perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_msghandler.c
bloba74ce885b54125b3852cd9f7de66ec5ee2a52ea3
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
5 * Incoming and outgoing message routing for an IPMI interface.
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
36 #define IPMI_DRIVER_VERSION "39.2"
38 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
39 static int ipmi_init_msghandler(void);
40 static void smi_recv_tasklet(unsigned long);
41 static void handle_new_recv_msgs(struct ipmi_smi *intf);
42 static void need_waiter(struct ipmi_smi *intf);
43 static int handle_one_recv_msg(struct ipmi_smi *intf,
44 struct ipmi_smi_msg *msg);
46 #ifdef DEBUG
47 static void ipmi_debug_msg(const char *title, unsigned char *data,
48 unsigned int len)
50 int i, pos;
51 char buf[100];
53 pos = snprintf(buf, sizeof(buf), "%s: ", title);
54 for (i = 0; i < len; i++)
55 pos += snprintf(buf + pos, sizeof(buf) - pos,
56 " %2.2x", data[i]);
57 pr_debug("%s\n", buf);
59 #else
60 static void ipmi_debug_msg(const char *title, unsigned char *data,
61 unsigned int len)
62 { }
63 #endif
65 static int initialized;
67 enum ipmi_panic_event_op {
68 IPMI_SEND_PANIC_EVENT_NONE,
69 IPMI_SEND_PANIC_EVENT,
70 IPMI_SEND_PANIC_EVENT_STRING
72 #ifdef CONFIG_IPMI_PANIC_STRING
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
74 #elif defined(CONFIG_IPMI_PANIC_EVENT)
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
76 #else
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
78 #endif
79 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
81 static int panic_op_write_handler(const char *val,
82 const struct kernel_param *kp)
84 char valcp[16];
85 char *s;
87 strncpy(valcp, val, 15);
88 valcp[15] = '\0';
90 s = strstrip(valcp);
92 if (strcmp(s, "none") == 0)
93 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
94 else if (strcmp(s, "event") == 0)
95 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
96 else if (strcmp(s, "string") == 0)
97 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
98 else
99 return -EINVAL;
101 return 0;
104 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
106 switch (ipmi_send_panic_event) {
107 case IPMI_SEND_PANIC_EVENT_NONE:
108 strcpy(buffer, "none");
109 break;
111 case IPMI_SEND_PANIC_EVENT:
112 strcpy(buffer, "event");
113 break;
115 case IPMI_SEND_PANIC_EVENT_STRING:
116 strcpy(buffer, "string");
117 break;
119 default:
120 strcpy(buffer, "???");
121 break;
124 return strlen(buffer);
127 static const struct kernel_param_ops panic_op_ops = {
128 .set = panic_op_write_handler,
129 .get = panic_op_read_handler
131 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
132 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
135 #define MAX_EVENTS_IN_QUEUE 25
137 /* Remain in auto-maintenance mode for this amount of time (in ms). */
138 static unsigned long maintenance_mode_timeout_ms = 30000;
139 module_param(maintenance_mode_timeout_ms, ulong, 0644);
140 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
141 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
144 * Don't let a message sit in a queue forever, always time it with at lest
145 * the max message timer. This is in milliseconds.
147 #define MAX_MSG_TIMEOUT 60000
150 * Timeout times below are in milliseconds, and are done off a 1
151 * second timer. So setting the value to 1000 would mean anything
152 * between 0 and 1000ms. So really the only reasonable minimum
153 * setting it 2000ms, which is between 1 and 2 seconds.
156 /* The default timeout for message retries. */
157 static unsigned long default_retry_ms = 2000;
158 module_param(default_retry_ms, ulong, 0644);
159 MODULE_PARM_DESC(default_retry_ms,
160 "The time (milliseconds) between retry sends");
162 /* The default timeout for maintenance mode message retries. */
163 static unsigned long default_maintenance_retry_ms = 3000;
164 module_param(default_maintenance_retry_ms, ulong, 0644);
165 MODULE_PARM_DESC(default_maintenance_retry_ms,
166 "The time (milliseconds) between retry sends in maintenance mode");
168 /* The default maximum number of retries */
169 static unsigned int default_max_retries = 4;
170 module_param(default_max_retries, uint, 0644);
171 MODULE_PARM_DESC(default_max_retries,
172 "The time (milliseconds) between retry sends in maintenance mode");
174 /* Call every ~1000 ms. */
175 #define IPMI_TIMEOUT_TIME 1000
177 /* How many jiffies does it take to get to the timeout time. */
178 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
181 * Request events from the queue every second (this is the number of
182 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
183 * future, IPMI will add a way to know immediately if an event is in
184 * the queue and this silliness can go away.
186 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
188 /* How long should we cache dynamic device IDs? */
189 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
192 * The main "user" data structure.
194 struct ipmi_user {
195 struct list_head link;
198 * Set to NULL when the user is destroyed, a pointer to myself
199 * so srcu_dereference can be used on it.
201 struct ipmi_user *self;
202 struct srcu_struct release_barrier;
204 struct kref refcount;
206 /* The upper layer that handles receive messages. */
207 const struct ipmi_user_hndl *handler;
208 void *handler_data;
210 /* The interface this user is bound to. */
211 struct ipmi_smi *intf;
213 /* Does this interface receive IPMI events? */
214 bool gets_events;
217 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
218 __acquires(user->release_barrier)
220 struct ipmi_user *ruser;
222 *index = srcu_read_lock(&user->release_barrier);
223 ruser = srcu_dereference(user->self, &user->release_barrier);
224 if (!ruser)
225 srcu_read_unlock(&user->release_barrier, *index);
226 return ruser;
229 static void release_ipmi_user(struct ipmi_user *user, int index)
231 srcu_read_unlock(&user->release_barrier, index);
234 struct cmd_rcvr {
235 struct list_head link;
237 struct ipmi_user *user;
238 unsigned char netfn;
239 unsigned char cmd;
240 unsigned int chans;
243 * This is used to form a linked lised during mass deletion.
244 * Since this is in an RCU list, we cannot use the link above
245 * or change any data until the RCU period completes. So we
246 * use this next variable during mass deletion so we can have
247 * a list and don't have to wait and restart the search on
248 * every individual deletion of a command.
250 struct cmd_rcvr *next;
253 struct seq_table {
254 unsigned int inuse : 1;
255 unsigned int broadcast : 1;
257 unsigned long timeout;
258 unsigned long orig_timeout;
259 unsigned int retries_left;
262 * To verify on an incoming send message response that this is
263 * the message that the response is for, we keep a sequence id
264 * and increment it every time we send a message.
266 long seqid;
269 * This is held so we can properly respond to the message on a
270 * timeout, and it is used to hold the temporary data for
271 * retransmission, too.
273 struct ipmi_recv_msg *recv_msg;
277 * Store the information in a msgid (long) to allow us to find a
278 * sequence table entry from the msgid.
280 #define STORE_SEQ_IN_MSGID(seq, seqid) \
281 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
283 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
284 do { \
285 seq = (((msgid) >> 26) & 0x3f); \
286 seqid = ((msgid) & 0x3ffffff); \
287 } while (0)
289 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
291 #define IPMI_MAX_CHANNELS 16
292 struct ipmi_channel {
293 unsigned char medium;
294 unsigned char protocol;
297 struct ipmi_channel_set {
298 struct ipmi_channel c[IPMI_MAX_CHANNELS];
301 struct ipmi_my_addrinfo {
303 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
304 * but may be changed by the user.
306 unsigned char address;
309 * My LUN. This should generally stay the SMS LUN, but just in
310 * case...
312 unsigned char lun;
316 * Note that the product id, manufacturer id, guid, and device id are
317 * immutable in this structure, so dyn_mutex is not required for
318 * accessing those. If those change on a BMC, a new BMC is allocated.
320 struct bmc_device {
321 struct platform_device pdev;
322 struct list_head intfs; /* Interfaces on this BMC. */
323 struct ipmi_device_id id;
324 struct ipmi_device_id fetch_id;
325 int dyn_id_set;
326 unsigned long dyn_id_expiry;
327 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
328 guid_t guid;
329 guid_t fetch_guid;
330 int dyn_guid_set;
331 struct kref usecount;
332 struct work_struct remove_work;
334 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
336 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
337 struct ipmi_device_id *id,
338 bool *guid_set, guid_t *guid);
341 * Various statistics for IPMI, these index stats[] in the ipmi_smi
342 * structure.
344 enum ipmi_stat_indexes {
345 /* Commands we got from the user that were invalid. */
346 IPMI_STAT_sent_invalid_commands = 0,
348 /* Commands we sent to the MC. */
349 IPMI_STAT_sent_local_commands,
351 /* Responses from the MC that were delivered to a user. */
352 IPMI_STAT_handled_local_responses,
354 /* Responses from the MC that were not delivered to a user. */
355 IPMI_STAT_unhandled_local_responses,
357 /* Commands we sent out to the IPMB bus. */
358 IPMI_STAT_sent_ipmb_commands,
360 /* Commands sent on the IPMB that had errors on the SEND CMD */
361 IPMI_STAT_sent_ipmb_command_errs,
363 /* Each retransmit increments this count. */
364 IPMI_STAT_retransmitted_ipmb_commands,
367 * When a message times out (runs out of retransmits) this is
368 * incremented.
370 IPMI_STAT_timed_out_ipmb_commands,
373 * This is like above, but for broadcasts. Broadcasts are
374 * *not* included in the above count (they are expected to
375 * time out).
377 IPMI_STAT_timed_out_ipmb_broadcasts,
379 /* Responses I have sent to the IPMB bus. */
380 IPMI_STAT_sent_ipmb_responses,
382 /* The response was delivered to the user. */
383 IPMI_STAT_handled_ipmb_responses,
385 /* The response had invalid data in it. */
386 IPMI_STAT_invalid_ipmb_responses,
388 /* The response didn't have anyone waiting for it. */
389 IPMI_STAT_unhandled_ipmb_responses,
391 /* Commands we sent out to the IPMB bus. */
392 IPMI_STAT_sent_lan_commands,
394 /* Commands sent on the IPMB that had errors on the SEND CMD */
395 IPMI_STAT_sent_lan_command_errs,
397 /* Each retransmit increments this count. */
398 IPMI_STAT_retransmitted_lan_commands,
401 * When a message times out (runs out of retransmits) this is
402 * incremented.
404 IPMI_STAT_timed_out_lan_commands,
406 /* Responses I have sent to the IPMB bus. */
407 IPMI_STAT_sent_lan_responses,
409 /* The response was delivered to the user. */
410 IPMI_STAT_handled_lan_responses,
412 /* The response had invalid data in it. */
413 IPMI_STAT_invalid_lan_responses,
415 /* The response didn't have anyone waiting for it. */
416 IPMI_STAT_unhandled_lan_responses,
418 /* The command was delivered to the user. */
419 IPMI_STAT_handled_commands,
421 /* The command had invalid data in it. */
422 IPMI_STAT_invalid_commands,
424 /* The command didn't have anyone waiting for it. */
425 IPMI_STAT_unhandled_commands,
427 /* Invalid data in an event. */
428 IPMI_STAT_invalid_events,
430 /* Events that were received with the proper format. */
431 IPMI_STAT_events,
433 /* Retransmissions on IPMB that failed. */
434 IPMI_STAT_dropped_rexmit_ipmb_commands,
436 /* Retransmissions on LAN that failed. */
437 IPMI_STAT_dropped_rexmit_lan_commands,
439 /* This *must* remain last, add new values above this. */
440 IPMI_NUM_STATS
444 #define IPMI_IPMB_NUM_SEQ 64
445 struct ipmi_smi {
446 /* What interface number are we? */
447 int intf_num;
449 struct kref refcount;
451 /* Set when the interface is being unregistered. */
452 bool in_shutdown;
454 /* Used for a list of interfaces. */
455 struct list_head link;
458 * The list of upper layers that are using me. seq_lock write
459 * protects this. Read protection is with srcu.
461 struct list_head users;
462 struct srcu_struct users_srcu;
464 /* Used for wake ups at startup. */
465 wait_queue_head_t waitq;
468 * Prevents the interface from being unregistered when the
469 * interface is used by being looked up through the BMC
470 * structure.
472 struct mutex bmc_reg_mutex;
474 struct bmc_device tmp_bmc;
475 struct bmc_device *bmc;
476 bool bmc_registered;
477 struct list_head bmc_link;
478 char *my_dev_name;
479 bool in_bmc_register; /* Handle recursive situations. Yuck. */
480 struct work_struct bmc_reg_work;
482 const struct ipmi_smi_handlers *handlers;
483 void *send_info;
485 /* Driver-model device for the system interface. */
486 struct device *si_dev;
489 * A table of sequence numbers for this interface. We use the
490 * sequence numbers for IPMB messages that go out of the
491 * interface to match them up with their responses. A routine
492 * is called periodically to time the items in this list.
494 spinlock_t seq_lock;
495 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 int curr_seq;
499 * Messages queued for delivery. If delivery fails (out of memory
500 * for instance), They will stay in here to be processed later in a
501 * periodic timer interrupt. The tasklet is for handling received
502 * messages directly from the handler.
504 spinlock_t waiting_rcv_msgs_lock;
505 struct list_head waiting_rcv_msgs;
506 atomic_t watchdog_pretimeouts_to_deliver;
507 struct tasklet_struct recv_tasklet;
509 spinlock_t xmit_msgs_lock;
510 struct list_head xmit_msgs;
511 struct ipmi_smi_msg *curr_msg;
512 struct list_head hp_xmit_msgs;
515 * The list of command receivers that are registered for commands
516 * on this interface.
518 struct mutex cmd_rcvrs_mutex;
519 struct list_head cmd_rcvrs;
522 * Events that were queues because no one was there to receive
523 * them.
525 spinlock_t events_lock; /* For dealing with event stuff. */
526 struct list_head waiting_events;
527 unsigned int waiting_events_count; /* How many events in queue? */
528 char delivering_events;
529 char event_msg_printed;
530 atomic_t event_waiters;
531 unsigned int ticks_to_req_ev;
532 int last_needs_timer;
535 * The event receiver for my BMC, only really used at panic
536 * shutdown as a place to store this.
538 unsigned char event_receiver;
539 unsigned char event_receiver_lun;
540 unsigned char local_sel_device;
541 unsigned char local_event_generator;
543 /* For handling of maintenance mode. */
544 int maintenance_mode;
545 bool maintenance_mode_enable;
546 int auto_maintenance_timeout;
547 spinlock_t maintenance_mode_lock; /* Used in a timer... */
550 * If we are doing maintenance on something on IPMB, extend
551 * the timeout time to avoid timeouts writing firmware and
552 * such.
554 int ipmb_maintenance_mode_timeout;
557 * A cheap hack, if this is non-null and a message to an
558 * interface comes in with a NULL user, call this routine with
559 * it. Note that the message will still be freed by the
560 * caller. This only works on the system interface.
562 * Protected by bmc_reg_mutex.
564 void (*null_user_handler)(struct ipmi_smi *intf,
565 struct ipmi_recv_msg *msg);
568 * When we are scanning the channels for an SMI, this will
569 * tell which channel we are scanning.
571 int curr_channel;
573 /* Channel information */
574 struct ipmi_channel_set *channel_list;
575 unsigned int curr_working_cset; /* First index into the following. */
576 struct ipmi_channel_set wchannels[2];
577 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
578 bool channels_ready;
580 atomic_t stats[IPMI_NUM_STATS];
583 * run_to_completion duplicate of smb_info, smi_info
584 * and ipmi_serial_info structures. Used to decrease numbers of
585 * parameters passed by "low" level IPMI code.
587 int run_to_completion;
589 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
591 static void __get_guid(struct ipmi_smi *intf);
592 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
593 static int __ipmi_bmc_register(struct ipmi_smi *intf,
594 struct ipmi_device_id *id,
595 bool guid_set, guid_t *guid, int intf_num);
596 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
600 * The driver model view of the IPMI messaging driver.
602 static struct platform_driver ipmidriver = {
603 .driver = {
604 .name = "ipmi",
605 .bus = &platform_bus_type
609 * This mutex keeps us from adding the same BMC twice.
611 static DEFINE_MUTEX(ipmidriver_mutex);
613 static LIST_HEAD(ipmi_interfaces);
614 static DEFINE_MUTEX(ipmi_interfaces_mutex);
615 DEFINE_STATIC_SRCU(ipmi_interfaces_srcu);
618 * List of watchers that want to know when smi's are added and deleted.
620 static LIST_HEAD(smi_watchers);
621 static DEFINE_MUTEX(smi_watchers_mutex);
623 #define ipmi_inc_stat(intf, stat) \
624 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
625 #define ipmi_get_stat(intf, stat) \
626 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
628 static const char * const addr_src_to_str[] = {
629 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
630 "device-tree", "platform"
633 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
635 if (src >= SI_LAST)
636 src = 0; /* Invalid */
637 return addr_src_to_str[src];
639 EXPORT_SYMBOL(ipmi_addr_src_to_str);
641 static int is_lan_addr(struct ipmi_addr *addr)
643 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
646 static int is_ipmb_addr(struct ipmi_addr *addr)
648 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
651 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
653 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
656 static void free_recv_msg_list(struct list_head *q)
658 struct ipmi_recv_msg *msg, *msg2;
660 list_for_each_entry_safe(msg, msg2, q, link) {
661 list_del(&msg->link);
662 ipmi_free_recv_msg(msg);
666 static void free_smi_msg_list(struct list_head *q)
668 struct ipmi_smi_msg *msg, *msg2;
670 list_for_each_entry_safe(msg, msg2, q, link) {
671 list_del(&msg->link);
672 ipmi_free_smi_msg(msg);
676 static void clean_up_interface_data(struct ipmi_smi *intf)
678 int i;
679 struct cmd_rcvr *rcvr, *rcvr2;
680 struct list_head list;
682 tasklet_kill(&intf->recv_tasklet);
684 free_smi_msg_list(&intf->waiting_rcv_msgs);
685 free_recv_msg_list(&intf->waiting_events);
688 * Wholesale remove all the entries from the list in the
689 * interface and wait for RCU to know that none are in use.
691 mutex_lock(&intf->cmd_rcvrs_mutex);
692 INIT_LIST_HEAD(&list);
693 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
694 mutex_unlock(&intf->cmd_rcvrs_mutex);
696 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
697 kfree(rcvr);
699 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
700 if ((intf->seq_table[i].inuse)
701 && (intf->seq_table[i].recv_msg))
702 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
706 static void intf_free(struct kref *ref)
708 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
710 clean_up_interface_data(intf);
711 kfree(intf);
714 struct watcher_entry {
715 int intf_num;
716 struct ipmi_smi *intf;
717 struct list_head link;
720 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
722 struct ipmi_smi *intf;
723 int index;
725 mutex_lock(&smi_watchers_mutex);
727 list_add(&watcher->link, &smi_watchers);
729 index = srcu_read_lock(&ipmi_interfaces_srcu);
730 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
731 int intf_num = READ_ONCE(intf->intf_num);
733 if (intf_num == -1)
734 continue;
735 watcher->new_smi(intf_num, intf->si_dev);
737 srcu_read_unlock(&ipmi_interfaces_srcu, index);
739 mutex_unlock(&smi_watchers_mutex);
741 return 0;
743 EXPORT_SYMBOL(ipmi_smi_watcher_register);
745 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
747 mutex_lock(&smi_watchers_mutex);
748 list_del(&watcher->link);
749 mutex_unlock(&smi_watchers_mutex);
750 return 0;
752 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
755 * Must be called with smi_watchers_mutex held.
757 static void
758 call_smi_watchers(int i, struct device *dev)
760 struct ipmi_smi_watcher *w;
762 mutex_lock(&smi_watchers_mutex);
763 list_for_each_entry(w, &smi_watchers, link) {
764 if (try_module_get(w->owner)) {
765 w->new_smi(i, dev);
766 module_put(w->owner);
769 mutex_unlock(&smi_watchers_mutex);
772 static int
773 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
775 if (addr1->addr_type != addr2->addr_type)
776 return 0;
778 if (addr1->channel != addr2->channel)
779 return 0;
781 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
782 struct ipmi_system_interface_addr *smi_addr1
783 = (struct ipmi_system_interface_addr *) addr1;
784 struct ipmi_system_interface_addr *smi_addr2
785 = (struct ipmi_system_interface_addr *) addr2;
786 return (smi_addr1->lun == smi_addr2->lun);
789 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
790 struct ipmi_ipmb_addr *ipmb_addr1
791 = (struct ipmi_ipmb_addr *) addr1;
792 struct ipmi_ipmb_addr *ipmb_addr2
793 = (struct ipmi_ipmb_addr *) addr2;
795 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
796 && (ipmb_addr1->lun == ipmb_addr2->lun));
799 if (is_lan_addr(addr1)) {
800 struct ipmi_lan_addr *lan_addr1
801 = (struct ipmi_lan_addr *) addr1;
802 struct ipmi_lan_addr *lan_addr2
803 = (struct ipmi_lan_addr *) addr2;
805 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
806 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
807 && (lan_addr1->session_handle
808 == lan_addr2->session_handle)
809 && (lan_addr1->lun == lan_addr2->lun));
812 return 1;
815 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
817 if (len < sizeof(struct ipmi_system_interface_addr))
818 return -EINVAL;
820 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
821 if (addr->channel != IPMI_BMC_CHANNEL)
822 return -EINVAL;
823 return 0;
826 if ((addr->channel == IPMI_BMC_CHANNEL)
827 || (addr->channel >= IPMI_MAX_CHANNELS)
828 || (addr->channel < 0))
829 return -EINVAL;
831 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
832 if (len < sizeof(struct ipmi_ipmb_addr))
833 return -EINVAL;
834 return 0;
837 if (is_lan_addr(addr)) {
838 if (len < sizeof(struct ipmi_lan_addr))
839 return -EINVAL;
840 return 0;
843 return -EINVAL;
845 EXPORT_SYMBOL(ipmi_validate_addr);
847 unsigned int ipmi_addr_length(int addr_type)
849 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
850 return sizeof(struct ipmi_system_interface_addr);
852 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
853 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
854 return sizeof(struct ipmi_ipmb_addr);
856 if (addr_type == IPMI_LAN_ADDR_TYPE)
857 return sizeof(struct ipmi_lan_addr);
859 return 0;
861 EXPORT_SYMBOL(ipmi_addr_length);
863 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
865 int rv = 0;
867 if (!msg->user) {
868 /* Special handling for NULL users. */
869 if (intf->null_user_handler) {
870 intf->null_user_handler(intf, msg);
871 } else {
872 /* No handler, so give up. */
873 rv = -EINVAL;
875 ipmi_free_recv_msg(msg);
876 } else if (!oops_in_progress) {
878 * If we are running in the panic context, calling the
879 * receive handler doesn't much meaning and has a deadlock
880 * risk. At this moment, simply skip it in that case.
882 int index;
883 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
885 if (user) {
886 user->handler->ipmi_recv_hndl(msg, user->handler_data);
887 release_ipmi_user(msg->user, index);
888 } else {
889 /* User went away, give up. */
890 ipmi_free_recv_msg(msg);
891 rv = -EINVAL;
895 return rv;
898 static void deliver_local_response(struct ipmi_smi *intf,
899 struct ipmi_recv_msg *msg)
901 if (deliver_response(intf, msg))
902 ipmi_inc_stat(intf, unhandled_local_responses);
903 else
904 ipmi_inc_stat(intf, handled_local_responses);
907 static void deliver_err_response(struct ipmi_smi *intf,
908 struct ipmi_recv_msg *msg, int err)
910 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
911 msg->msg_data[0] = err;
912 msg->msg.netfn |= 1; /* Convert to a response. */
913 msg->msg.data_len = 1;
914 msg->msg.data = msg->msg_data;
915 deliver_local_response(intf, msg);
919 * Find the next sequence number not being used and add the given
920 * message with the given timeout to the sequence table. This must be
921 * called with the interface's seq_lock held.
923 static int intf_next_seq(struct ipmi_smi *intf,
924 struct ipmi_recv_msg *recv_msg,
925 unsigned long timeout,
926 int retries,
927 int broadcast,
928 unsigned char *seq,
929 long *seqid)
931 int rv = 0;
932 unsigned int i;
934 if (timeout == 0)
935 timeout = default_retry_ms;
936 if (retries < 0)
937 retries = default_max_retries;
939 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
940 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
941 if (!intf->seq_table[i].inuse)
942 break;
945 if (!intf->seq_table[i].inuse) {
946 intf->seq_table[i].recv_msg = recv_msg;
949 * Start with the maximum timeout, when the send response
950 * comes in we will start the real timer.
952 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
953 intf->seq_table[i].orig_timeout = timeout;
954 intf->seq_table[i].retries_left = retries;
955 intf->seq_table[i].broadcast = broadcast;
956 intf->seq_table[i].inuse = 1;
957 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
958 *seq = i;
959 *seqid = intf->seq_table[i].seqid;
960 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
961 need_waiter(intf);
962 } else {
963 rv = -EAGAIN;
966 return rv;
970 * Return the receive message for the given sequence number and
971 * release the sequence number so it can be reused. Some other data
972 * is passed in to be sure the message matches up correctly (to help
973 * guard against message coming in after their timeout and the
974 * sequence number being reused).
976 static int intf_find_seq(struct ipmi_smi *intf,
977 unsigned char seq,
978 short channel,
979 unsigned char cmd,
980 unsigned char netfn,
981 struct ipmi_addr *addr,
982 struct ipmi_recv_msg **recv_msg)
984 int rv = -ENODEV;
985 unsigned long flags;
987 if (seq >= IPMI_IPMB_NUM_SEQ)
988 return -EINVAL;
990 spin_lock_irqsave(&intf->seq_lock, flags);
991 if (intf->seq_table[seq].inuse) {
992 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
994 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
995 && (msg->msg.netfn == netfn)
996 && (ipmi_addr_equal(addr, &msg->addr))) {
997 *recv_msg = msg;
998 intf->seq_table[seq].inuse = 0;
999 rv = 0;
1002 spin_unlock_irqrestore(&intf->seq_lock, flags);
1004 return rv;
1008 /* Start the timer for a specific sequence table entry. */
1009 static int intf_start_seq_timer(struct ipmi_smi *intf,
1010 long msgid)
1012 int rv = -ENODEV;
1013 unsigned long flags;
1014 unsigned char seq;
1015 unsigned long seqid;
1018 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1020 spin_lock_irqsave(&intf->seq_lock, flags);
1022 * We do this verification because the user can be deleted
1023 * while a message is outstanding.
1025 if ((intf->seq_table[seq].inuse)
1026 && (intf->seq_table[seq].seqid == seqid)) {
1027 struct seq_table *ent = &intf->seq_table[seq];
1028 ent->timeout = ent->orig_timeout;
1029 rv = 0;
1031 spin_unlock_irqrestore(&intf->seq_lock, flags);
1033 return rv;
1036 /* Got an error for the send message for a specific sequence number. */
1037 static int intf_err_seq(struct ipmi_smi *intf,
1038 long msgid,
1039 unsigned int err)
1041 int rv = -ENODEV;
1042 unsigned long flags;
1043 unsigned char seq;
1044 unsigned long seqid;
1045 struct ipmi_recv_msg *msg = NULL;
1048 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1050 spin_lock_irqsave(&intf->seq_lock, flags);
1052 * We do this verification because the user can be deleted
1053 * while a message is outstanding.
1055 if ((intf->seq_table[seq].inuse)
1056 && (intf->seq_table[seq].seqid == seqid)) {
1057 struct seq_table *ent = &intf->seq_table[seq];
1059 ent->inuse = 0;
1060 msg = ent->recv_msg;
1061 rv = 0;
1063 spin_unlock_irqrestore(&intf->seq_lock, flags);
1065 if (msg)
1066 deliver_err_response(intf, msg, err);
1068 return rv;
1072 int ipmi_create_user(unsigned int if_num,
1073 const struct ipmi_user_hndl *handler,
1074 void *handler_data,
1075 struct ipmi_user **user)
1077 unsigned long flags;
1078 struct ipmi_user *new_user;
1079 int rv = 0, index;
1080 struct ipmi_smi *intf;
1083 * There is no module usecount here, because it's not
1084 * required. Since this can only be used by and called from
1085 * other modules, they will implicitly use this module, and
1086 * thus this can't be removed unless the other modules are
1087 * removed.
1090 if (handler == NULL)
1091 return -EINVAL;
1094 * Make sure the driver is actually initialized, this handles
1095 * problems with initialization order.
1097 if (!initialized) {
1098 rv = ipmi_init_msghandler();
1099 if (rv)
1100 return rv;
1103 * The init code doesn't return an error if it was turned
1104 * off, but it won't initialize. Check that.
1106 if (!initialized)
1107 return -ENODEV;
1110 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1111 if (!new_user)
1112 return -ENOMEM;
1114 index = srcu_read_lock(&ipmi_interfaces_srcu);
1115 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1116 if (intf->intf_num == if_num)
1117 goto found;
1119 /* Not found, return an error */
1120 rv = -EINVAL;
1121 goto out_kfree;
1123 found:
1124 rv = init_srcu_struct(&new_user->release_barrier);
1125 if (rv)
1126 goto out_kfree;
1128 /* Note that each existing user holds a refcount to the interface. */
1129 kref_get(&intf->refcount);
1131 kref_init(&new_user->refcount);
1132 new_user->handler = handler;
1133 new_user->handler_data = handler_data;
1134 new_user->intf = intf;
1135 new_user->gets_events = false;
1137 rcu_assign_pointer(new_user->self, new_user);
1138 spin_lock_irqsave(&intf->seq_lock, flags);
1139 list_add_rcu(&new_user->link, &intf->users);
1140 spin_unlock_irqrestore(&intf->seq_lock, flags);
1141 if (handler->ipmi_watchdog_pretimeout) {
1142 /* User wants pretimeouts, so make sure to watch for them. */
1143 if (atomic_inc_return(&intf->event_waiters) == 1)
1144 need_waiter(intf);
1146 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1147 *user = new_user;
1148 return 0;
1150 out_kfree:
1151 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1152 kfree(new_user);
1153 return rv;
1155 EXPORT_SYMBOL(ipmi_create_user);
1157 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1159 int rv, index;
1160 struct ipmi_smi *intf;
1162 index = srcu_read_lock(&ipmi_interfaces_srcu);
1163 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1164 if (intf->intf_num == if_num)
1165 goto found;
1167 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1169 /* Not found, return an error */
1170 return -EINVAL;
1172 found:
1173 if (!intf->handlers->get_smi_info)
1174 rv = -ENOTTY;
1175 else
1176 rv = intf->handlers->get_smi_info(intf->send_info, data);
1177 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1179 return rv;
1181 EXPORT_SYMBOL(ipmi_get_smi_info);
1183 static void free_user(struct kref *ref)
1185 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1186 kfree(user);
1189 static void _ipmi_destroy_user(struct ipmi_user *user)
1191 struct ipmi_smi *intf = user->intf;
1192 int i;
1193 unsigned long flags;
1194 struct cmd_rcvr *rcvr;
1195 struct cmd_rcvr *rcvrs = NULL;
1197 if (!acquire_ipmi_user(user, &i)) {
1199 * The user has already been cleaned up, just make sure
1200 * nothing is using it and return.
1202 synchronize_srcu(&user->release_barrier);
1203 return;
1206 rcu_assign_pointer(user->self, NULL);
1207 release_ipmi_user(user, i);
1209 synchronize_srcu(&user->release_barrier);
1211 if (user->handler->shutdown)
1212 user->handler->shutdown(user->handler_data);
1214 if (user->handler->ipmi_watchdog_pretimeout)
1215 atomic_dec(&intf->event_waiters);
1217 if (user->gets_events)
1218 atomic_dec(&intf->event_waiters);
1220 /* Remove the user from the interface's sequence table. */
1221 spin_lock_irqsave(&intf->seq_lock, flags);
1222 list_del_rcu(&user->link);
1224 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1225 if (intf->seq_table[i].inuse
1226 && (intf->seq_table[i].recv_msg->user == user)) {
1227 intf->seq_table[i].inuse = 0;
1228 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1231 spin_unlock_irqrestore(&intf->seq_lock, flags);
1234 * Remove the user from the command receiver's table. First
1235 * we build a list of everything (not using the standard link,
1236 * since other things may be using it till we do
1237 * synchronize_srcu()) then free everything in that list.
1239 mutex_lock(&intf->cmd_rcvrs_mutex);
1240 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1241 if (rcvr->user == user) {
1242 list_del_rcu(&rcvr->link);
1243 rcvr->next = rcvrs;
1244 rcvrs = rcvr;
1247 mutex_unlock(&intf->cmd_rcvrs_mutex);
1248 synchronize_rcu();
1249 while (rcvrs) {
1250 rcvr = rcvrs;
1251 rcvrs = rcvr->next;
1252 kfree(rcvr);
1255 kref_put(&intf->refcount, intf_free);
1258 int ipmi_destroy_user(struct ipmi_user *user)
1260 _ipmi_destroy_user(user);
1262 cleanup_srcu_struct(&user->release_barrier);
1263 kref_put(&user->refcount, free_user);
1265 return 0;
1267 EXPORT_SYMBOL(ipmi_destroy_user);
1269 int ipmi_get_version(struct ipmi_user *user,
1270 unsigned char *major,
1271 unsigned char *minor)
1273 struct ipmi_device_id id;
1274 int rv, index;
1276 user = acquire_ipmi_user(user, &index);
1277 if (!user)
1278 return -ENODEV;
1280 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1281 if (!rv) {
1282 *major = ipmi_version_major(&id);
1283 *minor = ipmi_version_minor(&id);
1285 release_ipmi_user(user, index);
1287 return rv;
1289 EXPORT_SYMBOL(ipmi_get_version);
1291 int ipmi_set_my_address(struct ipmi_user *user,
1292 unsigned int channel,
1293 unsigned char address)
1295 int index, rv = 0;
1297 user = acquire_ipmi_user(user, &index);
1298 if (!user)
1299 return -ENODEV;
1301 if (channel >= IPMI_MAX_CHANNELS)
1302 rv = -EINVAL;
1303 else
1304 user->intf->addrinfo[channel].address = address;
1305 release_ipmi_user(user, index);
1307 return rv;
1309 EXPORT_SYMBOL(ipmi_set_my_address);
1311 int ipmi_get_my_address(struct ipmi_user *user,
1312 unsigned int channel,
1313 unsigned char *address)
1315 int index, rv = 0;
1317 user = acquire_ipmi_user(user, &index);
1318 if (!user)
1319 return -ENODEV;
1321 if (channel >= IPMI_MAX_CHANNELS)
1322 rv = -EINVAL;
1323 else
1324 *address = user->intf->addrinfo[channel].address;
1325 release_ipmi_user(user, index);
1327 return rv;
1329 EXPORT_SYMBOL(ipmi_get_my_address);
1331 int ipmi_set_my_LUN(struct ipmi_user *user,
1332 unsigned int channel,
1333 unsigned char LUN)
1335 int index, rv = 0;
1337 user = acquire_ipmi_user(user, &index);
1338 if (!user)
1339 return -ENODEV;
1341 if (channel >= IPMI_MAX_CHANNELS)
1342 rv = -EINVAL;
1343 else
1344 user->intf->addrinfo[channel].lun = LUN & 0x3;
1345 release_ipmi_user(user, index);
1347 return rv;
1349 EXPORT_SYMBOL(ipmi_set_my_LUN);
1351 int ipmi_get_my_LUN(struct ipmi_user *user,
1352 unsigned int channel,
1353 unsigned char *address)
1355 int index, rv = 0;
1357 user = acquire_ipmi_user(user, &index);
1358 if (!user)
1359 return -ENODEV;
1361 if (channel >= IPMI_MAX_CHANNELS)
1362 rv = -EINVAL;
1363 else
1364 *address = user->intf->addrinfo[channel].lun;
1365 release_ipmi_user(user, index);
1367 return rv;
1369 EXPORT_SYMBOL(ipmi_get_my_LUN);
1371 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1373 int mode, index;
1374 unsigned long flags;
1376 user = acquire_ipmi_user(user, &index);
1377 if (!user)
1378 return -ENODEV;
1380 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1381 mode = user->intf->maintenance_mode;
1382 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1383 release_ipmi_user(user, index);
1385 return mode;
1387 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1389 static void maintenance_mode_update(struct ipmi_smi *intf)
1391 if (intf->handlers->set_maintenance_mode)
1392 intf->handlers->set_maintenance_mode(
1393 intf->send_info, intf->maintenance_mode_enable);
1396 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1398 int rv = 0, index;
1399 unsigned long flags;
1400 struct ipmi_smi *intf = user->intf;
1402 user = acquire_ipmi_user(user, &index);
1403 if (!user)
1404 return -ENODEV;
1406 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1407 if (intf->maintenance_mode != mode) {
1408 switch (mode) {
1409 case IPMI_MAINTENANCE_MODE_AUTO:
1410 intf->maintenance_mode_enable
1411 = (intf->auto_maintenance_timeout > 0);
1412 break;
1414 case IPMI_MAINTENANCE_MODE_OFF:
1415 intf->maintenance_mode_enable = false;
1416 break;
1418 case IPMI_MAINTENANCE_MODE_ON:
1419 intf->maintenance_mode_enable = true;
1420 break;
1422 default:
1423 rv = -EINVAL;
1424 goto out_unlock;
1426 intf->maintenance_mode = mode;
1428 maintenance_mode_update(intf);
1430 out_unlock:
1431 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1432 release_ipmi_user(user, index);
1434 return rv;
1436 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1438 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1440 unsigned long flags;
1441 struct ipmi_smi *intf = user->intf;
1442 struct ipmi_recv_msg *msg, *msg2;
1443 struct list_head msgs;
1444 int index;
1446 user = acquire_ipmi_user(user, &index);
1447 if (!user)
1448 return -ENODEV;
1450 INIT_LIST_HEAD(&msgs);
1452 spin_lock_irqsave(&intf->events_lock, flags);
1453 if (user->gets_events == val)
1454 goto out;
1456 user->gets_events = val;
1458 if (val) {
1459 if (atomic_inc_return(&intf->event_waiters) == 1)
1460 need_waiter(intf);
1461 } else {
1462 atomic_dec(&intf->event_waiters);
1465 if (intf->delivering_events)
1467 * Another thread is delivering events for this, so
1468 * let it handle any new events.
1470 goto out;
1472 /* Deliver any queued events. */
1473 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1474 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1475 list_move_tail(&msg->link, &msgs);
1476 intf->waiting_events_count = 0;
1477 if (intf->event_msg_printed) {
1478 dev_warn(intf->si_dev, "Event queue no longer full\n");
1479 intf->event_msg_printed = 0;
1482 intf->delivering_events = 1;
1483 spin_unlock_irqrestore(&intf->events_lock, flags);
1485 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1486 msg->user = user;
1487 kref_get(&user->refcount);
1488 deliver_local_response(intf, msg);
1491 spin_lock_irqsave(&intf->events_lock, flags);
1492 intf->delivering_events = 0;
1495 out:
1496 spin_unlock_irqrestore(&intf->events_lock, flags);
1497 release_ipmi_user(user, index);
1499 return 0;
1501 EXPORT_SYMBOL(ipmi_set_gets_events);
1503 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1504 unsigned char netfn,
1505 unsigned char cmd,
1506 unsigned char chan)
1508 struct cmd_rcvr *rcvr;
1510 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1511 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1512 && (rcvr->chans & (1 << chan)))
1513 return rcvr;
1515 return NULL;
1518 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1519 unsigned char netfn,
1520 unsigned char cmd,
1521 unsigned int chans)
1523 struct cmd_rcvr *rcvr;
1525 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1526 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1527 && (rcvr->chans & chans))
1528 return 0;
1530 return 1;
1533 int ipmi_register_for_cmd(struct ipmi_user *user,
1534 unsigned char netfn,
1535 unsigned char cmd,
1536 unsigned int chans)
1538 struct ipmi_smi *intf = user->intf;
1539 struct cmd_rcvr *rcvr;
1540 int rv = 0, index;
1542 user = acquire_ipmi_user(user, &index);
1543 if (!user)
1544 return -ENODEV;
1546 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1547 if (!rcvr) {
1548 rv = -ENOMEM;
1549 goto out_release;
1551 rcvr->cmd = cmd;
1552 rcvr->netfn = netfn;
1553 rcvr->chans = chans;
1554 rcvr->user = user;
1556 mutex_lock(&intf->cmd_rcvrs_mutex);
1557 /* Make sure the command/netfn is not already registered. */
1558 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1559 rv = -EBUSY;
1560 goto out_unlock;
1563 if (atomic_inc_return(&intf->event_waiters) == 1)
1564 need_waiter(intf);
1566 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1568 out_unlock:
1569 mutex_unlock(&intf->cmd_rcvrs_mutex);
1570 if (rv)
1571 kfree(rcvr);
1572 out_release:
1573 release_ipmi_user(user, index);
1575 return rv;
1577 EXPORT_SYMBOL(ipmi_register_for_cmd);
1579 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1580 unsigned char netfn,
1581 unsigned char cmd,
1582 unsigned int chans)
1584 struct ipmi_smi *intf = user->intf;
1585 struct cmd_rcvr *rcvr;
1586 struct cmd_rcvr *rcvrs = NULL;
1587 int i, rv = -ENOENT, index;
1589 user = acquire_ipmi_user(user, &index);
1590 if (!user)
1591 return -ENODEV;
1593 mutex_lock(&intf->cmd_rcvrs_mutex);
1594 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1595 if (((1 << i) & chans) == 0)
1596 continue;
1597 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1598 if (rcvr == NULL)
1599 continue;
1600 if (rcvr->user == user) {
1601 rv = 0;
1602 rcvr->chans &= ~chans;
1603 if (rcvr->chans == 0) {
1604 list_del_rcu(&rcvr->link);
1605 rcvr->next = rcvrs;
1606 rcvrs = rcvr;
1610 mutex_unlock(&intf->cmd_rcvrs_mutex);
1611 synchronize_rcu();
1612 release_ipmi_user(user, index);
1613 while (rcvrs) {
1614 atomic_dec(&intf->event_waiters);
1615 rcvr = rcvrs;
1616 rcvrs = rcvr->next;
1617 kfree(rcvr);
1620 return rv;
1622 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1624 static unsigned char
1625 ipmb_checksum(unsigned char *data, int size)
1627 unsigned char csum = 0;
1629 for (; size > 0; size--, data++)
1630 csum += *data;
1632 return -csum;
1635 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1636 struct kernel_ipmi_msg *msg,
1637 struct ipmi_ipmb_addr *ipmb_addr,
1638 long msgid,
1639 unsigned char ipmb_seq,
1640 int broadcast,
1641 unsigned char source_address,
1642 unsigned char source_lun)
1644 int i = broadcast;
1646 /* Format the IPMB header data. */
1647 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1648 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1649 smi_msg->data[2] = ipmb_addr->channel;
1650 if (broadcast)
1651 smi_msg->data[3] = 0;
1652 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1653 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1654 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1655 smi_msg->data[i+6] = source_address;
1656 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1657 smi_msg->data[i+8] = msg->cmd;
1659 /* Now tack on the data to the message. */
1660 if (msg->data_len > 0)
1661 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1662 smi_msg->data_size = msg->data_len + 9;
1664 /* Now calculate the checksum and tack it on. */
1665 smi_msg->data[i+smi_msg->data_size]
1666 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1669 * Add on the checksum size and the offset from the
1670 * broadcast.
1672 smi_msg->data_size += 1 + i;
1674 smi_msg->msgid = msgid;
1677 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1678 struct kernel_ipmi_msg *msg,
1679 struct ipmi_lan_addr *lan_addr,
1680 long msgid,
1681 unsigned char ipmb_seq,
1682 unsigned char source_lun)
1684 /* Format the IPMB header data. */
1685 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1686 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1687 smi_msg->data[2] = lan_addr->channel;
1688 smi_msg->data[3] = lan_addr->session_handle;
1689 smi_msg->data[4] = lan_addr->remote_SWID;
1690 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1691 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1692 smi_msg->data[7] = lan_addr->local_SWID;
1693 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1694 smi_msg->data[9] = msg->cmd;
1696 /* Now tack on the data to the message. */
1697 if (msg->data_len > 0)
1698 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1699 smi_msg->data_size = msg->data_len + 10;
1701 /* Now calculate the checksum and tack it on. */
1702 smi_msg->data[smi_msg->data_size]
1703 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1706 * Add on the checksum size and the offset from the
1707 * broadcast.
1709 smi_msg->data_size += 1;
1711 smi_msg->msgid = msgid;
1714 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1715 struct ipmi_smi_msg *smi_msg,
1716 int priority)
1718 if (intf->curr_msg) {
1719 if (priority > 0)
1720 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1721 else
1722 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1723 smi_msg = NULL;
1724 } else {
1725 intf->curr_msg = smi_msg;
1728 return smi_msg;
1732 static void smi_send(struct ipmi_smi *intf,
1733 const struct ipmi_smi_handlers *handlers,
1734 struct ipmi_smi_msg *smi_msg, int priority)
1736 int run_to_completion = intf->run_to_completion;
1738 if (run_to_completion) {
1739 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1740 } else {
1741 unsigned long flags;
1743 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1744 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1745 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1748 if (smi_msg)
1749 handlers->sender(intf->send_info, smi_msg);
1752 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1754 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1755 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1756 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1757 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1760 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1761 struct ipmi_addr *addr,
1762 long msgid,
1763 struct kernel_ipmi_msg *msg,
1764 struct ipmi_smi_msg *smi_msg,
1765 struct ipmi_recv_msg *recv_msg,
1766 int retries,
1767 unsigned int retry_time_ms)
1769 struct ipmi_system_interface_addr *smi_addr;
1771 if (msg->netfn & 1)
1772 /* Responses are not allowed to the SMI. */
1773 return -EINVAL;
1775 smi_addr = (struct ipmi_system_interface_addr *) addr;
1776 if (smi_addr->lun > 3) {
1777 ipmi_inc_stat(intf, sent_invalid_commands);
1778 return -EINVAL;
1781 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1783 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1784 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1785 || (msg->cmd == IPMI_GET_MSG_CMD)
1786 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1788 * We don't let the user do these, since we manage
1789 * the sequence numbers.
1791 ipmi_inc_stat(intf, sent_invalid_commands);
1792 return -EINVAL;
1795 if (is_maintenance_mode_cmd(msg)) {
1796 unsigned long flags;
1798 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1799 intf->auto_maintenance_timeout
1800 = maintenance_mode_timeout_ms;
1801 if (!intf->maintenance_mode
1802 && !intf->maintenance_mode_enable) {
1803 intf->maintenance_mode_enable = true;
1804 maintenance_mode_update(intf);
1806 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1807 flags);
1810 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1811 ipmi_inc_stat(intf, sent_invalid_commands);
1812 return -EMSGSIZE;
1815 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1816 smi_msg->data[1] = msg->cmd;
1817 smi_msg->msgid = msgid;
1818 smi_msg->user_data = recv_msg;
1819 if (msg->data_len > 0)
1820 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1821 smi_msg->data_size = msg->data_len + 2;
1822 ipmi_inc_stat(intf, sent_local_commands);
1824 return 0;
1827 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1828 struct ipmi_addr *addr,
1829 long msgid,
1830 struct kernel_ipmi_msg *msg,
1831 struct ipmi_smi_msg *smi_msg,
1832 struct ipmi_recv_msg *recv_msg,
1833 unsigned char source_address,
1834 unsigned char source_lun,
1835 int retries,
1836 unsigned int retry_time_ms)
1838 struct ipmi_ipmb_addr *ipmb_addr;
1839 unsigned char ipmb_seq;
1840 long seqid;
1841 int broadcast = 0;
1842 struct ipmi_channel *chans;
1843 int rv = 0;
1845 if (addr->channel >= IPMI_MAX_CHANNELS) {
1846 ipmi_inc_stat(intf, sent_invalid_commands);
1847 return -EINVAL;
1850 chans = READ_ONCE(intf->channel_list)->c;
1852 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1853 ipmi_inc_stat(intf, sent_invalid_commands);
1854 return -EINVAL;
1857 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1859 * Broadcasts add a zero at the beginning of the
1860 * message, but otherwise is the same as an IPMB
1861 * address.
1863 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1864 broadcast = 1;
1865 retries = 0; /* Don't retry broadcasts. */
1869 * 9 for the header and 1 for the checksum, plus
1870 * possibly one for the broadcast.
1872 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1873 ipmi_inc_stat(intf, sent_invalid_commands);
1874 return -EMSGSIZE;
1877 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1878 if (ipmb_addr->lun > 3) {
1879 ipmi_inc_stat(intf, sent_invalid_commands);
1880 return -EINVAL;
1883 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1885 if (recv_msg->msg.netfn & 0x1) {
1887 * It's a response, so use the user's sequence
1888 * from msgid.
1890 ipmi_inc_stat(intf, sent_ipmb_responses);
1891 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1892 msgid, broadcast,
1893 source_address, source_lun);
1896 * Save the receive message so we can use it
1897 * to deliver the response.
1899 smi_msg->user_data = recv_msg;
1900 } else {
1901 /* It's a command, so get a sequence for it. */
1902 unsigned long flags;
1904 spin_lock_irqsave(&intf->seq_lock, flags);
1906 if (is_maintenance_mode_cmd(msg))
1907 intf->ipmb_maintenance_mode_timeout =
1908 maintenance_mode_timeout_ms;
1910 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
1911 /* Different default in maintenance mode */
1912 retry_time_ms = default_maintenance_retry_ms;
1915 * Create a sequence number with a 1 second
1916 * timeout and 4 retries.
1918 rv = intf_next_seq(intf,
1919 recv_msg,
1920 retry_time_ms,
1921 retries,
1922 broadcast,
1923 &ipmb_seq,
1924 &seqid);
1925 if (rv)
1927 * We have used up all the sequence numbers,
1928 * probably, so abort.
1930 goto out_err;
1932 ipmi_inc_stat(intf, sent_ipmb_commands);
1935 * Store the sequence number in the message,
1936 * so that when the send message response
1937 * comes back we can start the timer.
1939 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1940 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1941 ipmb_seq, broadcast,
1942 source_address, source_lun);
1945 * Copy the message into the recv message data, so we
1946 * can retransmit it later if necessary.
1948 memcpy(recv_msg->msg_data, smi_msg->data,
1949 smi_msg->data_size);
1950 recv_msg->msg.data = recv_msg->msg_data;
1951 recv_msg->msg.data_len = smi_msg->data_size;
1954 * We don't unlock until here, because we need
1955 * to copy the completed message into the
1956 * recv_msg before we release the lock.
1957 * Otherwise, race conditions may bite us. I
1958 * know that's pretty paranoid, but I prefer
1959 * to be correct.
1961 out_err:
1962 spin_unlock_irqrestore(&intf->seq_lock, flags);
1965 return rv;
1968 static int i_ipmi_req_lan(struct ipmi_smi *intf,
1969 struct ipmi_addr *addr,
1970 long msgid,
1971 struct kernel_ipmi_msg *msg,
1972 struct ipmi_smi_msg *smi_msg,
1973 struct ipmi_recv_msg *recv_msg,
1974 unsigned char source_lun,
1975 int retries,
1976 unsigned int retry_time_ms)
1978 struct ipmi_lan_addr *lan_addr;
1979 unsigned char ipmb_seq;
1980 long seqid;
1981 struct ipmi_channel *chans;
1982 int rv = 0;
1984 if (addr->channel >= IPMI_MAX_CHANNELS) {
1985 ipmi_inc_stat(intf, sent_invalid_commands);
1986 return -EINVAL;
1989 chans = READ_ONCE(intf->channel_list)->c;
1991 if ((chans[addr->channel].medium
1992 != IPMI_CHANNEL_MEDIUM_8023LAN)
1993 && (chans[addr->channel].medium
1994 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1995 ipmi_inc_stat(intf, sent_invalid_commands);
1996 return -EINVAL;
1999 /* 11 for the header and 1 for the checksum. */
2000 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2001 ipmi_inc_stat(intf, sent_invalid_commands);
2002 return -EMSGSIZE;
2005 lan_addr = (struct ipmi_lan_addr *) addr;
2006 if (lan_addr->lun > 3) {
2007 ipmi_inc_stat(intf, sent_invalid_commands);
2008 return -EINVAL;
2011 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2013 if (recv_msg->msg.netfn & 0x1) {
2015 * It's a response, so use the user's sequence
2016 * from msgid.
2018 ipmi_inc_stat(intf, sent_lan_responses);
2019 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2020 msgid, source_lun);
2023 * Save the receive message so we can use it
2024 * to deliver the response.
2026 smi_msg->user_data = recv_msg;
2027 } else {
2028 /* It's a command, so get a sequence for it. */
2029 unsigned long flags;
2031 spin_lock_irqsave(&intf->seq_lock, flags);
2034 * Create a sequence number with a 1 second
2035 * timeout and 4 retries.
2037 rv = intf_next_seq(intf,
2038 recv_msg,
2039 retry_time_ms,
2040 retries,
2042 &ipmb_seq,
2043 &seqid);
2044 if (rv)
2046 * We have used up all the sequence numbers,
2047 * probably, so abort.
2049 goto out_err;
2051 ipmi_inc_stat(intf, sent_lan_commands);
2054 * Store the sequence number in the message,
2055 * so that when the send message response
2056 * comes back we can start the timer.
2058 format_lan_msg(smi_msg, msg, lan_addr,
2059 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2060 ipmb_seq, source_lun);
2063 * Copy the message into the recv message data, so we
2064 * can retransmit it later if necessary.
2066 memcpy(recv_msg->msg_data, smi_msg->data,
2067 smi_msg->data_size);
2068 recv_msg->msg.data = recv_msg->msg_data;
2069 recv_msg->msg.data_len = smi_msg->data_size;
2072 * We don't unlock until here, because we need
2073 * to copy the completed message into the
2074 * recv_msg before we release the lock.
2075 * Otherwise, race conditions may bite us. I
2076 * know that's pretty paranoid, but I prefer
2077 * to be correct.
2079 out_err:
2080 spin_unlock_irqrestore(&intf->seq_lock, flags);
2083 return rv;
2087 * Separate from ipmi_request so that the user does not have to be
2088 * supplied in certain circumstances (mainly at panic time). If
2089 * messages are supplied, they will be freed, even if an error
2090 * occurs.
2092 static int i_ipmi_request(struct ipmi_user *user,
2093 struct ipmi_smi *intf,
2094 struct ipmi_addr *addr,
2095 long msgid,
2096 struct kernel_ipmi_msg *msg,
2097 void *user_msg_data,
2098 void *supplied_smi,
2099 struct ipmi_recv_msg *supplied_recv,
2100 int priority,
2101 unsigned char source_address,
2102 unsigned char source_lun,
2103 int retries,
2104 unsigned int retry_time_ms)
2106 struct ipmi_smi_msg *smi_msg;
2107 struct ipmi_recv_msg *recv_msg;
2108 int rv = 0;
2110 if (supplied_recv)
2111 recv_msg = supplied_recv;
2112 else {
2113 recv_msg = ipmi_alloc_recv_msg();
2114 if (recv_msg == NULL) {
2115 rv = -ENOMEM;
2116 goto out;
2119 recv_msg->user_msg_data = user_msg_data;
2121 if (supplied_smi)
2122 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2123 else {
2124 smi_msg = ipmi_alloc_smi_msg();
2125 if (smi_msg == NULL) {
2126 ipmi_free_recv_msg(recv_msg);
2127 rv = -ENOMEM;
2128 goto out;
2132 rcu_read_lock();
2133 if (intf->in_shutdown) {
2134 rv = -ENODEV;
2135 goto out_err;
2138 recv_msg->user = user;
2139 if (user)
2140 /* The put happens when the message is freed. */
2141 kref_get(&user->refcount);
2142 recv_msg->msgid = msgid;
2144 * Store the message to send in the receive message so timeout
2145 * responses can get the proper response data.
2147 recv_msg->msg = *msg;
2149 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2150 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2151 recv_msg, retries, retry_time_ms);
2152 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2153 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2154 source_address, source_lun,
2155 retries, retry_time_ms);
2156 } else if (is_lan_addr(addr)) {
2157 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2158 source_lun, retries, retry_time_ms);
2159 } else {
2160 /* Unknown address type. */
2161 ipmi_inc_stat(intf, sent_invalid_commands);
2162 rv = -EINVAL;
2165 if (rv) {
2166 out_err:
2167 ipmi_free_smi_msg(smi_msg);
2168 ipmi_free_recv_msg(recv_msg);
2169 } else {
2170 ipmi_debug_msg("Send", smi_msg->data, smi_msg->data_size);
2172 smi_send(intf, intf->handlers, smi_msg, priority);
2174 rcu_read_unlock();
2176 out:
2177 return rv;
2180 static int check_addr(struct ipmi_smi *intf,
2181 struct ipmi_addr *addr,
2182 unsigned char *saddr,
2183 unsigned char *lun)
2185 if (addr->channel >= IPMI_MAX_CHANNELS)
2186 return -EINVAL;
2187 *lun = intf->addrinfo[addr->channel].lun;
2188 *saddr = intf->addrinfo[addr->channel].address;
2189 return 0;
2192 int ipmi_request_settime(struct ipmi_user *user,
2193 struct ipmi_addr *addr,
2194 long msgid,
2195 struct kernel_ipmi_msg *msg,
2196 void *user_msg_data,
2197 int priority,
2198 int retries,
2199 unsigned int retry_time_ms)
2201 unsigned char saddr = 0, lun = 0;
2202 int rv, index;
2204 if (!user)
2205 return -EINVAL;
2207 user = acquire_ipmi_user(user, &index);
2208 if (!user)
2209 return -ENODEV;
2211 rv = check_addr(user->intf, addr, &saddr, &lun);
2212 if (!rv)
2213 rv = i_ipmi_request(user,
2214 user->intf,
2215 addr,
2216 msgid,
2217 msg,
2218 user_msg_data,
2219 NULL, NULL,
2220 priority,
2221 saddr,
2222 lun,
2223 retries,
2224 retry_time_ms);
2226 release_ipmi_user(user, index);
2227 return rv;
2229 EXPORT_SYMBOL(ipmi_request_settime);
2231 int ipmi_request_supply_msgs(struct ipmi_user *user,
2232 struct ipmi_addr *addr,
2233 long msgid,
2234 struct kernel_ipmi_msg *msg,
2235 void *user_msg_data,
2236 void *supplied_smi,
2237 struct ipmi_recv_msg *supplied_recv,
2238 int priority)
2240 unsigned char saddr = 0, lun = 0;
2241 int rv, index;
2243 if (!user)
2244 return -EINVAL;
2246 user = acquire_ipmi_user(user, &index);
2247 if (!user)
2248 return -ENODEV;
2250 rv = check_addr(user->intf, addr, &saddr, &lun);
2251 if (!rv)
2252 rv = i_ipmi_request(user,
2253 user->intf,
2254 addr,
2255 msgid,
2256 msg,
2257 user_msg_data,
2258 supplied_smi,
2259 supplied_recv,
2260 priority,
2261 saddr,
2262 lun,
2263 -1, 0);
2265 release_ipmi_user(user, index);
2266 return rv;
2268 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2270 static void bmc_device_id_handler(struct ipmi_smi *intf,
2271 struct ipmi_recv_msg *msg)
2273 int rv;
2275 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2276 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2277 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2278 dev_warn(intf->si_dev,
2279 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2280 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2281 return;
2284 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2285 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2286 if (rv) {
2287 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2288 intf->bmc->dyn_id_set = 0;
2289 } else {
2291 * Make sure the id data is available before setting
2292 * dyn_id_set.
2294 smp_wmb();
2295 intf->bmc->dyn_id_set = 1;
2298 wake_up(&intf->waitq);
2301 static int
2302 send_get_device_id_cmd(struct ipmi_smi *intf)
2304 struct ipmi_system_interface_addr si;
2305 struct kernel_ipmi_msg msg;
2307 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2308 si.channel = IPMI_BMC_CHANNEL;
2309 si.lun = 0;
2311 msg.netfn = IPMI_NETFN_APP_REQUEST;
2312 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2313 msg.data = NULL;
2314 msg.data_len = 0;
2316 return i_ipmi_request(NULL,
2317 intf,
2318 (struct ipmi_addr *) &si,
2320 &msg,
2321 intf,
2322 NULL,
2323 NULL,
2325 intf->addrinfo[0].address,
2326 intf->addrinfo[0].lun,
2327 -1, 0);
2330 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2332 int rv;
2334 bmc->dyn_id_set = 2;
2336 intf->null_user_handler = bmc_device_id_handler;
2338 rv = send_get_device_id_cmd(intf);
2339 if (rv)
2340 return rv;
2342 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2344 if (!bmc->dyn_id_set)
2345 rv = -EIO; /* Something went wrong in the fetch. */
2347 /* dyn_id_set makes the id data available. */
2348 smp_rmb();
2350 intf->null_user_handler = NULL;
2352 return rv;
2356 * Fetch the device id for the bmc/interface. You must pass in either
2357 * bmc or intf, this code will get the other one. If the data has
2358 * been recently fetched, this will just use the cached data. Otherwise
2359 * it will run a new fetch.
2361 * Except for the first time this is called (in ipmi_register_smi()),
2362 * this will always return good data;
2364 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2365 struct ipmi_device_id *id,
2366 bool *guid_set, guid_t *guid, int intf_num)
2368 int rv = 0;
2369 int prev_dyn_id_set, prev_guid_set;
2370 bool intf_set = intf != NULL;
2372 if (!intf) {
2373 mutex_lock(&bmc->dyn_mutex);
2374 retry_bmc_lock:
2375 if (list_empty(&bmc->intfs)) {
2376 mutex_unlock(&bmc->dyn_mutex);
2377 return -ENOENT;
2379 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2380 bmc_link);
2381 kref_get(&intf->refcount);
2382 mutex_unlock(&bmc->dyn_mutex);
2383 mutex_lock(&intf->bmc_reg_mutex);
2384 mutex_lock(&bmc->dyn_mutex);
2385 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2386 bmc_link)) {
2387 mutex_unlock(&intf->bmc_reg_mutex);
2388 kref_put(&intf->refcount, intf_free);
2389 goto retry_bmc_lock;
2391 } else {
2392 mutex_lock(&intf->bmc_reg_mutex);
2393 bmc = intf->bmc;
2394 mutex_lock(&bmc->dyn_mutex);
2395 kref_get(&intf->refcount);
2398 /* If we have a valid and current ID, just return that. */
2399 if (intf->in_bmc_register ||
2400 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2401 goto out_noprocessing;
2403 prev_guid_set = bmc->dyn_guid_set;
2404 __get_guid(intf);
2406 prev_dyn_id_set = bmc->dyn_id_set;
2407 rv = __get_device_id(intf, bmc);
2408 if (rv)
2409 goto out;
2412 * The guid, device id, manufacturer id, and product id should
2413 * not change on a BMC. If it does we have to do some dancing.
2415 if (!intf->bmc_registered
2416 || (!prev_guid_set && bmc->dyn_guid_set)
2417 || (!prev_dyn_id_set && bmc->dyn_id_set)
2418 || (prev_guid_set && bmc->dyn_guid_set
2419 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2420 || bmc->id.device_id != bmc->fetch_id.device_id
2421 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2422 || bmc->id.product_id != bmc->fetch_id.product_id) {
2423 struct ipmi_device_id id = bmc->fetch_id;
2424 int guid_set = bmc->dyn_guid_set;
2425 guid_t guid;
2427 guid = bmc->fetch_guid;
2428 mutex_unlock(&bmc->dyn_mutex);
2430 __ipmi_bmc_unregister(intf);
2431 /* Fill in the temporary BMC for good measure. */
2432 intf->bmc->id = id;
2433 intf->bmc->dyn_guid_set = guid_set;
2434 intf->bmc->guid = guid;
2435 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2436 need_waiter(intf); /* Retry later on an error. */
2437 else
2438 __scan_channels(intf, &id);
2441 if (!intf_set) {
2443 * We weren't given the interface on the
2444 * command line, so restart the operation on
2445 * the next interface for the BMC.
2447 mutex_unlock(&intf->bmc_reg_mutex);
2448 mutex_lock(&bmc->dyn_mutex);
2449 goto retry_bmc_lock;
2452 /* We have a new BMC, set it up. */
2453 bmc = intf->bmc;
2454 mutex_lock(&bmc->dyn_mutex);
2455 goto out_noprocessing;
2456 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2457 /* Version info changes, scan the channels again. */
2458 __scan_channels(intf, &bmc->fetch_id);
2460 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2462 out:
2463 if (rv && prev_dyn_id_set) {
2464 rv = 0; /* Ignore failures if we have previous data. */
2465 bmc->dyn_id_set = prev_dyn_id_set;
2467 if (!rv) {
2468 bmc->id = bmc->fetch_id;
2469 if (bmc->dyn_guid_set)
2470 bmc->guid = bmc->fetch_guid;
2471 else if (prev_guid_set)
2473 * The guid used to be valid and it failed to fetch,
2474 * just use the cached value.
2476 bmc->dyn_guid_set = prev_guid_set;
2478 out_noprocessing:
2479 if (!rv) {
2480 if (id)
2481 *id = bmc->id;
2483 if (guid_set)
2484 *guid_set = bmc->dyn_guid_set;
2486 if (guid && bmc->dyn_guid_set)
2487 *guid = bmc->guid;
2490 mutex_unlock(&bmc->dyn_mutex);
2491 mutex_unlock(&intf->bmc_reg_mutex);
2493 kref_put(&intf->refcount, intf_free);
2494 return rv;
2497 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2498 struct ipmi_device_id *id,
2499 bool *guid_set, guid_t *guid)
2501 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2504 static ssize_t device_id_show(struct device *dev,
2505 struct device_attribute *attr,
2506 char *buf)
2508 struct bmc_device *bmc = to_bmc_device(dev);
2509 struct ipmi_device_id id;
2510 int rv;
2512 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2513 if (rv)
2514 return rv;
2516 return snprintf(buf, 10, "%u\n", id.device_id);
2518 static DEVICE_ATTR_RO(device_id);
2520 static ssize_t provides_device_sdrs_show(struct device *dev,
2521 struct device_attribute *attr,
2522 char *buf)
2524 struct bmc_device *bmc = to_bmc_device(dev);
2525 struct ipmi_device_id id;
2526 int rv;
2528 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2529 if (rv)
2530 return rv;
2532 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2534 static DEVICE_ATTR_RO(provides_device_sdrs);
2536 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2537 char *buf)
2539 struct bmc_device *bmc = to_bmc_device(dev);
2540 struct ipmi_device_id id;
2541 int rv;
2543 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2544 if (rv)
2545 return rv;
2547 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2549 static DEVICE_ATTR_RO(revision);
2551 static ssize_t firmware_revision_show(struct device *dev,
2552 struct device_attribute *attr,
2553 char *buf)
2555 struct bmc_device *bmc = to_bmc_device(dev);
2556 struct ipmi_device_id id;
2557 int rv;
2559 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2560 if (rv)
2561 return rv;
2563 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2564 id.firmware_revision_2);
2566 static DEVICE_ATTR_RO(firmware_revision);
2568 static ssize_t ipmi_version_show(struct device *dev,
2569 struct device_attribute *attr,
2570 char *buf)
2572 struct bmc_device *bmc = to_bmc_device(dev);
2573 struct ipmi_device_id id;
2574 int rv;
2576 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2577 if (rv)
2578 return rv;
2580 return snprintf(buf, 20, "%u.%u\n",
2581 ipmi_version_major(&id),
2582 ipmi_version_minor(&id));
2584 static DEVICE_ATTR_RO(ipmi_version);
2586 static ssize_t add_dev_support_show(struct device *dev,
2587 struct device_attribute *attr,
2588 char *buf)
2590 struct bmc_device *bmc = to_bmc_device(dev);
2591 struct ipmi_device_id id;
2592 int rv;
2594 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2595 if (rv)
2596 return rv;
2598 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2600 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2601 NULL);
2603 static ssize_t manufacturer_id_show(struct device *dev,
2604 struct device_attribute *attr,
2605 char *buf)
2607 struct bmc_device *bmc = to_bmc_device(dev);
2608 struct ipmi_device_id id;
2609 int rv;
2611 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2612 if (rv)
2613 return rv;
2615 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2617 static DEVICE_ATTR_RO(manufacturer_id);
2619 static ssize_t product_id_show(struct device *dev,
2620 struct device_attribute *attr,
2621 char *buf)
2623 struct bmc_device *bmc = to_bmc_device(dev);
2624 struct ipmi_device_id id;
2625 int rv;
2627 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2628 if (rv)
2629 return rv;
2631 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2633 static DEVICE_ATTR_RO(product_id);
2635 static ssize_t aux_firmware_rev_show(struct device *dev,
2636 struct device_attribute *attr,
2637 char *buf)
2639 struct bmc_device *bmc = to_bmc_device(dev);
2640 struct ipmi_device_id id;
2641 int rv;
2643 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2644 if (rv)
2645 return rv;
2647 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2648 id.aux_firmware_revision[3],
2649 id.aux_firmware_revision[2],
2650 id.aux_firmware_revision[1],
2651 id.aux_firmware_revision[0]);
2653 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2655 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2656 char *buf)
2658 struct bmc_device *bmc = to_bmc_device(dev);
2659 bool guid_set;
2660 guid_t guid;
2661 int rv;
2663 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2664 if (rv)
2665 return rv;
2666 if (!guid_set)
2667 return -ENOENT;
2669 return snprintf(buf, 38, "%pUl\n", guid.b);
2671 static DEVICE_ATTR_RO(guid);
2673 static struct attribute *bmc_dev_attrs[] = {
2674 &dev_attr_device_id.attr,
2675 &dev_attr_provides_device_sdrs.attr,
2676 &dev_attr_revision.attr,
2677 &dev_attr_firmware_revision.attr,
2678 &dev_attr_ipmi_version.attr,
2679 &dev_attr_additional_device_support.attr,
2680 &dev_attr_manufacturer_id.attr,
2681 &dev_attr_product_id.attr,
2682 &dev_attr_aux_firmware_revision.attr,
2683 &dev_attr_guid.attr,
2684 NULL
2687 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2688 struct attribute *attr, int idx)
2690 struct device *dev = kobj_to_dev(kobj);
2691 struct bmc_device *bmc = to_bmc_device(dev);
2692 umode_t mode = attr->mode;
2693 int rv;
2695 if (attr == &dev_attr_aux_firmware_revision.attr) {
2696 struct ipmi_device_id id;
2698 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2699 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2701 if (attr == &dev_attr_guid.attr) {
2702 bool guid_set;
2704 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2705 return (!rv && guid_set) ? mode : 0;
2707 return mode;
2710 static const struct attribute_group bmc_dev_attr_group = {
2711 .attrs = bmc_dev_attrs,
2712 .is_visible = bmc_dev_attr_is_visible,
2715 static const struct attribute_group *bmc_dev_attr_groups[] = {
2716 &bmc_dev_attr_group,
2717 NULL
2720 static const struct device_type bmc_device_type = {
2721 .groups = bmc_dev_attr_groups,
2724 static int __find_bmc_guid(struct device *dev, void *data)
2726 guid_t *guid = data;
2727 struct bmc_device *bmc;
2728 int rv;
2730 if (dev->type != &bmc_device_type)
2731 return 0;
2733 bmc = to_bmc_device(dev);
2734 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2735 if (rv)
2736 rv = kref_get_unless_zero(&bmc->usecount);
2737 return rv;
2741 * Returns with the bmc's usecount incremented, if it is non-NULL.
2743 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2744 guid_t *guid)
2746 struct device *dev;
2747 struct bmc_device *bmc = NULL;
2749 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2750 if (dev) {
2751 bmc = to_bmc_device(dev);
2752 put_device(dev);
2754 return bmc;
2757 struct prod_dev_id {
2758 unsigned int product_id;
2759 unsigned char device_id;
2762 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2764 struct prod_dev_id *cid = data;
2765 struct bmc_device *bmc;
2766 int rv;
2768 if (dev->type != &bmc_device_type)
2769 return 0;
2771 bmc = to_bmc_device(dev);
2772 rv = (bmc->id.product_id == cid->product_id
2773 && bmc->id.device_id == cid->device_id);
2774 if (rv)
2775 rv = kref_get_unless_zero(&bmc->usecount);
2776 return rv;
2780 * Returns with the bmc's usecount incremented, if it is non-NULL.
2782 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2783 struct device_driver *drv,
2784 unsigned int product_id, unsigned char device_id)
2786 struct prod_dev_id id = {
2787 .product_id = product_id,
2788 .device_id = device_id,
2790 struct device *dev;
2791 struct bmc_device *bmc = NULL;
2793 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2794 if (dev) {
2795 bmc = to_bmc_device(dev);
2796 put_device(dev);
2798 return bmc;
2801 static DEFINE_IDA(ipmi_bmc_ida);
2803 static void
2804 release_bmc_device(struct device *dev)
2806 kfree(to_bmc_device(dev));
2809 static void cleanup_bmc_work(struct work_struct *work)
2811 struct bmc_device *bmc = container_of(work, struct bmc_device,
2812 remove_work);
2813 int id = bmc->pdev.id; /* Unregister overwrites id */
2815 platform_device_unregister(&bmc->pdev);
2816 ida_simple_remove(&ipmi_bmc_ida, id);
2819 static void
2820 cleanup_bmc_device(struct kref *ref)
2822 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2825 * Remove the platform device in a work queue to avoid issues
2826 * with removing the device attributes while reading a device
2827 * attribute.
2829 schedule_work(&bmc->remove_work);
2833 * Must be called with intf->bmc_reg_mutex held.
2835 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2837 struct bmc_device *bmc = intf->bmc;
2839 if (!intf->bmc_registered)
2840 return;
2842 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2843 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2844 kfree(intf->my_dev_name);
2845 intf->my_dev_name = NULL;
2847 mutex_lock(&bmc->dyn_mutex);
2848 list_del(&intf->bmc_link);
2849 mutex_unlock(&bmc->dyn_mutex);
2850 intf->bmc = &intf->tmp_bmc;
2851 kref_put(&bmc->usecount, cleanup_bmc_device);
2852 intf->bmc_registered = false;
2855 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2857 mutex_lock(&intf->bmc_reg_mutex);
2858 __ipmi_bmc_unregister(intf);
2859 mutex_unlock(&intf->bmc_reg_mutex);
2863 * Must be called with intf->bmc_reg_mutex held.
2865 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2866 struct ipmi_device_id *id,
2867 bool guid_set, guid_t *guid, int intf_num)
2869 int rv;
2870 struct bmc_device *bmc;
2871 struct bmc_device *old_bmc;
2874 * platform_device_register() can cause bmc_reg_mutex to
2875 * be claimed because of the is_visible functions of
2876 * the attributes. Eliminate possible recursion and
2877 * release the lock.
2879 intf->in_bmc_register = true;
2880 mutex_unlock(&intf->bmc_reg_mutex);
2883 * Try to find if there is an bmc_device struct
2884 * representing the interfaced BMC already
2886 mutex_lock(&ipmidriver_mutex);
2887 if (guid_set)
2888 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2889 else
2890 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2891 id->product_id,
2892 id->device_id);
2895 * If there is already an bmc_device, free the new one,
2896 * otherwise register the new BMC device
2898 if (old_bmc) {
2899 bmc = old_bmc;
2901 * Note: old_bmc already has usecount incremented by
2902 * the BMC find functions.
2904 intf->bmc = old_bmc;
2905 mutex_lock(&bmc->dyn_mutex);
2906 list_add_tail(&intf->bmc_link, &bmc->intfs);
2907 mutex_unlock(&bmc->dyn_mutex);
2909 dev_info(intf->si_dev,
2910 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2911 bmc->id.manufacturer_id,
2912 bmc->id.product_id,
2913 bmc->id.device_id);
2914 } else {
2915 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
2916 if (!bmc) {
2917 rv = -ENOMEM;
2918 goto out;
2920 INIT_LIST_HEAD(&bmc->intfs);
2921 mutex_init(&bmc->dyn_mutex);
2922 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
2924 bmc->id = *id;
2925 bmc->dyn_id_set = 1;
2926 bmc->dyn_guid_set = guid_set;
2927 bmc->guid = *guid;
2928 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2930 bmc->pdev.name = "ipmi_bmc";
2932 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
2933 if (rv < 0)
2934 goto out;
2935 bmc->pdev.dev.driver = &ipmidriver.driver;
2936 bmc->pdev.id = rv;
2937 bmc->pdev.dev.release = release_bmc_device;
2938 bmc->pdev.dev.type = &bmc_device_type;
2939 kref_init(&bmc->usecount);
2941 intf->bmc = bmc;
2942 mutex_lock(&bmc->dyn_mutex);
2943 list_add_tail(&intf->bmc_link, &bmc->intfs);
2944 mutex_unlock(&bmc->dyn_mutex);
2946 rv = platform_device_register(&bmc->pdev);
2947 if (rv) {
2948 dev_err(intf->si_dev,
2949 "Unable to register bmc device: %d\n",
2950 rv);
2951 goto out_list_del;
2954 dev_info(intf->si_dev,
2955 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2956 bmc->id.manufacturer_id,
2957 bmc->id.product_id,
2958 bmc->id.device_id);
2962 * create symlink from system interface device to bmc device
2963 * and back.
2965 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2966 if (rv) {
2967 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
2968 goto out_put_bmc;
2971 if (intf_num == -1)
2972 intf_num = intf->intf_num;
2973 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
2974 if (!intf->my_dev_name) {
2975 rv = -ENOMEM;
2976 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
2977 rv);
2978 goto out_unlink1;
2981 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2982 intf->my_dev_name);
2983 if (rv) {
2984 kfree(intf->my_dev_name);
2985 intf->my_dev_name = NULL;
2986 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
2987 rv);
2988 goto out_free_my_dev_name;
2991 intf->bmc_registered = true;
2993 out:
2994 mutex_unlock(&ipmidriver_mutex);
2995 mutex_lock(&intf->bmc_reg_mutex);
2996 intf->in_bmc_register = false;
2997 return rv;
3000 out_free_my_dev_name:
3001 kfree(intf->my_dev_name);
3002 intf->my_dev_name = NULL;
3004 out_unlink1:
3005 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3007 out_put_bmc:
3008 mutex_lock(&bmc->dyn_mutex);
3009 list_del(&intf->bmc_link);
3010 mutex_unlock(&bmc->dyn_mutex);
3011 intf->bmc = &intf->tmp_bmc;
3012 kref_put(&bmc->usecount, cleanup_bmc_device);
3013 goto out;
3015 out_list_del:
3016 mutex_lock(&bmc->dyn_mutex);
3017 list_del(&intf->bmc_link);
3018 mutex_unlock(&bmc->dyn_mutex);
3019 intf->bmc = &intf->tmp_bmc;
3020 put_device(&bmc->pdev.dev);
3021 goto out;
3024 static int
3025 send_guid_cmd(struct ipmi_smi *intf, int chan)
3027 struct kernel_ipmi_msg msg;
3028 struct ipmi_system_interface_addr si;
3030 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3031 si.channel = IPMI_BMC_CHANNEL;
3032 si.lun = 0;
3034 msg.netfn = IPMI_NETFN_APP_REQUEST;
3035 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3036 msg.data = NULL;
3037 msg.data_len = 0;
3038 return i_ipmi_request(NULL,
3039 intf,
3040 (struct ipmi_addr *) &si,
3042 &msg,
3043 intf,
3044 NULL,
3045 NULL,
3047 intf->addrinfo[0].address,
3048 intf->addrinfo[0].lun,
3049 -1, 0);
3052 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3054 struct bmc_device *bmc = intf->bmc;
3056 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3057 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3058 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3059 /* Not for me */
3060 return;
3062 if (msg->msg.data[0] != 0) {
3063 /* Error from getting the GUID, the BMC doesn't have one. */
3064 bmc->dyn_guid_set = 0;
3065 goto out;
3068 if (msg->msg.data_len < 17) {
3069 bmc->dyn_guid_set = 0;
3070 dev_warn(intf->si_dev,
3071 "The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n",
3072 msg->msg.data_len);
3073 goto out;
3076 memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
3078 * Make sure the guid data is available before setting
3079 * dyn_guid_set.
3081 smp_wmb();
3082 bmc->dyn_guid_set = 1;
3083 out:
3084 wake_up(&intf->waitq);
3087 static void __get_guid(struct ipmi_smi *intf)
3089 int rv;
3090 struct bmc_device *bmc = intf->bmc;
3092 bmc->dyn_guid_set = 2;
3093 intf->null_user_handler = guid_handler;
3094 rv = send_guid_cmd(intf, 0);
3095 if (rv)
3096 /* Send failed, no GUID available. */
3097 bmc->dyn_guid_set = 0;
3099 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3101 /* dyn_guid_set makes the guid data available. */
3102 smp_rmb();
3104 intf->null_user_handler = NULL;
3107 static int
3108 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3110 struct kernel_ipmi_msg msg;
3111 unsigned char data[1];
3112 struct ipmi_system_interface_addr si;
3114 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3115 si.channel = IPMI_BMC_CHANNEL;
3116 si.lun = 0;
3118 msg.netfn = IPMI_NETFN_APP_REQUEST;
3119 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3120 msg.data = data;
3121 msg.data_len = 1;
3122 data[0] = chan;
3123 return i_ipmi_request(NULL,
3124 intf,
3125 (struct ipmi_addr *) &si,
3127 &msg,
3128 intf,
3129 NULL,
3130 NULL,
3132 intf->addrinfo[0].address,
3133 intf->addrinfo[0].lun,
3134 -1, 0);
3137 static void
3138 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3140 int rv = 0;
3141 int ch;
3142 unsigned int set = intf->curr_working_cset;
3143 struct ipmi_channel *chans;
3145 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3146 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3147 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3148 /* It's the one we want */
3149 if (msg->msg.data[0] != 0) {
3150 /* Got an error from the channel, just go on. */
3152 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3154 * If the MC does not support this
3155 * command, that is legal. We just
3156 * assume it has one IPMB at channel
3157 * zero.
3159 intf->wchannels[set].c[0].medium
3160 = IPMI_CHANNEL_MEDIUM_IPMB;
3161 intf->wchannels[set].c[0].protocol
3162 = IPMI_CHANNEL_PROTOCOL_IPMB;
3164 intf->channel_list = intf->wchannels + set;
3165 intf->channels_ready = true;
3166 wake_up(&intf->waitq);
3167 goto out;
3169 goto next_channel;
3171 if (msg->msg.data_len < 4) {
3172 /* Message not big enough, just go on. */
3173 goto next_channel;
3175 ch = intf->curr_channel;
3176 chans = intf->wchannels[set].c;
3177 chans[ch].medium = msg->msg.data[2] & 0x7f;
3178 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3180 next_channel:
3181 intf->curr_channel++;
3182 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3183 intf->channel_list = intf->wchannels + set;
3184 intf->channels_ready = true;
3185 wake_up(&intf->waitq);
3186 } else {
3187 intf->channel_list = intf->wchannels + set;
3188 intf->channels_ready = true;
3189 rv = send_channel_info_cmd(intf, intf->curr_channel);
3192 if (rv) {
3193 /* Got an error somehow, just give up. */
3194 dev_warn(intf->si_dev,
3195 "Error sending channel information for channel %d: %d\n",
3196 intf->curr_channel, rv);
3198 intf->channel_list = intf->wchannels + set;
3199 intf->channels_ready = true;
3200 wake_up(&intf->waitq);
3203 out:
3204 return;
3208 * Must be holding intf->bmc_reg_mutex to call this.
3210 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3212 int rv;
3214 if (ipmi_version_major(id) > 1
3215 || (ipmi_version_major(id) == 1
3216 && ipmi_version_minor(id) >= 5)) {
3217 unsigned int set;
3220 * Start scanning the channels to see what is
3221 * available.
3223 set = !intf->curr_working_cset;
3224 intf->curr_working_cset = set;
3225 memset(&intf->wchannels[set], 0,
3226 sizeof(struct ipmi_channel_set));
3228 intf->null_user_handler = channel_handler;
3229 intf->curr_channel = 0;
3230 rv = send_channel_info_cmd(intf, 0);
3231 if (rv) {
3232 dev_warn(intf->si_dev,
3233 "Error sending channel information for channel 0, %d\n",
3234 rv);
3235 return -EIO;
3238 /* Wait for the channel info to be read. */
3239 wait_event(intf->waitq, intf->channels_ready);
3240 intf->null_user_handler = NULL;
3241 } else {
3242 unsigned int set = intf->curr_working_cset;
3244 /* Assume a single IPMB channel at zero. */
3245 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3246 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3247 intf->channel_list = intf->wchannels + set;
3248 intf->channels_ready = true;
3251 return 0;
3254 static void ipmi_poll(struct ipmi_smi *intf)
3256 if (intf->handlers->poll)
3257 intf->handlers->poll(intf->send_info);
3258 /* In case something came in */
3259 handle_new_recv_msgs(intf);
3262 void ipmi_poll_interface(struct ipmi_user *user)
3264 ipmi_poll(user->intf);
3266 EXPORT_SYMBOL(ipmi_poll_interface);
3268 static void redo_bmc_reg(struct work_struct *work)
3270 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3271 bmc_reg_work);
3273 if (!intf->in_shutdown)
3274 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3276 kref_put(&intf->refcount, intf_free);
3279 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
3280 void *send_info,
3281 struct device *si_dev,
3282 unsigned char slave_addr)
3284 int i, j;
3285 int rv;
3286 struct ipmi_smi *intf, *tintf;
3287 struct list_head *link;
3288 struct ipmi_device_id id;
3291 * Make sure the driver is actually initialized, this handles
3292 * problems with initialization order.
3294 if (!initialized) {
3295 rv = ipmi_init_msghandler();
3296 if (rv)
3297 return rv;
3299 * The init code doesn't return an error if it was turned
3300 * off, but it won't initialize. Check that.
3302 if (!initialized)
3303 return -ENODEV;
3306 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3307 if (!intf)
3308 return -ENOMEM;
3310 rv = init_srcu_struct(&intf->users_srcu);
3311 if (rv) {
3312 kfree(intf);
3313 return rv;
3317 intf->bmc = &intf->tmp_bmc;
3318 INIT_LIST_HEAD(&intf->bmc->intfs);
3319 mutex_init(&intf->bmc->dyn_mutex);
3320 INIT_LIST_HEAD(&intf->bmc_link);
3321 mutex_init(&intf->bmc_reg_mutex);
3322 intf->intf_num = -1; /* Mark it invalid for now. */
3323 kref_init(&intf->refcount);
3324 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3325 intf->si_dev = si_dev;
3326 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3327 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3328 intf->addrinfo[j].lun = 2;
3330 if (slave_addr != 0)
3331 intf->addrinfo[0].address = slave_addr;
3332 INIT_LIST_HEAD(&intf->users);
3333 intf->handlers = handlers;
3334 intf->send_info = send_info;
3335 spin_lock_init(&intf->seq_lock);
3336 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3337 intf->seq_table[j].inuse = 0;
3338 intf->seq_table[j].seqid = 0;
3340 intf->curr_seq = 0;
3341 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3342 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3343 tasklet_init(&intf->recv_tasklet,
3344 smi_recv_tasklet,
3345 (unsigned long) intf);
3346 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3347 spin_lock_init(&intf->xmit_msgs_lock);
3348 INIT_LIST_HEAD(&intf->xmit_msgs);
3349 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3350 spin_lock_init(&intf->events_lock);
3351 atomic_set(&intf->event_waiters, 0);
3352 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3353 INIT_LIST_HEAD(&intf->waiting_events);
3354 intf->waiting_events_count = 0;
3355 mutex_init(&intf->cmd_rcvrs_mutex);
3356 spin_lock_init(&intf->maintenance_mode_lock);
3357 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3358 init_waitqueue_head(&intf->waitq);
3359 for (i = 0; i < IPMI_NUM_STATS; i++)
3360 atomic_set(&intf->stats[i], 0);
3362 mutex_lock(&ipmi_interfaces_mutex);
3363 /* Look for a hole in the numbers. */
3364 i = 0;
3365 link = &ipmi_interfaces;
3366 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3367 if (tintf->intf_num != i) {
3368 link = &tintf->link;
3369 break;
3371 i++;
3373 /* Add the new interface in numeric order. */
3374 if (i == 0)
3375 list_add_rcu(&intf->link, &ipmi_interfaces);
3376 else
3377 list_add_tail_rcu(&intf->link, link);
3379 rv = handlers->start_processing(send_info, intf);
3380 if (rv)
3381 goto out_err;
3383 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3384 if (rv) {
3385 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3386 goto out_err_started;
3389 mutex_lock(&intf->bmc_reg_mutex);
3390 rv = __scan_channels(intf, &id);
3391 mutex_unlock(&intf->bmc_reg_mutex);
3392 if (rv)
3393 goto out_err_bmc_reg;
3396 * Keep memory order straight for RCU readers. Make
3397 * sure everything else is committed to memory before
3398 * setting intf_num to mark the interface valid.
3400 smp_wmb();
3401 intf->intf_num = i;
3402 mutex_unlock(&ipmi_interfaces_mutex);
3404 /* After this point the interface is legal to use. */
3405 call_smi_watchers(i, intf->si_dev);
3407 return 0;
3409 out_err_bmc_reg:
3410 ipmi_bmc_unregister(intf);
3411 out_err_started:
3412 if (intf->handlers->shutdown)
3413 intf->handlers->shutdown(intf->send_info);
3414 out_err:
3415 list_del_rcu(&intf->link);
3416 mutex_unlock(&ipmi_interfaces_mutex);
3417 synchronize_srcu(&ipmi_interfaces_srcu);
3418 cleanup_srcu_struct(&intf->users_srcu);
3419 kref_put(&intf->refcount, intf_free);
3421 return rv;
3423 EXPORT_SYMBOL(ipmi_register_smi);
3425 static void deliver_smi_err_response(struct ipmi_smi *intf,
3426 struct ipmi_smi_msg *msg,
3427 unsigned char err)
3429 msg->rsp[0] = msg->data[0] | 4;
3430 msg->rsp[1] = msg->data[1];
3431 msg->rsp[2] = err;
3432 msg->rsp_size = 3;
3433 /* It's an error, so it will never requeue, no need to check return. */
3434 handle_one_recv_msg(intf, msg);
3437 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3439 int i;
3440 struct seq_table *ent;
3441 struct ipmi_smi_msg *msg;
3442 struct list_head *entry;
3443 struct list_head tmplist;
3445 /* Clear out our transmit queues and hold the messages. */
3446 INIT_LIST_HEAD(&tmplist);
3447 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3448 list_splice_tail(&intf->xmit_msgs, &tmplist);
3450 /* Current message first, to preserve order */
3451 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3452 /* Wait for the message to clear out. */
3453 schedule_timeout(1);
3456 /* No need for locks, the interface is down. */
3459 * Return errors for all pending messages in queue and in the
3460 * tables waiting for remote responses.
3462 while (!list_empty(&tmplist)) {
3463 entry = tmplist.next;
3464 list_del(entry);
3465 msg = list_entry(entry, struct ipmi_smi_msg, link);
3466 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3469 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3470 ent = &intf->seq_table[i];
3471 if (!ent->inuse)
3472 continue;
3473 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3477 void ipmi_unregister_smi(struct ipmi_smi *intf)
3479 struct ipmi_smi_watcher *w;
3480 int intf_num = intf->intf_num, index;
3482 mutex_lock(&ipmi_interfaces_mutex);
3483 intf->intf_num = -1;
3484 intf->in_shutdown = true;
3485 list_del_rcu(&intf->link);
3486 mutex_unlock(&ipmi_interfaces_mutex);
3487 synchronize_srcu(&ipmi_interfaces_srcu);
3489 /* At this point no users can be added to the interface. */
3492 * Call all the watcher interfaces to tell them that
3493 * an interface is going away.
3495 mutex_lock(&smi_watchers_mutex);
3496 list_for_each_entry(w, &smi_watchers, link)
3497 w->smi_gone(intf_num);
3498 mutex_unlock(&smi_watchers_mutex);
3500 index = srcu_read_lock(&intf->users_srcu);
3501 while (!list_empty(&intf->users)) {
3502 struct ipmi_user *user =
3503 container_of(list_next_rcu(&intf->users),
3504 struct ipmi_user, link);
3506 _ipmi_destroy_user(user);
3508 srcu_read_unlock(&intf->users_srcu, index);
3510 if (intf->handlers->shutdown)
3511 intf->handlers->shutdown(intf->send_info);
3513 cleanup_smi_msgs(intf);
3515 ipmi_bmc_unregister(intf);
3517 cleanup_srcu_struct(&intf->users_srcu);
3518 kref_put(&intf->refcount, intf_free);
3520 EXPORT_SYMBOL(ipmi_unregister_smi);
3522 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3523 struct ipmi_smi_msg *msg)
3525 struct ipmi_ipmb_addr ipmb_addr;
3526 struct ipmi_recv_msg *recv_msg;
3529 * This is 11, not 10, because the response must contain a
3530 * completion code.
3532 if (msg->rsp_size < 11) {
3533 /* Message not big enough, just ignore it. */
3534 ipmi_inc_stat(intf, invalid_ipmb_responses);
3535 return 0;
3538 if (msg->rsp[2] != 0) {
3539 /* An error getting the response, just ignore it. */
3540 return 0;
3543 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3544 ipmb_addr.slave_addr = msg->rsp[6];
3545 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3546 ipmb_addr.lun = msg->rsp[7] & 3;
3549 * It's a response from a remote entity. Look up the sequence
3550 * number and handle the response.
3552 if (intf_find_seq(intf,
3553 msg->rsp[7] >> 2,
3554 msg->rsp[3] & 0x0f,
3555 msg->rsp[8],
3556 (msg->rsp[4] >> 2) & (~1),
3557 (struct ipmi_addr *) &ipmb_addr,
3558 &recv_msg)) {
3560 * We were unable to find the sequence number,
3561 * so just nuke the message.
3563 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3564 return 0;
3567 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3569 * The other fields matched, so no need to set them, except
3570 * for netfn, which needs to be the response that was
3571 * returned, not the request value.
3573 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3574 recv_msg->msg.data = recv_msg->msg_data;
3575 recv_msg->msg.data_len = msg->rsp_size - 10;
3576 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3577 if (deliver_response(intf, recv_msg))
3578 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3579 else
3580 ipmi_inc_stat(intf, handled_ipmb_responses);
3582 return 0;
3585 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3586 struct ipmi_smi_msg *msg)
3588 struct cmd_rcvr *rcvr;
3589 int rv = 0;
3590 unsigned char netfn;
3591 unsigned char cmd;
3592 unsigned char chan;
3593 struct ipmi_user *user = NULL;
3594 struct ipmi_ipmb_addr *ipmb_addr;
3595 struct ipmi_recv_msg *recv_msg;
3597 if (msg->rsp_size < 10) {
3598 /* Message not big enough, just ignore it. */
3599 ipmi_inc_stat(intf, invalid_commands);
3600 return 0;
3603 if (msg->rsp[2] != 0) {
3604 /* An error getting the response, just ignore it. */
3605 return 0;
3608 netfn = msg->rsp[4] >> 2;
3609 cmd = msg->rsp[8];
3610 chan = msg->rsp[3] & 0xf;
3612 rcu_read_lock();
3613 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3614 if (rcvr) {
3615 user = rcvr->user;
3616 kref_get(&user->refcount);
3617 } else
3618 user = NULL;
3619 rcu_read_unlock();
3621 if (user == NULL) {
3622 /* We didn't find a user, deliver an error response. */
3623 ipmi_inc_stat(intf, unhandled_commands);
3625 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3626 msg->data[1] = IPMI_SEND_MSG_CMD;
3627 msg->data[2] = msg->rsp[3];
3628 msg->data[3] = msg->rsp[6];
3629 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3630 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3631 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3632 /* rqseq/lun */
3633 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3634 msg->data[8] = msg->rsp[8]; /* cmd */
3635 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3636 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3637 msg->data_size = 11;
3639 ipmi_debug_msg("Invalid command:", msg->data, msg->data_size);
3641 rcu_read_lock();
3642 if (!intf->in_shutdown) {
3643 smi_send(intf, intf->handlers, msg, 0);
3645 * We used the message, so return the value
3646 * that causes it to not be freed or
3647 * queued.
3649 rv = -1;
3651 rcu_read_unlock();
3652 } else {
3653 recv_msg = ipmi_alloc_recv_msg();
3654 if (!recv_msg) {
3656 * We couldn't allocate memory for the
3657 * message, so requeue it for handling
3658 * later.
3660 rv = 1;
3661 kref_put(&user->refcount, free_user);
3662 } else {
3663 /* Extract the source address from the data. */
3664 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3665 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3666 ipmb_addr->slave_addr = msg->rsp[6];
3667 ipmb_addr->lun = msg->rsp[7] & 3;
3668 ipmb_addr->channel = msg->rsp[3] & 0xf;
3671 * Extract the rest of the message information
3672 * from the IPMB header.
3674 recv_msg->user = user;
3675 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3676 recv_msg->msgid = msg->rsp[7] >> 2;
3677 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3678 recv_msg->msg.cmd = msg->rsp[8];
3679 recv_msg->msg.data = recv_msg->msg_data;
3682 * We chop off 10, not 9 bytes because the checksum
3683 * at the end also needs to be removed.
3685 recv_msg->msg.data_len = msg->rsp_size - 10;
3686 memcpy(recv_msg->msg_data, &msg->rsp[9],
3687 msg->rsp_size - 10);
3688 if (deliver_response(intf, recv_msg))
3689 ipmi_inc_stat(intf, unhandled_commands);
3690 else
3691 ipmi_inc_stat(intf, handled_commands);
3695 return rv;
3698 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3699 struct ipmi_smi_msg *msg)
3701 struct ipmi_lan_addr lan_addr;
3702 struct ipmi_recv_msg *recv_msg;
3706 * This is 13, not 12, because the response must contain a
3707 * completion code.
3709 if (msg->rsp_size < 13) {
3710 /* Message not big enough, just ignore it. */
3711 ipmi_inc_stat(intf, invalid_lan_responses);
3712 return 0;
3715 if (msg->rsp[2] != 0) {
3716 /* An error getting the response, just ignore it. */
3717 return 0;
3720 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3721 lan_addr.session_handle = msg->rsp[4];
3722 lan_addr.remote_SWID = msg->rsp[8];
3723 lan_addr.local_SWID = msg->rsp[5];
3724 lan_addr.channel = msg->rsp[3] & 0x0f;
3725 lan_addr.privilege = msg->rsp[3] >> 4;
3726 lan_addr.lun = msg->rsp[9] & 3;
3729 * It's a response from a remote entity. Look up the sequence
3730 * number and handle the response.
3732 if (intf_find_seq(intf,
3733 msg->rsp[9] >> 2,
3734 msg->rsp[3] & 0x0f,
3735 msg->rsp[10],
3736 (msg->rsp[6] >> 2) & (~1),
3737 (struct ipmi_addr *) &lan_addr,
3738 &recv_msg)) {
3740 * We were unable to find the sequence number,
3741 * so just nuke the message.
3743 ipmi_inc_stat(intf, unhandled_lan_responses);
3744 return 0;
3747 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3749 * The other fields matched, so no need to set them, except
3750 * for netfn, which needs to be the response that was
3751 * returned, not the request value.
3753 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3754 recv_msg->msg.data = recv_msg->msg_data;
3755 recv_msg->msg.data_len = msg->rsp_size - 12;
3756 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3757 if (deliver_response(intf, recv_msg))
3758 ipmi_inc_stat(intf, unhandled_lan_responses);
3759 else
3760 ipmi_inc_stat(intf, handled_lan_responses);
3762 return 0;
3765 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3766 struct ipmi_smi_msg *msg)
3768 struct cmd_rcvr *rcvr;
3769 int rv = 0;
3770 unsigned char netfn;
3771 unsigned char cmd;
3772 unsigned char chan;
3773 struct ipmi_user *user = NULL;
3774 struct ipmi_lan_addr *lan_addr;
3775 struct ipmi_recv_msg *recv_msg;
3777 if (msg->rsp_size < 12) {
3778 /* Message not big enough, just ignore it. */
3779 ipmi_inc_stat(intf, invalid_commands);
3780 return 0;
3783 if (msg->rsp[2] != 0) {
3784 /* An error getting the response, just ignore it. */
3785 return 0;
3788 netfn = msg->rsp[6] >> 2;
3789 cmd = msg->rsp[10];
3790 chan = msg->rsp[3] & 0xf;
3792 rcu_read_lock();
3793 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3794 if (rcvr) {
3795 user = rcvr->user;
3796 kref_get(&user->refcount);
3797 } else
3798 user = NULL;
3799 rcu_read_unlock();
3801 if (user == NULL) {
3802 /* We didn't find a user, just give up. */
3803 ipmi_inc_stat(intf, unhandled_commands);
3806 * Don't do anything with these messages, just allow
3807 * them to be freed.
3809 rv = 0;
3810 } else {
3811 recv_msg = ipmi_alloc_recv_msg();
3812 if (!recv_msg) {
3814 * We couldn't allocate memory for the
3815 * message, so requeue it for handling later.
3817 rv = 1;
3818 kref_put(&user->refcount, free_user);
3819 } else {
3820 /* Extract the source address from the data. */
3821 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3822 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3823 lan_addr->session_handle = msg->rsp[4];
3824 lan_addr->remote_SWID = msg->rsp[8];
3825 lan_addr->local_SWID = msg->rsp[5];
3826 lan_addr->lun = msg->rsp[9] & 3;
3827 lan_addr->channel = msg->rsp[3] & 0xf;
3828 lan_addr->privilege = msg->rsp[3] >> 4;
3831 * Extract the rest of the message information
3832 * from the IPMB header.
3834 recv_msg->user = user;
3835 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3836 recv_msg->msgid = msg->rsp[9] >> 2;
3837 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3838 recv_msg->msg.cmd = msg->rsp[10];
3839 recv_msg->msg.data = recv_msg->msg_data;
3842 * We chop off 12, not 11 bytes because the checksum
3843 * at the end also needs to be removed.
3845 recv_msg->msg.data_len = msg->rsp_size - 12;
3846 memcpy(recv_msg->msg_data, &msg->rsp[11],
3847 msg->rsp_size - 12);
3848 if (deliver_response(intf, recv_msg))
3849 ipmi_inc_stat(intf, unhandled_commands);
3850 else
3851 ipmi_inc_stat(intf, handled_commands);
3855 return rv;
3859 * This routine will handle "Get Message" command responses with
3860 * channels that use an OEM Medium. The message format belongs to
3861 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3862 * Chapter 22, sections 22.6 and 22.24 for more details.
3864 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3865 struct ipmi_smi_msg *msg)
3867 struct cmd_rcvr *rcvr;
3868 int rv = 0;
3869 unsigned char netfn;
3870 unsigned char cmd;
3871 unsigned char chan;
3872 struct ipmi_user *user = NULL;
3873 struct ipmi_system_interface_addr *smi_addr;
3874 struct ipmi_recv_msg *recv_msg;
3877 * We expect the OEM SW to perform error checking
3878 * so we just do some basic sanity checks
3880 if (msg->rsp_size < 4) {
3881 /* Message not big enough, just ignore it. */
3882 ipmi_inc_stat(intf, invalid_commands);
3883 return 0;
3886 if (msg->rsp[2] != 0) {
3887 /* An error getting the response, just ignore it. */
3888 return 0;
3892 * This is an OEM Message so the OEM needs to know how
3893 * handle the message. We do no interpretation.
3895 netfn = msg->rsp[0] >> 2;
3896 cmd = msg->rsp[1];
3897 chan = msg->rsp[3] & 0xf;
3899 rcu_read_lock();
3900 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3901 if (rcvr) {
3902 user = rcvr->user;
3903 kref_get(&user->refcount);
3904 } else
3905 user = NULL;
3906 rcu_read_unlock();
3908 if (user == NULL) {
3909 /* We didn't find a user, just give up. */
3910 ipmi_inc_stat(intf, unhandled_commands);
3913 * Don't do anything with these messages, just allow
3914 * them to be freed.
3917 rv = 0;
3918 } else {
3919 recv_msg = ipmi_alloc_recv_msg();
3920 if (!recv_msg) {
3922 * We couldn't allocate memory for the
3923 * message, so requeue it for handling
3924 * later.
3926 rv = 1;
3927 kref_put(&user->refcount, free_user);
3928 } else {
3930 * OEM Messages are expected to be delivered via
3931 * the system interface to SMS software. We might
3932 * need to visit this again depending on OEM
3933 * requirements
3935 smi_addr = ((struct ipmi_system_interface_addr *)
3936 &recv_msg->addr);
3937 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3938 smi_addr->channel = IPMI_BMC_CHANNEL;
3939 smi_addr->lun = msg->rsp[0] & 3;
3941 recv_msg->user = user;
3942 recv_msg->user_msg_data = NULL;
3943 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3944 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3945 recv_msg->msg.cmd = msg->rsp[1];
3946 recv_msg->msg.data = recv_msg->msg_data;
3949 * The message starts at byte 4 which follows the
3950 * the Channel Byte in the "GET MESSAGE" command
3952 recv_msg->msg.data_len = msg->rsp_size - 4;
3953 memcpy(recv_msg->msg_data, &msg->rsp[4],
3954 msg->rsp_size - 4);
3955 if (deliver_response(intf, recv_msg))
3956 ipmi_inc_stat(intf, unhandled_commands);
3957 else
3958 ipmi_inc_stat(intf, handled_commands);
3962 return rv;
3965 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3966 struct ipmi_smi_msg *msg)
3968 struct ipmi_system_interface_addr *smi_addr;
3970 recv_msg->msgid = 0;
3971 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
3972 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3973 smi_addr->channel = IPMI_BMC_CHANNEL;
3974 smi_addr->lun = msg->rsp[0] & 3;
3975 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3976 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3977 recv_msg->msg.cmd = msg->rsp[1];
3978 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
3979 recv_msg->msg.data = recv_msg->msg_data;
3980 recv_msg->msg.data_len = msg->rsp_size - 3;
3983 static int handle_read_event_rsp(struct ipmi_smi *intf,
3984 struct ipmi_smi_msg *msg)
3986 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3987 struct list_head msgs;
3988 struct ipmi_user *user;
3989 int rv = 0, deliver_count = 0, index;
3990 unsigned long flags;
3992 if (msg->rsp_size < 19) {
3993 /* Message is too small to be an IPMB event. */
3994 ipmi_inc_stat(intf, invalid_events);
3995 return 0;
3998 if (msg->rsp[2] != 0) {
3999 /* An error getting the event, just ignore it. */
4000 return 0;
4003 INIT_LIST_HEAD(&msgs);
4005 spin_lock_irqsave(&intf->events_lock, flags);
4007 ipmi_inc_stat(intf, events);
4010 * Allocate and fill in one message for every user that is
4011 * getting events.
4013 index = srcu_read_lock(&intf->users_srcu);
4014 list_for_each_entry_rcu(user, &intf->users, link) {
4015 if (!user->gets_events)
4016 continue;
4018 recv_msg = ipmi_alloc_recv_msg();
4019 if (!recv_msg) {
4020 rcu_read_unlock();
4021 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4022 link) {
4023 list_del(&recv_msg->link);
4024 ipmi_free_recv_msg(recv_msg);
4027 * We couldn't allocate memory for the
4028 * message, so requeue it for handling
4029 * later.
4031 rv = 1;
4032 goto out;
4035 deliver_count++;
4037 copy_event_into_recv_msg(recv_msg, msg);
4038 recv_msg->user = user;
4039 kref_get(&user->refcount);
4040 list_add_tail(&recv_msg->link, &msgs);
4042 srcu_read_unlock(&intf->users_srcu, index);
4044 if (deliver_count) {
4045 /* Now deliver all the messages. */
4046 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4047 list_del(&recv_msg->link);
4048 deliver_local_response(intf, recv_msg);
4050 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4052 * No one to receive the message, put it in queue if there's
4053 * not already too many things in the queue.
4055 recv_msg = ipmi_alloc_recv_msg();
4056 if (!recv_msg) {
4058 * We couldn't allocate memory for the
4059 * message, so requeue it for handling
4060 * later.
4062 rv = 1;
4063 goto out;
4066 copy_event_into_recv_msg(recv_msg, msg);
4067 list_add_tail(&recv_msg->link, &intf->waiting_events);
4068 intf->waiting_events_count++;
4069 } else if (!intf->event_msg_printed) {
4071 * There's too many things in the queue, discard this
4072 * message.
4074 dev_warn(intf->si_dev,
4075 "Event queue full, discarding incoming events\n");
4076 intf->event_msg_printed = 1;
4079 out:
4080 spin_unlock_irqrestore(&intf->events_lock, flags);
4082 return rv;
4085 static int handle_bmc_rsp(struct ipmi_smi *intf,
4086 struct ipmi_smi_msg *msg)
4088 struct ipmi_recv_msg *recv_msg;
4089 struct ipmi_system_interface_addr *smi_addr;
4091 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4092 if (recv_msg == NULL) {
4093 dev_warn(intf->si_dev,
4094 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4095 return 0;
4098 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4099 recv_msg->msgid = msg->msgid;
4100 smi_addr = ((struct ipmi_system_interface_addr *)
4101 &recv_msg->addr);
4102 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4103 smi_addr->channel = IPMI_BMC_CHANNEL;
4104 smi_addr->lun = msg->rsp[0] & 3;
4105 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4106 recv_msg->msg.cmd = msg->rsp[1];
4107 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4108 recv_msg->msg.data = recv_msg->msg_data;
4109 recv_msg->msg.data_len = msg->rsp_size - 2;
4110 deliver_local_response(intf, recv_msg);
4112 return 0;
4116 * Handle a received message. Return 1 if the message should be requeued,
4117 * 0 if the message should be freed, or -1 if the message should not
4118 * be freed or requeued.
4120 static int handle_one_recv_msg(struct ipmi_smi *intf,
4121 struct ipmi_smi_msg *msg)
4123 int requeue;
4124 int chan;
4126 ipmi_debug_msg("Recv:", msg->rsp, msg->rsp_size);
4127 if (msg->rsp_size < 2) {
4128 /* Message is too small to be correct. */
4129 dev_warn(intf->si_dev,
4130 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4131 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4133 /* Generate an error response for the message. */
4134 msg->rsp[0] = msg->data[0] | (1 << 2);
4135 msg->rsp[1] = msg->data[1];
4136 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4137 msg->rsp_size = 3;
4138 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4139 || (msg->rsp[1] != msg->data[1])) {
4141 * The NetFN and Command in the response is not even
4142 * marginally correct.
4144 dev_warn(intf->si_dev,
4145 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4146 (msg->data[0] >> 2) | 1, msg->data[1],
4147 msg->rsp[0] >> 2, msg->rsp[1]);
4149 /* Generate an error response for the message. */
4150 msg->rsp[0] = msg->data[0] | (1 << 2);
4151 msg->rsp[1] = msg->data[1];
4152 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4153 msg->rsp_size = 3;
4156 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4157 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4158 && (msg->user_data != NULL)) {
4160 * It's a response to a response we sent. For this we
4161 * deliver a send message response to the user.
4163 struct ipmi_recv_msg *recv_msg = msg->user_data;
4165 requeue = 0;
4166 if (msg->rsp_size < 2)
4167 /* Message is too small to be correct. */
4168 goto out;
4170 chan = msg->data[2] & 0x0f;
4171 if (chan >= IPMI_MAX_CHANNELS)
4172 /* Invalid channel number */
4173 goto out;
4175 if (!recv_msg)
4176 goto out;
4178 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4179 recv_msg->msg.data = recv_msg->msg_data;
4180 recv_msg->msg.data_len = 1;
4181 recv_msg->msg_data[0] = msg->rsp[2];
4182 deliver_local_response(intf, recv_msg);
4183 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4184 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4185 struct ipmi_channel *chans;
4187 /* It's from the receive queue. */
4188 chan = msg->rsp[3] & 0xf;
4189 if (chan >= IPMI_MAX_CHANNELS) {
4190 /* Invalid channel number */
4191 requeue = 0;
4192 goto out;
4196 * We need to make sure the channels have been initialized.
4197 * The channel_handler routine will set the "curr_channel"
4198 * equal to or greater than IPMI_MAX_CHANNELS when all the
4199 * channels for this interface have been initialized.
4201 if (!intf->channels_ready) {
4202 requeue = 0; /* Throw the message away */
4203 goto out;
4206 chans = READ_ONCE(intf->channel_list)->c;
4208 switch (chans[chan].medium) {
4209 case IPMI_CHANNEL_MEDIUM_IPMB:
4210 if (msg->rsp[4] & 0x04) {
4212 * It's a response, so find the
4213 * requesting message and send it up.
4215 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4216 } else {
4218 * It's a command to the SMS from some other
4219 * entity. Handle that.
4221 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4223 break;
4225 case IPMI_CHANNEL_MEDIUM_8023LAN:
4226 case IPMI_CHANNEL_MEDIUM_ASYNC:
4227 if (msg->rsp[6] & 0x04) {
4229 * It's a response, so find the
4230 * requesting message and send it up.
4232 requeue = handle_lan_get_msg_rsp(intf, msg);
4233 } else {
4235 * It's a command to the SMS from some other
4236 * entity. Handle that.
4238 requeue = handle_lan_get_msg_cmd(intf, msg);
4240 break;
4242 default:
4243 /* Check for OEM Channels. Clients had better
4244 register for these commands. */
4245 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4246 && (chans[chan].medium
4247 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4248 requeue = handle_oem_get_msg_cmd(intf, msg);
4249 } else {
4251 * We don't handle the channel type, so just
4252 * free the message.
4254 requeue = 0;
4258 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4259 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4260 /* It's an asynchronous event. */
4261 requeue = handle_read_event_rsp(intf, msg);
4262 } else {
4263 /* It's a response from the local BMC. */
4264 requeue = handle_bmc_rsp(intf, msg);
4267 out:
4268 return requeue;
4272 * If there are messages in the queue or pretimeouts, handle them.
4274 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4276 struct ipmi_smi_msg *smi_msg;
4277 unsigned long flags = 0;
4278 int rv;
4279 int run_to_completion = intf->run_to_completion;
4281 /* See if any waiting messages need to be processed. */
4282 if (!run_to_completion)
4283 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4284 while (!list_empty(&intf->waiting_rcv_msgs)) {
4285 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4286 struct ipmi_smi_msg, link);
4287 list_del(&smi_msg->link);
4288 if (!run_to_completion)
4289 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4290 flags);
4291 rv = handle_one_recv_msg(intf, smi_msg);
4292 if (!run_to_completion)
4293 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4294 if (rv > 0) {
4296 * To preserve message order, quit if we
4297 * can't handle a message. Add the message
4298 * back at the head, this is safe because this
4299 * tasklet is the only thing that pulls the
4300 * messages.
4302 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4303 break;
4304 } else {
4305 if (rv == 0)
4306 /* Message handled */
4307 ipmi_free_smi_msg(smi_msg);
4308 /* If rv < 0, fatal error, del but don't free. */
4311 if (!run_to_completion)
4312 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4315 * If the pretimout count is non-zero, decrement one from it and
4316 * deliver pretimeouts to all the users.
4318 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4319 struct ipmi_user *user;
4320 int index;
4322 index = srcu_read_lock(&intf->users_srcu);
4323 list_for_each_entry_rcu(user, &intf->users, link) {
4324 if (user->handler->ipmi_watchdog_pretimeout)
4325 user->handler->ipmi_watchdog_pretimeout(
4326 user->handler_data);
4328 srcu_read_unlock(&intf->users_srcu, index);
4332 static void smi_recv_tasklet(unsigned long val)
4334 unsigned long flags = 0; /* keep us warning-free. */
4335 struct ipmi_smi *intf = (struct ipmi_smi *) val;
4336 int run_to_completion = intf->run_to_completion;
4337 struct ipmi_smi_msg *newmsg = NULL;
4340 * Start the next message if available.
4342 * Do this here, not in the actual receiver, because we may deadlock
4343 * because the lower layer is allowed to hold locks while calling
4344 * message delivery.
4347 rcu_read_lock();
4349 if (!run_to_completion)
4350 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4351 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4352 struct list_head *entry = NULL;
4354 /* Pick the high priority queue first. */
4355 if (!list_empty(&intf->hp_xmit_msgs))
4356 entry = intf->hp_xmit_msgs.next;
4357 else if (!list_empty(&intf->xmit_msgs))
4358 entry = intf->xmit_msgs.next;
4360 if (entry) {
4361 list_del(entry);
4362 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4363 intf->curr_msg = newmsg;
4366 if (!run_to_completion)
4367 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4368 if (newmsg)
4369 intf->handlers->sender(intf->send_info, newmsg);
4371 rcu_read_unlock();
4373 handle_new_recv_msgs(intf);
4376 /* Handle a new message from the lower layer. */
4377 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4378 struct ipmi_smi_msg *msg)
4380 unsigned long flags = 0; /* keep us warning-free. */
4381 int run_to_completion = intf->run_to_completion;
4383 if ((msg->data_size >= 2)
4384 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4385 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4386 && (msg->user_data == NULL)) {
4388 if (intf->in_shutdown)
4389 goto free_msg;
4392 * This is the local response to a command send, start
4393 * the timer for these. The user_data will not be
4394 * NULL if this is a response send, and we will let
4395 * response sends just go through.
4399 * Check for errors, if we get certain errors (ones
4400 * that mean basically we can try again later), we
4401 * ignore them and start the timer. Otherwise we
4402 * report the error immediately.
4404 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4405 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4406 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4407 && (msg->rsp[2] != IPMI_BUS_ERR)
4408 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4409 int ch = msg->rsp[3] & 0xf;
4410 struct ipmi_channel *chans;
4412 /* Got an error sending the message, handle it. */
4414 chans = READ_ONCE(intf->channel_list)->c;
4415 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4416 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4417 ipmi_inc_stat(intf, sent_lan_command_errs);
4418 else
4419 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4420 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4421 } else
4422 /* The message was sent, start the timer. */
4423 intf_start_seq_timer(intf, msg->msgid);
4425 free_msg:
4426 ipmi_free_smi_msg(msg);
4427 } else {
4429 * To preserve message order, we keep a queue and deliver from
4430 * a tasklet.
4432 if (!run_to_completion)
4433 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4434 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4435 if (!run_to_completion)
4436 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4437 flags);
4440 if (!run_to_completion)
4441 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4443 * We can get an asynchronous event or receive message in addition
4444 * to commands we send.
4446 if (msg == intf->curr_msg)
4447 intf->curr_msg = NULL;
4448 if (!run_to_completion)
4449 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4451 if (run_to_completion)
4452 smi_recv_tasklet((unsigned long) intf);
4453 else
4454 tasklet_schedule(&intf->recv_tasklet);
4456 EXPORT_SYMBOL(ipmi_smi_msg_received);
4458 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4460 if (intf->in_shutdown)
4461 return;
4463 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4464 tasklet_schedule(&intf->recv_tasklet);
4466 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4468 static struct ipmi_smi_msg *
4469 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4470 unsigned char seq, long seqid)
4472 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4473 if (!smi_msg)
4475 * If we can't allocate the message, then just return, we
4476 * get 4 retries, so this should be ok.
4478 return NULL;
4480 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4481 smi_msg->data_size = recv_msg->msg.data_len;
4482 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4484 ipmi_debug_msg("Resend: ", smi_msg->data, smi_msg->data_size);
4486 return smi_msg;
4489 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4490 struct list_head *timeouts,
4491 unsigned long timeout_period,
4492 int slot, unsigned long *flags,
4493 unsigned int *waiting_msgs)
4495 struct ipmi_recv_msg *msg;
4497 if (intf->in_shutdown)
4498 return;
4500 if (!ent->inuse)
4501 return;
4503 if (timeout_period < ent->timeout) {
4504 ent->timeout -= timeout_period;
4505 (*waiting_msgs)++;
4506 return;
4509 if (ent->retries_left == 0) {
4510 /* The message has used all its retries. */
4511 ent->inuse = 0;
4512 msg = ent->recv_msg;
4513 list_add_tail(&msg->link, timeouts);
4514 if (ent->broadcast)
4515 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4516 else if (is_lan_addr(&ent->recv_msg->addr))
4517 ipmi_inc_stat(intf, timed_out_lan_commands);
4518 else
4519 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4520 } else {
4521 struct ipmi_smi_msg *smi_msg;
4522 /* More retries, send again. */
4524 (*waiting_msgs)++;
4527 * Start with the max timer, set to normal timer after
4528 * the message is sent.
4530 ent->timeout = MAX_MSG_TIMEOUT;
4531 ent->retries_left--;
4532 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4533 ent->seqid);
4534 if (!smi_msg) {
4535 if (is_lan_addr(&ent->recv_msg->addr))
4536 ipmi_inc_stat(intf,
4537 dropped_rexmit_lan_commands);
4538 else
4539 ipmi_inc_stat(intf,
4540 dropped_rexmit_ipmb_commands);
4541 return;
4544 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4547 * Send the new message. We send with a zero
4548 * priority. It timed out, I doubt time is that
4549 * critical now, and high priority messages are really
4550 * only for messages to the local MC, which don't get
4551 * resent.
4553 if (intf->handlers) {
4554 if (is_lan_addr(&ent->recv_msg->addr))
4555 ipmi_inc_stat(intf,
4556 retransmitted_lan_commands);
4557 else
4558 ipmi_inc_stat(intf,
4559 retransmitted_ipmb_commands);
4561 smi_send(intf, intf->handlers, smi_msg, 0);
4562 } else
4563 ipmi_free_smi_msg(smi_msg);
4565 spin_lock_irqsave(&intf->seq_lock, *flags);
4569 static unsigned int ipmi_timeout_handler(struct ipmi_smi *intf,
4570 unsigned long timeout_period)
4572 struct list_head timeouts;
4573 struct ipmi_recv_msg *msg, *msg2;
4574 unsigned long flags;
4575 int i;
4576 unsigned int waiting_msgs = 0;
4578 if (!intf->bmc_registered) {
4579 kref_get(&intf->refcount);
4580 if (!schedule_work(&intf->bmc_reg_work)) {
4581 kref_put(&intf->refcount, intf_free);
4582 waiting_msgs++;
4587 * Go through the seq table and find any messages that
4588 * have timed out, putting them in the timeouts
4589 * list.
4591 INIT_LIST_HEAD(&timeouts);
4592 spin_lock_irqsave(&intf->seq_lock, flags);
4593 if (intf->ipmb_maintenance_mode_timeout) {
4594 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4595 intf->ipmb_maintenance_mode_timeout = 0;
4596 else
4597 intf->ipmb_maintenance_mode_timeout -= timeout_period;
4599 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4600 check_msg_timeout(intf, &intf->seq_table[i],
4601 &timeouts, timeout_period, i,
4602 &flags, &waiting_msgs);
4603 spin_unlock_irqrestore(&intf->seq_lock, flags);
4605 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4606 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4609 * Maintenance mode handling. Check the timeout
4610 * optimistically before we claim the lock. It may
4611 * mean a timeout gets missed occasionally, but that
4612 * only means the timeout gets extended by one period
4613 * in that case. No big deal, and it avoids the lock
4614 * most of the time.
4616 if (intf->auto_maintenance_timeout > 0) {
4617 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4618 if (intf->auto_maintenance_timeout > 0) {
4619 intf->auto_maintenance_timeout
4620 -= timeout_period;
4621 if (!intf->maintenance_mode
4622 && (intf->auto_maintenance_timeout <= 0)) {
4623 intf->maintenance_mode_enable = false;
4624 maintenance_mode_update(intf);
4627 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4628 flags);
4631 tasklet_schedule(&intf->recv_tasklet);
4633 return waiting_msgs;
4636 static void ipmi_request_event(struct ipmi_smi *intf)
4638 /* No event requests when in maintenance mode. */
4639 if (intf->maintenance_mode_enable)
4640 return;
4642 if (!intf->in_shutdown)
4643 intf->handlers->request_events(intf->send_info);
4646 static struct timer_list ipmi_timer;
4648 static atomic_t stop_operation;
4650 static void ipmi_timeout(struct timer_list *unused)
4652 struct ipmi_smi *intf;
4653 int nt = 0, index;
4655 if (atomic_read(&stop_operation))
4656 return;
4658 index = srcu_read_lock(&ipmi_interfaces_srcu);
4659 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4660 int lnt = 0;
4662 if (atomic_read(&intf->event_waiters)) {
4663 intf->ticks_to_req_ev--;
4664 if (intf->ticks_to_req_ev == 0) {
4665 ipmi_request_event(intf);
4666 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4668 lnt++;
4671 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4673 lnt = !!lnt;
4674 if (lnt != intf->last_needs_timer &&
4675 intf->handlers->set_need_watch)
4676 intf->handlers->set_need_watch(intf->send_info, lnt);
4677 intf->last_needs_timer = lnt;
4679 nt += lnt;
4681 srcu_read_unlock(&ipmi_interfaces_srcu, index);
4683 if (nt)
4684 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4687 static void need_waiter(struct ipmi_smi *intf)
4689 /* Racy, but worst case we start the timer twice. */
4690 if (!timer_pending(&ipmi_timer))
4691 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4694 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4695 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4697 static void free_smi_msg(struct ipmi_smi_msg *msg)
4699 atomic_dec(&smi_msg_inuse_count);
4700 kfree(msg);
4703 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4705 struct ipmi_smi_msg *rv;
4706 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4707 if (rv) {
4708 rv->done = free_smi_msg;
4709 rv->user_data = NULL;
4710 atomic_inc(&smi_msg_inuse_count);
4712 return rv;
4714 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4716 static void free_recv_msg(struct ipmi_recv_msg *msg)
4718 atomic_dec(&recv_msg_inuse_count);
4719 kfree(msg);
4722 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4724 struct ipmi_recv_msg *rv;
4726 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4727 if (rv) {
4728 rv->user = NULL;
4729 rv->done = free_recv_msg;
4730 atomic_inc(&recv_msg_inuse_count);
4732 return rv;
4735 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4737 if (msg->user)
4738 kref_put(&msg->user->refcount, free_user);
4739 msg->done(msg);
4741 EXPORT_SYMBOL(ipmi_free_recv_msg);
4743 static atomic_t panic_done_count = ATOMIC_INIT(0);
4745 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4747 atomic_dec(&panic_done_count);
4750 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4752 atomic_dec(&panic_done_count);
4756 * Inside a panic, send a message and wait for a response.
4758 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4759 struct ipmi_addr *addr,
4760 struct kernel_ipmi_msg *msg)
4762 struct ipmi_smi_msg smi_msg;
4763 struct ipmi_recv_msg recv_msg;
4764 int rv;
4766 smi_msg.done = dummy_smi_done_handler;
4767 recv_msg.done = dummy_recv_done_handler;
4768 atomic_add(2, &panic_done_count);
4769 rv = i_ipmi_request(NULL,
4770 intf,
4771 addr,
4773 msg,
4774 intf,
4775 &smi_msg,
4776 &recv_msg,
4778 intf->addrinfo[0].address,
4779 intf->addrinfo[0].lun,
4780 0, 1); /* Don't retry, and don't wait. */
4781 if (rv)
4782 atomic_sub(2, &panic_done_count);
4783 else if (intf->handlers->flush_messages)
4784 intf->handlers->flush_messages(intf->send_info);
4786 while (atomic_read(&panic_done_count) != 0)
4787 ipmi_poll(intf);
4790 static void event_receiver_fetcher(struct ipmi_smi *intf,
4791 struct ipmi_recv_msg *msg)
4793 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4794 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4795 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4796 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4797 /* A get event receiver command, save it. */
4798 intf->event_receiver = msg->msg.data[1];
4799 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4803 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4805 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4806 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4807 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4808 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4810 * A get device id command, save if we are an event
4811 * receiver or generator.
4813 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4814 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4818 static void send_panic_events(struct ipmi_smi *intf, char *str)
4820 struct kernel_ipmi_msg msg;
4821 unsigned char data[16];
4822 struct ipmi_system_interface_addr *si;
4823 struct ipmi_addr addr;
4824 char *p = str;
4825 struct ipmi_ipmb_addr *ipmb;
4826 int j;
4828 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4829 return;
4831 si = (struct ipmi_system_interface_addr *) &addr;
4832 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4833 si->channel = IPMI_BMC_CHANNEL;
4834 si->lun = 0;
4836 /* Fill in an event telling that we have failed. */
4837 msg.netfn = 0x04; /* Sensor or Event. */
4838 msg.cmd = 2; /* Platform event command. */
4839 msg.data = data;
4840 msg.data_len = 8;
4841 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4842 data[1] = 0x03; /* This is for IPMI 1.0. */
4843 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4844 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4845 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4848 * Put a few breadcrumbs in. Hopefully later we can add more things
4849 * to make the panic events more useful.
4851 if (str) {
4852 data[3] = str[0];
4853 data[6] = str[1];
4854 data[7] = str[2];
4857 /* Send the event announcing the panic. */
4858 ipmi_panic_request_and_wait(intf, &addr, &msg);
4861 * On every interface, dump a bunch of OEM event holding the
4862 * string.
4864 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4865 return;
4868 * intf_num is used as an marker to tell if the
4869 * interface is valid. Thus we need a read barrier to
4870 * make sure data fetched before checking intf_num
4871 * won't be used.
4873 smp_rmb();
4876 * First job here is to figure out where to send the
4877 * OEM events. There's no way in IPMI to send OEM
4878 * events using an event send command, so we have to
4879 * find the SEL to put them in and stick them in
4880 * there.
4883 /* Get capabilities from the get device id. */
4884 intf->local_sel_device = 0;
4885 intf->local_event_generator = 0;
4886 intf->event_receiver = 0;
4888 /* Request the device info from the local MC. */
4889 msg.netfn = IPMI_NETFN_APP_REQUEST;
4890 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4891 msg.data = NULL;
4892 msg.data_len = 0;
4893 intf->null_user_handler = device_id_fetcher;
4894 ipmi_panic_request_and_wait(intf, &addr, &msg);
4896 if (intf->local_event_generator) {
4897 /* Request the event receiver from the local MC. */
4898 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4899 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4900 msg.data = NULL;
4901 msg.data_len = 0;
4902 intf->null_user_handler = event_receiver_fetcher;
4903 ipmi_panic_request_and_wait(intf, &addr, &msg);
4905 intf->null_user_handler = NULL;
4908 * Validate the event receiver. The low bit must not
4909 * be 1 (it must be a valid IPMB address), it cannot
4910 * be zero, and it must not be my address.
4912 if (((intf->event_receiver & 1) == 0)
4913 && (intf->event_receiver != 0)
4914 && (intf->event_receiver != intf->addrinfo[0].address)) {
4916 * The event receiver is valid, send an IPMB
4917 * message.
4919 ipmb = (struct ipmi_ipmb_addr *) &addr;
4920 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4921 ipmb->channel = 0; /* FIXME - is this right? */
4922 ipmb->lun = intf->event_receiver_lun;
4923 ipmb->slave_addr = intf->event_receiver;
4924 } else if (intf->local_sel_device) {
4926 * The event receiver was not valid (or was
4927 * me), but I am an SEL device, just dump it
4928 * in my SEL.
4930 si = (struct ipmi_system_interface_addr *) &addr;
4931 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4932 si->channel = IPMI_BMC_CHANNEL;
4933 si->lun = 0;
4934 } else
4935 return; /* No where to send the event. */
4937 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4938 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4939 msg.data = data;
4940 msg.data_len = 16;
4942 j = 0;
4943 while (*p) {
4944 int size = strlen(p);
4946 if (size > 11)
4947 size = 11;
4948 data[0] = 0;
4949 data[1] = 0;
4950 data[2] = 0xf0; /* OEM event without timestamp. */
4951 data[3] = intf->addrinfo[0].address;
4952 data[4] = j++; /* sequence # */
4954 * Always give 11 bytes, so strncpy will fill
4955 * it with zeroes for me.
4957 strncpy(data+5, p, 11);
4958 p += size;
4960 ipmi_panic_request_and_wait(intf, &addr, &msg);
4964 static int has_panicked;
4966 static int panic_event(struct notifier_block *this,
4967 unsigned long event,
4968 void *ptr)
4970 struct ipmi_smi *intf;
4971 struct ipmi_user *user;
4973 if (has_panicked)
4974 return NOTIFY_DONE;
4975 has_panicked = 1;
4977 /* For every registered interface, set it to run to completion. */
4978 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4979 if (!intf->handlers || intf->intf_num == -1)
4980 /* Interface is not ready. */
4981 continue;
4983 if (!intf->handlers->poll)
4984 continue;
4987 * If we were interrupted while locking xmit_msgs_lock or
4988 * waiting_rcv_msgs_lock, the corresponding list may be
4989 * corrupted. In this case, drop items on the list for
4990 * the safety.
4992 if (!spin_trylock(&intf->xmit_msgs_lock)) {
4993 INIT_LIST_HEAD(&intf->xmit_msgs);
4994 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4995 } else
4996 spin_unlock(&intf->xmit_msgs_lock);
4998 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4999 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5000 else
5001 spin_unlock(&intf->waiting_rcv_msgs_lock);
5003 intf->run_to_completion = 1;
5004 if (intf->handlers->set_run_to_completion)
5005 intf->handlers->set_run_to_completion(intf->send_info,
5008 list_for_each_entry_rcu(user, &intf->users, link) {
5009 if (user->handler->ipmi_panic_handler)
5010 user->handler->ipmi_panic_handler(
5011 user->handler_data);
5014 send_panic_events(intf, ptr);
5017 return NOTIFY_DONE;
5020 static struct notifier_block panic_block = {
5021 .notifier_call = panic_event,
5022 .next = NULL,
5023 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5026 static int ipmi_init_msghandler(void)
5028 int rv;
5030 if (initialized)
5031 return 0;
5033 rv = driver_register(&ipmidriver.driver);
5034 if (rv) {
5035 pr_err("Could not register IPMI driver\n");
5036 return rv;
5039 pr_info("version " IPMI_DRIVER_VERSION "\n");
5041 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5042 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5044 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5046 initialized = 1;
5048 return 0;
5051 static int __init ipmi_init_msghandler_mod(void)
5053 ipmi_init_msghandler();
5054 return 0;
5057 static void __exit cleanup_ipmi(void)
5059 int count;
5061 if (!initialized)
5062 return;
5064 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
5067 * This can't be called if any interfaces exist, so no worry
5068 * about shutting down the interfaces.
5072 * Tell the timer to stop, then wait for it to stop. This
5073 * avoids problems with race conditions removing the timer
5074 * here.
5076 atomic_inc(&stop_operation);
5077 del_timer_sync(&ipmi_timer);
5079 driver_unregister(&ipmidriver.driver);
5081 initialized = 0;
5083 /* Check for buffer leaks. */
5084 count = atomic_read(&smi_msg_inuse_count);
5085 if (count != 0)
5086 pr_warn("SMI message count %d at exit\n", count);
5087 count = atomic_read(&recv_msg_inuse_count);
5088 if (count != 0)
5089 pr_warn("recv message count %d at exit\n", count);
5091 module_exit(cleanup_ipmi);
5093 module_init(ipmi_init_msghandler_mod);
5094 MODULE_LICENSE("GPL");
5095 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5096 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5097 " interface.");
5098 MODULE_VERSION(IPMI_DRIVER_VERSION);
5099 MODULE_SOFTDEP("post: ipmi_devintf");