perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / atm / firestream.c
blob4e46dc9e41ad01142ffdcfe1c38921df9db0ebda
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/capability.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <asm/byteorder.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <linux/atomic.h>
55 #include <linux/uaccess.h>
56 #include <linux/wait.h>
58 #include "firestream.h"
60 static int loopback = 0;
61 static int num=0x5a;
63 /* According to measurements (but they look suspicious to me!) done in
64 * '97, 37% of the packets are one cell in size. So it pays to have
65 * buffers allocated at that size. A large jump in percentage of
66 * packets occurs at packets around 536 bytes in length. So it also
67 * pays to have those pre-allocated. Unfortunately, we can't fully
68 * take advantage of this as the majority of the packets is likely to
69 * be TCP/IP (As where obviously the measurement comes from) There the
70 * link would be opened with say a 1500 byte MTU, and we can't handle
71 * smaller buffers more efficiently than the larger ones. -- REW
74 /* Due to the way Linux memory management works, specifying "576" as
75 * an allocation size here isn't going to help. They are allocated
76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80 * are appreciated. -- REW */
82 /* The last entry should be about 64k. However, the "buffer size" is
83 * passed to the chip in a 16 bit field. I don't know how "65536"
84 * would be interpreted. -- REW */
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88 /* log2: 7 8 9 10 11 12 14 16 */
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95 #endif
96 /* log2: 10 10 9 8 7 6 5 5 */
97 /* sumlog2: 17 18 18 18 18 18 19 21 */
98 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99 /* tot mem: almost 4M */
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
105 /* Small hardware gotcha:
107 The FS50 CAM (VP/VC match registers) always take the lowest channel
108 number that matches. This is not a problem.
110 However, they also ignore whether the channel is enabled or
111 not. This means that if you allocate channel 0 to 1.2 and then
112 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113 match channel for channel 0 will "steal" the traffic from channel
114 1, even if you correctly disable channel 0.
116 Workaround:
118 - When disabling channels, write an invalid VP/VC value to the
119 match register. (We use 0xffffffff, which in the worst case
120 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121 anything as some "when not in use, program to 0" bits are now
122 programmed to 1...)
124 - Don't initialize the match registers to 0, as 0.0 is a valid
125 channel.
129 /* Optimization hints and tips.
131 The FireStream chips are very capable of reducing the amount of
132 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133 action. You could try to minimize this a bit.
135 Besides that, the userspace->kernel copy and the PCI bus are the
136 performance limiting issues for this driver.
138 You could queue up a bunch of outgoing packets without telling the
139 FireStream. I'm not sure that's going to win you much though. The
140 Linux layer won't tell us in advance when it's not going to give us
141 any more packets in a while. So this is tricky to implement right without
142 introducing extra delays.
144 -- REW
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152 freepool descriptor! */
153 static char *res_strings[] = {
154 "RX OK: streaming not EOP",
155 "RX OK: streaming EOP",
156 "RX OK: Single buffer packet",
157 "RX OK: packet mode",
158 "RX OK: F4 OAM (end to end)",
159 "RX OK: F4 OAM (Segment)",
160 "RX OK: F5 OAM (end to end)",
161 "RX OK: F5 OAM (Segment)",
162 "RX OK: RM cell",
163 "RX OK: TRANSP cell",
164 "RX OK: TRANSPC cell",
165 "Unmatched cell",
166 "reserved 12",
167 "reserved 13",
168 "reserved 14",
169 "Unrecognized cell",
170 "reserved 16",
171 "reassembly abort: AAL5 abort",
172 "packet purged",
173 "packet ageing timeout",
174 "channel ageing timeout",
175 "calculated length error",
176 "programmed length limit error",
177 "aal5 crc32 error",
178 "oam transp or transpc crc10 error",
179 "reserved 25",
180 "reserved 26",
181 "reserved 27",
182 "reserved 28",
183 "reserved 29",
184 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185 "reassembly abort: no buffers",
186 "receive buffer overflow",
187 "change in GFC",
188 "receive buffer full",
189 "low priority discard - no receive descriptor",
190 "low priority discard - missing end of packet",
191 "reserved 37",
192 "reserved 38",
193 "reserved 39",
194 "reserved 40",
195 "reserved 41",
196 "reserved 42",
197 "reserved 43",
198 "reserved 44",
199 "reserved 45",
200 "reserved 46",
201 "reserved 47",
202 "reserved 48",
203 "reserved 49",
204 "reserved 50",
205 "reserved 51",
206 "reserved 52",
207 "reserved 53",
208 "reserved 54",
209 "reserved 55",
210 "reserved 56",
211 "reserved 57",
212 "reserved 58",
213 "reserved 59",
214 "reserved 60",
215 "reserved 61",
216 "reserved 62",
217 "reserved 63",
220 static char *irq_bitname[] = {
221 "LPCO",
222 "DPCO",
223 "RBRQ0_W",
224 "RBRQ1_W",
225 "RBRQ2_W",
226 "RBRQ3_W",
227 "RBRQ0_NF",
228 "RBRQ1_NF",
229 "RBRQ2_NF",
230 "RBRQ3_NF",
231 "BFP_SC",
232 "INIT",
233 "INIT_ERR",
234 "USCEO",
235 "UPEC0",
236 "VPFCO",
237 "CRCCO",
238 "HECO",
239 "TBRQ_W",
240 "TBRQ_NF",
241 "CTPQ_E",
242 "GFC_C0",
243 "PCI_FTL",
244 "CSQ_W",
245 "CSQ_NF",
246 "EXT_INT",
247 "RXDMA_S"
251 #define PHY_EOF -1
252 #define PHY_CLEARALL -2
254 struct reginit_item {
255 int reg, val;
259 static struct reginit_item PHY_NTC_INIT[] = {
260 { PHY_CLEARALL, 0x40 },
261 { 0x12, 0x0001 },
262 { 0x13, 0x7605 },
263 { 0x1A, 0x0001 },
264 { 0x1B, 0x0005 },
265 { 0x38, 0x0003 },
266 { 0x39, 0x0006 }, /* changed here to make loopback */
267 { 0x01, 0x5262 },
268 { 0x15, 0x0213 },
269 { 0x00, 0x0003 },
270 { PHY_EOF, 0}, /* -1 signals end of list */
274 /* Safetyfeature: If the card interrupts more than this number of times
275 in a jiffy (1/100th of a second) then we just disable the interrupt and
276 print a message. This prevents the system from hanging.
278 150000 packets per second is close to the limit a PC is going to have
279 anyway. We therefore have to disable this for production. -- REW */
280 #undef IRQ_RATE_LIMIT // 100
282 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
283 that great without interrupts. -- REW */
284 #undef FS_POLL_FREQ // 100
287 This driver can spew a whole lot of debugging output at you. If you
288 need maximum performance, you should disable the DEBUG define. To
289 aid in debugging in the field, I'm leaving the compile-time debug
290 features enabled, and disable them "runtime". That allows me to
291 instruct people with problems to enable debugging without requiring
292 them to recompile... -- REW
294 #define DEBUG
296 #ifdef DEBUG
297 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298 #else
299 #define fs_dprintk(f, str...) /* nothing */
300 #endif
303 static int fs_keystream = 0;
305 #ifdef DEBUG
306 /* I didn't forget to set this to zero before shipping. Hit me with a stick
307 if you get this with the debug default not set to zero again. -- REW */
308 static int fs_debug = 0;
309 #else
310 #define fs_debug 0
311 #endif
313 #ifdef MODULE
314 #ifdef DEBUG
315 module_param(fs_debug, int, 0644);
316 #endif
317 module_param(loopback, int, 0);
318 module_param(num, int, 0);
319 module_param(fs_keystream, int, 0);
320 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321 #endif
324 #define FS_DEBUG_FLOW 0x00000001
325 #define FS_DEBUG_OPEN 0x00000002
326 #define FS_DEBUG_QUEUE 0x00000004
327 #define FS_DEBUG_IRQ 0x00000008
328 #define FS_DEBUG_INIT 0x00000010
329 #define FS_DEBUG_SEND 0x00000020
330 #define FS_DEBUG_PHY 0x00000040
331 #define FS_DEBUG_CLEANUP 0x00000080
332 #define FS_DEBUG_QOS 0x00000100
333 #define FS_DEBUG_TXQ 0x00000200
334 #define FS_DEBUG_ALLOC 0x00000400
335 #define FS_DEBUG_TXMEM 0x00000800
336 #define FS_DEBUG_QSIZE 0x00001000
339 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
343 static struct fs_dev *fs_boards = NULL;
345 #ifdef DEBUG
347 static void my_hd (void *addr, int len)
349 int j, ch;
350 unsigned char *ptr = addr;
352 while (len > 0) {
353 printk ("%p ", ptr);
354 for (j=0;j < ((len < 16)?len:16);j++) {
355 printk ("%02x %s", ptr[j], (j==7)?" ":"");
357 for ( ;j < 16;j++) {
358 printk (" %s", (j==7)?" ":"");
360 for (j=0;j < ((len < 16)?len:16);j++) {
361 ch = ptr[j];
362 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
364 printk ("\n");
365 ptr += 16;
366 len -= 16;
369 #else /* DEBUG */
370 static void my_hd (void *addr, int len){}
371 #endif /* DEBUG */
373 /********** free an skb (as per ATM device driver documentation) **********/
375 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376 * I copied it over from the ambassador driver. -- REW */
378 static inline void fs_kfree_skb (struct sk_buff * skb)
380 if (ATM_SKB(skb)->vcc->pop)
381 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382 else
383 dev_kfree_skb_any (skb);
389 /* It seems the ATM forum recommends this horribly complicated 16bit
390 * floating point format. Turns out the Ambassador uses the exact same
391 * encoding. I just copied it over. If Mitch agrees, I'll move it over
392 * to the atm_misc file or something like that. (and remove it from
393 * here and the ambassador driver) -- REW
396 /* The good thing about this format is that it is monotonic. So,
397 a conversion routine need not be very complicated. To be able to
398 round "nearest" we need to take along a few extra bits. Lets
399 put these after 16 bits, so that we can just return the top 16
400 bits of the 32bit number as the result:
402 int mr (unsigned int rate, int r)
404 int e = 16+9;
405 static int round[4]={0, 0, 0xffff, 0x8000};
406 if (!rate) return 0;
407 while (rate & 0xfc000000) {
408 rate >>= 1;
409 e++;
411 while (! (rate & 0xfe000000)) {
412 rate <<= 1;
413 e--;
416 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417 rate &= ~0x02000000;
418 // Next add in the exponent
419 rate |= e << (16+9);
420 // And perform the rounding:
421 return (rate + round[r]) >> 16;
424 14 lines-of-code. Compare that with the 120 that the Ambassador
425 guys needed. (would be 8 lines shorter if I'd try to really reduce
426 the number of lines:
428 int mr (unsigned int rate, int r)
430 int e = 16+9;
431 static int round[4]={0, 0, 0xffff, 0x8000};
432 if (!rate) return 0;
433 for (; rate & 0xfc000000 ;rate >>= 1, e++);
434 for (;!(rate & 0xfe000000);rate <<= 1, e--);
435 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
438 Exercise for the reader: Remove one more line-of-code, without
439 cheating. (Just joining two lines is cheating). (I know it's
440 possible, don't think you've beat me if you found it... If you
441 manage to lose two lines or more, keep me updated! ;-)
443 -- REW */
446 #define ROUND_UP 1
447 #define ROUND_DOWN 2
448 #define ROUND_NEAREST 3
449 /********** make rate (not quite as much fun as Horizon) **********/
451 static int make_rate(unsigned int rate, int r,
452 u16 *bits, unsigned int *actual)
454 unsigned char exp = -1; /* hush gcc */
455 unsigned int man = -1; /* hush gcc */
457 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
459 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
460 given 5-bit e and 9-bit m:
461 rate = EITHER (1+m/2^9)*2^e OR 0
462 bits = EITHER 1<<14 | e<<9 | m OR 0
463 (bit 15 is "reserved", bit 14 "non-zero")
464 smallest rate is 0 (special representation)
465 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467 simple algorithm:
468 find position of top bit, this gives e
469 remove top bit and shift (rounding if feeling clever) by 9-e
471 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472 representable. // This should move into the ambassador driver
473 when properly merged. -- REW */
475 if (rate > 0xffc00000U) {
476 /* larger than largest representable rate */
478 if (r == ROUND_UP) {
479 return -EINVAL;
480 } else {
481 exp = 31;
482 man = 511;
485 } else if (rate) {
486 /* representable rate */
488 exp = 31;
489 man = rate;
491 /* invariant: rate = man*2^(exp-31) */
492 while (!(man & (1<<31))) {
493 exp = exp - 1;
494 man = man<<1;
497 /* man has top bit set
498 rate = (2^31+(man-2^31))*2^(exp-31)
499 rate = (1+(man-2^31)/2^31)*2^exp
501 man = man<<1;
502 man &= 0xffffffffU; /* a nop on 32-bit systems */
503 /* rate = (1+man/2^32)*2^exp
505 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506 time to lose significance... we want m in the range 0 to 2^9-1
507 rounding presents a minor problem... we first decide which way
508 we are rounding (based on given rounding direction and possibly
509 the bits of the mantissa that are to be discarded).
512 switch (r) {
513 case ROUND_DOWN: {
514 /* just truncate */
515 man = man>>(32-9);
516 break;
518 case ROUND_UP: {
519 /* check all bits that we are discarding */
520 if (man & (~0U>>9)) {
521 man = (man>>(32-9)) + 1;
522 if (man == (1<<9)) {
523 /* no need to check for round up outside of range */
524 man = 0;
525 exp += 1;
527 } else {
528 man = (man>>(32-9));
530 break;
532 case ROUND_NEAREST: {
533 /* check msb that we are discarding */
534 if (man & (1<<(32-9-1))) {
535 man = (man>>(32-9)) + 1;
536 if (man == (1<<9)) {
537 /* no need to check for round up outside of range */
538 man = 0;
539 exp += 1;
541 } else {
542 man = (man>>(32-9));
544 break;
548 } else {
549 /* zero rate - not representable */
551 if (r == ROUND_DOWN) {
552 return -EINVAL;
553 } else {
554 exp = 0;
555 man = 0;
559 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
561 if (bits)
562 *bits = /* (1<<14) | */ (exp<<9) | man;
564 if (actual)
565 *actual = (exp >= 9)
566 ? (1 << exp) + (man << (exp-9))
567 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
569 return 0;
575 /* FireStream access routines */
576 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577 certain registers or to just log all accesses. */
579 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
581 writel (val, dev->base + offset);
585 static inline u32 read_fs (struct fs_dev *dev, int offset)
587 return readl (dev->base + offset);
592 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
594 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
598 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
600 u32 wp;
601 struct FS_QENTRY *cqe;
603 /* XXX Sanity check: the write pointer can be checked to be
604 still the same as the value passed as qe... -- REW */
605 /* udelay (5); */
606 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
608 q->offset);
609 schedule ();
612 wp &= ~0xf;
613 cqe = bus_to_virt (wp);
614 if (qe != cqe) {
615 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
618 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
621 static int c;
622 if (!(c++ % 100))
624 int rp, wp;
625 rp = read_fs (dev, Q_RP(q->offset));
626 wp = read_fs (dev, Q_WP(q->offset));
627 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
628 q->offset, rp, wp, wp-rp);
633 #ifdef DEBUG_EXTRA
634 static struct FS_QENTRY pq[60];
635 static int qp;
637 static struct FS_BPENTRY dq[60];
638 static int qd;
639 static void *da[60];
640 #endif
642 static void submit_queue (struct fs_dev *dev, struct queue *q,
643 u32 cmd, u32 p1, u32 p2, u32 p3)
645 struct FS_QENTRY *qe;
647 qe = get_qentry (dev, q);
648 qe->cmd = cmd;
649 qe->p0 = p1;
650 qe->p1 = p2;
651 qe->p2 = p3;
652 submit_qentry (dev, q, qe);
654 #ifdef DEBUG_EXTRA
655 pq[qp].cmd = cmd;
656 pq[qp].p0 = p1;
657 pq[qp].p1 = p2;
658 pq[qp].p2 = p3;
659 qp++;
660 if (qp >= 60) qp = 0;
661 #endif
664 /* Test the "other" way one day... -- REW */
665 #if 1
666 #define submit_command submit_queue
667 #else
669 static void submit_command (struct fs_dev *dev, struct queue *q,
670 u32 cmd, u32 p1, u32 p2, u32 p3)
672 write_fs (dev, CMDR0, cmd);
673 write_fs (dev, CMDR1, p1);
674 write_fs (dev, CMDR2, p2);
675 write_fs (dev, CMDR3, p3);
677 #endif
681 static void process_return_queue (struct fs_dev *dev, struct queue *q)
683 long rq;
684 struct FS_QENTRY *qe;
685 void *tc;
687 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
689 qe = bus_to_virt (rq);
691 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
692 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
694 switch (STATUS_CODE (qe)) {
695 case 5:
696 tc = bus_to_virt (qe->p0);
697 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698 kfree (tc);
699 break;
702 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
707 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
709 long rq;
710 long tmp;
711 struct FS_QENTRY *qe;
712 struct sk_buff *skb;
713 struct FS_BPENTRY *td;
715 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
717 qe = bus_to_virt (rq);
719 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
720 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
722 if (STATUS_CODE (qe) != 2)
723 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
724 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
727 switch (STATUS_CODE (qe)) {
728 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729 /* Fall through */
730 case 0x02:
731 /* Process a real txdone entry. */
732 tmp = qe->p0;
733 if (tmp & 0x0f)
734 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735 tmp &= ~0x0f;
736 td = bus_to_virt (tmp);
738 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
739 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
741 skb = td->skb;
742 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
746 td->dev->ntxpckts--;
749 static int c=0;
751 if (!(c++ % 100)) {
752 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
756 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
758 fs_dprintk (FS_DEBUG_TXMEM, "i");
759 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760 fs_kfree_skb (skb);
762 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
763 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764 kfree (td);
765 break;
766 default:
767 /* Here we get the tx purge inhibit command ... */
768 /* Action, I believe, is "don't do anything". -- REW */
772 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
777 static void process_incoming (struct fs_dev *dev, struct queue *q)
779 long rq;
780 struct FS_QENTRY *qe;
781 struct FS_BPENTRY *pe;
782 struct sk_buff *skb;
783 unsigned int channo;
784 struct atm_vcc *atm_vcc;
786 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
788 qe = bus_to_virt (rq);
790 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
791 qe->cmd, qe->p0, qe->p1, qe->p2);
793 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
794 STATUS_CODE (qe),
795 res_strings[STATUS_CODE(qe)]);
797 pe = bus_to_virt (qe->p0);
798 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
799 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
800 pe->skb, pe->fp);
802 channo = qe->cmd & 0xffff;
804 if (channo < dev->nchannels)
805 atm_vcc = dev->atm_vccs[channo];
806 else
807 atm_vcc = NULL;
809 /* Single buffer packet */
810 switch (STATUS_CODE (qe)) {
811 case 0x1:
812 /* Fall through for streaming mode */
813 case 0x2:/* Packet received OK.... */
814 if (atm_vcc) {
815 skb = pe->skb;
816 pe->fp->n--;
817 #if 0
818 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820 #endif
821 skb_put (skb, qe->p1 & 0xffff);
822 ATM_SKB(skb)->vcc = atm_vcc;
823 atomic_inc(&atm_vcc->stats->rx);
824 __net_timestamp(skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826 atm_vcc->push (atm_vcc, skb);
827 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828 kfree (pe);
829 } else {
830 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
832 break;
833 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834 has been consumed and needs to be processed. -- REW */
835 if (qe->p1 & 0xffff) {
836 pe = bus_to_virt (qe->p0);
837 pe->fp->n--;
838 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839 dev_kfree_skb_any (pe->skb);
840 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841 kfree (pe);
843 if (atm_vcc)
844 atomic_inc(&atm_vcc->stats->rx_drop);
845 break;
846 case 0x1f: /* Reassembly abort: no buffers. */
847 /* Silently increment error counter. */
848 if (atm_vcc)
849 atomic_inc(&atm_vcc->stats->rx_drop);
850 break;
851 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
853 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
855 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
861 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
863 static int fs_open(struct atm_vcc *atm_vcc)
865 struct fs_dev *dev;
866 struct fs_vcc *vcc;
867 struct fs_transmit_config *tc;
868 struct atm_trafprm * txtp;
869 struct atm_trafprm * rxtp;
870 /* struct fs_receive_config *rc;*/
871 /* struct FS_QENTRY *qe; */
872 int error;
873 int bfp;
874 int to;
875 unsigned short tmc0;
876 short vpi = atm_vcc->vpi;
877 int vci = atm_vcc->vci;
879 func_enter ();
881 dev = FS_DEV(atm_vcc->dev);
882 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
883 dev, atm_vcc);
885 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
888 if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 (atm_vcc->qos.aal != ATM_AAL2))
890 return -EINVAL; /* XXX AAL0 */
892 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
895 /* XXX handle qos parameters (rate limiting) ? */
897 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
899 if (!vcc) {
900 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 return -ENOMEM;
904 atm_vcc->dev_data = vcc;
905 vcc->last_skb = NULL;
907 init_waitqueue_head (&vcc->close_wait);
909 txtp = &atm_vcc->qos.txtp;
910 rxtp = &atm_vcc->qos.rxtp;
912 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 if (IS_FS50(dev)) {
914 /* Increment the channel numer: take a free one next time. */
915 for (to=33;to;to--, dev->channo++) {
916 /* We only have 32 channels */
917 if (dev->channo >= 32)
918 dev->channo = 0;
919 /* If we need to do RX, AND the RX is inuse, try the next */
920 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 continue;
922 /* If we need to do TX, AND the TX is inuse, try the next */
923 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 continue;
925 /* Ok, both are free! (or not needed) */
926 break;
928 if (!to) {
929 printk ("No more free channels for FS50..\n");
930 return -EBUSY;
932 vcc->channo = dev->channo;
933 dev->channo &= dev->channel_mask;
935 } else {
936 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
937 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
938 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
939 printk ("Channel is in use for FS155.\n");
940 return -EBUSY;
943 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
944 vcc->channo, vcc->channo);
947 if (DO_DIRECTION (txtp)) {
948 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
949 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
950 tc, sizeof (struct fs_transmit_config));
951 if (!tc) {
952 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
953 return -ENOMEM;
956 /* Allocate the "open" entry from the high priority txq. This makes
957 it most likely that the chip will notice it. It also prevents us
958 from having to wait for completion. On the other hand, we may
959 need to wait for completion anyway, to see if it completed
960 successfully. */
962 switch (atm_vcc->qos.aal) {
963 case ATM_AAL2:
964 case ATM_AAL0:
965 tc->flags = 0
966 | TC_FLAGS_TRANSPARENT_PAYLOAD
967 | TC_FLAGS_PACKET
968 | (1 << 28)
969 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
970 | TC_FLAGS_CAL0;
971 break;
972 case ATM_AAL5:
973 tc->flags = 0
974 | TC_FLAGS_AAL5
975 | TC_FLAGS_PACKET /* ??? */
976 | TC_FLAGS_TYPE_CBR
977 | TC_FLAGS_CAL0;
978 break;
979 default:
980 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
981 tc->flags = 0;
983 /* Docs are vague about this atm_hdr field. By the way, the FS
984 * chip makes odd errors if lower bits are set.... -- REW */
985 tc->atm_hdr = (vpi << 20) | (vci << 4);
986 tmc0 = 0;
988 int pcr = atm_pcr_goal (txtp);
990 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
992 /* XXX Hmm. officially we're only allowed to do this if rounding
993 is round_down -- REW */
994 if (IS_FS50(dev)) {
995 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
996 } else {
997 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
999 if (!pcr) {
1000 /* no rate cap */
1001 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1002 } else {
1003 int r;
1004 if (pcr < 0) {
1005 r = ROUND_DOWN;
1006 pcr = -pcr;
1007 } else {
1008 r = ROUND_UP;
1010 error = make_rate (pcr, r, &tmc0, NULL);
1011 if (error) {
1012 kfree(tc);
1013 return error;
1016 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1019 tc->TMC[0] = tmc0 | 0x4000;
1020 tc->TMC[1] = 0; /* Unused */
1021 tc->TMC[2] = 0; /* Unused */
1022 tc->TMC[3] = 0; /* Unused */
1024 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1025 tc->rtag[0] = 0; /* What should I do with routing tags???
1026 -- Not used -- AS -- Thanks -- REW*/
1027 tc->rtag[1] = 0;
1028 tc->rtag[2] = 0;
1030 if (fs_debug & FS_DEBUG_OPEN) {
1031 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1032 my_hd (tc, sizeof (*tc));
1035 /* We now use the "submit_command" function to submit commands to
1036 the firestream. There is a define up near the definition of
1037 that routine that switches this routine between immediate write
1038 to the immediate command registers and queuing the commands in
1039 the HPTXQ for execution. This last technique might be more
1040 efficient if we know we're going to submit a whole lot of
1041 commands in one go, but this driver is not setup to be able to
1042 use such a construct. So it probably doen't matter much right
1043 now. -- REW */
1045 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1046 submit_command (dev, &dev->hp_txq,
1047 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1048 virt_to_bus (tc), 0, 0);
1050 submit_command (dev, &dev->hp_txq,
1051 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1052 0, 0, 0);
1053 set_bit (vcc->channo, dev->tx_inuse);
1056 if (DO_DIRECTION (rxtp)) {
1057 dev->atm_vccs[vcc->channo] = atm_vcc;
1059 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1060 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1061 if (bfp >= FS_NR_FREE_POOLS) {
1062 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1063 atm_vcc->qos.rxtp.max_sdu);
1064 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1066 /* XXX clear tx inuse. Close TX part? */
1067 dev->atm_vccs[vcc->channo] = NULL;
1068 kfree (vcc);
1069 return -EINVAL;
1072 switch (atm_vcc->qos.aal) {
1073 case ATM_AAL0:
1074 case ATM_AAL2:
1075 submit_command (dev, &dev->hp_txq,
1076 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1077 RC_FLAGS_TRANSP |
1078 RC_FLAGS_BFPS_BFP * bfp |
1079 RC_FLAGS_RXBM_PSB, 0, 0);
1080 break;
1081 case ATM_AAL5:
1082 submit_command (dev, &dev->hp_txq,
1083 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1084 RC_FLAGS_AAL5 |
1085 RC_FLAGS_BFPS_BFP * bfp |
1086 RC_FLAGS_RXBM_PSB, 0, 0);
1087 break;
1089 if (IS_FS50 (dev)) {
1090 submit_command (dev, &dev->hp_txq,
1091 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1092 0x80 + vcc->channo,
1093 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1095 submit_command (dev, &dev->hp_txq,
1096 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1097 0, 0, 0);
1100 /* Indicate we're done! */
1101 set_bit(ATM_VF_READY, &atm_vcc->flags);
1103 func_exit ();
1104 return 0;
1108 static void fs_close(struct atm_vcc *atm_vcc)
1110 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1111 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1112 struct atm_trafprm * txtp;
1113 struct atm_trafprm * rxtp;
1115 func_enter ();
1117 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1119 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1120 if (vcc->last_skb) {
1121 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1122 vcc->last_skb);
1123 /* We're going to wait for the last packet to get sent on this VC. It would
1124 be impolite not to send them don't you think?
1126 We don't know which packets didn't get sent. So if we get interrupted in
1127 this sleep_on, we'll lose any reference to these packets. Memory leak!
1128 On the other hand, it's awfully convenient that we can abort a "close" that
1129 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1130 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1133 txtp = &atm_vcc->qos.txtp;
1134 rxtp = &atm_vcc->qos.rxtp;
1137 /* See App note XXX (Unpublished as of now) for the reason for the
1138 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1140 if (DO_DIRECTION (txtp)) {
1141 submit_command (dev, &dev->hp_txq,
1142 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1143 clear_bit (vcc->channo, dev->tx_inuse);
1146 if (DO_DIRECTION (rxtp)) {
1147 submit_command (dev, &dev->hp_txq,
1148 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1149 dev->atm_vccs [vcc->channo] = NULL;
1151 /* This means that this is configured as a receive channel */
1152 if (IS_FS50 (dev)) {
1153 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1154 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1155 (0xfff...) -- REW */
1156 submit_command (dev, &dev->hp_txq,
1157 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1158 0x80 + vcc->channo, -1, 0 );
1162 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1163 kfree (vcc);
1165 func_exit ();
1169 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1171 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1172 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1173 struct FS_BPENTRY *td;
1175 func_enter ();
1177 fs_dprintk (FS_DEBUG_TXMEM, "I");
1178 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1179 atm_vcc, skb, vcc, dev);
1181 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1183 ATM_SKB(skb)->vcc = atm_vcc;
1185 vcc->last_skb = skb;
1187 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1188 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1189 if (!td) {
1190 /* Oops out of mem */
1191 return -ENOMEM;
1194 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1195 *(int *) skb->data);
1197 td->flags = TD_EPI | TD_DATA | skb->len;
1198 td->next = 0;
1199 td->bsa = virt_to_bus (skb->data);
1200 td->skb = skb;
1201 td->dev = dev;
1202 dev->ntxpckts++;
1204 #ifdef DEBUG_EXTRA
1205 da[qd] = td;
1206 dq[qd].flags = td->flags;
1207 dq[qd].next = td->next;
1208 dq[qd].bsa = td->bsa;
1209 dq[qd].skb = td->skb;
1210 dq[qd].dev = td->dev;
1211 qd++;
1212 if (qd >= 60) qd = 0;
1213 #endif
1215 submit_queue (dev, &dev->hp_txq,
1216 QE_TRANSMIT_DE | vcc->channo,
1217 virt_to_bus (td), 0,
1218 virt_to_bus (td));
1220 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1221 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1222 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1223 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1224 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1226 func_exit ();
1227 return 0;
1231 /* Some function placeholders for functions we don't yet support. */
1233 #if 0
1234 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1236 func_enter ();
1237 func_exit ();
1238 return -ENOIOCTLCMD;
1242 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1243 void __user *optval,int optlen)
1245 func_enter ();
1246 func_exit ();
1247 return 0;
1251 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1252 void __user *optval,unsigned int optlen)
1254 func_enter ();
1255 func_exit ();
1256 return 0;
1260 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1261 unsigned long addr)
1263 func_enter ();
1264 func_exit ();
1268 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1270 func_enter ();
1271 func_exit ();
1272 return 0;
1276 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1278 func_enter ();
1279 func_exit ();
1280 return 0;
1283 #endif
1286 static const struct atmdev_ops ops = {
1287 .open = fs_open,
1288 .close = fs_close,
1289 .send = fs_send,
1290 .owner = THIS_MODULE,
1291 /* ioctl: fs_ioctl, */
1292 /* getsockopt: fs_getsockopt, */
1293 /* setsockopt: fs_setsockopt, */
1294 /* change_qos: fs_change_qos, */
1296 /* For now implement these internally here... */
1297 /* phy_put: fs_phy_put, */
1298 /* phy_get: fs_phy_get, */
1302 static void undocumented_pci_fix(struct pci_dev *pdev)
1304 u32 tint;
1306 /* The Windows driver says: */
1307 /* Switch off FireStream Retry Limit Threshold
1310 /* The register at 0x28 is documented as "reserved", no further
1311 comments. */
1313 pci_read_config_dword (pdev, 0x28, &tint);
1314 if (tint != 0x80) {
1315 tint = 0x80;
1316 pci_write_config_dword (pdev, 0x28, tint);
1322 /**************************************************************************
1323 * PHY routines *
1324 **************************************************************************/
1326 static void write_phy(struct fs_dev *dev, int regnum, int val)
1328 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1329 regnum, val, 0);
1332 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1334 int i;
1336 func_enter ();
1337 while (reginit->reg != PHY_EOF) {
1338 if (reginit->reg == PHY_CLEARALL) {
1339 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1340 for (i=0;i<reginit->val;i++) {
1341 write_phy (dev, i, 0);
1343 } else {
1344 write_phy (dev, reginit->reg, reginit->val);
1346 reginit++;
1348 func_exit ();
1349 return 0;
1352 static void reset_chip (struct fs_dev *dev)
1354 int i;
1356 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1358 /* Undocumented delay */
1359 udelay (128);
1361 /* The "internal registers are documented to all reset to zero, but
1362 comments & code in the Windows driver indicates that the pools are
1363 NOT reset. */
1364 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1365 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1366 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1367 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1368 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1369 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1372 /* The same goes for the match channel registers, although those are
1373 NOT documented that way in the Windows driver. -- REW */
1374 /* The Windows driver DOES write 0 to these registers somewhere in
1375 the init sequence. However, a small hardware-feature, will
1376 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1377 allocated happens to have no disabled channels that have a lower
1378 number. -- REW */
1380 /* Clear the match channel registers. */
1381 if (IS_FS50 (dev)) {
1382 for (i=0;i<FS50_NR_CHANNELS;i++) {
1383 write_fs (dev, 0x200 + i * 4, -1);
1388 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1390 void *t;
1392 if (alignment <= 0x10) {
1393 t = kmalloc (size, flags);
1394 if ((unsigned long)t & (alignment-1)) {
1395 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1396 kfree (t);
1397 return aligned_kmalloc (size, flags, alignment * 4);
1399 return t;
1401 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1402 return NULL;
1405 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1406 int nentries, int is_rq)
1408 int sz = nentries * sizeof (struct FS_QENTRY);
1409 struct FS_QENTRY *p;
1411 func_enter ();
1413 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1414 queue, nentries);
1416 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1417 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1419 if (!p) return 0;
1421 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1422 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1423 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1424 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1425 if (is_rq) {
1426 /* Configuration for the receive queue: 0: interrupt immediately,
1427 no pre-warning to empty queues: We do our best to keep the
1428 queue filled anyway. */
1429 write_fs (dev, Q_CNF(queue), 0 );
1432 txq->sa = p;
1433 txq->ea = p;
1434 txq->offset = queue;
1436 func_exit ();
1437 return 1;
1441 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1442 int bufsize, int nr_buffers)
1444 func_enter ();
1446 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1448 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1449 write_fs (dev, FP_SA(queue), 0);
1450 write_fs (dev, FP_EA(queue), 0);
1451 write_fs (dev, FP_CTU(queue), 0);
1452 write_fs (dev, FP_CNT(queue), 0);
1454 fp->offset = queue;
1455 fp->bufsize = bufsize;
1456 fp->nr_buffers = nr_buffers;
1458 func_exit ();
1459 return 1;
1463 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1465 #if 0
1466 /* This seems to be unreliable.... */
1467 return read_fs (dev, FP_CNT (fp->offset));
1468 #else
1469 return fp->n;
1470 #endif
1474 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1475 does. I've seen "receive abort: no buffers" and things started
1476 working again after that... -- REW */
1478 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1479 gfp_t gfp_flags)
1481 struct FS_BPENTRY *qe, *ne;
1482 struct sk_buff *skb;
1483 int n = 0;
1484 u32 qe_tmp;
1486 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1487 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1488 fp->nr_buffers);
1489 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1491 skb = alloc_skb (fp->bufsize, gfp_flags);
1492 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1493 if (!skb) break;
1494 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1495 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1496 if (!ne) {
1497 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1498 dev_kfree_skb_any (skb);
1499 break;
1502 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1503 skb, ne, skb->data, skb->head);
1504 n++;
1505 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1506 ne->next = virt_to_bus (NULL);
1507 ne->bsa = virt_to_bus (skb->data);
1508 ne->aal_bufsize = fp->bufsize;
1509 ne->skb = skb;
1510 ne->fp = fp;
1513 * FIXME: following code encodes and decodes
1514 * machine pointers (could be 64-bit) into a
1515 * 32-bit register.
1518 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1519 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1520 if (qe_tmp) {
1521 qe = bus_to_virt ((long) qe_tmp);
1522 qe->next = virt_to_bus(ne);
1523 qe->flags &= ~FP_FLAGS_EPI;
1524 } else
1525 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1527 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1528 fp->n++; /* XXX Atomic_inc? */
1529 write_fs (dev, FP_CTU(fp->offset), 1);
1532 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1535 static void free_queue(struct fs_dev *dev, struct queue *txq)
1537 func_enter ();
1539 write_fs (dev, Q_SA(txq->offset), 0);
1540 write_fs (dev, Q_EA(txq->offset), 0);
1541 write_fs (dev, Q_RP(txq->offset), 0);
1542 write_fs (dev, Q_WP(txq->offset), 0);
1543 /* Configuration ? */
1545 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1546 kfree (txq->sa);
1548 func_exit ();
1551 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1553 func_enter ();
1555 write_fs (dev, FP_CNF(fp->offset), 0);
1556 write_fs (dev, FP_SA (fp->offset), 0);
1557 write_fs (dev, FP_EA (fp->offset), 0);
1558 write_fs (dev, FP_CNT(fp->offset), 0);
1559 write_fs (dev, FP_CTU(fp->offset), 0);
1561 func_exit ();
1566 static irqreturn_t fs_irq (int irq, void *dev_id)
1568 int i;
1569 u32 status;
1570 struct fs_dev *dev = dev_id;
1572 status = read_fs (dev, ISR);
1573 if (!status)
1574 return IRQ_NONE;
1576 func_enter ();
1578 #ifdef IRQ_RATE_LIMIT
1579 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1580 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1582 static int lastjif;
1583 static int nintr=0;
1585 if (lastjif == jiffies) {
1586 if (++nintr > IRQ_RATE_LIMIT) {
1587 free_irq (dev->irq, dev_id);
1588 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1589 dev->irq);
1591 } else {
1592 lastjif = jiffies;
1593 nintr = 0;
1596 #endif
1597 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1598 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1599 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1600 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1601 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1603 /* print the bits in the ISR register. */
1604 if (fs_debug & FS_DEBUG_IRQ) {
1605 /* The FS_DEBUG things are unnecessary here. But this way it is
1606 clear for grep that these are debug prints. */
1607 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1608 for (i=0;i<27;i++)
1609 if (status & (1 << i))
1610 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1611 fs_dprintk (FS_DEBUG_IRQ, "\n");
1614 if (status & ISR_RBRQ0_W) {
1615 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1616 process_incoming (dev, &dev->rx_rq[0]);
1617 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1618 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1619 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1622 if (status & ISR_RBRQ1_W) {
1623 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1624 process_incoming (dev, &dev->rx_rq[1]);
1625 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1626 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1629 if (status & ISR_RBRQ2_W) {
1630 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1631 process_incoming (dev, &dev->rx_rq[2]);
1632 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1633 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1636 if (status & ISR_RBRQ3_W) {
1637 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1638 process_incoming (dev, &dev->rx_rq[3]);
1639 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1640 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1643 if (status & ISR_CSQ_W) {
1644 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1645 process_return_queue (dev, &dev->st_q);
1648 if (status & ISR_TBRQ_W) {
1649 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1650 process_txdone_queue (dev, &dev->tx_relq);
1653 func_exit ();
1654 return IRQ_HANDLED;
1658 #ifdef FS_POLL_FREQ
1659 static void fs_poll (struct timer_list *t)
1661 struct fs_dev *dev = from_timer(dev, t, timer);
1663 fs_irq (0, dev);
1664 dev->timer.expires = jiffies + FS_POLL_FREQ;
1665 add_timer (&dev->timer);
1667 #endif
1669 static int fs_init(struct fs_dev *dev)
1671 struct pci_dev *pci_dev;
1672 int isr, to;
1673 int i;
1675 func_enter ();
1676 pci_dev = dev->pci_dev;
1678 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1679 IS_FS50(dev)?50:155,
1680 (unsigned long long)pci_resource_start(pci_dev, 0),
1681 dev->pci_dev->irq);
1683 if (fs_debug & FS_DEBUG_INIT)
1684 my_hd ((unsigned char *) dev, sizeof (*dev));
1686 undocumented_pci_fix (pci_dev);
1688 dev->hw_base = pci_resource_start(pci_dev, 0);
1690 dev->base = ioremap(dev->hw_base, 0x1000);
1692 reset_chip (dev);
1694 write_fs (dev, SARMODE0, 0
1695 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1696 | (1 * SARMODE0_INTMODE_READCLEAR)
1697 | (1 * SARMODE0_CWRE)
1698 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1699 SARMODE0_PRPWT_FS155_3)
1700 | (1 * SARMODE0_CALSUP_1)
1701 | (IS_FS50(dev) ? (0
1702 | SARMODE0_RXVCS_32
1703 | SARMODE0_ABRVCS_32
1704 | SARMODE0_TXVCS_32):
1706 | SARMODE0_RXVCS_1k
1707 | SARMODE0_ABRVCS_1k
1708 | SARMODE0_TXVCS_1k)));
1710 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1711 1ms. */
1712 to = 100;
1713 while (--to) {
1714 isr = read_fs (dev, ISR);
1716 /* This bit is documented as "RESERVED" */
1717 if (isr & ISR_INIT_ERR) {
1718 printk (KERN_ERR "Error initializing the FS... \n");
1719 goto unmap;
1721 if (isr & ISR_INIT) {
1722 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1723 break;
1726 /* Try again after 10ms. */
1727 msleep(10);
1730 if (!to) {
1731 printk (KERN_ERR "timeout initializing the FS... \n");
1732 goto unmap;
1735 /* XXX fix for fs155 */
1736 dev->channel_mask = 0x1f;
1737 dev->channo = 0;
1739 /* AN3: 10 */
1740 write_fs (dev, SARMODE1, 0
1741 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1742 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1743 | (1 * SARMODE1_DCRM)
1744 | (1 * SARMODE1_DCOAM)
1745 | (0 * SARMODE1_OAMCRC)
1746 | (0 * SARMODE1_DUMPE)
1747 | (0 * SARMODE1_GPLEN)
1748 | (0 * SARMODE1_GNAM)
1749 | (0 * SARMODE1_GVAS)
1750 | (0 * SARMODE1_GPAS)
1751 | (1 * SARMODE1_GPRI)
1752 | (0 * SARMODE1_PMS)
1753 | (0 * SARMODE1_GFCR)
1754 | (1 * SARMODE1_HECM2)
1755 | (1 * SARMODE1_HECM1)
1756 | (1 * SARMODE1_HECM0)
1757 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1758 | (0 * 0xff) /* XXX FS155 */);
1761 /* Cal prescale etc */
1763 /* AN3: 11 */
1764 write_fs (dev, TMCONF, 0x0000000f);
1765 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1766 write_fs (dev, 0x80, 0x000F00E4);
1768 /* AN3: 12 */
1769 write_fs (dev, CELLOSCONF, 0
1770 | ( 0 * CELLOSCONF_CEN)
1771 | ( CELLOSCONF_SC1)
1772 | (0x80 * CELLOSCONF_COBS)
1773 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1774 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1775 * performance jumped 50->70... */
1777 /* Magic value by Hang */
1778 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1780 if (IS_FS50 (dev)) {
1781 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1782 dev->atm_dev->ci_range.vpi_bits = 12;
1783 dev->atm_dev->ci_range.vci_bits = 16;
1784 dev->nchannels = FS50_NR_CHANNELS;
1785 } else {
1786 write_fs (dev, RAS0, RAS0_DCD_XHLT
1787 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1788 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1789 /* We can chose the split arbitrarily. We might be able to
1790 support more. Whatever. This should do for now. */
1791 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1792 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1794 /* Address bits we can't use should be compared to 0. */
1795 write_fs (dev, RAC, 0);
1797 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1798 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1799 * other bits, then compare with 0, which is exactly what we
1800 * want. */
1801 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1802 dev->nchannels = FS155_NR_CHANNELS;
1804 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1805 GFP_KERNEL);
1806 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1807 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1809 if (!dev->atm_vccs) {
1810 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1811 /* XXX Clean up..... */
1812 goto unmap;
1815 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1816 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1817 dev->atm_vccs, dev->nchannels / 8);
1819 if (!dev->tx_inuse) {
1820 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1821 /* XXX Clean up..... */
1822 goto unmap;
1824 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1825 /* -- RAS2 : FS50 only: Default is OK. */
1827 /* DMAMODE, default should be OK. -- REW */
1828 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1830 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1831 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1832 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1833 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1835 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1836 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1837 rx_buf_sizes[i], rx_pool_sizes[i]);
1838 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1842 for (i=0;i < FS_NR_RX_QUEUES;i++)
1843 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1845 dev->irq = pci_dev->irq;
1846 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1847 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1848 /* XXX undo all previous stuff... */
1849 goto unmap;
1851 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1853 /* We want to be notified of most things. Just the statistics count
1854 overflows are not interesting */
1855 write_fs (dev, IMR, 0
1856 | ISR_RBRQ0_W
1857 | ISR_RBRQ1_W
1858 | ISR_RBRQ2_W
1859 | ISR_RBRQ3_W
1860 | ISR_TBRQ_W
1861 | ISR_CSQ_W);
1863 write_fs (dev, SARMODE0, 0
1864 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1865 | (1 * SARMODE0_GINT)
1866 | (1 * SARMODE0_INTMODE_READCLEAR)
1867 | (0 * SARMODE0_CWRE)
1868 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1869 SARMODE0_PRPWT_FS155_3)
1870 | (1 * SARMODE0_CALSUP_1)
1871 | (IS_FS50 (dev)?(0
1872 | SARMODE0_RXVCS_32
1873 | SARMODE0_ABRVCS_32
1874 | SARMODE0_TXVCS_32):
1876 | SARMODE0_RXVCS_1k
1877 | SARMODE0_ABRVCS_1k
1878 | SARMODE0_TXVCS_1k))
1879 | (1 * SARMODE0_RUN));
1881 init_phy (dev, PHY_NTC_INIT);
1883 if (loopback == 2) {
1884 write_phy (dev, 0x39, 0x000e);
1887 #ifdef FS_POLL_FREQ
1888 timer_setup(&dev->timer, fs_poll, 0);
1889 dev->timer.expires = jiffies + FS_POLL_FREQ;
1890 add_timer (&dev->timer);
1891 #endif
1893 dev->atm_dev->dev_data = dev;
1895 func_exit ();
1896 return 0;
1897 unmap:
1898 iounmap(dev->base);
1899 return 1;
1902 static int firestream_init_one(struct pci_dev *pci_dev,
1903 const struct pci_device_id *ent)
1905 struct atm_dev *atm_dev;
1906 struct fs_dev *fs_dev;
1908 if (pci_enable_device(pci_dev))
1909 goto err_out;
1911 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1912 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1913 fs_dev, sizeof (struct fs_dev));
1914 if (!fs_dev)
1915 goto err_out;
1916 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1917 if (!atm_dev)
1918 goto err_out_free_fs_dev;
1920 fs_dev->pci_dev = pci_dev;
1921 fs_dev->atm_dev = atm_dev;
1922 fs_dev->flags = ent->driver_data;
1924 if (fs_init(fs_dev))
1925 goto err_out_free_atm_dev;
1927 fs_dev->next = fs_boards;
1928 fs_boards = fs_dev;
1929 return 0;
1931 err_out_free_atm_dev:
1932 atm_dev_deregister(atm_dev);
1933 err_out_free_fs_dev:
1934 kfree(fs_dev);
1935 err_out:
1936 return -ENODEV;
1939 static void firestream_remove_one(struct pci_dev *pdev)
1941 int i;
1942 struct fs_dev *dev, *nxtdev;
1943 struct fs_vcc *vcc;
1944 struct FS_BPENTRY *fp, *nxt;
1946 func_enter ();
1948 #if 0
1949 printk ("hptxq:\n");
1950 for (i=0;i<60;i++) {
1951 printk ("%d: %08x %08x %08x %08x \n",
1952 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1953 qp++;
1954 if (qp >= 60) qp = 0;
1957 printk ("descriptors:\n");
1958 for (i=0;i<60;i++) {
1959 printk ("%d: %p: %08x %08x %p %p\n",
1960 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1961 qd++;
1962 if (qd >= 60) qd = 0;
1964 #endif
1966 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1967 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1969 /* XXX Hit all the tx channels too! */
1971 for (i=0;i < dev->nchannels;i++) {
1972 if (dev->atm_vccs[i]) {
1973 vcc = FS_VCC (dev->atm_vccs[i]);
1974 submit_command (dev, &dev->hp_txq,
1975 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976 submit_command (dev, &dev->hp_txq,
1977 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1982 /* XXX Wait a while for the chip to release all buffers. */
1984 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1985 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1986 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1987 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1988 dev_kfree_skb_any (fp->skb);
1989 nxt = bus_to_virt (fp->next);
1990 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1991 kfree (fp);
1993 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1994 dev_kfree_skb_any (fp->skb);
1995 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1996 kfree (fp);
1999 /* Hang the chip in "reset", prevent it clobbering memory that is
2000 no longer ours. */
2001 reset_chip (dev);
2003 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2004 free_irq (dev->irq, dev);
2005 del_timer_sync (&dev->timer);
2007 atm_dev_deregister(dev->atm_dev);
2008 free_queue (dev, &dev->hp_txq);
2009 free_queue (dev, &dev->lp_txq);
2010 free_queue (dev, &dev->tx_relq);
2011 free_queue (dev, &dev->st_q);
2013 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2014 kfree (dev->atm_vccs);
2016 for (i=0;i< FS_NR_FREE_POOLS;i++)
2017 free_freepool (dev, &dev->rx_fp[i]);
2019 for (i=0;i < FS_NR_RX_QUEUES;i++)
2020 free_queue (dev, &dev->rx_rq[i]);
2022 iounmap(dev->base);
2023 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2024 nxtdev = dev->next;
2025 kfree (dev);
2028 func_exit ();
2031 static const struct pci_device_id firestream_pci_tbl[] = {
2032 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2033 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2034 { 0, }
2037 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2039 static struct pci_driver firestream_driver = {
2040 .name = "firestream",
2041 .id_table = firestream_pci_tbl,
2042 .probe = firestream_init_one,
2043 .remove = firestream_remove_one,
2046 static int __init firestream_init_module (void)
2048 int error;
2050 func_enter ();
2051 error = pci_register_driver(&firestream_driver);
2052 func_exit ();
2053 return error;
2056 static void __exit firestream_cleanup_module(void)
2058 pci_unregister_driver(&firestream_driver);
2061 module_init(firestream_init_module);
2062 module_exit(firestream_cleanup_module);
2064 MODULE_LICENSE("GPL");