
2578 * @rq: the request being checked
2580 * Description:
2581 * @rq may have been made based on weaker limitations of upper-level queues
2582 * in request stacking drivers, and it may violate the limitation of @q.
2583 * Since the block layer and the underlying device driver trust @rq
2584 * after it is inserted to @q, it should be checked against @q before
2585 * the insertion using this generic function.
2587 * Request stacking drivers like request-based dm may change the queue
2588 * limits when retrying requests on other queues. Those requests need
2589 * to be checked against the new queue limits again during dispatch.
2591 static int blk_cloned_rq_check_limits(struct request_queue *q,
2592 struct request *rq)
2594 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2595 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2596 return -EIO;
2600 * queue's settings related to segment counting like q->bounce_pfn
2601 * may differ from that of other stacking queues.
2602 * Recalculate it to check the request correctly on this queue's
2603 * limitation.
2605 blk_recalc_rq_segments(rq);
2606 if (rq->nr_phys_segments > queue_max_segments(q)) {
2607 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2608 return -EIO;
2611 return 0;
2615 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2616 * @q: the queue to submit the request
2617 * @rq: the request being queued
2619 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2621 unsigned long flags;
2622 int where = ELEVATOR_INSERT_BACK;
2624 if (blk_cloned_rq_check_limits(q, rq))
2625 return BLK_STS_IOERR;
2627 if (rq->rq_disk &&
2628 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2629 return BLK_STS_IOERR;
2631 if (q->mq_ops) {
2632 if (blk_queue_io_stat(q))
2633 blk_account_io_start(rq, true);
2635 * Since we have a scheduler attached on the top device,
2636 * bypass a potential scheduler on the bottom device for
2637 * insert.
2639 return blk_mq_request_issue_directly(rq);
2642 spin_lock_irqsave(q->queue_lock, flags);
2643 if (unlikely(blk_queue_dying(q))) {
2644 spin_unlock_irqrestore(q->queue_lock, flags);
2645 return BLK_STS_IOERR;
2649 * Submitting request must be dequeued before calling this function
2650 * because it will be linked to another request_queue
2652 BUG_ON(blk_queued_rq(rq));
2654 if (op_is_flush(rq->cmd_flags))
2655 where = ELEVATOR_INSERT_FLUSH;
2657 add_acct_request(q, rq, where);
2658 if (where == ELEVATOR_INSERT_FLUSH)
2659 __blk_run_queue(q);
2660 spin_unlock_irqrestore(q->queue_lock, flags);
2662 return BLK_STS_OK;
2664 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2667 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2668 * @rq: request to examine
2670 * Description:
2671 * A request could be merge of IOs which require different failure
2672 * handling. This function determines the number of bytes which
2673 * can be failed from the beginning of the request without
2674 * crossing into area which need to be retried further.
2676 * Return:
2677 * The number of bytes to fail.
2679 unsigned int blk_rq_err_bytes(const struct request *rq)
2681 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2682 unsigned int bytes = 0;
2683 struct bio *bio;
2685 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2686 return blk_rq_bytes(rq);
2689 * Currently the only 'mixing' which can happen is between
2690 * different fastfail types. We can safely fail portions
2691 * which have all the failfast bits that the first one has -
2692 * the ones which are at least as eager to fail as the first
2693 * one.
2695 for (bio = rq->bio; bio; bio = bio->bi_next) {
2696 if ((bio->bi_opf & ff) != ff)
2697 break;
2698 bytes += bio->bi_iter.bi_size;
2701 /* this could lead to infinite loop */
2702 BUG_ON(blk_rq_bytes(rq) && !bytes);
2703 return bytes;
2705 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2707 void blk_account_io_completion(struct request *req, unsigned int bytes)
2709 if (blk_do_io_stat(req)) {
2710 const int sgrp = op_stat_group(req_op(req));
2711 struct hd_struct *part;
2712 int cpu;
2714 cpu = part_stat_lock();
2715 part = req->part;
2716 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2717 part_stat_unlock();
2721 void blk_account_io_done(struct request *req, u64 now)
2724 * Account IO completion. flush_rq isn't accounted as a
2725 * normal IO on queueing nor completion. Accounting the
2726 * containing request is enough.
2728 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2729 const int sgrp = op_stat_group(req_op(req));
2730 struct hd_struct *part;
2731 int cpu;
2733 cpu = part_stat_lock();
2734 part = req->part;
2736 part_stat_inc(cpu, part, ios[sgrp]);
2737 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2738 part_round_stats(req->q, cpu, part);
2739 part_dec_in_flight(req->q, part, rq_data_dir(req));
2741 hd_struct_put(part);
2742 part_stat_unlock();
2746 void blk_account_io_start(struct request *rq, bool new_io)
2748 struct hd_struct *part;
2749 int rw = rq_data_dir(rq);
2750 int cpu;
2752 if (!blk_do_io_stat(rq))
2753 return;
2755 cpu = part_stat_lock();
2757 if (!new_io) {
2758 part = rq->part;
2759 part_stat_inc(cpu, part, merges[rw]);
2760 } else {
2761 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2762 if (!hd_struct_try_get(part)) {
2764 * The partition is already being removed,
2765 * the request will be accounted on the disk only
2767 * We take a reference on disk->part0 although that
2768 * partition will never be deleted, so we can treat
2769 * it as any other partition.
2771 part = &rq->rq_disk->part0;
2772 hd_struct_get(part);
2774 part_round_stats(rq->q, cpu, part);
2775 part_inc_in_flight(rq->q, part, rw);
2776 rq->part = part;
2779 part_stat_unlock();
2782 static struct request *elv_next_request(struct request_queue *q)
2784 struct request *rq;
2785 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2787 WARN_ON_ONCE(q->mq_ops);
2789 while (1) {
2790 list_for_each_entry(rq, &q->queue_head, queuelist) {
2791 #ifdef CONFIG_PM
2793 * If a request gets queued in state RPM_SUSPENDED
2794 * then that's a kernel bug.
2796 WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
2797 #endif
2798 return rq;
2802 * Flush request is running and flush request isn't queueable
2803 * in the drive, we can hold the queue till flush request is
2804 * finished. Even we don't do this, driver can't dispatch next
2805 * requests and will requeue them. And this can improve
2806 * throughput too. For example, we have request flush1, write1,
2807 * flush 2. flush1 is dispatched, then queue is hold, write1
2808 * isn't inserted to queue. After flush1 is finished, flush2
2809 * will be dispatched. Since disk cache is already clean,
2810 * flush2 will be finished very soon, so looks like flush2 is
2811 * folded to flush1.
2812 * Since the queue is hold, a flag is set to indicate the queue
2813 * should be restarted later. Please see flush_end_io() for
2814 * details.
2816 if (fq->flush_pending_idx != fq->flush_running_idx &&
2817 !queue_flush_queueable(q)) {
2818 fq->flush_queue_delayed = 1;
2819 return NULL;
2821 if (unlikely(blk_queue_bypass(q)) ||
2822 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2823 return NULL;
2828 * blk_peek_request - peek at the top of a request queue
2829 * @q: request queue to peek at
2831 * Description:
2832 * Return the request at the top of @q. The returned request
2833 * should be started using blk_start_request() before LLD starts
2834 * processing it.
2836 * Return:
2837 * Pointer to the request at the top of @q if available. Null
2838 * otherwise.
2840 struct request *blk_peek_request(struct request_queue *q)
2842 struct request *rq;
2843 int ret;
2845 lockdep_assert_held(q->queue_lock);
2846 WARN_ON_ONCE(q->mq_ops);
2848 while ((rq = elv_next_request(q)) != NULL) {
2849 if (!(rq->rq_flags & RQF_STARTED)) {
2851 * This is the first time the device driver
2852 * sees this request (possibly after
2853 * requeueing). Notify IO scheduler.
2855 if (rq->rq_flags & RQF_SORTED)
2856 elv_activate_rq(q, rq);
2859 * just mark as started even if we don't start
2860 * it, a request that has been delayed should
2861 * not be passed by new incoming requests
2863 rq->rq_flags |= RQF_STARTED;
2864 trace_block_rq_issue(q, rq);
2867 if (!q->boundary_rq || q->boundary_rq == rq) {
2868 q->end_sector = rq_end_sector(rq);
2869 q->boundary_rq = NULL;
2872 if (rq->rq_flags & RQF_DONTPREP)
2873 break;
2875 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2877 * make sure space for the drain appears we
2878 * know we can do this because max_hw_segments
2879 * has been adjusted to be one fewer than the
2880 * device can handle
2882 rq->nr_phys_segments++;
2885 if (!q->prep_rq_fn)
2886 break;
2888 ret = q->prep_rq_fn(q, rq);
2889 if (ret == BLKPREP_OK) {
2890 break;
2891 } else if (ret == BLKPREP_DEFER) {
2893 * the request may have been (partially) prepped.
2894 * we need to keep this request in the front to
2895 * avoid resource deadlock. RQF_STARTED will
2896 * prevent other fs requests from passing this one.
2898 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2899 !(rq->rq_flags & RQF_DONTPREP)) {
2901 * remove the space for the drain we added
2902 * so that we don't add it again
2904 --rq->nr_phys_segments;
2907 rq = NULL;
2908 break;
2909 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2910 rq->rq_flags |= RQF_QUIET;
2912 * Mark this request as started so we don't trigger
2913 * any debug logic in the end I/O path.
2915 blk_start_request(rq);
2916 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2917 BLK_STS_TARGET : BLK_STS_IOERR);
2918 } else {
2919 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2920 break;
2924 return rq;
2926 EXPORT_SYMBOL(blk_peek_request);
2928 static void blk_dequeue_request(struct request *rq)
2930 struct request_queue *q = rq->q;
2932 BUG_ON(list_empty(&rq->queuelist));
2933 BUG_ON(ELV_ON_HASH(rq));
2935 list_del_init(&rq->queuelist);
2938 * the time frame between a request being removed from the lists
2939 * and to it is freed is accounted as io that is in progress at
2940 * the driver side.
2942 if (blk_account_rq(rq))
2943 q->in_flight[rq_is_sync(rq)]++;
2947 * blk_start_request - start request processing on the driver
2948 * @req: request to dequeue
2950 * Description:
2951 * Dequeue @req and start timeout timer on it. This hands off the
2952 * request to the driver.
2954 void blk_start_request(struct request *req)
2956 lockdep_assert_held(req->q->queue_lock);
2957 WARN_ON_ONCE(req->q->mq_ops);
2959 blk_dequeue_request(req);
2961 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2962 req->io_start_time_ns = ktime_get_ns();
2963 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2964 req->throtl_size = blk_rq_sectors(req);
2965 #endif
2966 req->rq_flags |= RQF_STATS;
2967 rq_qos_issue(req->q, req);
2970 BUG_ON(blk_rq_is_complete(req));
2971 blk_add_timer(req);
2973 EXPORT_SYMBOL(blk_start_request);
2976 * blk_fetch_request - fetch a request from a request queue
2977 * @q: request queue to fetch a request from
2979 * Description:
2980 * Return the request at the top of @q. The request is started on
2981 * return and LLD can start processing it immediately.
2983 * Return:
2984 * Pointer to the request at the top of @q if available. Null
2985 * otherwise.
2987 struct request *blk_fetch_request(struct request_queue *q)
2989 struct request *rq;
2991 lockdep_assert_held(q->queue_lock);
2992 WARN_ON_ONCE(q->mq_ops);
2994 rq = blk_peek_request(q);
2995 if (rq)
2996 blk_start_request(rq);
2997 return rq;
2999 EXPORT_SYMBOL(blk_fetch_request);
3002 * Steal bios from a request and add them to a bio list.
3003 * The request must not have been partially completed before.
3005 void blk_steal_bios(struct bio_list *list, struct request *rq)
3007 if (rq->bio) {
3008 if (list->tail)
3009 list->tail->bi_next = rq->bio;
3010 else
3011 list->head = rq->bio;
3012 list->tail = rq->biotail;
3014 rq->bio = NULL;
3015 rq->biotail = NULL;
3018 rq->__data_len = 0;
3020 EXPORT_SYMBOL_GPL(blk_steal_bios);
3023 * blk_update_request - Special helper function for request stacking drivers
3024 * @req: the request being processed
3025 * @error: block status code
3026 * @nr_bytes: number of bytes to complete @req
3028 * Description:
3029 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3030 * the request structure even if @req doesn't have leftover.
3031 * If @req has leftover, sets it up for the next range of segments.
3033 * This special helper function is only for request stacking drivers
3034 * (e.g. request-based dm) so that they can handle partial completion.
3035 * Actual device drivers should use blk_end_request instead.
3037 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3038 * %false return from this function.
3040 * Note:
3041 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3042 * blk_rq_bytes() and in blk_update_request().
3044 * Return:
3045 * %false - this request doesn't have any more data
3046 * %true - this request has more data
3048 bool blk_update_request(struct request *req, blk_status_t error,
3049 unsigned int nr_bytes)
3051 int total_bytes;
3053 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3055 if (!req->bio)
3056 return false;
3058 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3059 !(req->rq_flags & RQF_QUIET)))
3060 print_req_error(req, error);
3062 blk_account_io_completion(req, nr_bytes);
3064 total_bytes = 0;
3065 while (req->bio) {
3066 struct bio *bio = req->bio;
3067 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3069 if (bio_bytes == bio->bi_iter.bi_size)
3070 req->bio = bio->bi_next;
3072 /* Completion has already been traced */
3073 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3074 req_bio_endio(req, bio, bio_bytes, error);
3076 total_bytes += bio_bytes;
3077 nr_bytes -= bio_bytes;
3079 if (!nr_bytes)
3080 break;
3084 * completely done
3086 if (!req->bio) {
3088 * Reset counters so that the request stacking driver
3089 * can find how many bytes remain in the request
3090 * later.
3092 req->__data_len = 0;
3093 return false;
3096 req->__data_len -= total_bytes;
3098 /* update sector only for requests with clear definition of sector */
3099 if (!blk_rq_is_passthrough(req))
3100 req->__sector += total_bytes >> 9;
3102 /* mixed attributes always follow the first bio */
3103 if (req->rq_flags & RQF_MIXED_MERGE) {
3104 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3105 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3108 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3110 * If total number of sectors is less than the first segment
3111 * size, something has gone terribly wrong.
3113 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3114 blk_dump_rq_flags(req, "request botched");
3115 req->__data_len = blk_rq_cur_bytes(req);
3118 /* recalculate the number of segments */
3119 blk_recalc_rq_segments(req);
3122 return true;
3124 EXPORT_SYMBOL_GPL(blk_update_request);
3126 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3127 unsigned int nr_bytes,
3128 unsigned int bidi_bytes)
3130 if (blk_update_request(rq, error, nr_bytes))
3131 return true;
3133 /* Bidi request must be completed as a whole */
3134 if (unlikely(blk_bidi_rq(rq)) &&
3135 blk_update_request(rq->next_rq, error, bidi_bytes))
3136 return true;
3138 if (blk_queue_add_random(rq->q))
3139 add_disk_randomness(rq->rq_disk);
3141 return false;
3145 * blk_unprep_request - unprepare a request
3146 * @req: the request
3148 * This function makes a request ready for complete resubmission (or
3149 * completion). It happens only after all error handling is complete,
3150 * so represents the appropriate moment to deallocate any resources
3151 * that were allocated to the request in the prep_rq_fn. The queue
3152 * lock is held when calling this.
3154 void blk_unprep_request(struct request *req)
3156 struct request_queue *q = req->q;
3158 req->rq_flags &= ~RQF_DONTPREP;
3159 if (q->unprep_rq_fn)
3160 q->unprep_rq_fn(q, req);
3162 EXPORT_SYMBOL_GPL(blk_unprep_request);
3164 void blk_finish_request(struct request *req, blk_status_t error)
3166 struct request_queue *q = req->q;
3167 u64 now = ktime_get_ns();
3169 lockdep_assert_held(req->q->queue_lock);
3170 WARN_ON_ONCE(q->mq_ops);
3172 if (req->rq_flags & RQF_STATS)
3173 blk_stat_add(req, now);
3175 if (req->rq_flags & RQF_QUEUED)
3176 blk_queue_end_tag(q, req);
3178 BUG_ON(blk_queued_rq(req));
3180 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3181 laptop_io_completion(req->q->backing_dev_info);
3183 blk_delete_timer(req);
3185 if (req->rq_flags & RQF_DONTPREP)
3186 blk_unprep_request(req);
3188 blk_account_io_done(req, now);
3190 if (req->end_io) {
3191 rq_qos_done(q, req);
3192 req->end_io(req, error);
3193 } else {
3194 if (blk_bidi_rq(req))
3195 __blk_put_request(req->next_rq->q, req->next_rq);
3197 __blk_put_request(q, req);
3200 EXPORT_SYMBOL(blk_finish_request);
3203 * blk_end_bidi_request - Complete a bidi request
3204 * @rq: the request to complete
3205 * @error: block status code
3206 * @nr_bytes: number of bytes to complete @rq
3207 * @bidi_bytes: number of bytes to complete @rq->next_rq
3209 * Description:
3210 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3211 * Drivers that supports bidi can safely call this member for any
3212 * type of request, bidi or uni. In the later case @bidi_bytes is
3213 * just ignored.
3215 * Return:
3216 * %false - we are done with this request
3217 * %true - still buffers pending for this request
3219 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3220 unsigned int nr_bytes, unsigned int bidi_bytes)
3222 struct request_queue *q = rq->q;
3223 unsigned long flags;
3225 WARN_ON_ONCE(q->mq_ops);
3227 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3228 return true;
3230 spin_lock_irqsave(q->queue_lock, flags);
3231 blk_finish_request(rq, error);
3232 spin_unlock_irqrestore(q->queue_lock, flags);
3234 return false;
3238 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3239 * @rq: the request to complete
3240 * @error: block status code
3241 * @nr_bytes: number of bytes to complete @rq
3242 * @bidi_bytes: number of bytes to complete @rq->next_rq
3244 * Description:
3245 * Identical to blk_end_bidi_request() except that queue lock is
3246 * assumed to be locked on entry and remains so on return.
3248 * Return:
3249 * %false - we are done with this request
3250 * %true - still buffers pending for this request
3252 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3253 unsigned int nr_bytes, unsigned int bidi_bytes)
3255 lockdep_assert_held(rq->q->queue_lock);
3256 WARN_ON_ONCE(rq->q->mq_ops);
3258 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3259 return true;
3261 blk_finish_request(rq, error);
3263 return false;
3267 * blk_end_request - Helper function for drivers to complete the request.
3268 * @rq: the request being processed
3269 * @error: block status code
3270 * @nr_bytes: number of bytes to complete
3272 * Description:
3273 * Ends I/O on a number of bytes attached to @rq.
3274 * If @rq has leftover, sets it up for the next range of segments.
3276 * Return:
3277 * %false - we are done with this request
3278 * %true - still buffers pending for this request
3280 bool blk_end_request(struct request *rq, blk_status_t error,
3281 unsigned int nr_bytes)
3283 WARN_ON_ONCE(rq->q->mq_ops);
3284 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3286 EXPORT_SYMBOL(blk_end_request);
3289 * blk_end_request_all - Helper function for drives to finish the request.
3290 * @rq: the request to finish
3291 * @error: block status code
3293 * Description:
3294 * Completely finish @rq.
3296 void blk_end_request_all(struct request *rq, blk_status_t error)
3298 bool pending;
3299 unsigned int bidi_bytes = 0;
3301 if (unlikely(blk_bidi_rq(rq)))
3302 bidi_bytes = blk_rq_bytes(rq->next_rq);
3304 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3305 BUG_ON(pending);
3307 EXPORT_SYMBOL(blk_end_request_all);
3310 * __blk_end_request - Helper function for drivers to complete the request.
3311 * @rq: the request being processed
3312 * @error: block status code
3313 * @nr_bytes: number of bytes to complete
3315 * Description:
3316 * Must be called with queue lock held unlike blk_end_request().
3318 * Return:
3319 * %false - we are done with this request
3320 * %true - still buffers pending for this request
3322 bool __blk_end_request(struct request *rq, blk_status_t error,
3323 unsigned int nr_bytes)
3325 lockdep_assert_held(rq->q->queue_lock);
3326 WARN_ON_ONCE(rq->q->mq_ops);
3328 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3330 EXPORT_SYMBOL(__blk_end_request);
3333 * __blk_end_request_all - Helper function for drives to finish the request.
3334 * @rq: the request to finish
3335 * @error: block status code
3337 * Description:
3338 * Completely finish @rq. Must be called with queue lock held.
3340 void __blk_end_request_all(struct request *rq, blk_status_t error)
3342 bool pending;
3343 unsigned int bidi_bytes = 0;
3345 lockdep_assert_held(rq->q->queue_lock);
3346 WARN_ON_ONCE(rq->q->mq_ops);
3348 if (unlikely(blk_bidi_rq(rq)))
3349 bidi_bytes = blk_rq_bytes(rq->next_rq);
3351 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3352 BUG_ON(pending);
3354 EXPORT_SYMBOL(__blk_end_request_all);
3357 * __blk_end_request_cur - Helper function to finish the current request chunk.
3358 * @rq: the request to finish the current chunk for
3359 * @error: block status code
3361 * Description:
3362 * Complete the current consecutively mapped chunk from @rq. Must
3363 * be called with queue lock held.
3365 * Return:
3366 * %false - we are done with this request
3367 * %true - still buffers pending for this request
3369 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3371 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3373 EXPORT_SYMBOL(__blk_end_request_cur);
3375 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3376 struct bio *bio)
3378 if (bio_has_data(bio))
3379 rq->nr_phys_segments = bio_phys_segments(q, bio);
3380 else if (bio_op(bio) == REQ_OP_DISCARD)
3381 rq->nr_phys_segments = 1;
3383 rq->__data_len = bio->bi_iter.bi_size;
3384 rq->bio = rq->biotail = bio;
3386 if (bio->bi_disk)
3387 rq->rq_disk = bio->bi_disk;
3390 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3392 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3393 * @rq: the request to be flushed
3395 * Description:
3396 * Flush all pages in @rq.
3398 void rq_flush_dcache_pages(struct request *rq)
3400 struct req_iterator iter;
3401 struct bio_vec bvec;
3403 rq_for_each_segment(bvec, rq, iter)
3404 flush_dcache_page(bvec.bv_page);
3406 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3407 #endif
3410 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3411 * @q : the queue of the device being checked
3413 * Description:
3414 * Check if underlying low-level drivers of a device are busy.
3415 * If the drivers want to export their busy state, they must set own
3416 * exporting function using blk_queue_lld_busy() first.
3418 * Basically, this function is used only by request stacking drivers
3419 * to stop dispatching requests to underlying devices when underlying
3420 * devices are busy. This behavior helps more I/O merging on the queue
3421 * of the request stacking driver and prevents I/O throughput regression
3422 * on burst I/O load.
3424 * Return:
3425 * 0 - Not busy (The request stacking driver should dispatch request)
3426 * 1 - Busy (The request stacking driver should stop dispatching request)
3428 int blk_lld_busy(struct request_queue *q)
3430 if (q->lld_busy_fn)
3431 return q->lld_busy_fn(q);
3433 return 0;
3435 EXPORT_SYMBOL_GPL(blk_lld_busy);
3438 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3439 * @rq: the clone request to be cleaned up
3441 * Description:
3442 * Free all bios in @rq for a cloned request.
3444 void blk_rq_unprep_clone(struct request *rq)
3446 struct bio *bio;
3448 while ((bio = rq->bio) != NULL) {
3449 rq->bio = bio->bi_next;
3451 bio_put(bio);
3454 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3457 * Copy attributes of the original request to the clone request.
3458 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3460 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3462 dst->cpu = src->cpu;
3463 dst->__sector = blk_rq_pos(src);
3464 dst->__data_len = blk_rq_bytes(src);
3465 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3466 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3467 dst->special_vec = src->special_vec;
3469 dst->nr_phys_segments = src->nr_phys_segments;
3470 dst->ioprio = src->ioprio;
3471 dst->extra_len = src->extra_len;
3475 * blk_rq_prep_clone - Helper function to setup clone request
3476 * @rq: the request to be setup
3477 * @rq_src: original request to be cloned
3478 * @bs: bio_set that bios for clone are allocated from
3479 * @gfp_mask: memory allocation mask for bio
3480 * @bio_ctr: setup function to be called for each clone bio.
3481 * Returns %0 for success, non %0 for failure.
3482 * @data: private data to be passed to @bio_ctr
3484 * Description:
3485 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3486 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3487 * are not copied, and copying such parts is the caller's responsibility.
3488 * Also, pages which the original bios are pointing to are not copied
3489 * and the cloned bios just point same pages.
3490 * So cloned bios must be completed before original bios, which means
3491 * the caller must complete @rq before @rq_src.
3493 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3494 struct bio_set *bs, gfp_t gfp_mask,
3495 int (*bio_ctr)(struct bio *, struct bio *, void *),
3496 void *data)
3498 struct bio *bio, *bio_src;
3500 if (!bs)
3501 bs = &fs_bio_set;
3503 __rq_for_each_bio(bio_src, rq_src) {
3504 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3505 if (!bio)
3506 goto free_and_out;
3508 if (bio_ctr && bio_ctr(bio, bio_src, data))
3509 goto free_and_out;
3511 if (rq->bio) {
3512 rq->biotail->bi_next = bio;
3513 rq->biotail = bio;
3514 } else
3515 rq->bio = rq->biotail = bio;
3518 __blk_rq_prep_clone(rq, rq_src);
3520 return 0;
3522 free_and_out:
3523 if (bio)
3524 bio_put(bio);
3525 blk_rq_unprep_clone(rq);
3527 return -ENOMEM;
3529 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3531 int kblockd_schedule_work(struct work_struct *work)
3533 return queue_work(kblockd_workqueue, work);
3535 EXPORT_SYMBOL(kblockd_schedule_work);
3537 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3539 return queue_work_on(cpu, kblockd_workqueue, work);
3541 EXPORT_SYMBOL(kblockd_schedule_work_on);
3543 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3544 unsigned long delay)
3546 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3548 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3551 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3552 * @plug: The &struct blk_plug that needs to be initialized
3554 * Description:
3555 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3556 * pending I/O should the task end up blocking between blk_start_plug() and
3557 * blk_finish_plug(). This is important from a performance perspective, but
3558 * also ensures that we don't deadlock. For instance, if the task is blocking
3559 * for a memory allocation, memory reclaim could end up wanting to free a
3560 * page belonging to that request that is currently residing in our private
3561 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3562 * this kind of deadlock.
3564 void blk_start_plug(struct blk_plug *plug)
3566 struct task_struct *tsk = current;
3569 * If this is a nested plug, don't actually assign it.
3571 if (tsk->plug)
3572 return;
3574 INIT_LIST_HEAD(&plug->list);
3575 INIT_LIST_HEAD(&plug->mq_list);
3576 INIT_LIST_HEAD(&plug->cb_list);
3578 * Store ordering should not be needed here, since a potential
3579 * preempt will imply a full memory barrier
3581 tsk->plug = plug;
3583 EXPORT_SYMBOL(blk_start_plug);
3585 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3587 struct request *rqa = container_of(a, struct request, queuelist);
3588 struct request *rqb = container_of(b, struct request, queuelist);
3590 return !(rqa->q < rqb->q ||
3591 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3595 * If 'from_schedule' is true, then postpone the dispatch of requests
3596 * until a safe kblockd context. We due this to avoid accidental big
3597 * additional stack usage in driver dispatch, in places where the originally
3598 * plugger did not intend it.
3600 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3601 bool from_schedule)
3602 __releases(q->queue_lock)
3604 lockdep_assert_held(q->queue_lock);
3606 trace_block_unplug(q, depth, !from_schedule);
3608 if (from_schedule)
3609 blk_run_queue_async(q);
3610 else
3611 __blk_run_queue(q);
3612 spin_unlock_irq(q->queue_lock);
3615 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3617 LIST_HEAD(callbacks);
3619 while (!list_empty(&plug->cb_list)) {
3620 list_splice_init(&plug->cb_list, &callbacks);
3622 while (!list_empty(&callbacks)) {
3623 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3624 struct blk_plug_cb,
3625 list);
3626 list_del(&cb->list);
3627 cb->callback(cb, from_schedule);
3632 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3633 int size)
3635 struct blk_plug *plug = current->plug;
3636 struct blk_plug_cb *cb;
3638 if (!plug)
3639 return NULL;
3641 list_for_each_entry(cb, &plug->cb_list, list)
3642 if (cb->callback == unplug && cb->data == data)
3643 return cb;
3645 /* Not currently on the callback list */
3646 BUG_ON(size < sizeof(*cb));
3647 cb = kzalloc(size, GFP_ATOMIC);
3648 if (cb) {
3649 cb->data = data;
3650 cb->callback = unplug;
3651 list_add(&cb->list, &plug->cb_list);
3653 return cb;
3655 EXPORT_SYMBOL(blk_check_plugged);
3657 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3659 struct request_queue *q;
3660 struct request *rq;
3661 LIST_HEAD(list);
3662 unsigned int depth;
3664 flush_plug_callbacks(plug, from_schedule);
3666 if (!list_empty(&plug->mq_list))
3667 blk_mq_flush_plug_list(plug, from_schedule);
3669 if (list_empty(&plug->list))
3670 return;
3672 list_splice_init(&plug->list, &list);
3674 list_sort(NULL, &list, plug_rq_cmp);
3676 q = NULL;
3677 depth = 0;
3679 while (!list_empty(&list)) {
3680 rq = list_entry_rq(list.next);
3681 list_del_init(&rq->queuelist);
3682 BUG_ON(!rq->q);
3683 if (rq->q != q) {
3685 * This drops the queue lock
3687 if (q)
3688 queue_unplugged(q, depth, from_schedule);
3689 q = rq->q;
3690 depth = 0;
3691 spin_lock_irq(q->queue_lock);
3695 * Short-circuit if @q is dead
3697 if (unlikely(blk_queue_dying(q))) {
3698 __blk_end_request_all(rq, BLK_STS_IOERR);
3699 continue;
3703 * rq is already accounted, so use raw insert
3705 if (op_is_flush(rq->cmd_flags))
3706 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3707 else
3708 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3710 depth++;
3714 * This drops the queue lock
3716 if (q)
3717 queue_unplugged(q, depth, from_schedule);
3720 void blk_finish_plug(struct blk_plug *plug)
3722 if (plug != current->plug)
3723 return;
3724 blk_flush_plug_list(plug, false);
3726 current->plug = NULL;
3728 EXPORT_SYMBOL(blk_finish_plug);
3730 int __init blk_dev_init(void)
3732 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3733 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3734 FIELD_SIZEOF(struct request, cmd_flags));
3735 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3736 FIELD_SIZEOF(struct bio, bi_opf));
3738 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3739 kblockd_workqueue = alloc_workqueue("kblockd",
3740 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3741 if (!kblockd_workqueue)
3742 panic("Failed to create kblockd\n");
3744 request_cachep = kmem_cache_create("blkdev_requests",
3745 sizeof(struct request), 0, SLAB_PANIC, NULL);
3747 blk_requestq_cachep = kmem_cache_create("request_queue",
3748 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3750 #ifdef CONFIG_DEBUG_FS
3751 blk_debugfs_root = debugfs_create_dir("block", NULL);
3752 #endif
3754 return 0;