perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / block / xsysace.c
blob87ccef4bd69e904b1f19403e82403bd5cd13a277
1 /*
2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 */
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
20 * Initialization:
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
28 * Processing:
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42 * cleared.
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
59 * 1. ace_fsm_yield()
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
76 * To Do:
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
81 #undef DEBUG
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blk-mq.h>
92 #include <linux/mutex.h>
93 #include <linux/ata.h>
94 #include <linux/hdreg.h>
95 #include <linux/platform_device.h>
96 #if defined(CONFIG_OF)
97 #include <linux/of_address.h>
98 #include <linux/of_device.h>
99 #include <linux/of_platform.h>
100 #endif
102 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
103 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
104 MODULE_LICENSE("GPL");
106 /* SystemACE register definitions */
107 #define ACE_BUSMODE (0x00)
109 #define ACE_STATUS (0x04)
110 #define ACE_STATUS_CFGLOCK (0x00000001)
111 #define ACE_STATUS_MPULOCK (0x00000002)
112 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
113 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
114 #define ACE_STATUS_CFDETECT (0x00000010)
115 #define ACE_STATUS_DATABUFRDY (0x00000020)
116 #define ACE_STATUS_DATABUFMODE (0x00000040)
117 #define ACE_STATUS_CFGDONE (0x00000080)
118 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
119 #define ACE_STATUS_CFGMODEPIN (0x00000200)
120 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
121 #define ACE_STATUS_CFBSY (0x00020000)
122 #define ACE_STATUS_CFRDY (0x00040000)
123 #define ACE_STATUS_CFDWF (0x00080000)
124 #define ACE_STATUS_CFDSC (0x00100000)
125 #define ACE_STATUS_CFDRQ (0x00200000)
126 #define ACE_STATUS_CFCORR (0x00400000)
127 #define ACE_STATUS_CFERR (0x00800000)
129 #define ACE_ERROR (0x08)
130 #define ACE_CFGLBA (0x0c)
131 #define ACE_MPULBA (0x10)
133 #define ACE_SECCNTCMD (0x14)
134 #define ACE_SECCNTCMD_RESET (0x0100)
135 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
136 #define ACE_SECCNTCMD_READ_DATA (0x0300)
137 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
138 #define ACE_SECCNTCMD_ABORT (0x0600)
140 #define ACE_VERSION (0x16)
141 #define ACE_VERSION_REVISION_MASK (0x00FF)
142 #define ACE_VERSION_MINOR_MASK (0x0F00)
143 #define ACE_VERSION_MAJOR_MASK (0xF000)
145 #define ACE_CTRL (0x18)
146 #define ACE_CTRL_FORCELOCKREQ (0x0001)
147 #define ACE_CTRL_LOCKREQ (0x0002)
148 #define ACE_CTRL_FORCECFGADDR (0x0004)
149 #define ACE_CTRL_FORCECFGMODE (0x0008)
150 #define ACE_CTRL_CFGMODE (0x0010)
151 #define ACE_CTRL_CFGSTART (0x0020)
152 #define ACE_CTRL_CFGSEL (0x0040)
153 #define ACE_CTRL_CFGRESET (0x0080)
154 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
155 #define ACE_CTRL_ERRORIRQ (0x0200)
156 #define ACE_CTRL_CFGDONEIRQ (0x0400)
157 #define ACE_CTRL_RESETIRQ (0x0800)
158 #define ACE_CTRL_CFGPROG (0x1000)
159 #define ACE_CTRL_CFGADDR_MASK (0xe000)
161 #define ACE_FATSTAT (0x1c)
163 #define ACE_NUM_MINORS 16
164 #define ACE_SECTOR_SIZE (512)
165 #define ACE_FIFO_SIZE (32)
166 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
168 #define ACE_BUS_WIDTH_8 0
169 #define ACE_BUS_WIDTH_16 1
171 struct ace_reg_ops;
173 struct ace_device {
174 /* driver state data */
175 int id;
176 int media_change;
177 int users;
178 struct list_head list;
180 /* finite state machine data */
181 struct tasklet_struct fsm_tasklet;
182 uint fsm_task; /* Current activity (ACE_TASK_*) */
183 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
184 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
185 uint fsm_iter_num;
186 struct timer_list stall_timer;
188 /* Transfer state/result, use for both id and block request */
189 struct request *req; /* request being processed */
190 void *data_ptr; /* pointer to I/O buffer */
191 int data_count; /* number of buffers remaining */
192 int data_result; /* Result of transfer; 0 := success */
194 int id_req_count; /* count of id requests */
195 int id_result;
196 struct completion id_completion; /* used when id req finishes */
197 int in_irq;
199 /* Details of hardware device */
200 resource_size_t physaddr;
201 void __iomem *baseaddr;
202 int irq;
203 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
204 struct ace_reg_ops *reg_ops;
205 int lock_count;
207 /* Block device data structures */
208 spinlock_t lock;
209 struct device *dev;
210 struct request_queue *queue;
211 struct gendisk *gd;
212 struct blk_mq_tag_set tag_set;
213 struct list_head rq_list;
215 /* Inserted CF card parameters */
216 u16 cf_id[ATA_ID_WORDS];
219 static DEFINE_MUTEX(xsysace_mutex);
220 static int ace_major;
222 /* ---------------------------------------------------------------------
223 * Low level register access
226 struct ace_reg_ops {
227 u16(*in) (struct ace_device * ace, int reg);
228 void (*out) (struct ace_device * ace, int reg, u16 val);
229 void (*datain) (struct ace_device * ace);
230 void (*dataout) (struct ace_device * ace);
233 /* 8 Bit bus width */
234 static u16 ace_in_8(struct ace_device *ace, int reg)
236 void __iomem *r = ace->baseaddr + reg;
237 return in_8(r) | (in_8(r + 1) << 8);
240 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
242 void __iomem *r = ace->baseaddr + reg;
243 out_8(r, val);
244 out_8(r + 1, val >> 8);
247 static void ace_datain_8(struct ace_device *ace)
249 void __iomem *r = ace->baseaddr + 0x40;
250 u8 *dst = ace->data_ptr;
251 int i = ACE_FIFO_SIZE;
252 while (i--)
253 *dst++ = in_8(r++);
254 ace->data_ptr = dst;
257 static void ace_dataout_8(struct ace_device *ace)
259 void __iomem *r = ace->baseaddr + 0x40;
260 u8 *src = ace->data_ptr;
261 int i = ACE_FIFO_SIZE;
262 while (i--)
263 out_8(r++, *src++);
264 ace->data_ptr = src;
267 static struct ace_reg_ops ace_reg_8_ops = {
268 .in = ace_in_8,
269 .out = ace_out_8,
270 .datain = ace_datain_8,
271 .dataout = ace_dataout_8,
274 /* 16 bit big endian bus attachment */
275 static u16 ace_in_be16(struct ace_device *ace, int reg)
277 return in_be16(ace->baseaddr + reg);
280 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
282 out_be16(ace->baseaddr + reg, val);
285 static void ace_datain_be16(struct ace_device *ace)
287 int i = ACE_FIFO_SIZE / 2;
288 u16 *dst = ace->data_ptr;
289 while (i--)
290 *dst++ = in_le16(ace->baseaddr + 0x40);
291 ace->data_ptr = dst;
294 static void ace_dataout_be16(struct ace_device *ace)
296 int i = ACE_FIFO_SIZE / 2;
297 u16 *src = ace->data_ptr;
298 while (i--)
299 out_le16(ace->baseaddr + 0x40, *src++);
300 ace->data_ptr = src;
303 /* 16 bit little endian bus attachment */
304 static u16 ace_in_le16(struct ace_device *ace, int reg)
306 return in_le16(ace->baseaddr + reg);
309 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
311 out_le16(ace->baseaddr + reg, val);
314 static void ace_datain_le16(struct ace_device *ace)
316 int i = ACE_FIFO_SIZE / 2;
317 u16 *dst = ace->data_ptr;
318 while (i--)
319 *dst++ = in_be16(ace->baseaddr + 0x40);
320 ace->data_ptr = dst;
323 static void ace_dataout_le16(struct ace_device *ace)
325 int i = ACE_FIFO_SIZE / 2;
326 u16 *src = ace->data_ptr;
327 while (i--)
328 out_be16(ace->baseaddr + 0x40, *src++);
329 ace->data_ptr = src;
332 static struct ace_reg_ops ace_reg_be16_ops = {
333 .in = ace_in_be16,
334 .out = ace_out_be16,
335 .datain = ace_datain_be16,
336 .dataout = ace_dataout_be16,
339 static struct ace_reg_ops ace_reg_le16_ops = {
340 .in = ace_in_le16,
341 .out = ace_out_le16,
342 .datain = ace_datain_le16,
343 .dataout = ace_dataout_le16,
346 static inline u16 ace_in(struct ace_device *ace, int reg)
348 return ace->reg_ops->in(ace, reg);
351 static inline u32 ace_in32(struct ace_device *ace, int reg)
353 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
356 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
358 ace->reg_ops->out(ace, reg, val);
361 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
363 ace_out(ace, reg, val);
364 ace_out(ace, reg + 2, val >> 16);
367 /* ---------------------------------------------------------------------
368 * Debug support functions
371 #if defined(DEBUG)
372 static void ace_dump_mem(void *base, int len)
374 const char *ptr = base;
375 int i, j;
377 for (i = 0; i < len; i += 16) {
378 printk(KERN_INFO "%.8x:", i);
379 for (j = 0; j < 16; j++) {
380 if (!(j % 4))
381 printk(" ");
382 printk("%.2x", ptr[i + j]);
384 printk(" ");
385 for (j = 0; j < 16; j++)
386 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
387 printk("\n");
390 #else
391 static inline void ace_dump_mem(void *base, int len)
394 #endif
396 static void ace_dump_regs(struct ace_device *ace)
398 dev_info(ace->dev,
399 " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
400 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
401 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
402 ace_in32(ace, ACE_CTRL),
403 ace_in(ace, ACE_SECCNTCMD),
404 ace_in(ace, ACE_VERSION),
405 ace_in32(ace, ACE_STATUS),
406 ace_in32(ace, ACE_MPULBA),
407 ace_in(ace, ACE_BUSMODE),
408 ace_in32(ace, ACE_ERROR),
409 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
412 static void ace_fix_driveid(u16 *id)
414 #if defined(__BIG_ENDIAN)
415 int i;
417 /* All half words have wrong byte order; swap the bytes */
418 for (i = 0; i < ATA_ID_WORDS; i++, id++)
419 *id = le16_to_cpu(*id);
420 #endif
423 /* ---------------------------------------------------------------------
424 * Finite State Machine (FSM) implementation
427 /* FSM tasks; used to direct state transitions */
428 #define ACE_TASK_IDLE 0
429 #define ACE_TASK_IDENTIFY 1
430 #define ACE_TASK_READ 2
431 #define ACE_TASK_WRITE 3
432 #define ACE_FSM_NUM_TASKS 4
434 /* FSM state definitions */
435 #define ACE_FSM_STATE_IDLE 0
436 #define ACE_FSM_STATE_REQ_LOCK 1
437 #define ACE_FSM_STATE_WAIT_LOCK 2
438 #define ACE_FSM_STATE_WAIT_CFREADY 3
439 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
440 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
441 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
442 #define ACE_FSM_STATE_REQ_PREPARE 7
443 #define ACE_FSM_STATE_REQ_TRANSFER 8
444 #define ACE_FSM_STATE_REQ_COMPLETE 9
445 #define ACE_FSM_STATE_ERROR 10
446 #define ACE_FSM_NUM_STATES 11
448 /* Set flag to exit FSM loop and reschedule tasklet */
449 static inline void ace_fsm_yield(struct ace_device *ace)
451 dev_dbg(ace->dev, "ace_fsm_yield()\n");
452 tasklet_schedule(&ace->fsm_tasklet);
453 ace->fsm_continue_flag = 0;
456 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
457 static inline void ace_fsm_yieldirq(struct ace_device *ace)
459 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
461 if (!ace->irq)
462 /* No IRQ assigned, so need to poll */
463 tasklet_schedule(&ace->fsm_tasklet);
464 ace->fsm_continue_flag = 0;
467 static bool ace_has_next_request(struct request_queue *q)
469 struct ace_device *ace = q->queuedata;
471 return !list_empty(&ace->rq_list);
474 /* Get the next read/write request; ending requests that we don't handle */
475 static struct request *ace_get_next_request(struct request_queue *q)
477 struct ace_device *ace = q->queuedata;
478 struct request *rq;
480 rq = list_first_entry_or_null(&ace->rq_list, struct request, queuelist);
481 if (rq) {
482 list_del_init(&rq->queuelist);
483 blk_mq_start_request(rq);
486 return NULL;
489 static void ace_fsm_dostate(struct ace_device *ace)
491 struct request *req;
492 u32 status;
493 u16 val;
494 int count;
496 #if defined(DEBUG)
497 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
498 ace->fsm_state, ace->id_req_count);
499 #endif
501 /* Verify that there is actually a CF in the slot. If not, then
502 * bail out back to the idle state and wake up all the waiters */
503 status = ace_in32(ace, ACE_STATUS);
504 if ((status & ACE_STATUS_CFDETECT) == 0) {
505 ace->fsm_state = ACE_FSM_STATE_IDLE;
506 ace->media_change = 1;
507 set_capacity(ace->gd, 0);
508 dev_info(ace->dev, "No CF in slot\n");
510 /* Drop all in-flight and pending requests */
511 if (ace->req) {
512 blk_mq_end_request(ace->req, BLK_STS_IOERR);
513 ace->req = NULL;
515 while ((req = ace_get_next_request(ace->queue)) != NULL)
516 blk_mq_end_request(req, BLK_STS_IOERR);
518 /* Drop back to IDLE state and notify waiters */
519 ace->fsm_state = ACE_FSM_STATE_IDLE;
520 ace->id_result = -EIO;
521 while (ace->id_req_count) {
522 complete(&ace->id_completion);
523 ace->id_req_count--;
527 switch (ace->fsm_state) {
528 case ACE_FSM_STATE_IDLE:
529 /* See if there is anything to do */
530 if (ace->id_req_count || ace_has_next_request(ace->queue)) {
531 ace->fsm_iter_num++;
532 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
533 mod_timer(&ace->stall_timer, jiffies + HZ);
534 if (!timer_pending(&ace->stall_timer))
535 add_timer(&ace->stall_timer);
536 break;
538 del_timer(&ace->stall_timer);
539 ace->fsm_continue_flag = 0;
540 break;
542 case ACE_FSM_STATE_REQ_LOCK:
543 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
544 /* Already have the lock, jump to next state */
545 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
546 break;
549 /* Request the lock */
550 val = ace_in(ace, ACE_CTRL);
551 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
552 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
553 break;
555 case ACE_FSM_STATE_WAIT_LOCK:
556 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
557 /* got the lock; move to next state */
558 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
559 break;
562 /* wait a bit for the lock */
563 ace_fsm_yield(ace);
564 break;
566 case ACE_FSM_STATE_WAIT_CFREADY:
567 status = ace_in32(ace, ACE_STATUS);
568 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
569 (status & ACE_STATUS_CFBSY)) {
570 /* CF card isn't ready; it needs to be polled */
571 ace_fsm_yield(ace);
572 break;
575 /* Device is ready for command; determine what to do next */
576 if (ace->id_req_count)
577 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
578 else
579 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
580 break;
582 case ACE_FSM_STATE_IDENTIFY_PREPARE:
583 /* Send identify command */
584 ace->fsm_task = ACE_TASK_IDENTIFY;
585 ace->data_ptr = ace->cf_id;
586 ace->data_count = ACE_BUF_PER_SECTOR;
587 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
589 /* As per datasheet, put config controller in reset */
590 val = ace_in(ace, ACE_CTRL);
591 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
593 /* irq handler takes over from this point; wait for the
594 * transfer to complete */
595 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
596 ace_fsm_yieldirq(ace);
597 break;
599 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
600 /* Check that the sysace is ready to receive data */
601 status = ace_in32(ace, ACE_STATUS);
602 if (status & ACE_STATUS_CFBSY) {
603 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
604 ace->fsm_task, ace->fsm_iter_num,
605 ace->data_count);
606 ace_fsm_yield(ace);
607 break;
609 if (!(status & ACE_STATUS_DATABUFRDY)) {
610 ace_fsm_yield(ace);
611 break;
614 /* Transfer the next buffer */
615 ace->reg_ops->datain(ace);
616 ace->data_count--;
618 /* If there are still buffers to be transfers; jump out here */
619 if (ace->data_count != 0) {
620 ace_fsm_yieldirq(ace);
621 break;
624 /* transfer finished; kick state machine */
625 dev_dbg(ace->dev, "identify finished\n");
626 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
627 break;
629 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
630 ace_fix_driveid(ace->cf_id);
631 ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
633 if (ace->data_result) {
634 /* Error occurred, disable the disk */
635 ace->media_change = 1;
636 set_capacity(ace->gd, 0);
637 dev_err(ace->dev, "error fetching CF id (%i)\n",
638 ace->data_result);
639 } else {
640 ace->media_change = 0;
642 /* Record disk parameters */
643 set_capacity(ace->gd,
644 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
645 dev_info(ace->dev, "capacity: %i sectors\n",
646 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
649 /* We're done, drop to IDLE state and notify waiters */
650 ace->fsm_state = ACE_FSM_STATE_IDLE;
651 ace->id_result = ace->data_result;
652 while (ace->id_req_count) {
653 complete(&ace->id_completion);
654 ace->id_req_count--;
656 break;
658 case ACE_FSM_STATE_REQ_PREPARE:
659 req = ace_get_next_request(ace->queue);
660 if (!req) {
661 ace->fsm_state = ACE_FSM_STATE_IDLE;
662 break;
665 /* Okay, it's a data request, set it up for transfer */
666 dev_dbg(ace->dev,
667 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
668 (unsigned long long)blk_rq_pos(req),
669 blk_rq_sectors(req), blk_rq_cur_sectors(req),
670 rq_data_dir(req));
672 ace->req = req;
673 ace->data_ptr = bio_data(req->bio);
674 ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
675 ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
677 count = blk_rq_sectors(req);
678 if (rq_data_dir(req)) {
679 /* Kick off write request */
680 dev_dbg(ace->dev, "write data\n");
681 ace->fsm_task = ACE_TASK_WRITE;
682 ace_out(ace, ACE_SECCNTCMD,
683 count | ACE_SECCNTCMD_WRITE_DATA);
684 } else {
685 /* Kick off read request */
686 dev_dbg(ace->dev, "read data\n");
687 ace->fsm_task = ACE_TASK_READ;
688 ace_out(ace, ACE_SECCNTCMD,
689 count | ACE_SECCNTCMD_READ_DATA);
692 /* As per datasheet, put config controller in reset */
693 val = ace_in(ace, ACE_CTRL);
694 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
696 /* Move to the transfer state. The systemace will raise
697 * an interrupt once there is something to do
699 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
700 if (ace->fsm_task == ACE_TASK_READ)
701 ace_fsm_yieldirq(ace); /* wait for data ready */
702 break;
704 case ACE_FSM_STATE_REQ_TRANSFER:
705 /* Check that the sysace is ready to receive data */
706 status = ace_in32(ace, ACE_STATUS);
707 if (status & ACE_STATUS_CFBSY) {
708 dev_dbg(ace->dev,
709 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
710 ace->fsm_task, ace->fsm_iter_num,
711 blk_rq_cur_sectors(ace->req) * 16,
712 ace->data_count, ace->in_irq);
713 ace_fsm_yield(ace); /* need to poll CFBSY bit */
714 break;
716 if (!(status & ACE_STATUS_DATABUFRDY)) {
717 dev_dbg(ace->dev,
718 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
719 ace->fsm_task, ace->fsm_iter_num,
720 blk_rq_cur_sectors(ace->req) * 16,
721 ace->data_count, ace->in_irq);
722 ace_fsm_yieldirq(ace);
723 break;
726 /* Transfer the next buffer */
727 if (ace->fsm_task == ACE_TASK_WRITE)
728 ace->reg_ops->dataout(ace);
729 else
730 ace->reg_ops->datain(ace);
731 ace->data_count--;
733 /* If there are still buffers to be transfers; jump out here */
734 if (ace->data_count != 0) {
735 ace_fsm_yieldirq(ace);
736 break;
739 /* bio finished; is there another one? */
740 if (blk_update_request(ace->req, BLK_STS_OK,
741 blk_rq_cur_bytes(ace->req))) {
742 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
743 * blk_rq_sectors(ace->req),
744 * blk_rq_cur_sectors(ace->req));
746 ace->data_ptr = bio_data(ace->req->bio);
747 ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
748 ace_fsm_yieldirq(ace);
749 break;
752 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
753 break;
755 case ACE_FSM_STATE_REQ_COMPLETE:
756 ace->req = NULL;
758 /* Finished request; go to idle state */
759 ace->fsm_state = ACE_FSM_STATE_IDLE;
760 break;
762 default:
763 ace->fsm_state = ACE_FSM_STATE_IDLE;
764 break;
768 static void ace_fsm_tasklet(unsigned long data)
770 struct ace_device *ace = (void *)data;
771 unsigned long flags;
773 spin_lock_irqsave(&ace->lock, flags);
775 /* Loop over state machine until told to stop */
776 ace->fsm_continue_flag = 1;
777 while (ace->fsm_continue_flag)
778 ace_fsm_dostate(ace);
780 spin_unlock_irqrestore(&ace->lock, flags);
783 static void ace_stall_timer(struct timer_list *t)
785 struct ace_device *ace = from_timer(ace, t, stall_timer);
786 unsigned long flags;
788 dev_warn(ace->dev,
789 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
790 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
791 ace->data_count);
792 spin_lock_irqsave(&ace->lock, flags);
794 /* Rearm the stall timer *before* entering FSM (which may then
795 * delete the timer) */
796 mod_timer(&ace->stall_timer, jiffies + HZ);
798 /* Loop over state machine until told to stop */
799 ace->fsm_continue_flag = 1;
800 while (ace->fsm_continue_flag)
801 ace_fsm_dostate(ace);
803 spin_unlock_irqrestore(&ace->lock, flags);
806 /* ---------------------------------------------------------------------
807 * Interrupt handling routines
809 static int ace_interrupt_checkstate(struct ace_device *ace)
811 u32 sreg = ace_in32(ace, ACE_STATUS);
812 u16 creg = ace_in(ace, ACE_CTRL);
814 /* Check for error occurrence */
815 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
816 (creg & ACE_CTRL_ERRORIRQ)) {
817 dev_err(ace->dev, "transfer failure\n");
818 ace_dump_regs(ace);
819 return -EIO;
822 return 0;
825 static irqreturn_t ace_interrupt(int irq, void *dev_id)
827 u16 creg;
828 struct ace_device *ace = dev_id;
830 /* be safe and get the lock */
831 spin_lock(&ace->lock);
832 ace->in_irq = 1;
834 /* clear the interrupt */
835 creg = ace_in(ace, ACE_CTRL);
836 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
837 ace_out(ace, ACE_CTRL, creg);
839 /* check for IO failures */
840 if (ace_interrupt_checkstate(ace))
841 ace->data_result = -EIO;
843 if (ace->fsm_task == 0) {
844 dev_err(ace->dev,
845 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
846 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
847 ace_in(ace, ACE_SECCNTCMD));
848 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
849 ace->fsm_task, ace->fsm_state, ace->data_count);
852 /* Loop over state machine until told to stop */
853 ace->fsm_continue_flag = 1;
854 while (ace->fsm_continue_flag)
855 ace_fsm_dostate(ace);
857 /* done with interrupt; drop the lock */
858 ace->in_irq = 0;
859 spin_unlock(&ace->lock);
861 return IRQ_HANDLED;
864 /* ---------------------------------------------------------------------
865 * Block ops
867 static blk_status_t ace_queue_rq(struct blk_mq_hw_ctx *hctx,
868 const struct blk_mq_queue_data *bd)
870 struct ace_device *ace = hctx->queue->queuedata;
871 struct request *req = bd->rq;
873 if (blk_rq_is_passthrough(req)) {
874 blk_mq_start_request(req);
875 return BLK_STS_IOERR;
878 spin_lock_irq(&ace->lock);
879 list_add_tail(&req->queuelist, &ace->rq_list);
880 spin_unlock_irq(&ace->lock);
882 tasklet_schedule(&ace->fsm_tasklet);
883 return BLK_STS_OK;
886 static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
888 struct ace_device *ace = gd->private_data;
889 dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
891 return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
894 static int ace_revalidate_disk(struct gendisk *gd)
896 struct ace_device *ace = gd->private_data;
897 unsigned long flags;
899 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
901 if (ace->media_change) {
902 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
904 spin_lock_irqsave(&ace->lock, flags);
905 ace->id_req_count++;
906 spin_unlock_irqrestore(&ace->lock, flags);
908 tasklet_schedule(&ace->fsm_tasklet);
909 wait_for_completion(&ace->id_completion);
912 dev_dbg(ace->dev, "revalidate complete\n");
913 return ace->id_result;
916 static int ace_open(struct block_device *bdev, fmode_t mode)
918 struct ace_device *ace = bdev->bd_disk->private_data;
919 unsigned long flags;
921 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
923 mutex_lock(&xsysace_mutex);
924 spin_lock_irqsave(&ace->lock, flags);
925 ace->users++;
926 spin_unlock_irqrestore(&ace->lock, flags);
928 check_disk_change(bdev);
929 mutex_unlock(&xsysace_mutex);
931 return 0;
934 static void ace_release(struct gendisk *disk, fmode_t mode)
936 struct ace_device *ace = disk->private_data;
937 unsigned long flags;
938 u16 val;
940 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
942 mutex_lock(&xsysace_mutex);
943 spin_lock_irqsave(&ace->lock, flags);
944 ace->users--;
945 if (ace->users == 0) {
946 val = ace_in(ace, ACE_CTRL);
947 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
949 spin_unlock_irqrestore(&ace->lock, flags);
950 mutex_unlock(&xsysace_mutex);
953 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
955 struct ace_device *ace = bdev->bd_disk->private_data;
956 u16 *cf_id = ace->cf_id;
958 dev_dbg(ace->dev, "ace_getgeo()\n");
960 geo->heads = cf_id[ATA_ID_HEADS];
961 geo->sectors = cf_id[ATA_ID_SECTORS];
962 geo->cylinders = cf_id[ATA_ID_CYLS];
964 return 0;
967 static const struct block_device_operations ace_fops = {
968 .owner = THIS_MODULE,
969 .open = ace_open,
970 .release = ace_release,
971 .check_events = ace_check_events,
972 .revalidate_disk = ace_revalidate_disk,
973 .getgeo = ace_getgeo,
976 static const struct blk_mq_ops ace_mq_ops = {
977 .queue_rq = ace_queue_rq,
980 /* --------------------------------------------------------------------
981 * SystemACE device setup/teardown code
983 static int ace_setup(struct ace_device *ace)
985 u16 version;
986 u16 val;
987 int rc;
989 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
990 dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
991 (unsigned long long)ace->physaddr, ace->irq);
993 spin_lock_init(&ace->lock);
994 init_completion(&ace->id_completion);
995 INIT_LIST_HEAD(&ace->rq_list);
998 * Map the device
1000 ace->baseaddr = ioremap(ace->physaddr, 0x80);
1001 if (!ace->baseaddr)
1002 goto err_ioremap;
1005 * Initialize the state machine tasklet and stall timer
1007 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
1008 timer_setup(&ace->stall_timer, ace_stall_timer, 0);
1011 * Initialize the request queue
1013 ace->queue = blk_mq_init_sq_queue(&ace->tag_set, &ace_mq_ops, 2,
1014 BLK_MQ_F_SHOULD_MERGE);
1015 if (IS_ERR(ace->queue)) {
1016 rc = PTR_ERR(ace->queue);
1017 ace->queue = NULL;
1018 goto err_blk_initq;
1020 ace->queue->queuedata = ace;
1022 blk_queue_logical_block_size(ace->queue, 512);
1023 blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
1026 * Allocate and initialize GD structure
1028 ace->gd = alloc_disk(ACE_NUM_MINORS);
1029 if (!ace->gd)
1030 goto err_alloc_disk;
1032 ace->gd->major = ace_major;
1033 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1034 ace->gd->fops = &ace_fops;
1035 ace->gd->queue = ace->queue;
1036 ace->gd->private_data = ace;
1037 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1039 /* set bus width */
1040 if (ace->bus_width == ACE_BUS_WIDTH_16) {
1041 /* 0x0101 should work regardless of endianess */
1042 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1044 /* read it back to determine endianess */
1045 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1046 ace->reg_ops = &ace_reg_le16_ops;
1047 else
1048 ace->reg_ops = &ace_reg_be16_ops;
1049 } else {
1050 ace_out_8(ace, ACE_BUSMODE, 0x00);
1051 ace->reg_ops = &ace_reg_8_ops;
1054 /* Make sure version register is sane */
1055 version = ace_in(ace, ACE_VERSION);
1056 if ((version == 0) || (version == 0xFFFF))
1057 goto err_read;
1059 /* Put sysace in a sane state by clearing most control reg bits */
1060 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1061 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1063 /* Now we can hook up the irq handler */
1064 if (ace->irq) {
1065 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1066 if (rc) {
1067 /* Failure - fall back to polled mode */
1068 dev_err(ace->dev, "request_irq failed\n");
1069 ace->irq = 0;
1073 /* Enable interrupts */
1074 val = ace_in(ace, ACE_CTRL);
1075 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1076 ace_out(ace, ACE_CTRL, val);
1078 /* Print the identification */
1079 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1080 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1081 dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1082 (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1084 ace->media_change = 1;
1085 ace_revalidate_disk(ace->gd);
1087 /* Make the sysace device 'live' */
1088 add_disk(ace->gd);
1090 return 0;
1092 err_read:
1093 put_disk(ace->gd);
1094 err_alloc_disk:
1095 blk_cleanup_queue(ace->queue);
1096 blk_mq_free_tag_set(&ace->tag_set);
1097 err_blk_initq:
1098 iounmap(ace->baseaddr);
1099 err_ioremap:
1100 dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1101 (unsigned long long) ace->physaddr);
1102 return -ENOMEM;
1105 static void ace_teardown(struct ace_device *ace)
1107 if (ace->gd) {
1108 del_gendisk(ace->gd);
1109 put_disk(ace->gd);
1112 if (ace->queue) {
1113 blk_cleanup_queue(ace->queue);
1114 blk_mq_free_tag_set(&ace->tag_set);
1117 tasklet_kill(&ace->fsm_tasklet);
1119 if (ace->irq)
1120 free_irq(ace->irq, ace);
1122 iounmap(ace->baseaddr);
1125 static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1126 int irq, int bus_width)
1128 struct ace_device *ace;
1129 int rc;
1130 dev_dbg(dev, "ace_alloc(%p)\n", dev);
1132 if (!physaddr) {
1133 rc = -ENODEV;
1134 goto err_noreg;
1137 /* Allocate and initialize the ace device structure */
1138 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1139 if (!ace) {
1140 rc = -ENOMEM;
1141 goto err_alloc;
1144 ace->dev = dev;
1145 ace->id = id;
1146 ace->physaddr = physaddr;
1147 ace->irq = irq;
1148 ace->bus_width = bus_width;
1150 /* Call the setup code */
1151 rc = ace_setup(ace);
1152 if (rc)
1153 goto err_setup;
1155 dev_set_drvdata(dev, ace);
1156 return 0;
1158 err_setup:
1159 dev_set_drvdata(dev, NULL);
1160 kfree(ace);
1161 err_alloc:
1162 err_noreg:
1163 dev_err(dev, "could not initialize device, err=%i\n", rc);
1164 return rc;
1167 static void ace_free(struct device *dev)
1169 struct ace_device *ace = dev_get_drvdata(dev);
1170 dev_dbg(dev, "ace_free(%p)\n", dev);
1172 if (ace) {
1173 ace_teardown(ace);
1174 dev_set_drvdata(dev, NULL);
1175 kfree(ace);
1179 /* ---------------------------------------------------------------------
1180 * Platform Bus Support
1183 static int ace_probe(struct platform_device *dev)
1185 resource_size_t physaddr = 0;
1186 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1187 u32 id = dev->id;
1188 int irq = 0;
1189 int i;
1191 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1193 /* device id and bus width */
1194 if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1195 id = 0;
1196 if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1197 bus_width = ACE_BUS_WIDTH_8;
1199 for (i = 0; i < dev->num_resources; i++) {
1200 if (dev->resource[i].flags & IORESOURCE_MEM)
1201 physaddr = dev->resource[i].start;
1202 if (dev->resource[i].flags & IORESOURCE_IRQ)
1203 irq = dev->resource[i].start;
1206 /* Call the bus-independent setup code */
1207 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1211 * Platform bus remove() method
1213 static int ace_remove(struct platform_device *dev)
1215 ace_free(&dev->dev);
1216 return 0;
1219 #if defined(CONFIG_OF)
1220 /* Match table for of_platform binding */
1221 static const struct of_device_id ace_of_match[] = {
1222 { .compatible = "xlnx,opb-sysace-1.00.b", },
1223 { .compatible = "xlnx,opb-sysace-1.00.c", },
1224 { .compatible = "xlnx,xps-sysace-1.00.a", },
1225 { .compatible = "xlnx,sysace", },
1228 MODULE_DEVICE_TABLE(of, ace_of_match);
1229 #else /* CONFIG_OF */
1230 #define ace_of_match NULL
1231 #endif /* CONFIG_OF */
1233 static struct platform_driver ace_platform_driver = {
1234 .probe = ace_probe,
1235 .remove = ace_remove,
1236 .driver = {
1237 .name = "xsysace",
1238 .of_match_table = ace_of_match,
1242 /* ---------------------------------------------------------------------
1243 * Module init/exit routines
1245 static int __init ace_init(void)
1247 int rc;
1249 ace_major = register_blkdev(ace_major, "xsysace");
1250 if (ace_major <= 0) {
1251 rc = -ENOMEM;
1252 goto err_blk;
1255 rc = platform_driver_register(&ace_platform_driver);
1256 if (rc)
1257 goto err_plat;
1259 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1260 return 0;
1262 err_plat:
1263 unregister_blkdev(ace_major, "xsysace");
1264 err_blk:
1265 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1266 return rc;
1268 module_init(ace_init);
1270 static void __exit ace_exit(void)
1272 pr_debug("Unregistering Xilinx SystemACE driver\n");
1273 platform_driver_unregister(&ace_platform_driver);
1274 unregister_blkdev(ace_major, "xsysace");
1276 module_exit(ace_exit);