perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / block / skd_main.c
blob2459dcc04b1cb279c7ce22036ef4909c0a12781e
1 /*
2 * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3 * was acquired by Western Digital in 2012.
5 * Copyright 2012 sTec, Inc.
6 * Copyright (c) 2017 Western Digital Corporation or its affiliates.
8 * This file is part of the Linux kernel, and is made available under
9 * the terms of the GNU General Public License version 2.
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
41 #include "skd_s1120.h"
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
46 #define SKD_ASSERT(expr) \
47 do { \
48 if (unlikely(!(expr))) { \
49 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
50 # expr, __FILE__, __func__, __LINE__); \
51 } \
52 } while (0)
54 #define DRV_NAME "skd"
55 #define PFX DRV_NAME ": "
57 MODULE_LICENSE("GPL");
59 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61 #define PCI_VENDOR_ID_STEC 0x1B39
62 #define PCI_DEVICE_ID_S1120 0x0001
64 #define SKD_FUA_NV (1 << 1)
65 #define SKD_MINORS_PER_DEVICE 16
67 #define SKD_MAX_QUEUE_DEPTH 200u
69 #define SKD_PAUSE_TIMEOUT (5 * 1000)
71 #define SKD_N_FITMSG_BYTES (512u)
72 #define SKD_MAX_REQ_PER_MSG 14
74 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
76 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
77 * 128KB limit. That allows 4096*4K = 16M xfer size
79 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81 #define SKD_N_COMPLETION_ENTRY 256u
82 #define SKD_N_READ_CAP_BYTES (8u)
84 #define SKD_N_INTERNAL_BYTES (512u)
86 #define SKD_SKCOMP_SIZE \
87 ((sizeof(struct fit_completion_entry_v1) + \
88 sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90 /* 5 bits of uniqifier, 0xF800 */
91 #define SKD_ID_TABLE_MASK (3u << 8u)
92 #define SKD_ID_RW_REQUEST (0u << 8u)
93 #define SKD_ID_INTERNAL (1u << 8u)
94 #define SKD_ID_FIT_MSG (3u << 8u)
95 #define SKD_ID_SLOT_MASK 0x00FFu
96 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
98 #define SKD_N_MAX_SECTORS 2048u
100 #define SKD_MAX_RETRIES 2u
102 #define SKD_TIMER_SECONDS(seconds) (seconds)
103 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
105 #define INQ_STD_NBYTES 36
107 enum skd_drvr_state {
108 SKD_DRVR_STATE_LOAD,
109 SKD_DRVR_STATE_IDLE,
110 SKD_DRVR_STATE_BUSY,
111 SKD_DRVR_STATE_STARTING,
112 SKD_DRVR_STATE_ONLINE,
113 SKD_DRVR_STATE_PAUSING,
114 SKD_DRVR_STATE_PAUSED,
115 SKD_DRVR_STATE_RESTARTING,
116 SKD_DRVR_STATE_RESUMING,
117 SKD_DRVR_STATE_STOPPING,
118 SKD_DRVR_STATE_FAULT,
119 SKD_DRVR_STATE_DISAPPEARED,
120 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
121 SKD_DRVR_STATE_BUSY_ERASE,
122 SKD_DRVR_STATE_BUSY_SANITIZE,
123 SKD_DRVR_STATE_BUSY_IMMINENT,
124 SKD_DRVR_STATE_WAIT_BOOT,
125 SKD_DRVR_STATE_SYNCING,
128 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
129 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
130 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
131 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
132 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
133 #define SKD_START_WAIT_SECONDS 90u
135 enum skd_req_state {
136 SKD_REQ_STATE_IDLE,
137 SKD_REQ_STATE_SETUP,
138 SKD_REQ_STATE_BUSY,
139 SKD_REQ_STATE_COMPLETED,
140 SKD_REQ_STATE_TIMEOUT,
143 enum skd_check_status_action {
144 SKD_CHECK_STATUS_REPORT_GOOD,
145 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
146 SKD_CHECK_STATUS_REQUEUE_REQUEST,
147 SKD_CHECK_STATUS_REPORT_ERROR,
148 SKD_CHECK_STATUS_BUSY_IMMINENT,
151 struct skd_msg_buf {
152 struct fit_msg_hdr fmh;
153 struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
156 struct skd_fitmsg_context {
157 u32 id;
159 u32 length;
161 struct skd_msg_buf *msg_buf;
162 dma_addr_t mb_dma_address;
165 struct skd_request_context {
166 enum skd_req_state state;
168 u16 id;
169 u32 fitmsg_id;
171 u8 flush_cmd;
173 enum dma_data_direction data_dir;
174 struct scatterlist *sg;
175 u32 n_sg;
176 u32 sg_byte_count;
178 struct fit_sg_descriptor *sksg_list;
179 dma_addr_t sksg_dma_address;
181 struct fit_completion_entry_v1 completion;
183 struct fit_comp_error_info err_info;
185 blk_status_t status;
188 struct skd_special_context {
189 struct skd_request_context req;
191 void *data_buf;
192 dma_addr_t db_dma_address;
194 struct skd_msg_buf *msg_buf;
195 dma_addr_t mb_dma_address;
198 typedef enum skd_irq_type {
199 SKD_IRQ_LEGACY,
200 SKD_IRQ_MSI,
201 SKD_IRQ_MSIX
202 } skd_irq_type_t;
204 #define SKD_MAX_BARS 2
206 struct skd_device {
207 void __iomem *mem_map[SKD_MAX_BARS];
208 resource_size_t mem_phys[SKD_MAX_BARS];
209 u32 mem_size[SKD_MAX_BARS];
211 struct skd_msix_entry *msix_entries;
213 struct pci_dev *pdev;
214 int pcie_error_reporting_is_enabled;
216 spinlock_t lock;
217 struct gendisk *disk;
218 struct blk_mq_tag_set tag_set;
219 struct request_queue *queue;
220 struct skd_fitmsg_context *skmsg;
221 struct device *class_dev;
222 int gendisk_on;
223 int sync_done;
225 u32 devno;
226 u32 major;
227 char isr_name[30];
229 enum skd_drvr_state state;
230 u32 drive_state;
232 u32 cur_max_queue_depth;
233 u32 queue_low_water_mark;
234 u32 dev_max_queue_depth;
236 u32 num_fitmsg_context;
237 u32 num_req_context;
239 struct skd_fitmsg_context *skmsg_table;
241 struct skd_special_context internal_skspcl;
242 u32 read_cap_blocksize;
243 u32 read_cap_last_lba;
244 int read_cap_is_valid;
245 int inquiry_is_valid;
246 u8 inq_serial_num[13]; /*12 chars plus null term */
248 u8 skcomp_cycle;
249 u32 skcomp_ix;
250 struct kmem_cache *msgbuf_cache;
251 struct kmem_cache *sglist_cache;
252 struct kmem_cache *databuf_cache;
253 struct fit_completion_entry_v1 *skcomp_table;
254 struct fit_comp_error_info *skerr_table;
255 dma_addr_t cq_dma_address;
257 wait_queue_head_t waitq;
259 struct timer_list timer;
260 u32 timer_countdown;
261 u32 timer_substate;
263 int sgs_per_request;
264 u32 last_mtd;
266 u32 proto_ver;
268 int dbg_level;
269 u32 connect_time_stamp;
270 int connect_retries;
271 #define SKD_MAX_CONNECT_RETRIES 16
272 u32 drive_jiffies;
274 u32 timo_slot;
276 struct work_struct start_queue;
277 struct work_struct completion_worker;
280 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
281 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
282 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 u32 val = readl(skdev->mem_map[1] + offset);
288 if (unlikely(skdev->dbg_level >= 2))
289 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
290 return val;
293 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
294 u32 offset)
296 writel(val, skdev->mem_map[1] + offset);
297 if (unlikely(skdev->dbg_level >= 2))
298 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
301 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
302 u32 offset)
304 writeq(val, skdev->mem_map[1] + offset);
305 if (unlikely(skdev->dbg_level >= 2))
306 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
307 val);
311 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
312 static int skd_isr_type = SKD_IRQ_DEFAULT;
314 module_param(skd_isr_type, int, 0444);
315 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
316 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
319 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321 module_param(skd_max_req_per_msg, int, 0444);
322 MODULE_PARM_DESC(skd_max_req_per_msg,
323 "Maximum SCSI requests packed in a single message."
324 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
328 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330 module_param(skd_max_queue_depth, int, 0444);
331 MODULE_PARM_DESC(skd_max_queue_depth,
332 "Maximum SCSI requests issued to s1120."
333 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
336 module_param(skd_sgs_per_request, int, 0444);
337 MODULE_PARM_DESC(skd_sgs_per_request,
338 "Maximum SG elements per block request."
339 " (1-4096, default==256)");
341 static int skd_max_pass_thru = 1;
342 module_param(skd_max_pass_thru, int, 0444);
343 MODULE_PARM_DESC(skd_max_pass_thru,
344 "Maximum SCSI pass-thru at a time. IGNORED");
346 module_param(skd_dbg_level, int, 0444);
347 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349 module_param(skd_isr_comp_limit, int, 0444);
350 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352 /* Major device number dynamically assigned. */
353 static u32 skd_major;
355 static void skd_destruct(struct skd_device *skdev);
356 static const struct block_device_operations skd_blockdev_ops;
357 static void skd_send_fitmsg(struct skd_device *skdev,
358 struct skd_fitmsg_context *skmsg);
359 static void skd_send_special_fitmsg(struct skd_device *skdev,
360 struct skd_special_context *skspcl);
361 static bool skd_preop_sg_list(struct skd_device *skdev,
362 struct skd_request_context *skreq);
363 static void skd_postop_sg_list(struct skd_device *skdev,
364 struct skd_request_context *skreq);
366 static void skd_restart_device(struct skd_device *skdev);
367 static int skd_quiesce_dev(struct skd_device *skdev);
368 static int skd_unquiesce_dev(struct skd_device *skdev);
369 static void skd_disable_interrupts(struct skd_device *skdev);
370 static void skd_isr_fwstate(struct skd_device *skdev);
371 static void skd_recover_requests(struct skd_device *skdev);
372 static void skd_soft_reset(struct skd_device *skdev);
374 const char *skd_drive_state_to_str(int state);
375 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
376 static void skd_log_skdev(struct skd_device *skdev, const char *event);
377 static void skd_log_skreq(struct skd_device *skdev,
378 struct skd_request_context *skreq, const char *event);
381 *****************************************************************************
382 * READ/WRITE REQUESTS
383 *****************************************************************************
385 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
387 int *count = data;
389 count++;
392 static int skd_in_flight(struct skd_device *skdev)
394 int count = 0;
396 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
398 return count;
401 static void
402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403 int data_dir, unsigned lba,
404 unsigned count)
406 if (data_dir == READ)
407 scsi_req->cdb[0] = READ_10;
408 else
409 scsi_req->cdb[0] = WRITE_10;
411 scsi_req->cdb[1] = 0;
412 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415 scsi_req->cdb[5] = (lba & 0xff);
416 scsi_req->cdb[6] = 0;
417 scsi_req->cdb[7] = (count & 0xff00) >> 8;
418 scsi_req->cdb[8] = count & 0xff;
419 scsi_req->cdb[9] = 0;
422 static void
423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424 struct skd_request_context *skreq)
426 skreq->flush_cmd = 1;
428 scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429 scsi_req->cdb[1] = 0;
430 scsi_req->cdb[2] = 0;
431 scsi_req->cdb[3] = 0;
432 scsi_req->cdb[4] = 0;
433 scsi_req->cdb[5] = 0;
434 scsi_req->cdb[6] = 0;
435 scsi_req->cdb[7] = 0;
436 scsi_req->cdb[8] = 0;
437 scsi_req->cdb[9] = 0;
441 * Return true if and only if all pending requests should be failed.
443 static bool skd_fail_all(struct request_queue *q)
445 struct skd_device *skdev = q->queuedata;
447 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
449 skd_log_skdev(skdev, "req_not_online");
450 switch (skdev->state) {
451 case SKD_DRVR_STATE_PAUSING:
452 case SKD_DRVR_STATE_PAUSED:
453 case SKD_DRVR_STATE_STARTING:
454 case SKD_DRVR_STATE_RESTARTING:
455 case SKD_DRVR_STATE_WAIT_BOOT:
456 /* In case of starting, we haven't started the queue,
457 * so we can't get here... but requests are
458 * possibly hanging out waiting for us because we
459 * reported the dev/skd0 already. They'll wait
460 * forever if connect doesn't complete.
461 * What to do??? delay dev/skd0 ??
463 case SKD_DRVR_STATE_BUSY:
464 case SKD_DRVR_STATE_BUSY_IMMINENT:
465 case SKD_DRVR_STATE_BUSY_ERASE:
466 return false;
468 case SKD_DRVR_STATE_BUSY_SANITIZE:
469 case SKD_DRVR_STATE_STOPPING:
470 case SKD_DRVR_STATE_SYNCING:
471 case SKD_DRVR_STATE_FAULT:
472 case SKD_DRVR_STATE_DISAPPEARED:
473 default:
474 return true;
478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479 const struct blk_mq_queue_data *mqd)
481 struct request *const req = mqd->rq;
482 struct request_queue *const q = req->q;
483 struct skd_device *skdev = q->queuedata;
484 struct skd_fitmsg_context *skmsg;
485 struct fit_msg_hdr *fmh;
486 const u32 tag = blk_mq_unique_tag(req);
487 struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488 struct skd_scsi_request *scsi_req;
489 unsigned long flags = 0;
490 const u32 lba = blk_rq_pos(req);
491 const u32 count = blk_rq_sectors(req);
492 const int data_dir = rq_data_dir(req);
494 if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
497 blk_mq_start_request(req);
499 WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
500 tag, skd_max_queue_depth, q->nr_requests);
502 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
504 dev_dbg(&skdev->pdev->dev,
505 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
506 lba, count, count, data_dir);
508 skreq->id = tag + SKD_ID_RW_REQUEST;
509 skreq->flush_cmd = 0;
510 skreq->n_sg = 0;
511 skreq->sg_byte_count = 0;
513 skreq->fitmsg_id = 0;
515 skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
517 if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
518 dev_dbg(&skdev->pdev->dev, "error Out\n");
519 skreq->status = BLK_STS_RESOURCE;
520 blk_mq_complete_request(req);
521 return BLK_STS_OK;
524 dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
525 skreq->n_sg *
526 sizeof(struct fit_sg_descriptor),
527 DMA_TO_DEVICE);
529 /* Either a FIT msg is in progress or we have to start one. */
530 if (skd_max_req_per_msg == 1) {
531 skmsg = NULL;
532 } else {
533 spin_lock_irqsave(&skdev->lock, flags);
534 skmsg = skdev->skmsg;
536 if (!skmsg) {
537 skmsg = &skdev->skmsg_table[tag];
538 skdev->skmsg = skmsg;
540 /* Initialize the FIT msg header */
541 fmh = &skmsg->msg_buf->fmh;
542 memset(fmh, 0, sizeof(*fmh));
543 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
544 skmsg->length = sizeof(*fmh);
545 } else {
546 fmh = &skmsg->msg_buf->fmh;
549 skreq->fitmsg_id = skmsg->id;
551 scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
552 memset(scsi_req, 0, sizeof(*scsi_req));
554 scsi_req->hdr.tag = skreq->id;
555 scsi_req->hdr.sg_list_dma_address =
556 cpu_to_be64(skreq->sksg_dma_address);
558 if (req_op(req) == REQ_OP_FLUSH) {
559 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
560 SKD_ASSERT(skreq->flush_cmd == 1);
561 } else {
562 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
565 if (req->cmd_flags & REQ_FUA)
566 scsi_req->cdb[1] |= SKD_FUA_NV;
568 scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
570 /* Complete resource allocations. */
571 skreq->state = SKD_REQ_STATE_BUSY;
573 skmsg->length += sizeof(struct skd_scsi_request);
574 fmh->num_protocol_cmds_coalesced++;
576 dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
577 skd_in_flight(skdev));
580 * If the FIT msg buffer is full send it.
582 if (skd_max_req_per_msg == 1) {
583 skd_send_fitmsg(skdev, skmsg);
584 } else {
585 if (mqd->last ||
586 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
587 skd_send_fitmsg(skdev, skmsg);
588 skdev->skmsg = NULL;
590 spin_unlock_irqrestore(&skdev->lock, flags);
593 return BLK_STS_OK;
596 static enum blk_eh_timer_return skd_timed_out(struct request *req,
597 bool reserved)
599 struct skd_device *skdev = req->q->queuedata;
601 dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
602 blk_mq_unique_tag(req));
604 return BLK_EH_RESET_TIMER;
607 static void skd_complete_rq(struct request *req)
609 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
611 blk_mq_end_request(req, skreq->status);
614 static bool skd_preop_sg_list(struct skd_device *skdev,
615 struct skd_request_context *skreq)
617 struct request *req = blk_mq_rq_from_pdu(skreq);
618 struct scatterlist *sgl = &skreq->sg[0], *sg;
619 int n_sg;
620 int i;
622 skreq->sg_byte_count = 0;
624 WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
625 skreq->data_dir != DMA_FROM_DEVICE);
627 n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
628 if (n_sg <= 0)
629 return false;
632 * Map scatterlist to PCI bus addresses.
633 * Note PCI might change the number of entries.
635 n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
636 if (n_sg <= 0)
637 return false;
639 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
641 skreq->n_sg = n_sg;
643 for_each_sg(sgl, sg, n_sg, i) {
644 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
645 u32 cnt = sg_dma_len(sg);
646 uint64_t dma_addr = sg_dma_address(sg);
648 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
649 sgd->byte_count = cnt;
650 skreq->sg_byte_count += cnt;
651 sgd->host_side_addr = dma_addr;
652 sgd->dev_side_addr = 0;
655 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
656 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
658 if (unlikely(skdev->dbg_level > 1)) {
659 dev_dbg(&skdev->pdev->dev,
660 "skreq=%x sksg_list=%p sksg_dma=%pad\n",
661 skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
662 for (i = 0; i < n_sg; i++) {
663 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
665 dev_dbg(&skdev->pdev->dev,
666 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
667 i, sgd->byte_count, sgd->control,
668 sgd->host_side_addr, sgd->next_desc_ptr);
672 return true;
675 static void skd_postop_sg_list(struct skd_device *skdev,
676 struct skd_request_context *skreq)
679 * restore the next ptr for next IO request so we
680 * don't have to set it every time.
682 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
683 skreq->sksg_dma_address +
684 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
685 dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
686 skreq->data_dir);
690 *****************************************************************************
691 * TIMER
692 *****************************************************************************
695 static void skd_timer_tick_not_online(struct skd_device *skdev);
697 static void skd_start_queue(struct work_struct *work)
699 struct skd_device *skdev = container_of(work, typeof(*skdev),
700 start_queue);
703 * Although it is safe to call blk_start_queue() from interrupt
704 * context, blk_mq_start_hw_queues() must not be called from
705 * interrupt context.
707 blk_mq_start_hw_queues(skdev->queue);
710 static void skd_timer_tick(struct timer_list *t)
712 struct skd_device *skdev = from_timer(skdev, t, timer);
713 unsigned long reqflags;
714 u32 state;
716 if (skdev->state == SKD_DRVR_STATE_FAULT)
717 /* The driver has declared fault, and we want it to
718 * stay that way until driver is reloaded.
720 return;
722 spin_lock_irqsave(&skdev->lock, reqflags);
724 state = SKD_READL(skdev, FIT_STATUS);
725 state &= FIT_SR_DRIVE_STATE_MASK;
726 if (state != skdev->drive_state)
727 skd_isr_fwstate(skdev);
729 if (skdev->state != SKD_DRVR_STATE_ONLINE)
730 skd_timer_tick_not_online(skdev);
732 mod_timer(&skdev->timer, (jiffies + HZ));
734 spin_unlock_irqrestore(&skdev->lock, reqflags);
737 static void skd_timer_tick_not_online(struct skd_device *skdev)
739 switch (skdev->state) {
740 case SKD_DRVR_STATE_IDLE:
741 case SKD_DRVR_STATE_LOAD:
742 break;
743 case SKD_DRVR_STATE_BUSY_SANITIZE:
744 dev_dbg(&skdev->pdev->dev,
745 "drive busy sanitize[%x], driver[%x]\n",
746 skdev->drive_state, skdev->state);
747 /* If we've been in sanitize for 3 seconds, we figure we're not
748 * going to get anymore completions, so recover requests now
750 if (skdev->timer_countdown > 0) {
751 skdev->timer_countdown--;
752 return;
754 skd_recover_requests(skdev);
755 break;
757 case SKD_DRVR_STATE_BUSY:
758 case SKD_DRVR_STATE_BUSY_IMMINENT:
759 case SKD_DRVR_STATE_BUSY_ERASE:
760 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
761 skdev->state, skdev->timer_countdown);
762 if (skdev->timer_countdown > 0) {
763 skdev->timer_countdown--;
764 return;
766 dev_dbg(&skdev->pdev->dev,
767 "busy[%x], timedout=%d, restarting device.",
768 skdev->state, skdev->timer_countdown);
769 skd_restart_device(skdev);
770 break;
772 case SKD_DRVR_STATE_WAIT_BOOT:
773 case SKD_DRVR_STATE_STARTING:
774 if (skdev->timer_countdown > 0) {
775 skdev->timer_countdown--;
776 return;
778 /* For now, we fault the drive. Could attempt resets to
779 * revcover at some point. */
780 skdev->state = SKD_DRVR_STATE_FAULT;
782 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
783 skdev->drive_state);
785 /*start the queue so we can respond with error to requests */
786 /* wakeup anyone waiting for startup complete */
787 schedule_work(&skdev->start_queue);
788 skdev->gendisk_on = -1;
789 wake_up_interruptible(&skdev->waitq);
790 break;
792 case SKD_DRVR_STATE_ONLINE:
793 /* shouldn't get here. */
794 break;
796 case SKD_DRVR_STATE_PAUSING:
797 case SKD_DRVR_STATE_PAUSED:
798 break;
800 case SKD_DRVR_STATE_RESTARTING:
801 if (skdev->timer_countdown > 0) {
802 skdev->timer_countdown--;
803 return;
805 /* For now, we fault the drive. Could attempt resets to
806 * revcover at some point. */
807 skdev->state = SKD_DRVR_STATE_FAULT;
808 dev_err(&skdev->pdev->dev,
809 "DriveFault Reconnect Timeout (%x)\n",
810 skdev->drive_state);
813 * Recovering does two things:
814 * 1. completes IO with error
815 * 2. reclaims dma resources
816 * When is it safe to recover requests?
817 * - if the drive state is faulted
818 * - if the state is still soft reset after out timeout
819 * - if the drive registers are dead (state = FF)
820 * If it is "unsafe", we still need to recover, so we will
821 * disable pci bus mastering and disable our interrupts.
824 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
825 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
826 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
827 /* It never came out of soft reset. Try to
828 * recover the requests and then let them
829 * fail. This is to mitigate hung processes. */
830 skd_recover_requests(skdev);
831 else {
832 dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
833 skdev->drive_state);
834 pci_disable_device(skdev->pdev);
835 skd_disable_interrupts(skdev);
836 skd_recover_requests(skdev);
839 /*start the queue so we can respond with error to requests */
840 /* wakeup anyone waiting for startup complete */
841 schedule_work(&skdev->start_queue);
842 skdev->gendisk_on = -1;
843 wake_up_interruptible(&skdev->waitq);
844 break;
846 case SKD_DRVR_STATE_RESUMING:
847 case SKD_DRVR_STATE_STOPPING:
848 case SKD_DRVR_STATE_SYNCING:
849 case SKD_DRVR_STATE_FAULT:
850 case SKD_DRVR_STATE_DISAPPEARED:
851 default:
852 break;
856 static int skd_start_timer(struct skd_device *skdev)
858 int rc;
860 timer_setup(&skdev->timer, skd_timer_tick, 0);
862 rc = mod_timer(&skdev->timer, (jiffies + HZ));
863 if (rc)
864 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
865 return rc;
868 static void skd_kill_timer(struct skd_device *skdev)
870 del_timer_sync(&skdev->timer);
874 *****************************************************************************
875 * INTERNAL REQUESTS -- generated by driver itself
876 *****************************************************************************
879 static int skd_format_internal_skspcl(struct skd_device *skdev)
881 struct skd_special_context *skspcl = &skdev->internal_skspcl;
882 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
883 struct fit_msg_hdr *fmh;
884 uint64_t dma_address;
885 struct skd_scsi_request *scsi;
887 fmh = &skspcl->msg_buf->fmh;
888 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
889 fmh->num_protocol_cmds_coalesced = 1;
891 scsi = &skspcl->msg_buf->scsi[0];
892 memset(scsi, 0, sizeof(*scsi));
893 dma_address = skspcl->req.sksg_dma_address;
894 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
895 skspcl->req.n_sg = 1;
896 sgd->control = FIT_SGD_CONTROL_LAST;
897 sgd->byte_count = 0;
898 sgd->host_side_addr = skspcl->db_dma_address;
899 sgd->dev_side_addr = 0;
900 sgd->next_desc_ptr = 0LL;
902 return 1;
905 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
907 static void skd_send_internal_skspcl(struct skd_device *skdev,
908 struct skd_special_context *skspcl,
909 u8 opcode)
911 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
912 struct skd_scsi_request *scsi;
913 unsigned char *buf = skspcl->data_buf;
914 int i;
916 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
918 * A refresh is already in progress.
919 * Just wait for it to finish.
921 return;
923 skspcl->req.state = SKD_REQ_STATE_BUSY;
925 scsi = &skspcl->msg_buf->scsi[0];
926 scsi->hdr.tag = skspcl->req.id;
928 memset(scsi->cdb, 0, sizeof(scsi->cdb));
930 switch (opcode) {
931 case TEST_UNIT_READY:
932 scsi->cdb[0] = TEST_UNIT_READY;
933 sgd->byte_count = 0;
934 scsi->hdr.sg_list_len_bytes = 0;
935 break;
937 case READ_CAPACITY:
938 scsi->cdb[0] = READ_CAPACITY;
939 sgd->byte_count = SKD_N_READ_CAP_BYTES;
940 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
941 break;
943 case INQUIRY:
944 scsi->cdb[0] = INQUIRY;
945 scsi->cdb[1] = 0x01; /* evpd */
946 scsi->cdb[2] = 0x80; /* serial number page */
947 scsi->cdb[4] = 0x10;
948 sgd->byte_count = 16;
949 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
950 break;
952 case SYNCHRONIZE_CACHE:
953 scsi->cdb[0] = SYNCHRONIZE_CACHE;
954 sgd->byte_count = 0;
955 scsi->hdr.sg_list_len_bytes = 0;
956 break;
958 case WRITE_BUFFER:
959 scsi->cdb[0] = WRITE_BUFFER;
960 scsi->cdb[1] = 0x02;
961 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
962 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
963 sgd->byte_count = WR_BUF_SIZE;
964 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
965 /* fill incrementing byte pattern */
966 for (i = 0; i < sgd->byte_count; i++)
967 buf[i] = i & 0xFF;
968 break;
970 case READ_BUFFER:
971 scsi->cdb[0] = READ_BUFFER;
972 scsi->cdb[1] = 0x02;
973 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
974 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
975 sgd->byte_count = WR_BUF_SIZE;
976 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977 memset(skspcl->data_buf, 0, sgd->byte_count);
978 break;
980 default:
981 SKD_ASSERT("Don't know what to send");
982 return;
985 skd_send_special_fitmsg(skdev, skspcl);
988 static void skd_refresh_device_data(struct skd_device *skdev)
990 struct skd_special_context *skspcl = &skdev->internal_skspcl;
992 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
995 static int skd_chk_read_buf(struct skd_device *skdev,
996 struct skd_special_context *skspcl)
998 unsigned char *buf = skspcl->data_buf;
999 int i;
1001 /* check for incrementing byte pattern */
1002 for (i = 0; i < WR_BUF_SIZE; i++)
1003 if (buf[i] != (i & 0xFF))
1004 return 1;
1006 return 0;
1009 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1010 u8 code, u8 qual, u8 fruc)
1012 /* If the check condition is of special interest, log a message */
1013 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1014 && (code == 0x04) && (qual == 0x06)) {
1015 dev_err(&skdev->pdev->dev,
1016 "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1017 key, code, qual, fruc);
1021 static void skd_complete_internal(struct skd_device *skdev,
1022 struct fit_completion_entry_v1 *skcomp,
1023 struct fit_comp_error_info *skerr,
1024 struct skd_special_context *skspcl)
1026 u8 *buf = skspcl->data_buf;
1027 u8 status;
1028 int i;
1029 struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1031 lockdep_assert_held(&skdev->lock);
1033 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1035 dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1037 dma_sync_single_for_cpu(&skdev->pdev->dev,
1038 skspcl->db_dma_address,
1039 skspcl->req.sksg_list[0].byte_count,
1040 DMA_BIDIRECTIONAL);
1042 skspcl->req.completion = *skcomp;
1043 skspcl->req.state = SKD_REQ_STATE_IDLE;
1045 status = skspcl->req.completion.status;
1047 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1048 skerr->qual, skerr->fruc);
1050 switch (scsi->cdb[0]) {
1051 case TEST_UNIT_READY:
1052 if (status == SAM_STAT_GOOD)
1053 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1054 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1055 (skerr->key == MEDIUM_ERROR))
1056 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1057 else {
1058 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1059 dev_dbg(&skdev->pdev->dev,
1060 "TUR failed, don't send anymore state 0x%x\n",
1061 skdev->state);
1062 return;
1064 dev_dbg(&skdev->pdev->dev,
1065 "**** TUR failed, retry skerr\n");
1066 skd_send_internal_skspcl(skdev, skspcl,
1067 TEST_UNIT_READY);
1069 break;
1071 case WRITE_BUFFER:
1072 if (status == SAM_STAT_GOOD)
1073 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1074 else {
1075 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1076 dev_dbg(&skdev->pdev->dev,
1077 "write buffer failed, don't send anymore state 0x%x\n",
1078 skdev->state);
1079 return;
1081 dev_dbg(&skdev->pdev->dev,
1082 "**** write buffer failed, retry skerr\n");
1083 skd_send_internal_skspcl(skdev, skspcl,
1084 TEST_UNIT_READY);
1086 break;
1088 case READ_BUFFER:
1089 if (status == SAM_STAT_GOOD) {
1090 if (skd_chk_read_buf(skdev, skspcl) == 0)
1091 skd_send_internal_skspcl(skdev, skspcl,
1092 READ_CAPACITY);
1093 else {
1094 dev_err(&skdev->pdev->dev,
1095 "*** W/R Buffer mismatch %d ***\n",
1096 skdev->connect_retries);
1097 if (skdev->connect_retries <
1098 SKD_MAX_CONNECT_RETRIES) {
1099 skdev->connect_retries++;
1100 skd_soft_reset(skdev);
1101 } else {
1102 dev_err(&skdev->pdev->dev,
1103 "W/R Buffer Connect Error\n");
1104 return;
1108 } else {
1109 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1110 dev_dbg(&skdev->pdev->dev,
1111 "read buffer failed, don't send anymore state 0x%x\n",
1112 skdev->state);
1113 return;
1115 dev_dbg(&skdev->pdev->dev,
1116 "**** read buffer failed, retry skerr\n");
1117 skd_send_internal_skspcl(skdev, skspcl,
1118 TEST_UNIT_READY);
1120 break;
1122 case READ_CAPACITY:
1123 skdev->read_cap_is_valid = 0;
1124 if (status == SAM_STAT_GOOD) {
1125 skdev->read_cap_last_lba =
1126 (buf[0] << 24) | (buf[1] << 16) |
1127 (buf[2] << 8) | buf[3];
1128 skdev->read_cap_blocksize =
1129 (buf[4] << 24) | (buf[5] << 16) |
1130 (buf[6] << 8) | buf[7];
1132 dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1133 skdev->read_cap_last_lba,
1134 skdev->read_cap_blocksize);
1136 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1138 skdev->read_cap_is_valid = 1;
1140 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1141 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1142 (skerr->key == MEDIUM_ERROR)) {
1143 skdev->read_cap_last_lba = ~0;
1144 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1145 dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1146 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1147 } else {
1148 dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1149 skd_send_internal_skspcl(skdev, skspcl,
1150 TEST_UNIT_READY);
1152 break;
1154 case INQUIRY:
1155 skdev->inquiry_is_valid = 0;
1156 if (status == SAM_STAT_GOOD) {
1157 skdev->inquiry_is_valid = 1;
1159 for (i = 0; i < 12; i++)
1160 skdev->inq_serial_num[i] = buf[i + 4];
1161 skdev->inq_serial_num[12] = 0;
1164 if (skd_unquiesce_dev(skdev) < 0)
1165 dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1166 /* connection is complete */
1167 skdev->connect_retries = 0;
1168 break;
1170 case SYNCHRONIZE_CACHE:
1171 if (status == SAM_STAT_GOOD)
1172 skdev->sync_done = 1;
1173 else
1174 skdev->sync_done = -1;
1175 wake_up_interruptible(&skdev->waitq);
1176 break;
1178 default:
1179 SKD_ASSERT("we didn't send this");
1184 *****************************************************************************
1185 * FIT MESSAGES
1186 *****************************************************************************
1189 static void skd_send_fitmsg(struct skd_device *skdev,
1190 struct skd_fitmsg_context *skmsg)
1192 u64 qcmd;
1194 dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1195 &skmsg->mb_dma_address, skd_in_flight(skdev));
1196 dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1198 qcmd = skmsg->mb_dma_address;
1199 qcmd |= FIT_QCMD_QID_NORMAL;
1201 if (unlikely(skdev->dbg_level > 1)) {
1202 u8 *bp = (u8 *)skmsg->msg_buf;
1203 int i;
1204 for (i = 0; i < skmsg->length; i += 8) {
1205 dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1206 &bp[i]);
1207 if (i == 0)
1208 i = 64 - 8;
1212 if (skmsg->length > 256)
1213 qcmd |= FIT_QCMD_MSGSIZE_512;
1214 else if (skmsg->length > 128)
1215 qcmd |= FIT_QCMD_MSGSIZE_256;
1216 else if (skmsg->length > 64)
1217 qcmd |= FIT_QCMD_MSGSIZE_128;
1218 else
1220 * This makes no sense because the FIT msg header is
1221 * 64 bytes. If the msg is only 64 bytes long it has
1222 * no payload.
1224 qcmd |= FIT_QCMD_MSGSIZE_64;
1226 dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1227 skmsg->length, DMA_TO_DEVICE);
1229 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1230 smp_wmb();
1232 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1235 static void skd_send_special_fitmsg(struct skd_device *skdev,
1236 struct skd_special_context *skspcl)
1238 u64 qcmd;
1240 WARN_ON_ONCE(skspcl->req.n_sg != 1);
1242 if (unlikely(skdev->dbg_level > 1)) {
1243 u8 *bp = (u8 *)skspcl->msg_buf;
1244 int i;
1246 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1247 dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1248 &bp[i]);
1249 if (i == 0)
1250 i = 64 - 8;
1253 dev_dbg(&skdev->pdev->dev,
1254 "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1255 skspcl, skspcl->req.id, skspcl->req.sksg_list,
1256 &skspcl->req.sksg_dma_address);
1257 for (i = 0; i < skspcl->req.n_sg; i++) {
1258 struct fit_sg_descriptor *sgd =
1259 &skspcl->req.sksg_list[i];
1261 dev_dbg(&skdev->pdev->dev,
1262 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1263 i, sgd->byte_count, sgd->control,
1264 sgd->host_side_addr, sgd->next_desc_ptr);
1269 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1270 * and one 64-byte SSDI command.
1272 qcmd = skspcl->mb_dma_address;
1273 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1275 dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1276 SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1277 dma_sync_single_for_device(&skdev->pdev->dev,
1278 skspcl->req.sksg_dma_address,
1279 1 * sizeof(struct fit_sg_descriptor),
1280 DMA_TO_DEVICE);
1281 dma_sync_single_for_device(&skdev->pdev->dev,
1282 skspcl->db_dma_address,
1283 skspcl->req.sksg_list[0].byte_count,
1284 DMA_BIDIRECTIONAL);
1286 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1287 smp_wmb();
1289 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1293 *****************************************************************************
1294 * COMPLETION QUEUE
1295 *****************************************************************************
1298 static void skd_complete_other(struct skd_device *skdev,
1299 struct fit_completion_entry_v1 *skcomp,
1300 struct fit_comp_error_info *skerr);
1302 struct sns_info {
1303 u8 type;
1304 u8 stat;
1305 u8 key;
1306 u8 asc;
1307 u8 ascq;
1308 u8 mask;
1309 enum skd_check_status_action action;
1312 static struct sns_info skd_chkstat_table[] = {
1313 /* Good */
1314 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
1315 SKD_CHECK_STATUS_REPORT_GOOD },
1317 /* Smart alerts */
1318 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
1319 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1320 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
1321 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1322 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
1323 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1325 /* Retry (with limits) */
1326 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
1327 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1328 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
1329 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1330 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
1331 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
1333 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1335 /* Busy (or about to be) */
1336 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
1337 SKD_CHECK_STATUS_BUSY_IMMINENT },
1341 * Look up status and sense data to decide how to handle the error
1342 * from the device.
1343 * mask says which fields must match e.g., mask=0x18 means check
1344 * type and stat, ignore key, asc, ascq.
1347 static enum skd_check_status_action
1348 skd_check_status(struct skd_device *skdev,
1349 u8 cmp_status, struct fit_comp_error_info *skerr)
1351 int i;
1353 dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1354 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1356 dev_dbg(&skdev->pdev->dev,
1357 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1358 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1359 skerr->fruc);
1361 /* Does the info match an entry in the good category? */
1362 for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1363 struct sns_info *sns = &skd_chkstat_table[i];
1365 if (sns->mask & 0x10)
1366 if (skerr->type != sns->type)
1367 continue;
1369 if (sns->mask & 0x08)
1370 if (cmp_status != sns->stat)
1371 continue;
1373 if (sns->mask & 0x04)
1374 if (skerr->key != sns->key)
1375 continue;
1377 if (sns->mask & 0x02)
1378 if (skerr->code != sns->asc)
1379 continue;
1381 if (sns->mask & 0x01)
1382 if (skerr->qual != sns->ascq)
1383 continue;
1385 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1386 dev_err(&skdev->pdev->dev,
1387 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1388 skerr->key, skerr->code, skerr->qual);
1390 return sns->action;
1393 /* No other match, so nonzero status means error,
1394 * zero status means good
1396 if (cmp_status) {
1397 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1398 return SKD_CHECK_STATUS_REPORT_ERROR;
1401 dev_dbg(&skdev->pdev->dev, "status check good default\n");
1402 return SKD_CHECK_STATUS_REPORT_GOOD;
1405 static void skd_resolve_req_exception(struct skd_device *skdev,
1406 struct skd_request_context *skreq,
1407 struct request *req)
1409 u8 cmp_status = skreq->completion.status;
1411 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1412 case SKD_CHECK_STATUS_REPORT_GOOD:
1413 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1414 skreq->status = BLK_STS_OK;
1415 blk_mq_complete_request(req);
1416 break;
1418 case SKD_CHECK_STATUS_BUSY_IMMINENT:
1419 skd_log_skreq(skdev, skreq, "retry(busy)");
1420 blk_mq_requeue_request(req, true);
1421 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1422 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1423 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1424 skd_quiesce_dev(skdev);
1425 break;
1427 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1428 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1429 skd_log_skreq(skdev, skreq, "retry");
1430 blk_mq_requeue_request(req, true);
1431 break;
1433 /* fall through */
1435 case SKD_CHECK_STATUS_REPORT_ERROR:
1436 default:
1437 skreq->status = BLK_STS_IOERR;
1438 blk_mq_complete_request(req);
1439 break;
1443 static void skd_release_skreq(struct skd_device *skdev,
1444 struct skd_request_context *skreq)
1447 * Reclaim the skd_request_context
1449 skreq->state = SKD_REQ_STATE_IDLE;
1452 static int skd_isr_completion_posted(struct skd_device *skdev,
1453 int limit, int *enqueued)
1455 struct fit_completion_entry_v1 *skcmp;
1456 struct fit_comp_error_info *skerr;
1457 u16 req_id;
1458 u32 tag;
1459 u16 hwq = 0;
1460 struct request *rq;
1461 struct skd_request_context *skreq;
1462 u16 cmp_cntxt;
1463 u8 cmp_status;
1464 u8 cmp_cycle;
1465 u32 cmp_bytes;
1466 int rc = 0;
1467 int processed = 0;
1469 lockdep_assert_held(&skdev->lock);
1471 for (;; ) {
1472 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1474 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1475 cmp_cycle = skcmp->cycle;
1476 cmp_cntxt = skcmp->tag;
1477 cmp_status = skcmp->status;
1478 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1480 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1482 dev_dbg(&skdev->pdev->dev,
1483 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1484 skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1485 cmp_cntxt, cmp_status, skd_in_flight(skdev),
1486 cmp_bytes, skdev->proto_ver);
1488 if (cmp_cycle != skdev->skcomp_cycle) {
1489 dev_dbg(&skdev->pdev->dev, "end of completions\n");
1490 break;
1493 * Update the completion queue head index and possibly
1494 * the completion cycle count. 8-bit wrap-around.
1496 skdev->skcomp_ix++;
1497 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1498 skdev->skcomp_ix = 0;
1499 skdev->skcomp_cycle++;
1503 * The command context is a unique 32-bit ID. The low order
1504 * bits help locate the request. The request is usually a
1505 * r/w request (see skd_start() above) or a special request.
1507 req_id = cmp_cntxt;
1508 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1510 /* Is this other than a r/w request? */
1511 if (tag >= skdev->num_req_context) {
1513 * This is not a completion for a r/w request.
1515 WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1516 tag));
1517 skd_complete_other(skdev, skcmp, skerr);
1518 continue;
1521 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1522 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1523 tag))
1524 continue;
1525 skreq = blk_mq_rq_to_pdu(rq);
1528 * Make sure the request ID for the slot matches.
1530 if (skreq->id != req_id) {
1531 dev_err(&skdev->pdev->dev,
1532 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1533 req_id, skreq->id, cmp_cntxt);
1535 continue;
1538 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1540 skreq->completion = *skcmp;
1541 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1542 skreq->err_info = *skerr;
1543 skd_log_check_status(skdev, cmp_status, skerr->key,
1544 skerr->code, skerr->qual,
1545 skerr->fruc);
1547 /* Release DMA resources for the request. */
1548 if (skreq->n_sg > 0)
1549 skd_postop_sg_list(skdev, skreq);
1551 skd_release_skreq(skdev, skreq);
1554 * Capture the outcome and post it back to the native request.
1556 if (likely(cmp_status == SAM_STAT_GOOD)) {
1557 skreq->status = BLK_STS_OK;
1558 blk_mq_complete_request(rq);
1559 } else {
1560 skd_resolve_req_exception(skdev, skreq, rq);
1563 /* skd_isr_comp_limit equal zero means no limit */
1564 if (limit) {
1565 if (++processed >= limit) {
1566 rc = 1;
1567 break;
1572 if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1573 skd_in_flight(skdev) == 0) {
1574 skdev->state = SKD_DRVR_STATE_PAUSED;
1575 wake_up_interruptible(&skdev->waitq);
1578 return rc;
1581 static void skd_complete_other(struct skd_device *skdev,
1582 struct fit_completion_entry_v1 *skcomp,
1583 struct fit_comp_error_info *skerr)
1585 u32 req_id = 0;
1586 u32 req_table;
1587 u32 req_slot;
1588 struct skd_special_context *skspcl;
1590 lockdep_assert_held(&skdev->lock);
1592 req_id = skcomp->tag;
1593 req_table = req_id & SKD_ID_TABLE_MASK;
1594 req_slot = req_id & SKD_ID_SLOT_MASK;
1596 dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1597 req_id, req_slot);
1600 * Based on the request id, determine how to dispatch this completion.
1601 * This swich/case is finding the good cases and forwarding the
1602 * completion entry. Errors are reported below the switch.
1604 switch (req_table) {
1605 case SKD_ID_RW_REQUEST:
1607 * The caller, skd_isr_completion_posted() above,
1608 * handles r/w requests. The only way we get here
1609 * is if the req_slot is out of bounds.
1611 break;
1613 case SKD_ID_INTERNAL:
1614 if (req_slot == 0) {
1615 skspcl = &skdev->internal_skspcl;
1616 if (skspcl->req.id == req_id &&
1617 skspcl->req.state == SKD_REQ_STATE_BUSY) {
1618 skd_complete_internal(skdev,
1619 skcomp, skerr, skspcl);
1620 return;
1623 break;
1625 case SKD_ID_FIT_MSG:
1627 * These id's should never appear in a completion record.
1629 break;
1631 default:
1633 * These id's should never appear anywhere;
1635 break;
1639 * If we get here it is a bad or stale id.
1643 static void skd_reset_skcomp(struct skd_device *skdev)
1645 memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1647 skdev->skcomp_ix = 0;
1648 skdev->skcomp_cycle = 1;
1652 *****************************************************************************
1653 * INTERRUPTS
1654 *****************************************************************************
1656 static void skd_completion_worker(struct work_struct *work)
1658 struct skd_device *skdev =
1659 container_of(work, struct skd_device, completion_worker);
1660 unsigned long flags;
1661 int flush_enqueued = 0;
1663 spin_lock_irqsave(&skdev->lock, flags);
1666 * pass in limit=0, which means no limit..
1667 * process everything in compq
1669 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1670 schedule_work(&skdev->start_queue);
1672 spin_unlock_irqrestore(&skdev->lock, flags);
1675 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1677 static irqreturn_t
1678 skd_isr(int irq, void *ptr)
1680 struct skd_device *skdev = ptr;
1681 u32 intstat;
1682 u32 ack;
1683 int rc = 0;
1684 int deferred = 0;
1685 int flush_enqueued = 0;
1687 spin_lock(&skdev->lock);
1689 for (;; ) {
1690 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1692 ack = FIT_INT_DEF_MASK;
1693 ack &= intstat;
1695 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1696 ack);
1698 /* As long as there is an int pending on device, keep
1699 * running loop. When none, get out, but if we've never
1700 * done any processing, call completion handler?
1702 if (ack == 0) {
1703 /* No interrupts on device, but run the completion
1704 * processor anyway?
1706 if (rc == 0)
1707 if (likely (skdev->state
1708 == SKD_DRVR_STATE_ONLINE))
1709 deferred = 1;
1710 break;
1713 rc = IRQ_HANDLED;
1715 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1717 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1718 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1719 if (intstat & FIT_ISH_COMPLETION_POSTED) {
1721 * If we have already deferred completion
1722 * processing, don't bother running it again
1724 if (deferred == 0)
1725 deferred =
1726 skd_isr_completion_posted(skdev,
1727 skd_isr_comp_limit, &flush_enqueued);
1730 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1731 skd_isr_fwstate(skdev);
1732 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1733 skdev->state ==
1734 SKD_DRVR_STATE_DISAPPEARED) {
1735 spin_unlock(&skdev->lock);
1736 return rc;
1740 if (intstat & FIT_ISH_MSG_FROM_DEV)
1741 skd_isr_msg_from_dev(skdev);
1745 if (unlikely(flush_enqueued))
1746 schedule_work(&skdev->start_queue);
1748 if (deferred)
1749 schedule_work(&skdev->completion_worker);
1750 else if (!flush_enqueued)
1751 schedule_work(&skdev->start_queue);
1753 spin_unlock(&skdev->lock);
1755 return rc;
1758 static void skd_drive_fault(struct skd_device *skdev)
1760 skdev->state = SKD_DRVR_STATE_FAULT;
1761 dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1764 static void skd_drive_disappeared(struct skd_device *skdev)
1766 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1767 dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1770 static void skd_isr_fwstate(struct skd_device *skdev)
1772 u32 sense;
1773 u32 state;
1774 u32 mtd;
1775 int prev_driver_state = skdev->state;
1777 sense = SKD_READL(skdev, FIT_STATUS);
1778 state = sense & FIT_SR_DRIVE_STATE_MASK;
1780 dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1781 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1782 skd_drive_state_to_str(state), state);
1784 skdev->drive_state = state;
1786 switch (skdev->drive_state) {
1787 case FIT_SR_DRIVE_INIT:
1788 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1789 skd_disable_interrupts(skdev);
1790 break;
1792 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1793 skd_recover_requests(skdev);
1794 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1795 skdev->timer_countdown = SKD_STARTING_TIMO;
1796 skdev->state = SKD_DRVR_STATE_STARTING;
1797 skd_soft_reset(skdev);
1798 break;
1800 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1801 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1802 skdev->last_mtd = mtd;
1803 break;
1805 case FIT_SR_DRIVE_ONLINE:
1806 skdev->cur_max_queue_depth = skd_max_queue_depth;
1807 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1808 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1810 skdev->queue_low_water_mark =
1811 skdev->cur_max_queue_depth * 2 / 3 + 1;
1812 if (skdev->queue_low_water_mark < 1)
1813 skdev->queue_low_water_mark = 1;
1814 dev_info(&skdev->pdev->dev,
1815 "Queue depth limit=%d dev=%d lowat=%d\n",
1816 skdev->cur_max_queue_depth,
1817 skdev->dev_max_queue_depth,
1818 skdev->queue_low_water_mark);
1820 skd_refresh_device_data(skdev);
1821 break;
1823 case FIT_SR_DRIVE_BUSY:
1824 skdev->state = SKD_DRVR_STATE_BUSY;
1825 skdev->timer_countdown = SKD_BUSY_TIMO;
1826 skd_quiesce_dev(skdev);
1827 break;
1828 case FIT_SR_DRIVE_BUSY_SANITIZE:
1829 /* set timer for 3 seconds, we'll abort any unfinished
1830 * commands after that expires
1832 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1833 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1834 schedule_work(&skdev->start_queue);
1835 break;
1836 case FIT_SR_DRIVE_BUSY_ERASE:
1837 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1838 skdev->timer_countdown = SKD_BUSY_TIMO;
1839 break;
1840 case FIT_SR_DRIVE_OFFLINE:
1841 skdev->state = SKD_DRVR_STATE_IDLE;
1842 break;
1843 case FIT_SR_DRIVE_SOFT_RESET:
1844 switch (skdev->state) {
1845 case SKD_DRVR_STATE_STARTING:
1846 case SKD_DRVR_STATE_RESTARTING:
1847 /* Expected by a caller of skd_soft_reset() */
1848 break;
1849 default:
1850 skdev->state = SKD_DRVR_STATE_RESTARTING;
1851 break;
1853 break;
1854 case FIT_SR_DRIVE_FW_BOOTING:
1855 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1856 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1857 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1858 break;
1860 case FIT_SR_DRIVE_DEGRADED:
1861 case FIT_SR_PCIE_LINK_DOWN:
1862 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1863 break;
1865 case FIT_SR_DRIVE_FAULT:
1866 skd_drive_fault(skdev);
1867 skd_recover_requests(skdev);
1868 schedule_work(&skdev->start_queue);
1869 break;
1871 /* PCIe bus returned all Fs? */
1872 case 0xFF:
1873 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1874 sense);
1875 skd_drive_disappeared(skdev);
1876 skd_recover_requests(skdev);
1877 schedule_work(&skdev->start_queue);
1878 break;
1879 default:
1881 * Uknown FW State. Wait for a state we recognize.
1883 break;
1885 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1886 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1887 skd_skdev_state_to_str(skdev->state), skdev->state);
1890 static void skd_recover_request(struct request *req, void *data, bool reserved)
1892 struct skd_device *const skdev = data;
1893 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1895 if (skreq->state != SKD_REQ_STATE_BUSY)
1896 return;
1898 skd_log_skreq(skdev, skreq, "recover");
1900 /* Release DMA resources for the request. */
1901 if (skreq->n_sg > 0)
1902 skd_postop_sg_list(skdev, skreq);
1904 skreq->state = SKD_REQ_STATE_IDLE;
1905 skreq->status = BLK_STS_IOERR;
1906 blk_mq_complete_request(req);
1909 static void skd_recover_requests(struct skd_device *skdev)
1911 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1914 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1916 u32 mfd;
1917 u32 mtd;
1918 u32 data;
1920 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1922 dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1923 skdev->last_mtd);
1925 /* ignore any mtd that is an ack for something we didn't send */
1926 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1927 return;
1929 switch (FIT_MXD_TYPE(mfd)) {
1930 case FIT_MTD_FITFW_INIT:
1931 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1933 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1934 dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1935 dev_err(&skdev->pdev->dev, " got=%d support=%d\n",
1936 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1937 dev_err(&skdev->pdev->dev, " please upgrade driver\n");
1938 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1939 skd_soft_reset(skdev);
1940 break;
1942 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1943 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1944 skdev->last_mtd = mtd;
1945 break;
1947 case FIT_MTD_GET_CMDQ_DEPTH:
1948 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1949 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1950 SKD_N_COMPLETION_ENTRY);
1951 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952 skdev->last_mtd = mtd;
1953 break;
1955 case FIT_MTD_SET_COMPQ_DEPTH:
1956 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1957 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1958 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1959 skdev->last_mtd = mtd;
1960 break;
1962 case FIT_MTD_SET_COMPQ_ADDR:
1963 skd_reset_skcomp(skdev);
1964 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1965 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1966 skdev->last_mtd = mtd;
1967 break;
1969 case FIT_MTD_CMD_LOG_HOST_ID:
1970 /* hardware interface overflows in y2106 */
1971 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1972 data = skdev->connect_time_stamp & 0xFFFF;
1973 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1974 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1975 skdev->last_mtd = mtd;
1976 break;
1978 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1979 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1980 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1981 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1982 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983 skdev->last_mtd = mtd;
1984 break;
1986 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1987 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1988 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1989 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1990 skdev->last_mtd = mtd;
1992 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1993 skdev->connect_time_stamp, skdev->drive_jiffies);
1994 break;
1996 case FIT_MTD_ARM_QUEUE:
1997 skdev->last_mtd = 0;
1999 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2001 break;
2003 default:
2004 break;
2008 static void skd_disable_interrupts(struct skd_device *skdev)
2010 u32 sense;
2012 sense = SKD_READL(skdev, FIT_CONTROL);
2013 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2014 SKD_WRITEL(skdev, sense, FIT_CONTROL);
2015 dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2017 /* Note that the 1s is written. A 1-bit means
2018 * disable, a 0 means enable.
2020 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2023 static void skd_enable_interrupts(struct skd_device *skdev)
2025 u32 val;
2027 /* unmask interrupts first */
2028 val = FIT_ISH_FW_STATE_CHANGE +
2029 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2031 /* Note that the compliment of mask is written. A 1-bit means
2032 * disable, a 0 means enable. */
2033 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2034 dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2036 val = SKD_READL(skdev, FIT_CONTROL);
2037 val |= FIT_CR_ENABLE_INTERRUPTS;
2038 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2039 SKD_WRITEL(skdev, val, FIT_CONTROL);
2043 *****************************************************************************
2044 * START, STOP, RESTART, QUIESCE, UNQUIESCE
2045 *****************************************************************************
2048 static void skd_soft_reset(struct skd_device *skdev)
2050 u32 val;
2052 val = SKD_READL(skdev, FIT_CONTROL);
2053 val |= (FIT_CR_SOFT_RESET);
2054 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2055 SKD_WRITEL(skdev, val, FIT_CONTROL);
2058 static void skd_start_device(struct skd_device *skdev)
2060 unsigned long flags;
2061 u32 sense;
2062 u32 state;
2064 spin_lock_irqsave(&skdev->lock, flags);
2066 /* ack all ghost interrupts */
2067 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2069 sense = SKD_READL(skdev, FIT_STATUS);
2071 dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2073 state = sense & FIT_SR_DRIVE_STATE_MASK;
2074 skdev->drive_state = state;
2075 skdev->last_mtd = 0;
2077 skdev->state = SKD_DRVR_STATE_STARTING;
2078 skdev->timer_countdown = SKD_STARTING_TIMO;
2080 skd_enable_interrupts(skdev);
2082 switch (skdev->drive_state) {
2083 case FIT_SR_DRIVE_OFFLINE:
2084 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2085 break;
2087 case FIT_SR_DRIVE_FW_BOOTING:
2088 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2089 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2090 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2091 break;
2093 case FIT_SR_DRIVE_BUSY_SANITIZE:
2094 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2095 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2096 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2097 break;
2099 case FIT_SR_DRIVE_BUSY_ERASE:
2100 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2101 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2102 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2103 break;
2105 case FIT_SR_DRIVE_INIT:
2106 case FIT_SR_DRIVE_ONLINE:
2107 skd_soft_reset(skdev);
2108 break;
2110 case FIT_SR_DRIVE_BUSY:
2111 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2112 skdev->state = SKD_DRVR_STATE_BUSY;
2113 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2114 break;
2116 case FIT_SR_DRIVE_SOFT_RESET:
2117 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2118 break;
2120 case FIT_SR_DRIVE_FAULT:
2121 /* Fault state is bad...soft reset won't do it...
2122 * Hard reset, maybe, but does it work on device?
2123 * For now, just fault so the system doesn't hang.
2125 skd_drive_fault(skdev);
2126 /*start the queue so we can respond with error to requests */
2127 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2128 schedule_work(&skdev->start_queue);
2129 skdev->gendisk_on = -1;
2130 wake_up_interruptible(&skdev->waitq);
2131 break;
2133 case 0xFF:
2134 /* Most likely the device isn't there or isn't responding
2135 * to the BAR1 addresses. */
2136 skd_drive_disappeared(skdev);
2137 /*start the queue so we can respond with error to requests */
2138 dev_dbg(&skdev->pdev->dev,
2139 "starting queue to error-out reqs\n");
2140 schedule_work(&skdev->start_queue);
2141 skdev->gendisk_on = -1;
2142 wake_up_interruptible(&skdev->waitq);
2143 break;
2145 default:
2146 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2147 skdev->drive_state);
2148 break;
2151 state = SKD_READL(skdev, FIT_CONTROL);
2152 dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2154 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2155 dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2157 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2158 dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2160 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2161 dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2163 state = SKD_READL(skdev, FIT_HW_VERSION);
2164 dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2166 spin_unlock_irqrestore(&skdev->lock, flags);
2169 static void skd_stop_device(struct skd_device *skdev)
2171 unsigned long flags;
2172 struct skd_special_context *skspcl = &skdev->internal_skspcl;
2173 u32 dev_state;
2174 int i;
2176 spin_lock_irqsave(&skdev->lock, flags);
2178 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2179 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2180 goto stop_out;
2183 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2184 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2185 goto stop_out;
2188 skdev->state = SKD_DRVR_STATE_SYNCING;
2189 skdev->sync_done = 0;
2191 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2193 spin_unlock_irqrestore(&skdev->lock, flags);
2195 wait_event_interruptible_timeout(skdev->waitq,
2196 (skdev->sync_done), (10 * HZ));
2198 spin_lock_irqsave(&skdev->lock, flags);
2200 switch (skdev->sync_done) {
2201 case 0:
2202 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2203 break;
2204 case 1:
2205 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2206 break;
2207 default:
2208 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2211 stop_out:
2212 skdev->state = SKD_DRVR_STATE_STOPPING;
2213 spin_unlock_irqrestore(&skdev->lock, flags);
2215 skd_kill_timer(skdev);
2217 spin_lock_irqsave(&skdev->lock, flags);
2218 skd_disable_interrupts(skdev);
2220 /* ensure all ints on device are cleared */
2221 /* soft reset the device to unload with a clean slate */
2222 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2223 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2225 spin_unlock_irqrestore(&skdev->lock, flags);
2227 /* poll every 100ms, 1 second timeout */
2228 for (i = 0; i < 10; i++) {
2229 dev_state =
2230 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2231 if (dev_state == FIT_SR_DRIVE_INIT)
2232 break;
2233 set_current_state(TASK_INTERRUPTIBLE);
2234 schedule_timeout(msecs_to_jiffies(100));
2237 if (dev_state != FIT_SR_DRIVE_INIT)
2238 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2239 dev_state);
2242 /* assume spinlock is held */
2243 static void skd_restart_device(struct skd_device *skdev)
2245 u32 state;
2247 /* ack all ghost interrupts */
2248 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2250 state = SKD_READL(skdev, FIT_STATUS);
2252 dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2254 state &= FIT_SR_DRIVE_STATE_MASK;
2255 skdev->drive_state = state;
2256 skdev->last_mtd = 0;
2258 skdev->state = SKD_DRVR_STATE_RESTARTING;
2259 skdev->timer_countdown = SKD_RESTARTING_TIMO;
2261 skd_soft_reset(skdev);
2264 /* assume spinlock is held */
2265 static int skd_quiesce_dev(struct skd_device *skdev)
2267 int rc = 0;
2269 switch (skdev->state) {
2270 case SKD_DRVR_STATE_BUSY:
2271 case SKD_DRVR_STATE_BUSY_IMMINENT:
2272 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2273 blk_mq_stop_hw_queues(skdev->queue);
2274 break;
2275 case SKD_DRVR_STATE_ONLINE:
2276 case SKD_DRVR_STATE_STOPPING:
2277 case SKD_DRVR_STATE_SYNCING:
2278 case SKD_DRVR_STATE_PAUSING:
2279 case SKD_DRVR_STATE_PAUSED:
2280 case SKD_DRVR_STATE_STARTING:
2281 case SKD_DRVR_STATE_RESTARTING:
2282 case SKD_DRVR_STATE_RESUMING:
2283 default:
2284 rc = -EINVAL;
2285 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2286 skdev->state);
2288 return rc;
2291 /* assume spinlock is held */
2292 static int skd_unquiesce_dev(struct skd_device *skdev)
2294 int prev_driver_state = skdev->state;
2296 skd_log_skdev(skdev, "unquiesce");
2297 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2298 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2299 return 0;
2301 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2303 * If there has been an state change to other than
2304 * ONLINE, we will rely on controller state change
2305 * to come back online and restart the queue.
2306 * The BUSY state means that driver is ready to
2307 * continue normal processing but waiting for controller
2308 * to become available.
2310 skdev->state = SKD_DRVR_STATE_BUSY;
2311 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2312 return 0;
2316 * Drive has just come online, driver is either in startup,
2317 * paused performing a task, or bust waiting for hardware.
2319 switch (skdev->state) {
2320 case SKD_DRVR_STATE_PAUSED:
2321 case SKD_DRVR_STATE_BUSY:
2322 case SKD_DRVR_STATE_BUSY_IMMINENT:
2323 case SKD_DRVR_STATE_BUSY_ERASE:
2324 case SKD_DRVR_STATE_STARTING:
2325 case SKD_DRVR_STATE_RESTARTING:
2326 case SKD_DRVR_STATE_FAULT:
2327 case SKD_DRVR_STATE_IDLE:
2328 case SKD_DRVR_STATE_LOAD:
2329 skdev->state = SKD_DRVR_STATE_ONLINE;
2330 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2331 skd_skdev_state_to_str(prev_driver_state),
2332 prev_driver_state, skd_skdev_state_to_str(skdev->state),
2333 skdev->state);
2334 dev_dbg(&skdev->pdev->dev,
2335 "**** device ONLINE...starting block queue\n");
2336 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2337 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2338 schedule_work(&skdev->start_queue);
2339 skdev->gendisk_on = 1;
2340 wake_up_interruptible(&skdev->waitq);
2341 break;
2343 case SKD_DRVR_STATE_DISAPPEARED:
2344 default:
2345 dev_dbg(&skdev->pdev->dev,
2346 "**** driver state %d, not implemented\n",
2347 skdev->state);
2348 return -EBUSY;
2350 return 0;
2354 *****************************************************************************
2355 * PCIe MSI/MSI-X INTERRUPT HANDLERS
2356 *****************************************************************************
2359 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2361 struct skd_device *skdev = skd_host_data;
2362 unsigned long flags;
2364 spin_lock_irqsave(&skdev->lock, flags);
2365 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2366 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2367 dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2368 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2369 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2370 spin_unlock_irqrestore(&skdev->lock, flags);
2371 return IRQ_HANDLED;
2374 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2376 struct skd_device *skdev = skd_host_data;
2377 unsigned long flags;
2379 spin_lock_irqsave(&skdev->lock, flags);
2380 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2381 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2382 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2383 skd_isr_fwstate(skdev);
2384 spin_unlock_irqrestore(&skdev->lock, flags);
2385 return IRQ_HANDLED;
2388 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2390 struct skd_device *skdev = skd_host_data;
2391 unsigned long flags;
2392 int flush_enqueued = 0;
2393 int deferred;
2395 spin_lock_irqsave(&skdev->lock, flags);
2396 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2397 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2398 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2399 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2400 &flush_enqueued);
2401 if (flush_enqueued)
2402 schedule_work(&skdev->start_queue);
2404 if (deferred)
2405 schedule_work(&skdev->completion_worker);
2406 else if (!flush_enqueued)
2407 schedule_work(&skdev->start_queue);
2409 spin_unlock_irqrestore(&skdev->lock, flags);
2411 return IRQ_HANDLED;
2414 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2416 struct skd_device *skdev = skd_host_data;
2417 unsigned long flags;
2419 spin_lock_irqsave(&skdev->lock, flags);
2420 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2421 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2422 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2423 skd_isr_msg_from_dev(skdev);
2424 spin_unlock_irqrestore(&skdev->lock, flags);
2425 return IRQ_HANDLED;
2428 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2430 struct skd_device *skdev = skd_host_data;
2431 unsigned long flags;
2433 spin_lock_irqsave(&skdev->lock, flags);
2434 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2435 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2436 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2437 spin_unlock_irqrestore(&skdev->lock, flags);
2438 return IRQ_HANDLED;
2442 *****************************************************************************
2443 * PCIe MSI/MSI-X SETUP
2444 *****************************************************************************
2447 struct skd_msix_entry {
2448 char isr_name[30];
2451 struct skd_init_msix_entry {
2452 const char *name;
2453 irq_handler_t handler;
2456 #define SKD_MAX_MSIX_COUNT 13
2457 #define SKD_MIN_MSIX_COUNT 7
2458 #define SKD_BASE_MSIX_IRQ 4
2460 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2461 { "(DMA 0)", skd_reserved_isr },
2462 { "(DMA 1)", skd_reserved_isr },
2463 { "(DMA 2)", skd_reserved_isr },
2464 { "(DMA 3)", skd_reserved_isr },
2465 { "(State Change)", skd_statec_isr },
2466 { "(COMPL_Q)", skd_comp_q },
2467 { "(MSG)", skd_msg_isr },
2468 { "(Reserved)", skd_reserved_isr },
2469 { "(Reserved)", skd_reserved_isr },
2470 { "(Queue Full 0)", skd_qfull_isr },
2471 { "(Queue Full 1)", skd_qfull_isr },
2472 { "(Queue Full 2)", skd_qfull_isr },
2473 { "(Queue Full 3)", skd_qfull_isr },
2476 static int skd_acquire_msix(struct skd_device *skdev)
2478 int i, rc;
2479 struct pci_dev *pdev = skdev->pdev;
2481 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2482 PCI_IRQ_MSIX);
2483 if (rc < 0) {
2484 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2485 goto out;
2488 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2489 sizeof(struct skd_msix_entry), GFP_KERNEL);
2490 if (!skdev->msix_entries) {
2491 rc = -ENOMEM;
2492 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2493 goto out;
2496 /* Enable MSI-X vectors for the base queue */
2497 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2498 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2500 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2501 "%s%d-msix %s", DRV_NAME, skdev->devno,
2502 msix_entries[i].name);
2504 rc = devm_request_irq(&skdev->pdev->dev,
2505 pci_irq_vector(skdev->pdev, i),
2506 msix_entries[i].handler, 0,
2507 qentry->isr_name, skdev);
2508 if (rc) {
2509 dev_err(&skdev->pdev->dev,
2510 "Unable to register(%d) MSI-X handler %d: %s\n",
2511 rc, i, qentry->isr_name);
2512 goto msix_out;
2516 dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2517 SKD_MAX_MSIX_COUNT);
2518 return 0;
2520 msix_out:
2521 while (--i >= 0)
2522 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2523 out:
2524 kfree(skdev->msix_entries);
2525 skdev->msix_entries = NULL;
2526 return rc;
2529 static int skd_acquire_irq(struct skd_device *skdev)
2531 struct pci_dev *pdev = skdev->pdev;
2532 unsigned int irq_flag = PCI_IRQ_LEGACY;
2533 int rc;
2535 if (skd_isr_type == SKD_IRQ_MSIX) {
2536 rc = skd_acquire_msix(skdev);
2537 if (!rc)
2538 return 0;
2540 dev_err(&skdev->pdev->dev,
2541 "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2544 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2545 skdev->devno);
2547 if (skd_isr_type != SKD_IRQ_LEGACY)
2548 irq_flag |= PCI_IRQ_MSI;
2549 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2550 if (rc < 0) {
2551 dev_err(&skdev->pdev->dev,
2552 "failed to allocate the MSI interrupt %d\n", rc);
2553 return rc;
2556 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2557 pdev->msi_enabled ? 0 : IRQF_SHARED,
2558 skdev->isr_name, skdev);
2559 if (rc) {
2560 pci_free_irq_vectors(pdev);
2561 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2562 rc);
2563 return rc;
2566 return 0;
2569 static void skd_release_irq(struct skd_device *skdev)
2571 struct pci_dev *pdev = skdev->pdev;
2573 if (skdev->msix_entries) {
2574 int i;
2576 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2577 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2578 skdev);
2581 kfree(skdev->msix_entries);
2582 skdev->msix_entries = NULL;
2583 } else {
2584 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2587 pci_free_irq_vectors(pdev);
2591 *****************************************************************************
2592 * CONSTRUCT
2593 *****************************************************************************
2596 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2597 dma_addr_t *dma_handle, gfp_t gfp,
2598 enum dma_data_direction dir)
2600 struct device *dev = &skdev->pdev->dev;
2601 void *buf;
2603 buf = kmem_cache_alloc(s, gfp);
2604 if (!buf)
2605 return NULL;
2606 *dma_handle = dma_map_single(dev, buf,
2607 kmem_cache_size(s), dir);
2608 if (dma_mapping_error(dev, *dma_handle)) {
2609 kmem_cache_free(s, buf);
2610 buf = NULL;
2612 return buf;
2615 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2616 void *vaddr, dma_addr_t dma_handle,
2617 enum dma_data_direction dir)
2619 if (!vaddr)
2620 return;
2622 dma_unmap_single(&skdev->pdev->dev, dma_handle,
2623 kmem_cache_size(s), dir);
2624 kmem_cache_free(s, vaddr);
2627 static int skd_cons_skcomp(struct skd_device *skdev)
2629 int rc = 0;
2630 struct fit_completion_entry_v1 *skcomp;
2632 dev_dbg(&skdev->pdev->dev,
2633 "comp pci_alloc, total bytes %zd entries %d\n",
2634 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2636 skcomp = dma_zalloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2637 &skdev->cq_dma_address, GFP_KERNEL);
2639 if (skcomp == NULL) {
2640 rc = -ENOMEM;
2641 goto err_out;
2644 skdev->skcomp_table = skcomp;
2645 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2646 sizeof(*skcomp) *
2647 SKD_N_COMPLETION_ENTRY);
2649 err_out:
2650 return rc;
2653 static int skd_cons_skmsg(struct skd_device *skdev)
2655 int rc = 0;
2656 u32 i;
2658 dev_dbg(&skdev->pdev->dev,
2659 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2660 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2661 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2663 skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2664 sizeof(struct skd_fitmsg_context),
2665 GFP_KERNEL);
2666 if (skdev->skmsg_table == NULL) {
2667 rc = -ENOMEM;
2668 goto err_out;
2671 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2672 struct skd_fitmsg_context *skmsg;
2674 skmsg = &skdev->skmsg_table[i];
2676 skmsg->id = i + SKD_ID_FIT_MSG;
2678 skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2679 SKD_N_FITMSG_BYTES,
2680 &skmsg->mb_dma_address,
2681 GFP_KERNEL);
2682 if (skmsg->msg_buf == NULL) {
2683 rc = -ENOMEM;
2684 goto err_out;
2687 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2688 (FIT_QCMD_ALIGN - 1),
2689 "not aligned: msg_buf %p mb_dma_address %pad\n",
2690 skmsg->msg_buf, &skmsg->mb_dma_address);
2691 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2694 err_out:
2695 return rc;
2698 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2699 u32 n_sg,
2700 dma_addr_t *ret_dma_addr)
2702 struct fit_sg_descriptor *sg_list;
2704 sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2705 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2707 if (sg_list != NULL) {
2708 uint64_t dma_address = *ret_dma_addr;
2709 u32 i;
2711 for (i = 0; i < n_sg - 1; i++) {
2712 uint64_t ndp_off;
2713 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2715 sg_list[i].next_desc_ptr = dma_address + ndp_off;
2717 sg_list[i].next_desc_ptr = 0LL;
2720 return sg_list;
2723 static void skd_free_sg_list(struct skd_device *skdev,
2724 struct fit_sg_descriptor *sg_list,
2725 dma_addr_t dma_addr)
2727 if (WARN_ON_ONCE(!sg_list))
2728 return;
2730 skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2731 DMA_TO_DEVICE);
2734 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2735 unsigned int hctx_idx, unsigned int numa_node)
2737 struct skd_device *skdev = set->driver_data;
2738 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2740 skreq->state = SKD_REQ_STATE_IDLE;
2741 skreq->sg = (void *)(skreq + 1);
2742 sg_init_table(skreq->sg, skd_sgs_per_request);
2743 skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2744 &skreq->sksg_dma_address);
2746 return skreq->sksg_list ? 0 : -ENOMEM;
2749 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2750 unsigned int hctx_idx)
2752 struct skd_device *skdev = set->driver_data;
2753 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2755 skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2758 static int skd_cons_sksb(struct skd_device *skdev)
2760 int rc = 0;
2761 struct skd_special_context *skspcl;
2763 skspcl = &skdev->internal_skspcl;
2765 skspcl->req.id = 0 + SKD_ID_INTERNAL;
2766 skspcl->req.state = SKD_REQ_STATE_IDLE;
2768 skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2769 &skspcl->db_dma_address,
2770 GFP_DMA | __GFP_ZERO,
2771 DMA_BIDIRECTIONAL);
2772 if (skspcl->data_buf == NULL) {
2773 rc = -ENOMEM;
2774 goto err_out;
2777 skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2778 &skspcl->mb_dma_address,
2779 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2780 if (skspcl->msg_buf == NULL) {
2781 rc = -ENOMEM;
2782 goto err_out;
2785 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2786 &skspcl->req.sksg_dma_address);
2787 if (skspcl->req.sksg_list == NULL) {
2788 rc = -ENOMEM;
2789 goto err_out;
2792 if (!skd_format_internal_skspcl(skdev)) {
2793 rc = -EINVAL;
2794 goto err_out;
2797 err_out:
2798 return rc;
2801 static const struct blk_mq_ops skd_mq_ops = {
2802 .queue_rq = skd_mq_queue_rq,
2803 .complete = skd_complete_rq,
2804 .timeout = skd_timed_out,
2805 .init_request = skd_init_request,
2806 .exit_request = skd_exit_request,
2809 static int skd_cons_disk(struct skd_device *skdev)
2811 int rc = 0;
2812 struct gendisk *disk;
2813 struct request_queue *q;
2814 unsigned long flags;
2816 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2817 if (!disk) {
2818 rc = -ENOMEM;
2819 goto err_out;
2822 skdev->disk = disk;
2823 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2825 disk->major = skdev->major;
2826 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2827 disk->fops = &skd_blockdev_ops;
2828 disk->private_data = skdev;
2830 memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2831 skdev->tag_set.ops = &skd_mq_ops;
2832 skdev->tag_set.nr_hw_queues = 1;
2833 skdev->tag_set.queue_depth = skd_max_queue_depth;
2834 skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2835 skdev->sgs_per_request * sizeof(struct scatterlist);
2836 skdev->tag_set.numa_node = NUMA_NO_NODE;
2837 skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2838 BLK_MQ_F_SG_MERGE |
2839 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2840 skdev->tag_set.driver_data = skdev;
2841 rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2842 if (rc)
2843 goto err_out;
2844 q = blk_mq_init_queue(&skdev->tag_set);
2845 if (IS_ERR(q)) {
2846 blk_mq_free_tag_set(&skdev->tag_set);
2847 rc = PTR_ERR(q);
2848 goto err_out;
2850 q->queuedata = skdev;
2852 skdev->queue = q;
2853 disk->queue = q;
2855 blk_queue_write_cache(q, true, true);
2856 blk_queue_max_segments(q, skdev->sgs_per_request);
2857 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2859 /* set optimal I/O size to 8KB */
2860 blk_queue_io_opt(q, 8192);
2862 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2863 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2865 blk_queue_rq_timeout(q, 8 * HZ);
2867 spin_lock_irqsave(&skdev->lock, flags);
2868 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2869 blk_mq_stop_hw_queues(skdev->queue);
2870 spin_unlock_irqrestore(&skdev->lock, flags);
2872 err_out:
2873 return rc;
2876 #define SKD_N_DEV_TABLE 16u
2877 static u32 skd_next_devno;
2879 static struct skd_device *skd_construct(struct pci_dev *pdev)
2881 struct skd_device *skdev;
2882 int blk_major = skd_major;
2883 size_t size;
2884 int rc;
2886 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2888 if (!skdev) {
2889 dev_err(&pdev->dev, "memory alloc failure\n");
2890 return NULL;
2893 skdev->state = SKD_DRVR_STATE_LOAD;
2894 skdev->pdev = pdev;
2895 skdev->devno = skd_next_devno++;
2896 skdev->major = blk_major;
2897 skdev->dev_max_queue_depth = 0;
2899 skdev->num_req_context = skd_max_queue_depth;
2900 skdev->num_fitmsg_context = skd_max_queue_depth;
2901 skdev->cur_max_queue_depth = 1;
2902 skdev->queue_low_water_mark = 1;
2903 skdev->proto_ver = 99;
2904 skdev->sgs_per_request = skd_sgs_per_request;
2905 skdev->dbg_level = skd_dbg_level;
2907 spin_lock_init(&skdev->lock);
2909 INIT_WORK(&skdev->start_queue, skd_start_queue);
2910 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2912 size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2913 skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2914 SLAB_HWCACHE_ALIGN, NULL);
2915 if (!skdev->msgbuf_cache)
2916 goto err_out;
2917 WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2918 "skd-msgbuf: %d < %zd\n",
2919 kmem_cache_size(skdev->msgbuf_cache), size);
2920 size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2921 skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2922 SLAB_HWCACHE_ALIGN, NULL);
2923 if (!skdev->sglist_cache)
2924 goto err_out;
2925 WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2926 "skd-sglist: %d < %zd\n",
2927 kmem_cache_size(skdev->sglist_cache), size);
2928 size = SKD_N_INTERNAL_BYTES;
2929 skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2930 SLAB_HWCACHE_ALIGN, NULL);
2931 if (!skdev->databuf_cache)
2932 goto err_out;
2933 WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2934 "skd-databuf: %d < %zd\n",
2935 kmem_cache_size(skdev->databuf_cache), size);
2937 dev_dbg(&skdev->pdev->dev, "skcomp\n");
2938 rc = skd_cons_skcomp(skdev);
2939 if (rc < 0)
2940 goto err_out;
2942 dev_dbg(&skdev->pdev->dev, "skmsg\n");
2943 rc = skd_cons_skmsg(skdev);
2944 if (rc < 0)
2945 goto err_out;
2947 dev_dbg(&skdev->pdev->dev, "sksb\n");
2948 rc = skd_cons_sksb(skdev);
2949 if (rc < 0)
2950 goto err_out;
2952 dev_dbg(&skdev->pdev->dev, "disk\n");
2953 rc = skd_cons_disk(skdev);
2954 if (rc < 0)
2955 goto err_out;
2957 dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2958 return skdev;
2960 err_out:
2961 dev_dbg(&skdev->pdev->dev, "construct failed\n");
2962 skd_destruct(skdev);
2963 return NULL;
2967 *****************************************************************************
2968 * DESTRUCT (FREE)
2969 *****************************************************************************
2972 static void skd_free_skcomp(struct skd_device *skdev)
2974 if (skdev->skcomp_table)
2975 dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2976 skdev->skcomp_table, skdev->cq_dma_address);
2978 skdev->skcomp_table = NULL;
2979 skdev->cq_dma_address = 0;
2982 static void skd_free_skmsg(struct skd_device *skdev)
2984 u32 i;
2986 if (skdev->skmsg_table == NULL)
2987 return;
2989 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2990 struct skd_fitmsg_context *skmsg;
2992 skmsg = &skdev->skmsg_table[i];
2994 if (skmsg->msg_buf != NULL) {
2995 dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
2996 skmsg->msg_buf,
2997 skmsg->mb_dma_address);
2999 skmsg->msg_buf = NULL;
3000 skmsg->mb_dma_address = 0;
3003 kfree(skdev->skmsg_table);
3004 skdev->skmsg_table = NULL;
3007 static void skd_free_sksb(struct skd_device *skdev)
3009 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3011 skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3012 skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3014 skspcl->data_buf = NULL;
3015 skspcl->db_dma_address = 0;
3017 skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3018 skspcl->mb_dma_address, DMA_TO_DEVICE);
3020 skspcl->msg_buf = NULL;
3021 skspcl->mb_dma_address = 0;
3023 skd_free_sg_list(skdev, skspcl->req.sksg_list,
3024 skspcl->req.sksg_dma_address);
3026 skspcl->req.sksg_list = NULL;
3027 skspcl->req.sksg_dma_address = 0;
3030 static void skd_free_disk(struct skd_device *skdev)
3032 struct gendisk *disk = skdev->disk;
3034 if (disk && (disk->flags & GENHD_FL_UP))
3035 del_gendisk(disk);
3037 if (skdev->queue) {
3038 blk_cleanup_queue(skdev->queue);
3039 skdev->queue = NULL;
3040 if (disk)
3041 disk->queue = NULL;
3044 if (skdev->tag_set.tags)
3045 blk_mq_free_tag_set(&skdev->tag_set);
3047 put_disk(disk);
3048 skdev->disk = NULL;
3051 static void skd_destruct(struct skd_device *skdev)
3053 if (skdev == NULL)
3054 return;
3056 cancel_work_sync(&skdev->start_queue);
3058 dev_dbg(&skdev->pdev->dev, "disk\n");
3059 skd_free_disk(skdev);
3061 dev_dbg(&skdev->pdev->dev, "sksb\n");
3062 skd_free_sksb(skdev);
3064 dev_dbg(&skdev->pdev->dev, "skmsg\n");
3065 skd_free_skmsg(skdev);
3067 dev_dbg(&skdev->pdev->dev, "skcomp\n");
3068 skd_free_skcomp(skdev);
3070 kmem_cache_destroy(skdev->databuf_cache);
3071 kmem_cache_destroy(skdev->sglist_cache);
3072 kmem_cache_destroy(skdev->msgbuf_cache);
3074 dev_dbg(&skdev->pdev->dev, "skdev\n");
3075 kfree(skdev);
3079 *****************************************************************************
3080 * BLOCK DEVICE (BDEV) GLUE
3081 *****************************************************************************
3084 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3086 struct skd_device *skdev;
3087 u64 capacity;
3089 skdev = bdev->bd_disk->private_data;
3091 dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3092 bdev->bd_disk->disk_name, current->comm);
3094 if (skdev->read_cap_is_valid) {
3095 capacity = get_capacity(skdev->disk);
3096 geo->heads = 64;
3097 geo->sectors = 255;
3098 geo->cylinders = (capacity) / (255 * 64);
3100 return 0;
3102 return -EIO;
3105 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3107 dev_dbg(&skdev->pdev->dev, "add_disk\n");
3108 device_add_disk(parent, skdev->disk, NULL);
3109 return 0;
3112 static const struct block_device_operations skd_blockdev_ops = {
3113 .owner = THIS_MODULE,
3114 .getgeo = skd_bdev_getgeo,
3118 *****************************************************************************
3119 * PCIe DRIVER GLUE
3120 *****************************************************************************
3123 static const struct pci_device_id skd_pci_tbl[] = {
3124 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3126 { 0 } /* terminate list */
3129 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3131 static char *skd_pci_info(struct skd_device *skdev, char *str)
3133 int pcie_reg;
3135 strcpy(str, "PCIe (");
3136 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3138 if (pcie_reg) {
3140 char lwstr[6];
3141 uint16_t pcie_lstat, lspeed, lwidth;
3143 pcie_reg += 0x12;
3144 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3145 lspeed = pcie_lstat & (0xF);
3146 lwidth = (pcie_lstat & 0x3F0) >> 4;
3148 if (lspeed == 1)
3149 strcat(str, "2.5GT/s ");
3150 else if (lspeed == 2)
3151 strcat(str, "5.0GT/s ");
3152 else
3153 strcat(str, "<unknown> ");
3154 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3155 strcat(str, lwstr);
3157 return str;
3160 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3162 int i;
3163 int rc = 0;
3164 char pci_str[32];
3165 struct skd_device *skdev;
3167 dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3168 pdev->device);
3170 rc = pci_enable_device(pdev);
3171 if (rc)
3172 return rc;
3173 rc = pci_request_regions(pdev, DRV_NAME);
3174 if (rc)
3175 goto err_out;
3176 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3177 if (rc)
3178 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3179 if (rc) {
3180 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3181 goto err_out_regions;
3184 if (!skd_major) {
3185 rc = register_blkdev(0, DRV_NAME);
3186 if (rc < 0)
3187 goto err_out_regions;
3188 BUG_ON(!rc);
3189 skd_major = rc;
3192 skdev = skd_construct(pdev);
3193 if (skdev == NULL) {
3194 rc = -ENOMEM;
3195 goto err_out_regions;
3198 skd_pci_info(skdev, pci_str);
3199 dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3201 pci_set_master(pdev);
3202 rc = pci_enable_pcie_error_reporting(pdev);
3203 if (rc) {
3204 dev_err(&pdev->dev,
3205 "bad enable of PCIe error reporting rc=%d\n", rc);
3206 skdev->pcie_error_reporting_is_enabled = 0;
3207 } else
3208 skdev->pcie_error_reporting_is_enabled = 1;
3210 pci_set_drvdata(pdev, skdev);
3212 for (i = 0; i < SKD_MAX_BARS; i++) {
3213 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3214 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3215 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3216 skdev->mem_size[i]);
3217 if (!skdev->mem_map[i]) {
3218 dev_err(&pdev->dev,
3219 "Unable to map adapter memory!\n");
3220 rc = -ENODEV;
3221 goto err_out_iounmap;
3223 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3224 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3225 skdev->mem_size[i]);
3228 rc = skd_acquire_irq(skdev);
3229 if (rc) {
3230 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3231 goto err_out_iounmap;
3234 rc = skd_start_timer(skdev);
3235 if (rc)
3236 goto err_out_timer;
3238 init_waitqueue_head(&skdev->waitq);
3240 skd_start_device(skdev);
3242 rc = wait_event_interruptible_timeout(skdev->waitq,
3243 (skdev->gendisk_on),
3244 (SKD_START_WAIT_SECONDS * HZ));
3245 if (skdev->gendisk_on > 0) {
3246 /* device came on-line after reset */
3247 skd_bdev_attach(&pdev->dev, skdev);
3248 rc = 0;
3249 } else {
3250 /* we timed out, something is wrong with the device,
3251 don't add the disk structure */
3252 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3253 rc);
3254 /* in case of no error; we timeout with ENXIO */
3255 if (!rc)
3256 rc = -ENXIO;
3257 goto err_out_timer;
3260 return rc;
3262 err_out_timer:
3263 skd_stop_device(skdev);
3264 skd_release_irq(skdev);
3266 err_out_iounmap:
3267 for (i = 0; i < SKD_MAX_BARS; i++)
3268 if (skdev->mem_map[i])
3269 iounmap(skdev->mem_map[i]);
3271 if (skdev->pcie_error_reporting_is_enabled)
3272 pci_disable_pcie_error_reporting(pdev);
3274 skd_destruct(skdev);
3276 err_out_regions:
3277 pci_release_regions(pdev);
3279 err_out:
3280 pci_disable_device(pdev);
3281 pci_set_drvdata(pdev, NULL);
3282 return rc;
3285 static void skd_pci_remove(struct pci_dev *pdev)
3287 int i;
3288 struct skd_device *skdev;
3290 skdev = pci_get_drvdata(pdev);
3291 if (!skdev) {
3292 dev_err(&pdev->dev, "no device data for PCI\n");
3293 return;
3295 skd_stop_device(skdev);
3296 skd_release_irq(skdev);
3298 for (i = 0; i < SKD_MAX_BARS; i++)
3299 if (skdev->mem_map[i])
3300 iounmap(skdev->mem_map[i]);
3302 if (skdev->pcie_error_reporting_is_enabled)
3303 pci_disable_pcie_error_reporting(pdev);
3305 skd_destruct(skdev);
3307 pci_release_regions(pdev);
3308 pci_disable_device(pdev);
3309 pci_set_drvdata(pdev, NULL);
3311 return;
3314 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3316 int i;
3317 struct skd_device *skdev;
3319 skdev = pci_get_drvdata(pdev);
3320 if (!skdev) {
3321 dev_err(&pdev->dev, "no device data for PCI\n");
3322 return -EIO;
3325 skd_stop_device(skdev);
3327 skd_release_irq(skdev);
3329 for (i = 0; i < SKD_MAX_BARS; i++)
3330 if (skdev->mem_map[i])
3331 iounmap(skdev->mem_map[i]);
3333 if (skdev->pcie_error_reporting_is_enabled)
3334 pci_disable_pcie_error_reporting(pdev);
3336 pci_release_regions(pdev);
3337 pci_save_state(pdev);
3338 pci_disable_device(pdev);
3339 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3340 return 0;
3343 static int skd_pci_resume(struct pci_dev *pdev)
3345 int i;
3346 int rc = 0;
3347 struct skd_device *skdev;
3349 skdev = pci_get_drvdata(pdev);
3350 if (!skdev) {
3351 dev_err(&pdev->dev, "no device data for PCI\n");
3352 return -1;
3355 pci_set_power_state(pdev, PCI_D0);
3356 pci_enable_wake(pdev, PCI_D0, 0);
3357 pci_restore_state(pdev);
3359 rc = pci_enable_device(pdev);
3360 if (rc)
3361 return rc;
3362 rc = pci_request_regions(pdev, DRV_NAME);
3363 if (rc)
3364 goto err_out;
3365 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3366 if (rc)
3367 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3368 if (rc) {
3369 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3370 goto err_out_regions;
3373 pci_set_master(pdev);
3374 rc = pci_enable_pcie_error_reporting(pdev);
3375 if (rc) {
3376 dev_err(&pdev->dev,
3377 "bad enable of PCIe error reporting rc=%d\n", rc);
3378 skdev->pcie_error_reporting_is_enabled = 0;
3379 } else
3380 skdev->pcie_error_reporting_is_enabled = 1;
3382 for (i = 0; i < SKD_MAX_BARS; i++) {
3384 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3385 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3386 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3387 skdev->mem_size[i]);
3388 if (!skdev->mem_map[i]) {
3389 dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3390 rc = -ENODEV;
3391 goto err_out_iounmap;
3393 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3394 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3395 skdev->mem_size[i]);
3397 rc = skd_acquire_irq(skdev);
3398 if (rc) {
3399 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3400 goto err_out_iounmap;
3403 rc = skd_start_timer(skdev);
3404 if (rc)
3405 goto err_out_timer;
3407 init_waitqueue_head(&skdev->waitq);
3409 skd_start_device(skdev);
3411 return rc;
3413 err_out_timer:
3414 skd_stop_device(skdev);
3415 skd_release_irq(skdev);
3417 err_out_iounmap:
3418 for (i = 0; i < SKD_MAX_BARS; i++)
3419 if (skdev->mem_map[i])
3420 iounmap(skdev->mem_map[i]);
3422 if (skdev->pcie_error_reporting_is_enabled)
3423 pci_disable_pcie_error_reporting(pdev);
3425 err_out_regions:
3426 pci_release_regions(pdev);
3428 err_out:
3429 pci_disable_device(pdev);
3430 return rc;
3433 static void skd_pci_shutdown(struct pci_dev *pdev)
3435 struct skd_device *skdev;
3437 dev_err(&pdev->dev, "%s called\n", __func__);
3439 skdev = pci_get_drvdata(pdev);
3440 if (!skdev) {
3441 dev_err(&pdev->dev, "no device data for PCI\n");
3442 return;
3445 dev_err(&pdev->dev, "calling stop\n");
3446 skd_stop_device(skdev);
3449 static struct pci_driver skd_driver = {
3450 .name = DRV_NAME,
3451 .id_table = skd_pci_tbl,
3452 .probe = skd_pci_probe,
3453 .remove = skd_pci_remove,
3454 .suspend = skd_pci_suspend,
3455 .resume = skd_pci_resume,
3456 .shutdown = skd_pci_shutdown,
3460 *****************************************************************************
3461 * LOGGING SUPPORT
3462 *****************************************************************************
3465 const char *skd_drive_state_to_str(int state)
3467 switch (state) {
3468 case FIT_SR_DRIVE_OFFLINE:
3469 return "OFFLINE";
3470 case FIT_SR_DRIVE_INIT:
3471 return "INIT";
3472 case FIT_SR_DRIVE_ONLINE:
3473 return "ONLINE";
3474 case FIT_SR_DRIVE_BUSY:
3475 return "BUSY";
3476 case FIT_SR_DRIVE_FAULT:
3477 return "FAULT";
3478 case FIT_SR_DRIVE_DEGRADED:
3479 return "DEGRADED";
3480 case FIT_SR_PCIE_LINK_DOWN:
3481 return "INK_DOWN";
3482 case FIT_SR_DRIVE_SOFT_RESET:
3483 return "SOFT_RESET";
3484 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3485 return "NEED_FW";
3486 case FIT_SR_DRIVE_INIT_FAULT:
3487 return "INIT_FAULT";
3488 case FIT_SR_DRIVE_BUSY_SANITIZE:
3489 return "BUSY_SANITIZE";
3490 case FIT_SR_DRIVE_BUSY_ERASE:
3491 return "BUSY_ERASE";
3492 case FIT_SR_DRIVE_FW_BOOTING:
3493 return "FW_BOOTING";
3494 default:
3495 return "???";
3499 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3501 switch (state) {
3502 case SKD_DRVR_STATE_LOAD:
3503 return "LOAD";
3504 case SKD_DRVR_STATE_IDLE:
3505 return "IDLE";
3506 case SKD_DRVR_STATE_BUSY:
3507 return "BUSY";
3508 case SKD_DRVR_STATE_STARTING:
3509 return "STARTING";
3510 case SKD_DRVR_STATE_ONLINE:
3511 return "ONLINE";
3512 case SKD_DRVR_STATE_PAUSING:
3513 return "PAUSING";
3514 case SKD_DRVR_STATE_PAUSED:
3515 return "PAUSED";
3516 case SKD_DRVR_STATE_RESTARTING:
3517 return "RESTARTING";
3518 case SKD_DRVR_STATE_RESUMING:
3519 return "RESUMING";
3520 case SKD_DRVR_STATE_STOPPING:
3521 return "STOPPING";
3522 case SKD_DRVR_STATE_SYNCING:
3523 return "SYNCING";
3524 case SKD_DRVR_STATE_FAULT:
3525 return "FAULT";
3526 case SKD_DRVR_STATE_DISAPPEARED:
3527 return "DISAPPEARED";
3528 case SKD_DRVR_STATE_BUSY_ERASE:
3529 return "BUSY_ERASE";
3530 case SKD_DRVR_STATE_BUSY_SANITIZE:
3531 return "BUSY_SANITIZE";
3532 case SKD_DRVR_STATE_BUSY_IMMINENT:
3533 return "BUSY_IMMINENT";
3534 case SKD_DRVR_STATE_WAIT_BOOT:
3535 return "WAIT_BOOT";
3537 default:
3538 return "???";
3542 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3544 switch (state) {
3545 case SKD_REQ_STATE_IDLE:
3546 return "IDLE";
3547 case SKD_REQ_STATE_SETUP:
3548 return "SETUP";
3549 case SKD_REQ_STATE_BUSY:
3550 return "BUSY";
3551 case SKD_REQ_STATE_COMPLETED:
3552 return "COMPLETED";
3553 case SKD_REQ_STATE_TIMEOUT:
3554 return "TIMEOUT";
3555 default:
3556 return "???";
3560 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3562 dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3563 dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n",
3564 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3565 skd_skdev_state_to_str(skdev->state), skdev->state);
3566 dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n",
3567 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3568 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3569 dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n",
3570 skdev->skcomp_cycle, skdev->skcomp_ix);
3573 static void skd_log_skreq(struct skd_device *skdev,
3574 struct skd_request_context *skreq, const char *event)
3576 struct request *req = blk_mq_rq_from_pdu(skreq);
3577 u32 lba = blk_rq_pos(req);
3578 u32 count = blk_rq_sectors(req);
3580 dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3581 dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3582 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3583 skreq->fitmsg_id);
3584 dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n",
3585 skreq->data_dir, skreq->n_sg);
3587 dev_dbg(&skdev->pdev->dev,
3588 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3589 count, count, (int)rq_data_dir(req));
3593 *****************************************************************************
3594 * MODULE GLUE
3595 *****************************************************************************
3598 static int __init skd_init(void)
3600 BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3601 BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3602 BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3603 BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3604 BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3605 BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3606 BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3607 BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3609 switch (skd_isr_type) {
3610 case SKD_IRQ_LEGACY:
3611 case SKD_IRQ_MSI:
3612 case SKD_IRQ_MSIX:
3613 break;
3614 default:
3615 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3616 skd_isr_type, SKD_IRQ_DEFAULT);
3617 skd_isr_type = SKD_IRQ_DEFAULT;
3620 if (skd_max_queue_depth < 1 ||
3621 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3622 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3623 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3624 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3627 if (skd_max_req_per_msg < 1 ||
3628 skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3629 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3630 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3631 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3634 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3635 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3636 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3637 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3640 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3641 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3642 skd_dbg_level, 0);
3643 skd_dbg_level = 0;
3646 if (skd_isr_comp_limit < 0) {
3647 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3648 skd_isr_comp_limit, 0);
3649 skd_isr_comp_limit = 0;
3652 return pci_register_driver(&skd_driver);
3655 static void __exit skd_exit(void)
3657 pci_unregister_driver(&skd_driver);
3659 if (skd_major)
3660 unregister_blkdev(skd_major, DRV_NAME);
3663 module_init(skd_init);
3664 module_exit(skd_exit);