2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
25 /* max queue in one round of service */
26 static const int cfq_quantum
= 8;
27 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max
= 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty
= 2;
32 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
33 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
34 static const int cfq_slice_async_rq
= 2;
35 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
36 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
37 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
38 static const int cfq_hist_divisor
= 4;
41 * offset from end of queue service tree for idle class
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
50 * below this threshold, we consider thinktime immediate
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
67 static struct kmem_cache
*cfq_pool
;
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
86 unsigned long ttime_samples
;
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
96 struct rb_root_cached rb
;
97 struct rb_node
*rb_rightmost
;
100 struct cfq_ttime ttime
;
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
103 .rb_rightmost = NULL, \
104 .ttime = {.last_end_request = ktime_get_ns(),},}
107 * Per process-grouping structure
110 /* reference count */
112 /* various state flags, see below */
114 /* parent cfq_data */
115 struct cfq_data
*cfqd
;
116 /* service_tree member */
117 struct rb_node rb_node
;
118 /* service_tree key */
120 /* prio tree member */
121 struct rb_node p_node
;
122 /* prio tree root we belong to, if any */
123 struct rb_root
*p_root
;
124 /* sorted list of pending requests */
125 struct rb_root sort_list
;
126 /* if fifo isn't expired, next request to serve */
127 struct request
*next_rq
;
128 /* requests queued in sort_list */
130 /* currently allocated requests */
132 /* fifo list of requests in sort_list */
133 struct list_head fifo
;
135 /* time when queue got scheduled in to dispatch first request. */
139 /* time when first request from queue completed and slice started. */
144 /* pending priority requests */
146 /* number of requests that are on the dispatch list or inside driver */
149 /* io prio of this group */
150 unsigned short ioprio
, org_ioprio
;
151 unsigned short ioprio_class
, org_ioprio_class
;
156 sector_t last_request_pos
;
158 struct cfq_rb_root
*service_tree
;
159 struct cfq_queue
*new_cfqq
;
160 struct cfq_group
*cfqg
;
161 /* Number of sectors dispatched from queue in single dispatch round */
162 unsigned long nr_sectors
;
166 * First index in the service_trees.
167 * IDLE is handled separately, so it has negative index
177 * Second index in the service_trees.
181 SYNC_NOIDLE_WORKLOAD
= 1,
186 #ifdef CONFIG_CFQ_GROUP_IOSCHED
187 /* number of ios merged */
188 struct blkg_rwstat merged
;
189 /* total time spent on device in ns, may not be accurate w/ queueing */
190 struct blkg_rwstat service_time
;
191 /* total time spent waiting in scheduler queue in ns */
192 struct blkg_rwstat wait_time
;
193 /* number of IOs queued up */
194 struct blkg_rwstat queued
;
195 /* total disk time and nr sectors dispatched by this group */
196 struct blkg_stat time
;
197 #ifdef CONFIG_DEBUG_BLK_CGROUP
198 /* time not charged to this cgroup */
199 struct blkg_stat unaccounted_time
;
200 /* sum of number of ios queued across all samples */
201 struct blkg_stat avg_queue_size_sum
;
202 /* count of samples taken for average */
203 struct blkg_stat avg_queue_size_samples
;
204 /* how many times this group has been removed from service tree */
205 struct blkg_stat dequeue
;
206 /* total time spent waiting for it to be assigned a timeslice. */
207 struct blkg_stat group_wait_time
;
208 /* time spent idling for this blkcg_gq */
209 struct blkg_stat idle_time
;
210 /* total time with empty current active q with other requests queued */
211 struct blkg_stat empty_time
;
212 /* fields after this shouldn't be cleared on stat reset */
213 u64 start_group_wait_time
;
215 u64 start_empty_time
;
217 #endif /* CONFIG_DEBUG_BLK_CGROUP */
218 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
221 /* Per-cgroup data */
222 struct cfq_group_data
{
223 /* must be the first member */
224 struct blkcg_policy_data cpd
;
227 unsigned int leaf_weight
;
230 /* This is per cgroup per device grouping structure */
232 /* must be the first member */
233 struct blkg_policy_data pd
;
235 /* group service_tree member */
236 struct rb_node rb_node
;
238 /* group service_tree key */
242 * The number of active cfqgs and sum of their weights under this
243 * cfqg. This covers this cfqg's leaf_weight and all children's
244 * weights, but does not cover weights of further descendants.
246 * If a cfqg is on the service tree, it's active. An active cfqg
247 * also activates its parent and contributes to the children_weight
251 unsigned int children_weight
;
254 * vfraction is the fraction of vdisktime that the tasks in this
255 * cfqg are entitled to. This is determined by compounding the
256 * ratios walking up from this cfqg to the root.
258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
259 * vfractions on a service tree is approximately 1. The sum may
260 * deviate a bit due to rounding errors and fluctuations caused by
261 * cfqgs entering and leaving the service tree.
263 unsigned int vfraction
;
266 * There are two weights - (internal) weight is the weight of this
267 * cfqg against the sibling cfqgs. leaf_weight is the wight of
268 * this cfqg against the child cfqgs. For the root cfqg, both
269 * weights are kept in sync for backward compatibility.
272 unsigned int new_weight
;
273 unsigned int dev_weight
;
275 unsigned int leaf_weight
;
276 unsigned int new_leaf_weight
;
277 unsigned int dev_leaf_weight
;
279 /* number of cfqq currently on this group */
283 * Per group busy queues average. Useful for workload slice calc. We
284 * create the array for each prio class but at run time it is used
285 * only for RT and BE class and slot for IDLE class remains unused.
286 * This is primarily done to avoid confusion and a gcc warning.
288 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
290 * rr lists of queues with requests. We maintain service trees for
291 * RT and BE classes. These trees are subdivided in subclasses
292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
293 * class there is no subclassification and all the cfq queues go on
294 * a single tree service_tree_idle.
295 * Counts are embedded in the cfq_rb_root
297 struct cfq_rb_root service_trees
[2][3];
298 struct cfq_rb_root service_tree_idle
;
301 enum wl_type_t saved_wl_type
;
302 enum wl_class_t saved_wl_class
;
304 /* number of requests that are on the dispatch list or inside driver */
306 struct cfq_ttime ttime
;
307 struct cfqg_stats stats
; /* stats for this cfqg */
309 /* async queue for each priority case */
310 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
311 struct cfq_queue
*async_idle_cfqq
;
316 struct io_cq icq
; /* must be the first member */
317 struct cfq_queue
*cfqq
[2];
318 struct cfq_ttime ttime
;
319 int ioprio
; /* the current ioprio */
320 #ifdef CONFIG_CFQ_GROUP_IOSCHED
321 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
326 * Per block device queue structure
329 struct request_queue
*queue
;
330 /* Root service tree for cfq_groups */
331 struct cfq_rb_root grp_service_tree
;
332 struct cfq_group
*root_group
;
335 * The priority currently being served
337 enum wl_class_t serving_wl_class
;
338 enum wl_type_t serving_wl_type
;
339 u64 workload_expires
;
340 struct cfq_group
*serving_group
;
343 * Each priority tree is sorted by next_request position. These
344 * trees are used when determining if two or more queues are
345 * interleaving requests (see cfq_close_cooperator).
347 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
349 unsigned int busy_queues
;
350 unsigned int busy_sync_queues
;
356 * queue-depth detection
362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
366 int hw_tag_est_depth
;
367 unsigned int hw_tag_samples
;
370 * idle window management
372 struct hrtimer idle_slice_timer
;
373 struct work_struct unplug_work
;
375 struct cfq_queue
*active_queue
;
376 struct cfq_io_cq
*active_cic
;
378 sector_t last_position
;
381 * tunables, see top of file
383 unsigned int cfq_quantum
;
384 unsigned int cfq_back_penalty
;
385 unsigned int cfq_back_max
;
386 unsigned int cfq_slice_async_rq
;
387 unsigned int cfq_latency
;
388 u64 cfq_fifo_expire
[2];
392 u64 cfq_target_latency
;
395 * Fallback dummy cfqq for extreme OOM conditions
397 struct cfq_queue oom_cfqq
;
399 u64 last_delayed_sync
;
402 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
403 static void cfq_put_queue(struct cfq_queue
*cfqq
);
405 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
406 enum wl_class_t
class,
412 if (class == IDLE_WORKLOAD
)
413 return &cfqg
->service_tree_idle
;
415 return &cfqg
->service_trees
[class][type
];
418 enum cfqq_state_flags
{
419 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
449 CFQ_CFQQ_FNS(wait_request
);
450 CFQ_CFQQ_FNS(must_dispatch
);
451 CFQ_CFQQ_FNS(must_alloc_slice
);
452 CFQ_CFQQ_FNS(fifo_expire
);
453 CFQ_CFQQ_FNS(idle_window
);
454 CFQ_CFQQ_FNS(prio_changed
);
455 CFQ_CFQQ_FNS(slice_new
);
458 CFQ_CFQQ_FNS(split_coop
);
460 CFQ_CFQQ_FNS(wait_busy
);
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
465 /* cfqg stats flags */
466 enum cfqg_stats_flags
{
467 CFQG_stats_waiting
= 0,
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
475 stats->flags |= (1 << CFQG_stats_##name); \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling
)
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
496 if (!cfqg_stats_waiting(stats
))
499 now
= ktime_get_ns();
500 if (now
> stats
->start_group_wait_time
)
501 blkg_stat_add(&stats
->group_wait_time
,
502 now
- stats
->start_group_wait_time
);
503 cfqg_stats_clear_waiting(stats
);
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
508 struct cfq_group
*curr_cfqg
)
510 struct cfqg_stats
*stats
= &cfqg
->stats
;
512 if (cfqg_stats_waiting(stats
))
514 if (cfqg
== curr_cfqg
)
516 stats
->start_group_wait_time
= ktime_get_ns();
517 cfqg_stats_mark_waiting(stats
);
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
525 if (!cfqg_stats_empty(stats
))
528 now
= ktime_get_ns();
529 if (now
> stats
->start_empty_time
)
530 blkg_stat_add(&stats
->empty_time
,
531 now
- stats
->start_empty_time
);
532 cfqg_stats_clear_empty(stats
);
535 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
537 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
540 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
542 struct cfqg_stats
*stats
= &cfqg
->stats
;
544 if (blkg_rwstat_total(&stats
->queued
))
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
552 if (cfqg_stats_empty(stats
))
555 stats
->start_empty_time
= ktime_get_ns();
556 cfqg_stats_mark_empty(stats
);
559 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
561 struct cfqg_stats
*stats
= &cfqg
->stats
;
563 if (cfqg_stats_idling(stats
)) {
564 u64 now
= ktime_get_ns();
566 if (now
> stats
->start_idle_time
)
567 blkg_stat_add(&stats
->idle_time
,
568 now
- stats
->start_idle_time
);
569 cfqg_stats_clear_idling(stats
);
573 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
575 struct cfqg_stats
*stats
= &cfqg
->stats
;
577 BUG_ON(cfqg_stats_idling(stats
));
579 stats
->start_idle_time
= ktime_get_ns();
580 cfqg_stats_mark_idling(stats
);
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
585 struct cfqg_stats
*stats
= &cfqg
->stats
;
587 blkg_stat_add(&stats
->avg_queue_size_sum
,
588 blkg_rwstat_total(&stats
->queued
));
589 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
590 cfqg_stats_update_group_wait_time(stats
);
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
607 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
609 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
615 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
618 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
620 return pd_to_blkg(&cfqg
->pd
);
623 static struct blkcg_policy blkcg_policy_cfq
;
625 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
627 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
630 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
635 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
637 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
639 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
642 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
643 struct cfq_group
*ancestor
)
645 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
646 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
649 static inline void cfqg_get(struct cfq_group
*cfqg
)
651 return blkg_get(cfqg_to_blkg(cfqg
));
654 static inline void cfqg_put(struct cfq_group
*cfqg
)
656 return blkg_put(cfqg_to_blkg(cfqg
));
659 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
660 blk_add_cgroup_trace_msg((cfqd)->queue, \
661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \
662 "cfq%d%c%c " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 blk_add_cgroup_trace_msg((cfqd)->queue, \
670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \
673 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
674 struct cfq_group
*curr_cfqg
,
677 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, 1);
678 cfqg_stats_end_empty_time(&cfqg
->stats
);
679 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
683 uint64_t time
, unsigned long unaccounted_time
)
685 blkg_stat_add(&cfqg
->stats
.time
, time
);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
691 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
694 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, -1);
697 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
700 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, 1);
703 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
705 u64 io_start_time_ns
,
708 struct cfqg_stats
*stats
= &cfqg
->stats
;
709 u64 now
= ktime_get_ns();
711 if (now
> io_start_time_ns
)
712 blkg_rwstat_add(&stats
->service_time
, op
,
713 now
- io_start_time_ns
);
714 if (io_start_time_ns
> start_time_ns
)
715 blkg_rwstat_add(&stats
->wait_time
, op
,
716 io_start_time_ns
- start_time_ns
);
720 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
722 /* queued stats shouldn't be cleared */
723 blkg_rwstat_reset(&stats
->merged
);
724 blkg_rwstat_reset(&stats
->service_time
);
725 blkg_rwstat_reset(&stats
->wait_time
);
726 blkg_stat_reset(&stats
->time
);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats
->unaccounted_time
);
729 blkg_stat_reset(&stats
->avg_queue_size_sum
);
730 blkg_stat_reset(&stats
->avg_queue_size_samples
);
731 blkg_stat_reset(&stats
->dequeue
);
732 blkg_stat_reset(&stats
->group_wait_time
);
733 blkg_stat_reset(&stats
->idle_time
);
734 blkg_stat_reset(&stats
->empty_time
);
739 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
743 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
744 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
745 blkg_stat_add_aux(&from
->time
, &from
->time
);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
748 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
749 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
750 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
751 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
752 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
753 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759 * recursive stats can still account for the amount used by this cfqg after
762 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
764 struct cfq_group
*parent
= cfqg_parent(cfqg
);
766 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
768 if (unlikely(!parent
))
771 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
772 cfqg_stats_reset(&cfqg
->stats
);
775 #else /* CONFIG_CFQ_GROUP_IOSCHED */
777 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
778 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
779 struct cfq_group
*ancestor
)
783 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
784 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
793 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
794 struct cfq_group
*curr_cfqg
, unsigned int op
) { }
795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
796 uint64_t time
, unsigned long unaccounted_time
) { }
797 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
799 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
801 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
803 u64 io_start_time_ns
,
806 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
808 #define cfq_log(cfqd, fmt, args...) \
809 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
811 /* Traverses through cfq group service trees */
812 #define for_each_cfqg_st(cfqg, i, j, st) \
813 for (i = 0; i <= IDLE_WORKLOAD; i++) \
814 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
815 : &cfqg->service_tree_idle; \
816 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
817 (i == IDLE_WORKLOAD && j == 0); \
818 j++, st = i < IDLE_WORKLOAD ? \
819 &cfqg->service_trees[i][j]: NULL) \
821 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
822 struct cfq_ttime
*ttime
, bool group_idle
)
825 if (!sample_valid(ttime
->ttime_samples
))
828 slice
= cfqd
->cfq_group_idle
;
830 slice
= cfqd
->cfq_slice_idle
;
831 return ttime
->ttime_mean
> slice
;
834 static inline bool iops_mode(struct cfq_data
*cfqd
)
837 * If we are not idling on queues and it is a NCQ drive, parallel
838 * execution of requests is on and measuring time is not possible
839 * in most of the cases until and unless we drive shallower queue
840 * depths and that becomes a performance bottleneck. In such cases
841 * switch to start providing fairness in terms of number of IOs.
843 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
849 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
851 if (cfq_class_idle(cfqq
))
852 return IDLE_WORKLOAD
;
853 if (cfq_class_rt(cfqq
))
859 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
861 if (!cfq_cfqq_sync(cfqq
))
862 return ASYNC_WORKLOAD
;
863 if (!cfq_cfqq_idle_window(cfqq
))
864 return SYNC_NOIDLE_WORKLOAD
;
865 return SYNC_WORKLOAD
;
868 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
869 struct cfq_data
*cfqd
,
870 struct cfq_group
*cfqg
)
872 if (wl_class
== IDLE_WORKLOAD
)
873 return cfqg
->service_tree_idle
.count
;
875 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
876 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
877 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
880 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
881 struct cfq_group
*cfqg
)
883 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
884 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
887 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
888 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
889 struct cfq_io_cq
*cic
, struct bio
*bio
);
891 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
893 /* cic->icq is the first member, %NULL will convert to %NULL */
894 return container_of(icq
, struct cfq_io_cq
, icq
);
897 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
898 struct io_context
*ioc
)
901 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
905 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
907 return cic
->cfqq
[is_sync
];
910 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
913 cic
->cfqq
[is_sync
] = cfqq
;
916 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
918 return cic
->icq
.q
->elevator
->elevator_data
;
922 * scheduler run of queue, if there are requests pending and no one in the
923 * driver that will restart queueing
925 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
927 if (cfqd
->busy_queues
) {
928 cfq_log(cfqd
, "schedule dispatch");
929 kblockd_schedule_work(&cfqd
->unplug_work
);
934 * Scale schedule slice based on io priority. Use the sync time slice only
935 * if a queue is marked sync and has sync io queued. A sync queue with async
936 * io only, should not get full sync slice length.
938 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
941 u64 base_slice
= cfqd
->cfq_slice
[sync
];
942 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
944 WARN_ON(prio
>= IOPRIO_BE_NR
);
946 return base_slice
+ (slice
* (4 - prio
));
950 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
952 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
956 * cfqg_scale_charge - scale disk time charge according to cfqg weight
957 * @charge: disk time being charged
958 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
960 * Scale @charge according to @vfraction, which is in range (0, 1]. The
961 * scaling is inversely proportional.
963 * scaled = charge / vfraction
965 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
967 static inline u64
cfqg_scale_charge(u64 charge
,
968 unsigned int vfraction
)
970 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
972 /* charge / vfraction */
973 c
<<= CFQ_SERVICE_SHIFT
;
974 return div_u64(c
, vfraction
);
977 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
979 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
981 min_vdisktime
= vdisktime
;
983 return min_vdisktime
;
986 static void update_min_vdisktime(struct cfq_rb_root
*st
)
988 if (!RB_EMPTY_ROOT(&st
->rb
.rb_root
)) {
989 struct cfq_group
*cfqg
= rb_entry_cfqg(st
->rb
.rb_leftmost
);
991 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
997 * get averaged number of queues of RT/BE priority.
998 * average is updated, with a formula that gives more weight to higher numbers,
999 * to quickly follows sudden increases and decrease slowly
1002 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1003 struct cfq_group
*cfqg
, bool rt
)
1005 unsigned min_q
, max_q
;
1006 unsigned mult
= cfq_hist_divisor
- 1;
1007 unsigned round
= cfq_hist_divisor
/ 2;
1008 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1010 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1011 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1012 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1014 return cfqg
->busy_queues_avg
[rt
];
1018 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1020 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1024 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1026 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1027 if (cfqd
->cfq_latency
) {
1029 * interested queues (we consider only the ones with the same
1030 * priority class in the cfq group)
1032 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1033 cfq_class_rt(cfqq
));
1034 u64 sync_slice
= cfqd
->cfq_slice
[1];
1035 u64 expect_latency
= sync_slice
* iq
;
1036 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1038 if (expect_latency
> group_slice
) {
1039 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1042 /* scale low_slice according to IO priority
1043 * and sync vs async */
1044 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1045 low_slice
= min(slice
, low_slice
);
1046 /* the adapted slice value is scaled to fit all iqs
1047 * into the target latency */
1048 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1049 slice
= max(slice
, low_slice
);
1056 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1058 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1059 u64 now
= ktime_get_ns();
1061 cfqq
->slice_start
= now
;
1062 cfqq
->slice_end
= now
+ slice
;
1063 cfqq
->allocated_slice
= slice
;
1064 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1068 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1069 * isn't valid until the first request from the dispatch is activated
1070 * and the slice time set.
1072 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1074 if (cfq_cfqq_slice_new(cfqq
))
1076 if (ktime_get_ns() < cfqq
->slice_end
)
1083 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1084 * We choose the request that is closest to the head right now. Distance
1085 * behind the head is penalized and only allowed to a certain extent.
1087 static struct request
*
1088 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1090 sector_t s1
, s2
, d1
= 0, d2
= 0;
1091 unsigned long back_max
;
1092 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1093 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1094 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1096 if (rq1
== NULL
|| rq1
== rq2
)
1101 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1102 return rq_is_sync(rq1
) ? rq1
: rq2
;
1104 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1105 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1107 s1
= blk_rq_pos(rq1
);
1108 s2
= blk_rq_pos(rq2
);
1111 * by definition, 1KiB is 2 sectors
1113 back_max
= cfqd
->cfq_back_max
* 2;
1116 * Strict one way elevator _except_ in the case where we allow
1117 * short backward seeks which are biased as twice the cost of a
1118 * similar forward seek.
1122 else if (s1
+ back_max
>= last
)
1123 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1125 wrap
|= CFQ_RQ1_WRAP
;
1129 else if (s2
+ back_max
>= last
)
1130 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1132 wrap
|= CFQ_RQ2_WRAP
;
1134 /* Found required data */
1137 * By doing switch() on the bit mask "wrap" we avoid having to
1138 * check two variables for all permutations: --> faster!
1141 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1157 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1160 * Since both rqs are wrapped,
1161 * start with the one that's further behind head
1162 * (--> only *one* back seek required),
1163 * since back seek takes more time than forward.
1172 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1174 /* Service tree is empty */
1178 return rb_entry(rb_first_cached(&root
->rb
), struct cfq_queue
, rb_node
);
1181 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1183 return rb_entry_cfqg(rb_first_cached(&root
->rb
));
1186 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1188 if (root
->rb_rightmost
== n
)
1189 root
->rb_rightmost
= rb_prev(n
);
1191 rb_erase_cached(n
, &root
->rb
);
1198 * would be nice to take fifo expire time into account as well
1200 static struct request
*
1201 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1202 struct request
*last
)
1204 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1205 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1206 struct request
*next
= NULL
, *prev
= NULL
;
1208 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1211 prev
= rb_entry_rq(rbprev
);
1214 next
= rb_entry_rq(rbnext
);
1216 rbnext
= rb_first(&cfqq
->sort_list
);
1217 if (rbnext
&& rbnext
!= &last
->rb_node
)
1218 next
= rb_entry_rq(rbnext
);
1221 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1224 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1225 struct cfq_queue
*cfqq
)
1228 * just an approximation, should be ok.
1230 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1231 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1235 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1237 return cfqg
->vdisktime
- st
->min_vdisktime
;
1241 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1243 struct rb_node
**node
= &st
->rb
.rb_root
.rb_node
;
1244 struct rb_node
*parent
= NULL
;
1245 struct cfq_group
*__cfqg
;
1246 s64 key
= cfqg_key(st
, cfqg
);
1247 bool leftmost
= true, rightmost
= true;
1249 while (*node
!= NULL
) {
1251 __cfqg
= rb_entry_cfqg(parent
);
1253 if (key
< cfqg_key(st
, __cfqg
)) {
1254 node
= &parent
->rb_left
;
1257 node
= &parent
->rb_right
;
1263 st
->rb_rightmost
= &cfqg
->rb_node
;
1265 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1266 rb_insert_color_cached(&cfqg
->rb_node
, &st
->rb
, leftmost
);
1270 * This has to be called only on activation of cfqg
1273 cfq_update_group_weight(struct cfq_group
*cfqg
)
1275 if (cfqg
->new_weight
) {
1276 cfqg
->weight
= cfqg
->new_weight
;
1277 cfqg
->new_weight
= 0;
1282 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1284 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1286 if (cfqg
->new_leaf_weight
) {
1287 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1288 cfqg
->new_leaf_weight
= 0;
1293 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1295 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1296 struct cfq_group
*pos
= cfqg
;
1297 struct cfq_group
*parent
;
1300 /* add to the service tree */
1301 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1304 * Update leaf_weight. We cannot update weight at this point
1305 * because cfqg might already have been activated and is
1306 * contributing its current weight to the parent's child_weight.
1308 cfq_update_group_leaf_weight(cfqg
);
1309 __cfq_group_service_tree_add(st
, cfqg
);
1312 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1313 * entitled to. vfraction is calculated by walking the tree
1314 * towards the root calculating the fraction it has at each level.
1315 * The compounded ratio is how much vfraction @cfqg owns.
1317 * Start with the proportion tasks in this cfqg has against active
1318 * children cfqgs - its leaf_weight against children_weight.
1320 propagate
= !pos
->nr_active
++;
1321 pos
->children_weight
+= pos
->leaf_weight
;
1322 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1325 * Compound ->weight walking up the tree. Both activation and
1326 * vfraction calculation are done in the same loop. Propagation
1327 * stops once an already activated node is met. vfraction
1328 * calculation should always continue to the root.
1330 while ((parent
= cfqg_parent(pos
))) {
1332 cfq_update_group_weight(pos
);
1333 propagate
= !parent
->nr_active
++;
1334 parent
->children_weight
+= pos
->weight
;
1336 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1340 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1343 static inline u64
cfq_get_cfqg_vdisktime_delay(struct cfq_data
*cfqd
)
1345 if (!iops_mode(cfqd
))
1346 return CFQ_SLICE_MODE_GROUP_DELAY
;
1348 return CFQ_IOPS_MODE_GROUP_DELAY
;
1352 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1354 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1355 struct cfq_group
*__cfqg
;
1359 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1363 * Currently put the group at the end. Later implement something
1364 * so that groups get lesser vtime based on their weights, so that
1365 * if group does not loose all if it was not continuously backlogged.
1367 n
= st
->rb_rightmost
;
1369 __cfqg
= rb_entry_cfqg(n
);
1370 cfqg
->vdisktime
= __cfqg
->vdisktime
+
1371 cfq_get_cfqg_vdisktime_delay(cfqd
);
1373 cfqg
->vdisktime
= st
->min_vdisktime
;
1374 cfq_group_service_tree_add(st
, cfqg
);
1378 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1380 struct cfq_group
*pos
= cfqg
;
1384 * Undo activation from cfq_group_service_tree_add(). Deactivate
1385 * @cfqg and propagate deactivation upwards.
1387 propagate
= !--pos
->nr_active
;
1388 pos
->children_weight
-= pos
->leaf_weight
;
1391 struct cfq_group
*parent
= cfqg_parent(pos
);
1393 /* @pos has 0 nr_active at this point */
1394 WARN_ON_ONCE(pos
->children_weight
);
1400 propagate
= !--parent
->nr_active
;
1401 parent
->children_weight
-= pos
->weight
;
1405 /* remove from the service tree */
1406 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1407 cfq_rb_erase(&cfqg
->rb_node
, st
);
1411 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1413 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1415 BUG_ON(cfqg
->nr_cfqq
< 1);
1418 /* If there are other cfq queues under this group, don't delete it */
1422 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1423 cfq_group_service_tree_del(st
, cfqg
);
1424 cfqg
->saved_wl_slice
= 0;
1425 cfqg_stats_update_dequeue(cfqg
);
1428 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1429 u64
*unaccounted_time
)
1432 u64 now
= ktime_get_ns();
1435 * Queue got expired before even a single request completed or
1436 * got expired immediately after first request completion.
1438 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1440 * Also charge the seek time incurred to the group, otherwise
1441 * if there are mutiple queues in the group, each can dispatch
1442 * a single request on seeky media and cause lots of seek time
1443 * and group will never know it.
1445 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1446 jiffies_to_nsecs(1));
1448 slice_used
= now
- cfqq
->slice_start
;
1449 if (slice_used
> cfqq
->allocated_slice
) {
1450 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1451 slice_used
= cfqq
->allocated_slice
;
1453 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1454 *unaccounted_time
+= cfqq
->slice_start
-
1455 cfqq
->dispatch_start
;
1461 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1462 struct cfq_queue
*cfqq
)
1464 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1465 u64 used_sl
, charge
, unaccounted_sl
= 0;
1466 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1467 - cfqg
->service_tree_idle
.count
;
1469 u64 now
= ktime_get_ns();
1471 BUG_ON(nr_sync
< 0);
1472 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1474 if (iops_mode(cfqd
))
1475 charge
= cfqq
->slice_dispatch
;
1476 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1477 charge
= cfqq
->allocated_slice
;
1480 * Can't update vdisktime while on service tree and cfqg->vfraction
1481 * is valid only while on it. Cache vfr, leave the service tree,
1482 * update vdisktime and go back on. The re-addition to the tree
1483 * will also update the weights as necessary.
1485 vfr
= cfqg
->vfraction
;
1486 cfq_group_service_tree_del(st
, cfqg
);
1487 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1488 cfq_group_service_tree_add(st
, cfqg
);
1490 /* This group is being expired. Save the context */
1491 if (cfqd
->workload_expires
> now
) {
1492 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1493 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1494 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1496 cfqg
->saved_wl_slice
= 0;
1498 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1500 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1501 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1502 used_sl
, cfqq
->slice_dispatch
, charge
,
1503 iops_mode(cfqd
), cfqq
->nr_sectors
);
1504 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1505 cfqg_stats_set_start_empty_time(cfqg
);
1509 * cfq_init_cfqg_base - initialize base part of a cfq_group
1510 * @cfqg: cfq_group to initialize
1512 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1513 * is enabled or not.
1515 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1517 struct cfq_rb_root
*st
;
1520 for_each_cfqg_st(cfqg
, i
, j
, st
)
1522 RB_CLEAR_NODE(&cfqg
->rb_node
);
1524 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1527 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1528 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1529 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1531 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1533 blkg_rwstat_exit(&stats
->merged
);
1534 blkg_rwstat_exit(&stats
->service_time
);
1535 blkg_rwstat_exit(&stats
->wait_time
);
1536 blkg_rwstat_exit(&stats
->queued
);
1537 blkg_stat_exit(&stats
->time
);
1538 #ifdef CONFIG_DEBUG_BLK_CGROUP
1539 blkg_stat_exit(&stats
->unaccounted_time
);
1540 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1541 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1542 blkg_stat_exit(&stats
->dequeue
);
1543 blkg_stat_exit(&stats
->group_wait_time
);
1544 blkg_stat_exit(&stats
->idle_time
);
1545 blkg_stat_exit(&stats
->empty_time
);
1549 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1551 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1552 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1553 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1554 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1555 blkg_stat_init(&stats
->time
, gfp
))
1558 #ifdef CONFIG_DEBUG_BLK_CGROUP
1559 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1560 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1561 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1562 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1563 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1564 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1565 blkg_stat_init(&stats
->empty_time
, gfp
))
1570 cfqg_stats_exit(stats
);
1574 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1576 struct cfq_group_data
*cgd
;
1578 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1584 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1586 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1587 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1588 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1590 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1593 cgd
->weight
= weight
;
1594 cgd
->leaf_weight
= weight
;
1597 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1599 kfree(cpd_to_cfqgd(cpd
));
1602 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1604 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1605 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1606 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1608 if (blkcg
== &blkcg_root
)
1611 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1612 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1615 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1617 struct cfq_group
*cfqg
;
1619 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1623 cfq_init_cfqg_base(cfqg
);
1624 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1632 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1634 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1635 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1637 cfqg
->weight
= cgd
->weight
;
1638 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1641 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1643 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1646 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1647 if (cfqg
->async_cfqq
[0][i
]) {
1648 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1649 cfqg
->async_cfqq
[0][i
] = NULL
;
1651 if (cfqg
->async_cfqq
[1][i
]) {
1652 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1653 cfqg
->async_cfqq
[1][i
] = NULL
;
1657 if (cfqg
->async_idle_cfqq
) {
1658 cfq_put_queue(cfqg
->async_idle_cfqq
);
1659 cfqg
->async_idle_cfqq
= NULL
;
1663 * @blkg is going offline and will be ignored by
1664 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1665 * that they don't get lost. If IOs complete after this point, the
1666 * stats for them will be lost. Oh well...
1668 cfqg_stats_xfer_dead(cfqg
);
1671 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1673 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1675 cfqg_stats_exit(&cfqg
->stats
);
1679 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1681 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1683 cfqg_stats_reset(&cfqg
->stats
);
1686 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1687 struct blkcg
*blkcg
)
1689 struct blkcg_gq
*blkg
;
1691 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1693 return blkg_to_cfqg(blkg
);
1697 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1700 /* cfqq reference on cfqg */
1704 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1705 struct blkg_policy_data
*pd
, int off
)
1707 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1709 if (!cfqg
->dev_weight
)
1711 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1714 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1716 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1717 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1722 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1723 struct blkg_policy_data
*pd
, int off
)
1725 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1727 if (!cfqg
->dev_leaf_weight
)
1729 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1732 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1734 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1735 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1740 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1742 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1743 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1744 unsigned int val
= 0;
1749 seq_printf(sf
, "%u\n", val
);
1753 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1755 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1756 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1757 unsigned int val
= 0;
1760 val
= cgd
->leaf_weight
;
1762 seq_printf(sf
, "%u\n", val
);
1766 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1767 char *buf
, size_t nbytes
, loff_t off
,
1768 bool on_dfl
, bool is_leaf_weight
)
1770 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1771 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1772 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1773 struct blkg_conf_ctx ctx
;
1774 struct cfq_group
*cfqg
;
1775 struct cfq_group_data
*cfqgd
;
1779 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1783 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1784 /* require "default" on dfl */
1788 } else if (!strcmp(strim(ctx
.body
), "default")) {
1795 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1796 cfqgd
= blkcg_to_cfqgd(blkcg
);
1799 if (!v
|| (v
>= min
&& v
<= max
)) {
1800 if (!is_leaf_weight
) {
1801 cfqg
->dev_weight
= v
;
1802 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1804 cfqg
->dev_leaf_weight
= v
;
1805 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1810 blkg_conf_finish(&ctx
);
1811 return ret
?: nbytes
;
1814 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1815 char *buf
, size_t nbytes
, loff_t off
)
1817 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1820 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1821 char *buf
, size_t nbytes
, loff_t off
)
1823 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1826 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1827 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1829 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1830 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1831 struct blkcg
*blkcg
= css_to_blkcg(css
);
1832 struct blkcg_gq
*blkg
;
1833 struct cfq_group_data
*cfqgd
;
1836 if (val
< min
|| val
> max
)
1839 spin_lock_irq(&blkcg
->lock
);
1840 cfqgd
= blkcg_to_cfqgd(blkcg
);
1846 if (!is_leaf_weight
)
1847 cfqgd
->weight
= val
;
1849 cfqgd
->leaf_weight
= val
;
1851 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1852 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1857 if (!is_leaf_weight
) {
1859 cfqg
->dev_weight
= 0;
1860 if (!cfqg
->dev_weight
)
1861 cfqg
->new_weight
= cfqgd
->weight
;
1864 cfqg
->dev_leaf_weight
= 0;
1865 if (!cfqg
->dev_leaf_weight
)
1866 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1871 spin_unlock_irq(&blkcg
->lock
);
1875 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1878 return __cfq_set_weight(css
, val
, false, false, false);
1881 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1882 struct cftype
*cft
, u64 val
)
1884 return __cfq_set_weight(css
, val
, false, false, true);
1887 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1889 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1890 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1894 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1896 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1897 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1901 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1902 struct blkg_policy_data
*pd
, int off
)
1904 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1905 &blkcg_policy_cfq
, off
);
1906 return __blkg_prfill_u64(sf
, pd
, sum
);
1909 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1910 struct blkg_policy_data
*pd
, int off
)
1912 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1913 &blkcg_policy_cfq
, off
);
1914 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1917 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1919 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1920 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1921 seq_cft(sf
)->private, false);
1925 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1927 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1928 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1929 seq_cft(sf
)->private, true);
1933 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1936 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1938 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1941 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1943 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1944 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1948 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1949 struct blkg_policy_data
*pd
, int off
)
1951 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1952 offsetof(struct blkcg_gq
, stat_bytes
));
1953 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1954 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1956 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1959 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1961 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1962 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1967 #ifdef CONFIG_DEBUG_BLK_CGROUP
1968 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1969 struct blkg_policy_data
*pd
, int off
)
1971 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1972 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1976 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1977 v
= div64_u64(v
, samples
);
1979 __blkg_prfill_u64(sf
, pd
, v
);
1983 /* print avg_queue_size */
1984 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1986 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1987 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
1991 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1993 static struct cftype cfq_blkcg_legacy_files
[] = {
1994 /* on root, weight is mapped to leaf_weight */
1996 .name
= "weight_device",
1997 .flags
= CFTYPE_ONLY_ON_ROOT
,
1998 .seq_show
= cfqg_print_leaf_weight_device
,
1999 .write
= cfqg_set_leaf_weight_device
,
2003 .flags
= CFTYPE_ONLY_ON_ROOT
,
2004 .seq_show
= cfq_print_leaf_weight
,
2005 .write_u64
= cfq_set_leaf_weight
,
2008 /* no such mapping necessary for !roots */
2010 .name
= "weight_device",
2011 .flags
= CFTYPE_NOT_ON_ROOT
,
2012 .seq_show
= cfqg_print_weight_device
,
2013 .write
= cfqg_set_weight_device
,
2017 .flags
= CFTYPE_NOT_ON_ROOT
,
2018 .seq_show
= cfq_print_weight
,
2019 .write_u64
= cfq_set_weight
,
2023 .name
= "leaf_weight_device",
2024 .seq_show
= cfqg_print_leaf_weight_device
,
2025 .write
= cfqg_set_leaf_weight_device
,
2028 .name
= "leaf_weight",
2029 .seq_show
= cfq_print_leaf_weight
,
2030 .write_u64
= cfq_set_leaf_weight
,
2033 /* statistics, covers only the tasks in the cfqg */
2036 .private = offsetof(struct cfq_group
, stats
.time
),
2037 .seq_show
= cfqg_print_stat
,
2041 .seq_show
= cfqg_print_stat_sectors
,
2044 .name
= "io_service_bytes",
2045 .private = (unsigned long)&blkcg_policy_cfq
,
2046 .seq_show
= blkg_print_stat_bytes
,
2049 .name
= "io_serviced",
2050 .private = (unsigned long)&blkcg_policy_cfq
,
2051 .seq_show
= blkg_print_stat_ios
,
2054 .name
= "io_service_time",
2055 .private = offsetof(struct cfq_group
, stats
.service_time
),
2056 .seq_show
= cfqg_print_rwstat
,
2059 .name
= "io_wait_time",
2060 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2061 .seq_show
= cfqg_print_rwstat
,
2064 .name
= "io_merged",
2065 .private = offsetof(struct cfq_group
, stats
.merged
),
2066 .seq_show
= cfqg_print_rwstat
,
2069 .name
= "io_queued",
2070 .private = offsetof(struct cfq_group
, stats
.queued
),
2071 .seq_show
= cfqg_print_rwstat
,
2074 /* the same statictics which cover the cfqg and its descendants */
2076 .name
= "time_recursive",
2077 .private = offsetof(struct cfq_group
, stats
.time
),
2078 .seq_show
= cfqg_print_stat_recursive
,
2081 .name
= "sectors_recursive",
2082 .seq_show
= cfqg_print_stat_sectors_recursive
,
2085 .name
= "io_service_bytes_recursive",
2086 .private = (unsigned long)&blkcg_policy_cfq
,
2087 .seq_show
= blkg_print_stat_bytes_recursive
,
2090 .name
= "io_serviced_recursive",
2091 .private = (unsigned long)&blkcg_policy_cfq
,
2092 .seq_show
= blkg_print_stat_ios_recursive
,
2095 .name
= "io_service_time_recursive",
2096 .private = offsetof(struct cfq_group
, stats
.service_time
),
2097 .seq_show
= cfqg_print_rwstat_recursive
,
2100 .name
= "io_wait_time_recursive",
2101 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2102 .seq_show
= cfqg_print_rwstat_recursive
,
2105 .name
= "io_merged_recursive",
2106 .private = offsetof(struct cfq_group
, stats
.merged
),
2107 .seq_show
= cfqg_print_rwstat_recursive
,
2110 .name
= "io_queued_recursive",
2111 .private = offsetof(struct cfq_group
, stats
.queued
),
2112 .seq_show
= cfqg_print_rwstat_recursive
,
2114 #ifdef CONFIG_DEBUG_BLK_CGROUP
2116 .name
= "avg_queue_size",
2117 .seq_show
= cfqg_print_avg_queue_size
,
2120 .name
= "group_wait_time",
2121 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2122 .seq_show
= cfqg_print_stat
,
2125 .name
= "idle_time",
2126 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2127 .seq_show
= cfqg_print_stat
,
2130 .name
= "empty_time",
2131 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2132 .seq_show
= cfqg_print_stat
,
2136 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2137 .seq_show
= cfqg_print_stat
,
2140 .name
= "unaccounted_time",
2141 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2142 .seq_show
= cfqg_print_stat
,
2144 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2148 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2150 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2151 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2153 seq_printf(sf
, "default %u\n", cgd
->weight
);
2154 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2155 &blkcg_policy_cfq
, 0, false);
2159 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2160 char *buf
, size_t nbytes
, loff_t off
)
2168 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2169 v
= simple_strtoull(buf
, &endp
, 0);
2170 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2171 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2172 return ret
?: nbytes
;
2175 /* "MAJ:MIN WEIGHT" */
2176 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2179 static struct cftype cfq_blkcg_files
[] = {
2182 .flags
= CFTYPE_NOT_ON_ROOT
,
2183 .seq_show
= cfq_print_weight_on_dfl
,
2184 .write
= cfq_set_weight_on_dfl
,
2189 #else /* GROUP_IOSCHED */
2190 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2191 struct blkcg
*blkcg
)
2193 return cfqd
->root_group
;
2197 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2201 #endif /* GROUP_IOSCHED */
2204 * The cfqd->service_trees holds all pending cfq_queue's that have
2205 * requests waiting to be processed. It is sorted in the order that
2206 * we will service the queues.
2208 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2211 struct rb_node
**p
, *parent
;
2212 struct cfq_queue
*__cfqq
;
2214 struct cfq_rb_root
*st
;
2215 bool leftmost
= true;
2217 u64 now
= ktime_get_ns();
2219 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2220 if (cfq_class_idle(cfqq
)) {
2221 rb_key
= CFQ_IDLE_DELAY
;
2222 parent
= st
->rb_rightmost
;
2223 if (parent
&& parent
!= &cfqq
->rb_node
) {
2224 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2225 rb_key
+= __cfqq
->rb_key
;
2228 } else if (!add_front
) {
2230 * Get our rb key offset. Subtract any residual slice
2231 * value carried from last service. A negative resid
2232 * count indicates slice overrun, and this should position
2233 * the next service time further away in the tree.
2235 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2236 rb_key
-= cfqq
->slice_resid
;
2237 cfqq
->slice_resid
= 0;
2239 rb_key
= -NSEC_PER_SEC
;
2240 __cfqq
= cfq_rb_first(st
);
2241 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2244 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2247 * same position, nothing more to do
2249 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2252 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2253 cfqq
->service_tree
= NULL
;
2257 cfqq
->service_tree
= st
;
2258 p
= &st
->rb
.rb_root
.rb_node
;
2261 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2264 * sort by key, that represents service time.
2266 if (rb_key
< __cfqq
->rb_key
)
2267 p
= &parent
->rb_left
;
2269 p
= &parent
->rb_right
;
2274 cfqq
->rb_key
= rb_key
;
2275 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2276 rb_insert_color_cached(&cfqq
->rb_node
, &st
->rb
, leftmost
);
2278 if (add_front
|| !new_cfqq
)
2280 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2283 static struct cfq_queue
*
2284 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2285 sector_t sector
, struct rb_node
**ret_parent
,
2286 struct rb_node
***rb_link
)
2288 struct rb_node
**p
, *parent
;
2289 struct cfq_queue
*cfqq
= NULL
;
2297 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2300 * Sort strictly based on sector. Smallest to the left,
2301 * largest to the right.
2303 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2304 n
= &(*p
)->rb_right
;
2305 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2313 *ret_parent
= parent
;
2319 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2321 struct rb_node
**p
, *parent
;
2322 struct cfq_queue
*__cfqq
;
2325 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2326 cfqq
->p_root
= NULL
;
2329 if (cfq_class_idle(cfqq
))
2334 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2335 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2336 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2338 rb_link_node(&cfqq
->p_node
, parent
, p
);
2339 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2341 cfqq
->p_root
= NULL
;
2345 * Update cfqq's position in the service tree.
2347 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2350 * Resorting requires the cfqq to be on the RR list already.
2352 if (cfq_cfqq_on_rr(cfqq
)) {
2353 cfq_service_tree_add(cfqd
, cfqq
, 0);
2354 cfq_prio_tree_add(cfqd
, cfqq
);
2359 * add to busy list of queues for service, trying to be fair in ordering
2360 * the pending list according to last request service
2362 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2364 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2365 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2366 cfq_mark_cfqq_on_rr(cfqq
);
2367 cfqd
->busy_queues
++;
2368 if (cfq_cfqq_sync(cfqq
))
2369 cfqd
->busy_sync_queues
++;
2371 cfq_resort_rr_list(cfqd
, cfqq
);
2375 * Called when the cfqq no longer has requests pending, remove it from
2378 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2380 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2381 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2382 cfq_clear_cfqq_on_rr(cfqq
);
2384 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2385 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2386 cfqq
->service_tree
= NULL
;
2389 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2390 cfqq
->p_root
= NULL
;
2393 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2394 BUG_ON(!cfqd
->busy_queues
);
2395 cfqd
->busy_queues
--;
2396 if (cfq_cfqq_sync(cfqq
))
2397 cfqd
->busy_sync_queues
--;
2401 * rb tree support functions
2403 static void cfq_del_rq_rb(struct request
*rq
)
2405 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2406 const int sync
= rq_is_sync(rq
);
2408 BUG_ON(!cfqq
->queued
[sync
]);
2409 cfqq
->queued
[sync
]--;
2411 elv_rb_del(&cfqq
->sort_list
, rq
);
2413 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2415 * Queue will be deleted from service tree when we actually
2416 * expire it later. Right now just remove it from prio tree
2420 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2421 cfqq
->p_root
= NULL
;
2426 static void cfq_add_rq_rb(struct request
*rq
)
2428 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2429 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2430 struct request
*prev
;
2432 cfqq
->queued
[rq_is_sync(rq
)]++;
2434 elv_rb_add(&cfqq
->sort_list
, rq
);
2436 if (!cfq_cfqq_on_rr(cfqq
))
2437 cfq_add_cfqq_rr(cfqd
, cfqq
);
2440 * check if this request is a better next-serve candidate
2442 prev
= cfqq
->next_rq
;
2443 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2446 * adjust priority tree position, if ->next_rq changes
2448 if (prev
!= cfqq
->next_rq
)
2449 cfq_prio_tree_add(cfqd
, cfqq
);
2451 BUG_ON(!cfqq
->next_rq
);
2454 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2456 elv_rb_del(&cfqq
->sort_list
, rq
);
2457 cfqq
->queued
[rq_is_sync(rq
)]--;
2458 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2460 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2464 static struct request
*
2465 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2467 struct task_struct
*tsk
= current
;
2468 struct cfq_io_cq
*cic
;
2469 struct cfq_queue
*cfqq
;
2471 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2475 cfqq
= cic_to_cfqq(cic
, op_is_sync(bio
->bi_opf
));
2477 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2482 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2484 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2486 cfqd
->rq_in_driver
++;
2487 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2488 cfqd
->rq_in_driver
);
2490 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2493 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2495 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2497 WARN_ON(!cfqd
->rq_in_driver
);
2498 cfqd
->rq_in_driver
--;
2499 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2500 cfqd
->rq_in_driver
);
2503 static void cfq_remove_request(struct request
*rq
)
2505 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2507 if (cfqq
->next_rq
== rq
)
2508 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2510 list_del_init(&rq
->queuelist
);
2513 cfqq
->cfqd
->rq_queued
--;
2514 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2515 if (rq
->cmd_flags
& REQ_PRIO
) {
2516 WARN_ON(!cfqq
->prio_pending
);
2517 cfqq
->prio_pending
--;
2521 static enum elv_merge
cfq_merge(struct request_queue
*q
, struct request
**req
,
2524 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2525 struct request
*__rq
;
2527 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2528 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2530 return ELEVATOR_FRONT_MERGE
;
2533 return ELEVATOR_NO_MERGE
;
2536 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2537 enum elv_merge type
)
2539 if (type
== ELEVATOR_FRONT_MERGE
) {
2540 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2542 cfq_reposition_rq_rb(cfqq
, req
);
2546 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2549 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_opf
);
2553 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2554 struct request
*next
)
2556 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2557 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2560 * reposition in fifo if next is older than rq
2562 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2563 next
->fifo_time
< rq
->fifo_time
&&
2564 cfqq
== RQ_CFQQ(next
)) {
2565 list_move(&rq
->queuelist
, &next
->queuelist
);
2566 rq
->fifo_time
= next
->fifo_time
;
2569 if (cfqq
->next_rq
== next
)
2571 cfq_remove_request(next
);
2572 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2574 cfqq
= RQ_CFQQ(next
);
2576 * all requests of this queue are merged to other queues, delete it
2577 * from the service tree. If it's the active_queue,
2578 * cfq_dispatch_requests() will choose to expire it or do idle
2580 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2581 cfqq
!= cfqd
->active_queue
)
2582 cfq_del_cfqq_rr(cfqd
, cfqq
);
2585 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2588 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2589 bool is_sync
= op_is_sync(bio
->bi_opf
);
2590 struct cfq_io_cq
*cic
;
2591 struct cfq_queue
*cfqq
;
2594 * Disallow merge of a sync bio into an async request.
2596 if (is_sync
&& !rq_is_sync(rq
))
2600 * Lookup the cfqq that this bio will be queued with and allow
2601 * merge only if rq is queued there.
2603 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2607 cfqq
= cic_to_cfqq(cic
, is_sync
);
2608 return cfqq
== RQ_CFQQ(rq
);
2611 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2612 struct request
*next
)
2614 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2617 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2619 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2620 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2623 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2624 struct cfq_queue
*cfqq
)
2627 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2628 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2629 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2630 cfqq
->slice_start
= 0;
2631 cfqq
->dispatch_start
= ktime_get_ns();
2632 cfqq
->allocated_slice
= 0;
2633 cfqq
->slice_end
= 0;
2634 cfqq
->slice_dispatch
= 0;
2635 cfqq
->nr_sectors
= 0;
2637 cfq_clear_cfqq_wait_request(cfqq
);
2638 cfq_clear_cfqq_must_dispatch(cfqq
);
2639 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2640 cfq_clear_cfqq_fifo_expire(cfqq
);
2641 cfq_mark_cfqq_slice_new(cfqq
);
2643 cfq_del_timer(cfqd
, cfqq
);
2646 cfqd
->active_queue
= cfqq
;
2650 * current cfqq expired its slice (or was too idle), select new one
2653 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2656 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2658 if (cfq_cfqq_wait_request(cfqq
))
2659 cfq_del_timer(cfqd
, cfqq
);
2661 cfq_clear_cfqq_wait_request(cfqq
);
2662 cfq_clear_cfqq_wait_busy(cfqq
);
2665 * If this cfqq is shared between multiple processes, check to
2666 * make sure that those processes are still issuing I/Os within
2667 * the mean seek distance. If not, it may be time to break the
2668 * queues apart again.
2670 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2671 cfq_mark_cfqq_split_coop(cfqq
);
2674 * store what was left of this slice, if the queue idled/timed out
2677 if (cfq_cfqq_slice_new(cfqq
))
2678 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2680 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2681 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2684 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2686 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2687 cfq_del_cfqq_rr(cfqd
, cfqq
);
2689 cfq_resort_rr_list(cfqd
, cfqq
);
2691 if (cfqq
== cfqd
->active_queue
)
2692 cfqd
->active_queue
= NULL
;
2694 if (cfqd
->active_cic
) {
2695 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2696 cfqd
->active_cic
= NULL
;
2700 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2702 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2705 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2709 * Get next queue for service. Unless we have a queue preemption,
2710 * we'll simply select the first cfqq in the service tree.
2712 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2714 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2715 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2717 if (!cfqd
->rq_queued
)
2720 /* There is nothing to dispatch */
2723 if (RB_EMPTY_ROOT(&st
->rb
.rb_root
))
2725 return cfq_rb_first(st
);
2728 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2730 struct cfq_group
*cfqg
;
2731 struct cfq_queue
*cfqq
;
2733 struct cfq_rb_root
*st
;
2735 if (!cfqd
->rq_queued
)
2738 cfqg
= cfq_get_next_cfqg(cfqd
);
2742 for_each_cfqg_st(cfqg
, i
, j
, st
) {
2743 cfqq
= cfq_rb_first(st
);
2751 * Get and set a new active queue for service.
2753 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2754 struct cfq_queue
*cfqq
)
2757 cfqq
= cfq_get_next_queue(cfqd
);
2759 __cfq_set_active_queue(cfqd
, cfqq
);
2763 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2766 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2767 return blk_rq_pos(rq
) - cfqd
->last_position
;
2769 return cfqd
->last_position
- blk_rq_pos(rq
);
2772 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2775 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2778 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2779 struct cfq_queue
*cur_cfqq
)
2781 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2782 struct rb_node
*parent
, *node
;
2783 struct cfq_queue
*__cfqq
;
2784 sector_t sector
= cfqd
->last_position
;
2786 if (RB_EMPTY_ROOT(root
))
2790 * First, if we find a request starting at the end of the last
2791 * request, choose it.
2793 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2798 * If the exact sector wasn't found, the parent of the NULL leaf
2799 * will contain the closest sector.
2801 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2802 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2805 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2806 node
= rb_next(&__cfqq
->p_node
);
2808 node
= rb_prev(&__cfqq
->p_node
);
2812 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2813 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2821 * cur_cfqq - passed in so that we don't decide that the current queue is
2822 * closely cooperating with itself.
2824 * So, basically we're assuming that that cur_cfqq has dispatched at least
2825 * one request, and that cfqd->last_position reflects a position on the disk
2826 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2829 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2830 struct cfq_queue
*cur_cfqq
)
2832 struct cfq_queue
*cfqq
;
2834 if (cfq_class_idle(cur_cfqq
))
2836 if (!cfq_cfqq_sync(cur_cfqq
))
2838 if (CFQQ_SEEKY(cur_cfqq
))
2842 * Don't search priority tree if it's the only queue in the group.
2844 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2848 * We should notice if some of the queues are cooperating, eg
2849 * working closely on the same area of the disk. In that case,
2850 * we can group them together and don't waste time idling.
2852 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2856 /* If new queue belongs to different cfq_group, don't choose it */
2857 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2861 * It only makes sense to merge sync queues.
2863 if (!cfq_cfqq_sync(cfqq
))
2865 if (CFQQ_SEEKY(cfqq
))
2869 * Do not merge queues of different priority classes
2871 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2878 * Determine whether we should enforce idle window for this queue.
2881 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2883 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2884 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2889 if (!cfqd
->cfq_slice_idle
)
2892 /* We never do for idle class queues. */
2893 if (wl_class
== IDLE_WORKLOAD
)
2896 /* We do for queues that were marked with idle window flag. */
2897 if (cfq_cfqq_idle_window(cfqq
) &&
2898 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2902 * Otherwise, we do only if they are the last ones
2903 * in their service tree.
2905 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2906 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2908 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2912 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2914 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2915 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2916 struct cfq_io_cq
*cic
;
2917 u64 sl
, group_idle
= 0;
2918 u64 now
= ktime_get_ns();
2921 * SSD device without seek penalty, disable idling. But only do so
2922 * for devices that support queuing, otherwise we still have a problem
2923 * with sync vs async workloads.
2925 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
&&
2926 !cfqd
->cfq_group_idle
)
2929 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2930 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2933 * idle is disabled, either manually or by past process history
2935 if (!cfq_should_idle(cfqd
, cfqq
)) {
2936 /* no queue idling. Check for group idling */
2937 if (cfqd
->cfq_group_idle
)
2938 group_idle
= cfqd
->cfq_group_idle
;
2944 * still active requests from this queue, don't idle
2946 if (cfqq
->dispatched
)
2950 * task has exited, don't wait
2952 cic
= cfqd
->active_cic
;
2953 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2957 * If our average think time is larger than the remaining time
2958 * slice, then don't idle. This avoids overrunning the allotted
2961 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2962 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2963 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2964 cic
->ttime
.ttime_mean
);
2969 * There are other queues in the group or this is the only group and
2970 * it has too big thinktime, don't do group idle.
2973 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2974 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
2977 cfq_mark_cfqq_wait_request(cfqq
);
2980 sl
= cfqd
->cfq_group_idle
;
2982 sl
= cfqd
->cfq_slice_idle
;
2984 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
2986 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2987 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
2988 group_idle
? 1 : 0);
2992 * Move request from internal lists to the request queue dispatch list.
2994 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2996 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2997 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2999 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3001 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3002 cfq_remove_request(rq
);
3004 (RQ_CFQG(rq
))->dispatched
++;
3005 elv_dispatch_sort(q
, rq
);
3007 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3008 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3012 * return expired entry, or NULL to just start from scratch in rbtree
3014 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3016 struct request
*rq
= NULL
;
3018 if (cfq_cfqq_fifo_expire(cfqq
))
3021 cfq_mark_cfqq_fifo_expire(cfqq
);
3023 if (list_empty(&cfqq
->fifo
))
3026 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3027 if (ktime_get_ns() < rq
->fifo_time
)
3034 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3036 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3038 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3040 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3044 * Must be called with the queue_lock held.
3046 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3048 int process_refs
, io_refs
;
3050 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3051 process_refs
= cfqq
->ref
- io_refs
;
3052 BUG_ON(process_refs
< 0);
3053 return process_refs
;
3056 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3058 int process_refs
, new_process_refs
;
3059 struct cfq_queue
*__cfqq
;
3062 * If there are no process references on the new_cfqq, then it is
3063 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3064 * chain may have dropped their last reference (not just their
3065 * last process reference).
3067 if (!cfqq_process_refs(new_cfqq
))
3070 /* Avoid a circular list and skip interim queue merges */
3071 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3077 process_refs
= cfqq_process_refs(cfqq
);
3078 new_process_refs
= cfqq_process_refs(new_cfqq
);
3080 * If the process for the cfqq has gone away, there is no
3081 * sense in merging the queues.
3083 if (process_refs
== 0 || new_process_refs
== 0)
3087 * Merge in the direction of the lesser amount of work.
3089 if (new_process_refs
>= process_refs
) {
3090 cfqq
->new_cfqq
= new_cfqq
;
3091 new_cfqq
->ref
+= process_refs
;
3093 new_cfqq
->new_cfqq
= cfqq
;
3094 cfqq
->ref
+= new_process_refs
;
3098 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3099 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3101 struct cfq_queue
*queue
;
3103 bool key_valid
= false;
3105 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3107 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3108 /* select the one with lowest rb_key */
3109 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3111 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3112 lowest_key
= queue
->rb_key
;
3122 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3126 struct cfq_rb_root
*st
;
3128 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3129 u64 now
= ktime_get_ns();
3131 /* Choose next priority. RT > BE > IDLE */
3132 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3133 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3134 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3135 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3137 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3138 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3142 if (original_class
!= cfqd
->serving_wl_class
)
3146 * For RT and BE, we have to choose also the type
3147 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3150 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3154 * check workload expiration, and that we still have other queues ready
3156 if (count
&& !(now
> cfqd
->workload_expires
))
3160 /* otherwise select new workload type */
3161 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3162 cfqd
->serving_wl_class
);
3163 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3167 * the workload slice is computed as a fraction of target latency
3168 * proportional to the number of queues in that workload, over
3169 * all the queues in the same priority class
3171 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3173 slice
= div_u64(group_slice
* count
,
3174 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3175 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3178 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3182 * Async queues are currently system wide. Just taking
3183 * proportion of queues with-in same group will lead to higher
3184 * async ratio system wide as generally root group is going
3185 * to have higher weight. A more accurate thing would be to
3186 * calculate system wide asnc/sync ratio.
3188 tmp
= cfqd
->cfq_target_latency
*
3189 cfqg_busy_async_queues(cfqd
, cfqg
);
3190 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3191 slice
= min_t(u64
, slice
, tmp
);
3193 /* async workload slice is scaled down according to
3194 * the sync/async slice ratio. */
3195 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3197 /* sync workload slice is at least 2 * cfq_slice_idle */
3198 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3200 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3201 cfq_log(cfqd
, "workload slice:%llu", slice
);
3202 cfqd
->workload_expires
= now
+ slice
;
3205 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3207 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3208 struct cfq_group
*cfqg
;
3210 if (RB_EMPTY_ROOT(&st
->rb
.rb_root
))
3212 cfqg
= cfq_rb_first_group(st
);
3213 update_min_vdisktime(st
);
3217 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3219 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3220 u64 now
= ktime_get_ns();
3222 cfqd
->serving_group
= cfqg
;
3224 /* Restore the workload type data */
3225 if (cfqg
->saved_wl_slice
) {
3226 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3227 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3228 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3230 cfqd
->workload_expires
= now
- 1;
3232 choose_wl_class_and_type(cfqd
, cfqg
);
3236 * Select a queue for service. If we have a current active queue,
3237 * check whether to continue servicing it, or retrieve and set a new one.
3239 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3241 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3242 u64 now
= ktime_get_ns();
3244 cfqq
= cfqd
->active_queue
;
3248 if (!cfqd
->rq_queued
)
3252 * We were waiting for group to get backlogged. Expire the queue
3254 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3258 * The active queue has run out of time, expire it and select new.
3260 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3262 * If slice had not expired at the completion of last request
3263 * we might not have turned on wait_busy flag. Don't expire
3264 * the queue yet. Allow the group to get backlogged.
3266 * The very fact that we have used the slice, that means we
3267 * have been idling all along on this queue and it should be
3268 * ok to wait for this request to complete.
3270 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3271 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3275 goto check_group_idle
;
3279 * The active queue has requests and isn't expired, allow it to
3282 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3286 * If another queue has a request waiting within our mean seek
3287 * distance, let it run. The expire code will check for close
3288 * cooperators and put the close queue at the front of the service
3289 * tree. If possible, merge the expiring queue with the new cfqq.
3291 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3293 if (!cfqq
->new_cfqq
)
3294 cfq_setup_merge(cfqq
, new_cfqq
);
3299 * No requests pending. If the active queue still has requests in
3300 * flight or is idling for a new request, allow either of these
3301 * conditions to happen (or time out) before selecting a new queue.
3303 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3309 * This is a deep seek queue, but the device is much faster than
3310 * the queue can deliver, don't idle
3312 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3313 (cfq_cfqq_slice_new(cfqq
) ||
3314 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3315 cfq_clear_cfqq_deep(cfqq
);
3316 cfq_clear_cfqq_idle_window(cfqq
);
3319 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3325 * If group idle is enabled and there are requests dispatched from
3326 * this group, wait for requests to complete.
3329 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3330 cfqq
->cfqg
->dispatched
&&
3331 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3337 cfq_slice_expired(cfqd
, 0);
3340 * Current queue expired. Check if we have to switch to a new
3344 cfq_choose_cfqg(cfqd
);
3346 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3351 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3355 while (cfqq
->next_rq
) {
3356 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3360 BUG_ON(!list_empty(&cfqq
->fifo
));
3362 /* By default cfqq is not expired if it is empty. Do it explicitly */
3363 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3368 * Drain our current requests. Used for barriers and when switching
3369 * io schedulers on-the-fly.
3371 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3373 struct cfq_queue
*cfqq
;
3376 /* Expire the timeslice of the current active queue first */
3377 cfq_slice_expired(cfqd
, 0);
3378 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3379 __cfq_set_active_queue(cfqd
, cfqq
);
3380 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3383 BUG_ON(cfqd
->busy_queues
);
3385 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3389 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3390 struct cfq_queue
*cfqq
)
3392 u64 now
= ktime_get_ns();
3394 /* the queue hasn't finished any request, can't estimate */
3395 if (cfq_cfqq_slice_new(cfqq
))
3397 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3403 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3405 unsigned int max_dispatch
;
3407 if (cfq_cfqq_must_dispatch(cfqq
))
3411 * Drain async requests before we start sync IO
3413 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3417 * If this is an async queue and we have sync IO in flight, let it wait
3419 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3422 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3423 if (cfq_class_idle(cfqq
))
3427 * Does this cfqq already have too much IO in flight?
3429 if (cfqq
->dispatched
>= max_dispatch
) {
3430 bool promote_sync
= false;
3432 * idle queue must always only have a single IO in flight
3434 if (cfq_class_idle(cfqq
))
3438 * If there is only one sync queue
3439 * we can ignore async queue here and give the sync
3440 * queue no dispatch limit. The reason is a sync queue can
3441 * preempt async queue, limiting the sync queue doesn't make
3442 * sense. This is useful for aiostress test.
3444 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3445 promote_sync
= true;
3448 * We have other queues, don't allow more IO from this one
3450 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3455 * Sole queue user, no limit
3457 if (cfqd
->busy_queues
== 1 || promote_sync
)
3461 * Normally we start throttling cfqq when cfq_quantum/2
3462 * requests have been dispatched. But we can drive
3463 * deeper queue depths at the beginning of slice
3464 * subjected to upper limit of cfq_quantum.
3466 max_dispatch
= cfqd
->cfq_quantum
;
3470 * Async queues must wait a bit before being allowed dispatch.
3471 * We also ramp up the dispatch depth gradually for async IO,
3472 * based on the last sync IO we serviced
3474 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3475 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3478 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3479 if (!depth
&& !cfqq
->dispatched
)
3481 if (depth
< max_dispatch
)
3482 max_dispatch
= depth
;
3486 * If we're below the current max, allow a dispatch
3488 return cfqq
->dispatched
< max_dispatch
;
3492 * Dispatch a request from cfqq, moving them to the request queue
3495 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3499 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3501 rq
= cfq_check_fifo(cfqq
);
3503 cfq_mark_cfqq_must_dispatch(cfqq
);
3505 if (!cfq_may_dispatch(cfqd
, cfqq
))
3509 * follow expired path, else get first next available
3514 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3517 * insert request into driver dispatch list
3519 cfq_dispatch_insert(cfqd
->queue
, rq
);
3521 if (!cfqd
->active_cic
) {
3522 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3524 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3525 cfqd
->active_cic
= cic
;
3532 * Find the cfqq that we need to service and move a request from that to the
3535 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3537 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3538 struct cfq_queue
*cfqq
;
3540 if (!cfqd
->busy_queues
)
3543 if (unlikely(force
))
3544 return cfq_forced_dispatch(cfqd
);
3546 cfqq
= cfq_select_queue(cfqd
);
3551 * Dispatch a request from this cfqq, if it is allowed
3553 if (!cfq_dispatch_request(cfqd
, cfqq
))
3556 cfqq
->slice_dispatch
++;
3557 cfq_clear_cfqq_must_dispatch(cfqq
);
3560 * expire an async queue immediately if it has used up its slice. idle
3561 * queue always expire after 1 dispatch round.
3563 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3564 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3565 cfq_class_idle(cfqq
))) {
3566 cfqq
->slice_end
= ktime_get_ns() + 1;
3567 cfq_slice_expired(cfqd
, 0);
3570 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3575 * task holds one reference to the queue, dropped when task exits. each rq
3576 * in-flight on this queue also holds a reference, dropped when rq is freed.
3578 * Each cfq queue took a reference on the parent group. Drop it now.
3579 * queue lock must be held here.
3581 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3583 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3584 struct cfq_group
*cfqg
;
3586 BUG_ON(cfqq
->ref
<= 0);
3592 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3593 BUG_ON(rb_first(&cfqq
->sort_list
));
3594 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3597 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3598 __cfq_slice_expired(cfqd
, cfqq
, 0);
3599 cfq_schedule_dispatch(cfqd
);
3602 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3603 kmem_cache_free(cfq_pool
, cfqq
);
3607 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3609 struct cfq_queue
*__cfqq
, *next
;
3612 * If this queue was scheduled to merge with another queue, be
3613 * sure to drop the reference taken on that queue (and others in
3614 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3616 __cfqq
= cfqq
->new_cfqq
;
3618 if (__cfqq
== cfqq
) {
3619 WARN(1, "cfqq->new_cfqq loop detected\n");
3622 next
= __cfqq
->new_cfqq
;
3623 cfq_put_queue(__cfqq
);
3628 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3630 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3631 __cfq_slice_expired(cfqd
, cfqq
, 0);
3632 cfq_schedule_dispatch(cfqd
);
3635 cfq_put_cooperator(cfqq
);
3637 cfq_put_queue(cfqq
);
3640 static void cfq_init_icq(struct io_cq
*icq
)
3642 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3644 cic
->ttime
.last_end_request
= ktime_get_ns();
3647 static void cfq_exit_icq(struct io_cq
*icq
)
3649 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3650 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3652 if (cic_to_cfqq(cic
, false)) {
3653 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3654 cic_set_cfqq(cic
, NULL
, false);
3657 if (cic_to_cfqq(cic
, true)) {
3658 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3659 cic_set_cfqq(cic
, NULL
, true);
3663 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3665 struct task_struct
*tsk
= current
;
3668 if (!cfq_cfqq_prio_changed(cfqq
))
3671 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3672 switch (ioprio_class
) {
3674 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3676 case IOPRIO_CLASS_NONE
:
3678 * no prio set, inherit CPU scheduling settings
3680 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3681 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3683 case IOPRIO_CLASS_RT
:
3684 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3685 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3687 case IOPRIO_CLASS_BE
:
3688 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3689 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3691 case IOPRIO_CLASS_IDLE
:
3692 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3694 cfq_clear_cfqq_idle_window(cfqq
);
3699 * keep track of original prio settings in case we have to temporarily
3700 * elevate the priority of this queue
3702 cfqq
->org_ioprio
= cfqq
->ioprio
;
3703 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3704 cfq_clear_cfqq_prio_changed(cfqq
);
3707 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3709 int ioprio
= cic
->icq
.ioc
->ioprio
;
3710 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3711 struct cfq_queue
*cfqq
;
3714 * Check whether ioprio has changed. The condition may trigger
3715 * spuriously on a newly created cic but there's no harm.
3717 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3720 cfqq
= cic_to_cfqq(cic
, false);
3722 cfq_put_queue(cfqq
);
3723 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3724 cic_set_cfqq(cic
, cfqq
, false);
3727 cfqq
= cic_to_cfqq(cic
, true);
3729 cfq_mark_cfqq_prio_changed(cfqq
);
3731 cic
->ioprio
= ioprio
;
3734 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3735 pid_t pid
, bool is_sync
)
3737 RB_CLEAR_NODE(&cfqq
->rb_node
);
3738 RB_CLEAR_NODE(&cfqq
->p_node
);
3739 INIT_LIST_HEAD(&cfqq
->fifo
);
3744 cfq_mark_cfqq_prio_changed(cfqq
);
3747 if (!cfq_class_idle(cfqq
))
3748 cfq_mark_cfqq_idle_window(cfqq
);
3749 cfq_mark_cfqq_sync(cfqq
);
3754 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3755 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3757 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3758 struct cfq_queue
*cfqq
;
3762 serial_nr
= __bio_blkcg(bio
)->css
.serial_nr
;
3766 * Check whether blkcg has changed. The condition may trigger
3767 * spuriously on a newly created cic but there's no harm.
3769 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3773 * Drop reference to queues. New queues will be assigned in new
3774 * group upon arrival of fresh requests.
3776 cfqq
= cic_to_cfqq(cic
, false);
3778 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3779 cic_set_cfqq(cic
, NULL
, false);
3780 cfq_put_queue(cfqq
);
3783 cfqq
= cic_to_cfqq(cic
, true);
3785 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3786 cic_set_cfqq(cic
, NULL
, true);
3787 cfq_put_queue(cfqq
);
3790 cic
->blkcg_serial_nr
= serial_nr
;
3793 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3796 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3798 static struct cfq_queue
**
3799 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3801 switch (ioprio_class
) {
3802 case IOPRIO_CLASS_RT
:
3803 return &cfqg
->async_cfqq
[0][ioprio
];
3804 case IOPRIO_CLASS_NONE
:
3805 ioprio
= IOPRIO_NORM
;
3807 case IOPRIO_CLASS_BE
:
3808 return &cfqg
->async_cfqq
[1][ioprio
];
3809 case IOPRIO_CLASS_IDLE
:
3810 return &cfqg
->async_idle_cfqq
;
3816 static struct cfq_queue
*
3817 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3820 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3821 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3822 struct cfq_queue
**async_cfqq
= NULL
;
3823 struct cfq_queue
*cfqq
;
3824 struct cfq_group
*cfqg
;
3827 cfqg
= cfq_lookup_cfqg(cfqd
, __bio_blkcg(bio
));
3829 cfqq
= &cfqd
->oom_cfqq
;
3834 if (!ioprio_valid(cic
->ioprio
)) {
3835 struct task_struct
*tsk
= current
;
3836 ioprio
= task_nice_ioprio(tsk
);
3837 ioprio_class
= task_nice_ioclass(tsk
);
3839 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3845 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3846 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3849 cfqq
= &cfqd
->oom_cfqq
;
3853 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3854 cfqq
->ioprio_class
= IOPRIO_CLASS_NONE
;
3855 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3856 cfq_init_prio_data(cfqq
, cic
);
3857 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3858 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3861 /* a new async queue is created, pin and remember */
3872 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3874 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3875 elapsed
= min(elapsed
, 2UL * slice_idle
);
3877 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3878 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3879 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3880 ttime
->ttime_samples
);
3884 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3885 struct cfq_io_cq
*cic
)
3887 if (cfq_cfqq_sync(cfqq
)) {
3888 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3889 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3890 cfqd
->cfq_slice_idle
);
3892 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3893 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3898 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3902 sector_t n_sec
= blk_rq_sectors(rq
);
3903 if (cfqq
->last_request_pos
) {
3904 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3905 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3907 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3910 cfqq
->seek_history
<<= 1;
3911 if (blk_queue_nonrot(cfqd
->queue
))
3912 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3914 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3917 static inline bool req_noidle(struct request
*req
)
3919 return req_op(req
) == REQ_OP_WRITE
&&
3920 (req
->cmd_flags
& (REQ_SYNC
| REQ_IDLE
)) == REQ_SYNC
;
3924 * Disable idle window if the process thinks too long or seeks so much that
3928 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3929 struct cfq_io_cq
*cic
)
3931 int old_idle
, enable_idle
;
3934 * Don't idle for async or idle io prio class
3936 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3939 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3941 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3942 cfq_mark_cfqq_deep(cfqq
);
3944 if (cfqq
->next_rq
&& req_noidle(cfqq
->next_rq
))
3946 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3947 !cfqd
->cfq_slice_idle
||
3948 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3950 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3951 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3957 if (old_idle
!= enable_idle
) {
3958 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3960 cfq_mark_cfqq_idle_window(cfqq
);
3962 cfq_clear_cfqq_idle_window(cfqq
);
3967 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3968 * no or if we aren't sure, a 1 will cause a preempt.
3971 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3974 struct cfq_queue
*cfqq
;
3976 cfqq
= cfqd
->active_queue
;
3980 if (cfq_class_idle(new_cfqq
))
3983 if (cfq_class_idle(cfqq
))
3987 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3989 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3993 * if the new request is sync, but the currently running queue is
3994 * not, let the sync request have priority.
3996 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4000 * Treat ancestors of current cgroup the same way as current cgroup.
4001 * For anybody else we disallow preemption to guarantee service
4002 * fairness among cgroups.
4004 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4007 if (cfq_slice_used(cfqq
))
4011 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4013 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4016 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4017 /* Allow preemption only if we are idling on sync-noidle tree */
4018 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4019 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4020 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4024 * So both queues are sync. Let the new request get disk time if
4025 * it's a metadata request and the current queue is doing regular IO.
4027 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4030 /* An idle queue should not be idle now for some reason */
4031 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4034 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4038 * if this request is as-good as one we would expect from the
4039 * current cfqq, let it preempt
4041 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4048 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4049 * let it have half of its nominal slice.
4051 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4053 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4055 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4056 cfq_slice_expired(cfqd
, 1);
4059 * workload type is changed, don't save slice, otherwise preempt
4062 if (old_type
!= cfqq_type(cfqq
))
4063 cfqq
->cfqg
->saved_wl_slice
= 0;
4066 * Put the new queue at the front of the of the current list,
4067 * so we know that it will be selected next.
4069 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4071 cfq_service_tree_add(cfqd
, cfqq
, 1);
4073 cfqq
->slice_end
= 0;
4074 cfq_mark_cfqq_slice_new(cfqq
);
4078 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4079 * something we should do about it
4082 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4085 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4088 if (rq
->cmd_flags
& REQ_PRIO
)
4089 cfqq
->prio_pending
++;
4091 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4092 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4093 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4095 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4097 if (cfqq
== cfqd
->active_queue
) {
4099 * Remember that we saw a request from this process, but
4100 * don't start queuing just yet. Otherwise we risk seeing lots
4101 * of tiny requests, because we disrupt the normal plugging
4102 * and merging. If the request is already larger than a single
4103 * page, let it rip immediately. For that case we assume that
4104 * merging is already done. Ditto for a busy system that
4105 * has other work pending, don't risk delaying until the
4106 * idle timer unplug to continue working.
4108 if (cfq_cfqq_wait_request(cfqq
)) {
4109 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4110 cfqd
->busy_queues
> 1) {
4111 cfq_del_timer(cfqd
, cfqq
);
4112 cfq_clear_cfqq_wait_request(cfqq
);
4113 __blk_run_queue(cfqd
->queue
);
4115 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4116 cfq_mark_cfqq_must_dispatch(cfqq
);
4119 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4121 * not the active queue - expire current slice if it is
4122 * idle and has expired it's mean thinktime or this new queue
4123 * has some old slice time left and is of higher priority or
4124 * this new queue is RT and the current one is BE
4126 cfq_preempt_queue(cfqd
, cfqq
);
4127 __blk_run_queue(cfqd
->queue
);
4131 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4133 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4134 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4136 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4137 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4139 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4140 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4142 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4144 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4148 * Update hw_tag based on peak queue depth over 50 samples under
4151 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4153 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4155 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4156 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4158 if (cfqd
->hw_tag
== 1)
4161 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4162 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4166 * If active queue hasn't enough requests and can idle, cfq might not
4167 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4170 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4171 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4172 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4175 if (cfqd
->hw_tag_samples
++ < 50)
4178 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4184 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4186 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4187 u64 now
= ktime_get_ns();
4189 /* If the queue already has requests, don't wait */
4190 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4193 /* If there are other queues in the group, don't wait */
4194 if (cfqq
->cfqg
->nr_cfqq
> 1)
4197 /* the only queue in the group, but think time is big */
4198 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4201 if (cfq_slice_used(cfqq
))
4204 /* if slice left is less than think time, wait busy */
4205 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4206 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4210 * If think times is less than a jiffy than ttime_mean=0 and above
4211 * will not be true. It might happen that slice has not expired yet
4212 * but will expire soon (4-5 ns) during select_queue(). To cover the
4213 * case where think time is less than a jiffy, mark the queue wait
4214 * busy if only 1 jiffy is left in the slice.
4216 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4222 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4224 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4225 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4226 const int sync
= rq_is_sync(rq
);
4227 u64 now
= ktime_get_ns();
4229 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", req_noidle(rq
));
4231 cfq_update_hw_tag(cfqd
);
4233 WARN_ON(!cfqd
->rq_in_driver
);
4234 WARN_ON(!cfqq
->dispatched
);
4235 cfqd
->rq_in_driver
--;
4237 (RQ_CFQG(rq
))->dispatched
--;
4238 cfqg_stats_update_completion(cfqq
->cfqg
, rq
->start_time_ns
,
4239 rq
->io_start_time_ns
, rq
->cmd_flags
);
4241 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4244 struct cfq_rb_root
*st
;
4246 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4248 if (cfq_cfqq_on_rr(cfqq
))
4249 st
= cfqq
->service_tree
;
4251 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4254 st
->ttime
.last_end_request
= now
;
4255 if (rq
->start_time_ns
+ cfqd
->cfq_fifo_expire
[1] <= now
)
4256 cfqd
->last_delayed_sync
= now
;
4259 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4260 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4264 * If this is the active queue, check if it needs to be expired,
4265 * or if we want to idle in case it has no pending requests.
4267 if (cfqd
->active_queue
== cfqq
) {
4268 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4270 if (cfq_cfqq_slice_new(cfqq
)) {
4271 cfq_set_prio_slice(cfqd
, cfqq
);
4272 cfq_clear_cfqq_slice_new(cfqq
);
4276 * Should we wait for next request to come in before we expire
4279 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4280 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4281 if (!cfqd
->cfq_slice_idle
)
4282 extend_sl
= cfqd
->cfq_group_idle
;
4283 cfqq
->slice_end
= now
+ extend_sl
;
4284 cfq_mark_cfqq_wait_busy(cfqq
);
4285 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4289 * Idling is not enabled on:
4291 * - idle-priority queues
4293 * - queues with still some requests queued
4294 * - when there is a close cooperator
4296 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4297 cfq_slice_expired(cfqd
, 1);
4298 else if (sync
&& cfqq_empty
&&
4299 !cfq_close_cooperator(cfqd
, cfqq
)) {
4300 cfq_arm_slice_timer(cfqd
);
4304 if (!cfqd
->rq_in_driver
)
4305 cfq_schedule_dispatch(cfqd
);
4308 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, unsigned int op
)
4311 * If REQ_PRIO is set, boost class and prio level, if it's below
4312 * BE/NORM. If prio is not set, restore the potentially boosted
4315 if (!(op
& REQ_PRIO
)) {
4316 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4317 cfqq
->ioprio
= cfqq
->org_ioprio
;
4319 if (cfq_class_idle(cfqq
))
4320 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4321 if (cfqq
->ioprio
> IOPRIO_NORM
)
4322 cfqq
->ioprio
= IOPRIO_NORM
;
4326 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4328 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4329 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4330 return ELV_MQUEUE_MUST
;
4333 return ELV_MQUEUE_MAY
;
4336 static int cfq_may_queue(struct request_queue
*q
, unsigned int op
)
4338 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4339 struct task_struct
*tsk
= current
;
4340 struct cfq_io_cq
*cic
;
4341 struct cfq_queue
*cfqq
;
4344 * don't force setup of a queue from here, as a call to may_queue
4345 * does not necessarily imply that a request actually will be queued.
4346 * so just lookup a possibly existing queue, or return 'may queue'
4349 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4351 return ELV_MQUEUE_MAY
;
4353 cfqq
= cic_to_cfqq(cic
, op_is_sync(op
));
4355 cfq_init_prio_data(cfqq
, cic
);
4356 cfqq_boost_on_prio(cfqq
, op
);
4358 return __cfq_may_queue(cfqq
);
4361 return ELV_MQUEUE_MAY
;
4365 * queue lock held here
4367 static void cfq_put_request(struct request
*rq
)
4369 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4372 const int rw
= rq_data_dir(rq
);
4374 BUG_ON(!cfqq
->allocated
[rw
]);
4375 cfqq
->allocated
[rw
]--;
4377 /* Put down rq reference on cfqg */
4378 cfqg_put(RQ_CFQG(rq
));
4379 rq
->elv
.priv
[0] = NULL
;
4380 rq
->elv
.priv
[1] = NULL
;
4382 cfq_put_queue(cfqq
);
4386 static struct cfq_queue
*
4387 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4388 struct cfq_queue
*cfqq
)
4390 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4391 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4392 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4393 cfq_put_queue(cfqq
);
4394 return cic_to_cfqq(cic
, 1);
4398 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4399 * was the last process referring to said cfqq.
4401 static struct cfq_queue
*
4402 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4404 if (cfqq_process_refs(cfqq
) == 1) {
4405 cfqq
->pid
= current
->pid
;
4406 cfq_clear_cfqq_coop(cfqq
);
4407 cfq_clear_cfqq_split_coop(cfqq
);
4411 cic_set_cfqq(cic
, NULL
, 1);
4413 cfq_put_cooperator(cfqq
);
4415 cfq_put_queue(cfqq
);
4419 * Allocate cfq data structures associated with this request.
4422 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4425 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4426 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4427 const int rw
= rq_data_dir(rq
);
4428 const bool is_sync
= rq_is_sync(rq
);
4429 struct cfq_queue
*cfqq
;
4431 spin_lock_irq(q
->queue_lock
);
4433 check_ioprio_changed(cic
, bio
);
4434 check_blkcg_changed(cic
, bio
);
4436 cfqq
= cic_to_cfqq(cic
, is_sync
);
4437 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4439 cfq_put_queue(cfqq
);
4440 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4441 cic_set_cfqq(cic
, cfqq
, is_sync
);
4444 * If the queue was seeky for too long, break it apart.
4446 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4447 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4448 cfqq
= split_cfqq(cic
, cfqq
);
4454 * Check to see if this queue is scheduled to merge with
4455 * another, closely cooperating queue. The merging of
4456 * queues happens here as it must be done in process context.
4457 * The reference on new_cfqq was taken in merge_cfqqs.
4460 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4463 cfqq
->allocated
[rw
]++;
4466 cfqg_get(cfqq
->cfqg
);
4467 rq
->elv
.priv
[0] = cfqq
;
4468 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4469 spin_unlock_irq(q
->queue_lock
);
4474 static void cfq_kick_queue(struct work_struct
*work
)
4476 struct cfq_data
*cfqd
=
4477 container_of(work
, struct cfq_data
, unplug_work
);
4478 struct request_queue
*q
= cfqd
->queue
;
4480 spin_lock_irq(q
->queue_lock
);
4481 __blk_run_queue(cfqd
->queue
);
4482 spin_unlock_irq(q
->queue_lock
);
4486 * Timer running if the active_queue is currently idling inside its time slice
4488 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4490 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4492 struct cfq_queue
*cfqq
;
4493 unsigned long flags
;
4496 cfq_log(cfqd
, "idle timer fired");
4498 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4500 cfqq
= cfqd
->active_queue
;
4505 * We saw a request before the queue expired, let it through
4507 if (cfq_cfqq_must_dispatch(cfqq
))
4513 if (cfq_slice_used(cfqq
))
4517 * only expire and reinvoke request handler, if there are
4518 * other queues with pending requests
4520 if (!cfqd
->busy_queues
)
4524 * not expired and it has a request pending, let it dispatch
4526 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4530 * Queue depth flag is reset only when the idle didn't succeed
4532 cfq_clear_cfqq_deep(cfqq
);
4535 cfq_slice_expired(cfqd
, timed_out
);
4537 cfq_schedule_dispatch(cfqd
);
4539 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4540 return HRTIMER_NORESTART
;
4543 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4545 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4546 cancel_work_sync(&cfqd
->unplug_work
);
4549 static void cfq_exit_queue(struct elevator_queue
*e
)
4551 struct cfq_data
*cfqd
= e
->elevator_data
;
4552 struct request_queue
*q
= cfqd
->queue
;
4554 cfq_shutdown_timer_wq(cfqd
);
4556 spin_lock_irq(q
->queue_lock
);
4558 if (cfqd
->active_queue
)
4559 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4561 spin_unlock_irq(q
->queue_lock
);
4563 cfq_shutdown_timer_wq(cfqd
);
4565 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4566 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4568 kfree(cfqd
->root_group
);
4573 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4575 struct cfq_data
*cfqd
;
4576 struct blkcg_gq
*blkg __maybe_unused
;
4578 struct elevator_queue
*eq
;
4580 eq
= elevator_alloc(q
, e
);
4584 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4586 kobject_put(&eq
->kobj
);
4589 eq
->elevator_data
= cfqd
;
4592 spin_lock_irq(q
->queue_lock
);
4594 spin_unlock_irq(q
->queue_lock
);
4596 /* Init root service tree */
4597 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4599 /* Init root group and prefer root group over other groups by default */
4600 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4601 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4605 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4608 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4609 GFP_KERNEL
, cfqd
->queue
->node
);
4610 if (!cfqd
->root_group
)
4613 cfq_init_cfqg_base(cfqd
->root_group
);
4614 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4615 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4619 * Not strictly needed (since RB_ROOT just clears the node and we
4620 * zeroed cfqd on alloc), but better be safe in case someone decides
4621 * to add magic to the rb code
4623 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4624 cfqd
->prio_trees
[i
] = RB_ROOT
;
4627 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4628 * Grab a permanent reference to it, so that the normal code flow
4629 * will not attempt to free it. oom_cfqq is linked to root_group
4630 * but shouldn't hold a reference as it'll never be unlinked. Lose
4631 * the reference from linking right away.
4633 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4634 cfqd
->oom_cfqq
.ref
++;
4636 spin_lock_irq(q
->queue_lock
);
4637 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4638 cfqg_put(cfqd
->root_group
);
4639 spin_unlock_irq(q
->queue_lock
);
4641 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4643 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4645 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4647 cfqd
->cfq_quantum
= cfq_quantum
;
4648 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4649 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4650 cfqd
->cfq_back_max
= cfq_back_max
;
4651 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4652 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4653 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4654 cfqd
->cfq_target_latency
= cfq_target_latency
;
4655 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4656 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4657 cfqd
->cfq_group_idle
= cfq_group_idle
;
4658 cfqd
->cfq_latency
= 1;
4661 * we optimistically start assuming sync ops weren't delayed in last
4662 * second, in order to have larger depth for async operations.
4664 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4669 kobject_put(&eq
->kobj
);
4673 static void cfq_registered_queue(struct request_queue
*q
)
4675 struct elevator_queue
*e
= q
->elevator
;
4676 struct cfq_data
*cfqd
= e
->elevator_data
;
4679 * Default to IOPS mode with no idling for SSDs
4681 if (blk_queue_nonrot(q
))
4682 cfqd
->cfq_slice_idle
= 0;
4683 wbt_disable_default(q
);
4687 * sysfs parts below -->
4690 cfq_var_show(unsigned int var
, char *page
)
4692 return sprintf(page
, "%u\n", var
);
4696 cfq_var_store(unsigned int *var
, const char *page
)
4698 char *p
= (char *) page
;
4700 *var
= simple_strtoul(p
, &p
, 10);
4703 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4704 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4706 struct cfq_data *cfqd = e->elevator_data; \
4707 u64 __data = __VAR; \
4709 __data = div_u64(__data, NSEC_PER_MSEC); \
4710 return cfq_var_show(__data, (page)); \
4712 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4713 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4714 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4715 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4716 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4717 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4718 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4719 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4720 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4721 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4722 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4723 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4724 #undef SHOW_FUNCTION
4726 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4727 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4729 struct cfq_data *cfqd = e->elevator_data; \
4730 u64 __data = __VAR; \
4731 __data = div_u64(__data, NSEC_PER_USEC); \
4732 return cfq_var_show(__data, (page)); \
4734 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4735 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4736 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4737 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4738 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4739 #undef USEC_SHOW_FUNCTION
4741 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4742 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4744 struct cfq_data *cfqd = e->elevator_data; \
4745 unsigned int __data, __min = (MIN), __max = (MAX); \
4747 cfq_var_store(&__data, (page)); \
4748 if (__data < __min) \
4750 else if (__data > __max) \
4753 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4755 *(__PTR) = __data; \
4758 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4759 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4761 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4763 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4764 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4766 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4767 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4768 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4769 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4770 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4772 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4773 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4774 #undef STORE_FUNCTION
4776 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4777 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4779 struct cfq_data *cfqd = e->elevator_data; \
4780 unsigned int __data, __min = (MIN), __max = (MAX); \
4782 cfq_var_store(&__data, (page)); \
4783 if (__data < __min) \
4785 else if (__data > __max) \
4787 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4790 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4791 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4792 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4793 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4794 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4795 #undef USEC_STORE_FUNCTION
4797 #define CFQ_ATTR(name) \
4798 __ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store)
4800 static struct elv_fs_entry cfq_attrs
[] = {
4802 CFQ_ATTR(fifo_expire_sync
),
4803 CFQ_ATTR(fifo_expire_async
),
4804 CFQ_ATTR(back_seek_max
),
4805 CFQ_ATTR(back_seek_penalty
),
4806 CFQ_ATTR(slice_sync
),
4807 CFQ_ATTR(slice_sync_us
),
4808 CFQ_ATTR(slice_async
),
4809 CFQ_ATTR(slice_async_us
),
4810 CFQ_ATTR(slice_async_rq
),
4811 CFQ_ATTR(slice_idle
),
4812 CFQ_ATTR(slice_idle_us
),
4813 CFQ_ATTR(group_idle
),
4814 CFQ_ATTR(group_idle_us
),
4815 CFQ_ATTR(low_latency
),
4816 CFQ_ATTR(target_latency
),
4817 CFQ_ATTR(target_latency_us
),
4821 static struct elevator_type iosched_cfq
= {
4823 .elevator_merge_fn
= cfq_merge
,
4824 .elevator_merged_fn
= cfq_merged_request
,
4825 .elevator_merge_req_fn
= cfq_merged_requests
,
4826 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4827 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4828 .elevator_bio_merged_fn
= cfq_bio_merged
,
4829 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4830 .elevator_add_req_fn
= cfq_insert_request
,
4831 .elevator_activate_req_fn
= cfq_activate_request
,
4832 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4833 .elevator_completed_req_fn
= cfq_completed_request
,
4834 .elevator_former_req_fn
= elv_rb_former_request
,
4835 .elevator_latter_req_fn
= elv_rb_latter_request
,
4836 .elevator_init_icq_fn
= cfq_init_icq
,
4837 .elevator_exit_icq_fn
= cfq_exit_icq
,
4838 .elevator_set_req_fn
= cfq_set_request
,
4839 .elevator_put_req_fn
= cfq_put_request
,
4840 .elevator_may_queue_fn
= cfq_may_queue
,
4841 .elevator_init_fn
= cfq_init_queue
,
4842 .elevator_exit_fn
= cfq_exit_queue
,
4843 .elevator_registered_fn
= cfq_registered_queue
,
4845 .icq_size
= sizeof(struct cfq_io_cq
),
4846 .icq_align
= __alignof__(struct cfq_io_cq
),
4847 .elevator_attrs
= cfq_attrs
,
4848 .elevator_name
= "cfq",
4849 .elevator_owner
= THIS_MODULE
,
4852 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4853 static struct blkcg_policy blkcg_policy_cfq
= {
4854 .dfl_cftypes
= cfq_blkcg_files
,
4855 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4857 .cpd_alloc_fn
= cfq_cpd_alloc
,
4858 .cpd_init_fn
= cfq_cpd_init
,
4859 .cpd_free_fn
= cfq_cpd_free
,
4860 .cpd_bind_fn
= cfq_cpd_bind
,
4862 .pd_alloc_fn
= cfq_pd_alloc
,
4863 .pd_init_fn
= cfq_pd_init
,
4864 .pd_offline_fn
= cfq_pd_offline
,
4865 .pd_free_fn
= cfq_pd_free
,
4866 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4870 static int __init
cfq_init(void)
4874 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4875 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4883 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4887 ret
= elv_register(&iosched_cfq
);
4894 kmem_cache_destroy(cfq_pool
);
4896 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4897 blkcg_policy_unregister(&blkcg_policy_cfq
);
4902 static void __exit
cfq_exit(void)
4904 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4905 blkcg_policy_unregister(&blkcg_policy_cfq
);
4907 elv_unregister(&iosched_cfq
);
4908 kmem_cache_destroy(cfq_pool
);
4911 module_init(cfq_init
);
4912 module_exit(cfq_exit
);
4914 MODULE_AUTHOR("Jens Axboe");
4915 MODULE_LICENSE("GPL");
4916 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");