perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / leds / trigger / ledtrig-activity.c
blobbcbf41c90c30dbe17e31d57d3035c95871ab7c50
1 /*
2 * Activity LED trigger
4 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
5 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/leds.h>
16 #include <linux/module.h>
17 #include <linux/reboot.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/timer.h>
21 #include "../leds.h"
23 static int panic_detected;
25 struct activity_data {
26 struct timer_list timer;
27 struct led_classdev *led_cdev;
28 u64 last_used;
29 u64 last_boot;
30 int time_left;
31 int state;
32 int invert;
35 static void led_activity_function(struct timer_list *t)
37 struct activity_data *activity_data = from_timer(activity_data, t,
38 timer);
39 struct led_classdev *led_cdev = activity_data->led_cdev;
40 unsigned int target;
41 unsigned int usage;
42 int delay;
43 u64 curr_used;
44 u64 curr_boot;
45 s32 diff_used;
46 s32 diff_boot;
47 int cpus;
48 int i;
50 if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
51 led_cdev->blink_brightness = led_cdev->new_blink_brightness;
53 if (unlikely(panic_detected)) {
54 /* full brightness in case of panic */
55 led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
56 return;
59 cpus = 0;
60 curr_used = 0;
62 for_each_possible_cpu(i) {
63 curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
64 + kcpustat_cpu(i).cpustat[CPUTIME_NICE]
65 + kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
66 + kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
67 + kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
68 cpus++;
71 /* We come here every 100ms in the worst case, so that's 100M ns of
72 * cumulated time. By dividing by 2^16, we get the time resolution
73 * down to 16us, ensuring we won't overflow 32-bit computations below
74 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
76 curr_boot = ktime_get_boot_ns() * cpus;
77 diff_boot = (curr_boot - activity_data->last_boot) >> 16;
78 diff_used = (curr_used - activity_data->last_used) >> 16;
79 activity_data->last_boot = curr_boot;
80 activity_data->last_used = curr_used;
82 if (diff_boot <= 0 || diff_used < 0)
83 usage = 0;
84 else if (diff_used >= diff_boot)
85 usage = 100;
86 else
87 usage = 100 * diff_used / diff_boot;
90 * Now we know the total boot_time multiplied by the number of CPUs, and
91 * the total idle+wait time for all CPUs. We'll compare how they evolved
92 * since last call. The % of overall CPU usage is :
94 * 1 - delta_idle / delta_boot
96 * What we want is that when the CPU usage is zero, the LED must blink
97 * slowly with very faint flashes that are detectable but not disturbing
98 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
99 * blinking frequency to increase up to the point where the load is
100 * enough to saturate one core in multi-core systems or 50% in single
101 * core systems. At this point it should reach 10 Hz with a 10/90 duty
102 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
103 * remains stable (10 Hz) and only the duty cycle increases to report
104 * the activity, up to the point where we have 90ms ON, 10ms OFF when
105 * all cores are saturated. It's important that the LED never stays in
106 * a steady state so that it's easy to distinguish an idle or saturated
107 * machine from a hung one.
109 * This gives us :
110 * - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
111 * (10ms ON, 90ms OFF)
112 * - below target :
113 * ON_ms = 10
114 * OFF_ms = 90 + (1 - usage/target) * 900
115 * - above target :
116 * ON_ms = 10 + (usage-target)/(100%-target) * 80
117 * OFF_ms = 90 - (usage-target)/(100%-target) * 80
119 * In order to keep a good responsiveness, we cap the sleep time to
120 * 100 ms and keep track of the sleep time left. This allows us to
121 * quickly change it if needed.
124 activity_data->time_left -= 100;
125 if (activity_data->time_left <= 0) {
126 activity_data->time_left = 0;
127 activity_data->state = !activity_data->state;
128 led_set_brightness_nosleep(led_cdev,
129 (activity_data->state ^ activity_data->invert) ?
130 led_cdev->blink_brightness : LED_OFF);
133 target = (cpus > 1) ? (100 / cpus) : 50;
135 if (usage < target)
136 delay = activity_data->state ?
137 10 : /* ON */
138 990 - 900 * usage / target; /* OFF */
139 else
140 delay = activity_data->state ?
141 10 + 80 * (usage - target) / (100 - target) : /* ON */
142 90 - 80 * (usage - target) / (100 - target); /* OFF */
145 if (!activity_data->time_left || delay <= activity_data->time_left)
146 activity_data->time_left = delay;
148 delay = min_t(int, activity_data->time_left, 100);
149 mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
152 static ssize_t led_invert_show(struct device *dev,
153 struct device_attribute *attr, char *buf)
155 struct activity_data *activity_data = led_trigger_get_drvdata(dev);
157 return sprintf(buf, "%u\n", activity_data->invert);
160 static ssize_t led_invert_store(struct device *dev,
161 struct device_attribute *attr,
162 const char *buf, size_t size)
164 struct activity_data *activity_data = led_trigger_get_drvdata(dev);
165 unsigned long state;
166 int ret;
168 ret = kstrtoul(buf, 0, &state);
169 if (ret)
170 return ret;
172 activity_data->invert = !!state;
174 return size;
177 static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
179 static struct attribute *activity_led_attrs[] = {
180 &dev_attr_invert.attr,
181 NULL
183 ATTRIBUTE_GROUPS(activity_led);
185 static int activity_activate(struct led_classdev *led_cdev)
187 struct activity_data *activity_data;
189 activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
190 if (!activity_data)
191 return -ENOMEM;
193 led_set_trigger_data(led_cdev, activity_data);
195 activity_data->led_cdev = led_cdev;
196 timer_setup(&activity_data->timer, led_activity_function, 0);
197 if (!led_cdev->blink_brightness)
198 led_cdev->blink_brightness = led_cdev->max_brightness;
199 led_activity_function(&activity_data->timer);
200 set_bit(LED_BLINK_SW, &led_cdev->work_flags);
202 return 0;
205 static void activity_deactivate(struct led_classdev *led_cdev)
207 struct activity_data *activity_data = led_get_trigger_data(led_cdev);
209 del_timer_sync(&activity_data->timer);
210 kfree(activity_data);
211 clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
214 static struct led_trigger activity_led_trigger = {
215 .name = "activity",
216 .activate = activity_activate,
217 .deactivate = activity_deactivate,
218 .groups = activity_led_groups,
221 static int activity_reboot_notifier(struct notifier_block *nb,
222 unsigned long code, void *unused)
224 led_trigger_unregister(&activity_led_trigger);
225 return NOTIFY_DONE;
228 static int activity_panic_notifier(struct notifier_block *nb,
229 unsigned long code, void *unused)
231 panic_detected = 1;
232 return NOTIFY_DONE;
235 static struct notifier_block activity_reboot_nb = {
236 .notifier_call = activity_reboot_notifier,
239 static struct notifier_block activity_panic_nb = {
240 .notifier_call = activity_panic_notifier,
243 static int __init activity_init(void)
245 int rc = led_trigger_register(&activity_led_trigger);
247 if (!rc) {
248 atomic_notifier_chain_register(&panic_notifier_list,
249 &activity_panic_nb);
250 register_reboot_notifier(&activity_reboot_nb);
252 return rc;
255 static void __exit activity_exit(void)
257 unregister_reboot_notifier(&activity_reboot_nb);
258 atomic_notifier_chain_unregister(&panic_notifier_list,
259 &activity_panic_nb);
260 led_trigger_unregister(&activity_led_trigger);
263 module_init(activity_init);
264 module_exit(activity_exit);
266 MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
267 MODULE_DESCRIPTION("Activity LED trigger");
268 MODULE_LICENSE("GPL v2");