1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 #include <linux/delay.h>
7 #include <linux/slab.h>
8 #include <linux/sched/types.h>
10 #include <media/cec-pin.h>
11 #include "cec-pin-priv.h"
13 /* All timings are in microseconds */
15 /* start bit timings */
16 #define CEC_TIM_START_BIT_LOW 3700
17 #define CEC_TIM_START_BIT_LOW_MIN 3500
18 #define CEC_TIM_START_BIT_LOW_MAX 3900
19 #define CEC_TIM_START_BIT_TOTAL 4500
20 #define CEC_TIM_START_BIT_TOTAL_MIN 4300
21 #define CEC_TIM_START_BIT_TOTAL_MAX 4700
23 /* data bit timings */
24 #define CEC_TIM_DATA_BIT_0_LOW 1500
25 #define CEC_TIM_DATA_BIT_0_LOW_MIN 1300
26 #define CEC_TIM_DATA_BIT_0_LOW_MAX 1700
27 #define CEC_TIM_DATA_BIT_1_LOW 600
28 #define CEC_TIM_DATA_BIT_1_LOW_MIN 400
29 #define CEC_TIM_DATA_BIT_1_LOW_MAX 800
30 #define CEC_TIM_DATA_BIT_TOTAL 2400
31 #define CEC_TIM_DATA_BIT_TOTAL_MIN 2050
32 #define CEC_TIM_DATA_BIT_TOTAL_MAX 2750
33 /* earliest safe time to sample the bit state */
34 #define CEC_TIM_DATA_BIT_SAMPLE 850
35 /* earliest time the bit is back to 1 (T7 + 50) */
36 #define CEC_TIM_DATA_BIT_HIGH 1750
38 /* when idle, sample once per millisecond */
39 #define CEC_TIM_IDLE_SAMPLE 1000
40 /* when processing the start bit, sample twice per millisecond */
41 #define CEC_TIM_START_BIT_SAMPLE 500
42 /* when polling for a state change, sample once every 50 microseconds */
43 #define CEC_TIM_SAMPLE 50
45 #define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL)
48 * Total data bit time that is too short/long for a valid bit,
49 * used for error injection.
51 #define CEC_TIM_DATA_BIT_TOTAL_SHORT 1800
52 #define CEC_TIM_DATA_BIT_TOTAL_LONG 2900
55 * Total start bit time that is too short/long for a valid bit,
56 * used for error injection.
58 #define CEC_TIM_START_BIT_TOTAL_SHORT 4100
59 #define CEC_TIM_START_BIT_TOTAL_LONG 5000
61 /* Data bits are 0-7, EOM is bit 8 and ACK is bit 9 */
66 const char * const name
;
70 static const struct cec_state states
[CEC_PIN_STATES
] = {
72 { "Idle", CEC_TIM_IDLE_SAMPLE
},
73 { "Tx Wait", CEC_TIM_SAMPLE
},
74 { "Tx Wait for High", CEC_TIM_IDLE_SAMPLE
},
75 { "Tx Start Bit Low", CEC_TIM_START_BIT_LOW
},
76 { "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL
- CEC_TIM_START_BIT_LOW
},
77 { "Tx Start Bit High Short", CEC_TIM_START_BIT_TOTAL_SHORT
- CEC_TIM_START_BIT_LOW
},
78 { "Tx Start Bit High Long", CEC_TIM_START_BIT_TOTAL_LONG
- CEC_TIM_START_BIT_LOW
},
79 { "Tx Start Bit Low Custom", 0 },
80 { "Tx Start Bit High Custom", 0 },
81 { "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW
},
82 { "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_0_LOW
},
83 { "Tx Data 0 High Short", CEC_TIM_DATA_BIT_TOTAL_SHORT
- CEC_TIM_DATA_BIT_0_LOW
},
84 { "Tx Data 0 High Long", CEC_TIM_DATA_BIT_TOTAL_LONG
- CEC_TIM_DATA_BIT_0_LOW
},
85 { "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW
},
86 { "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_1_LOW
},
87 { "Tx Data 1 High Short", CEC_TIM_DATA_BIT_TOTAL_SHORT
- CEC_TIM_DATA_BIT_1_LOW
},
88 { "Tx Data 1 High Long", CEC_TIM_DATA_BIT_TOTAL_LONG
- CEC_TIM_DATA_BIT_1_LOW
},
89 { "Tx Data 1 High Pre Sample", CEC_TIM_DATA_BIT_SAMPLE
- CEC_TIM_DATA_BIT_1_LOW
},
90 { "Tx Data 1 High Post Sample", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_SAMPLE
},
91 { "Tx Data 1 High Post Sample Short", CEC_TIM_DATA_BIT_TOTAL_SHORT
- CEC_TIM_DATA_BIT_SAMPLE
},
92 { "Tx Data 1 High Post Sample Long", CEC_TIM_DATA_BIT_TOTAL_LONG
- CEC_TIM_DATA_BIT_SAMPLE
},
93 { "Tx Data Bit Low Custom", 0 },
94 { "Tx Data Bit High Custom", 0 },
95 { "Tx Pulse Low Custom", 0 },
96 { "Tx Pulse High Custom", 0 },
97 { "Tx Low Drive", CEC_TIM_LOW_DRIVE_ERROR
},
98 { "Rx Start Bit Low", CEC_TIM_SAMPLE
},
99 { "Rx Start Bit High", CEC_TIM_SAMPLE
},
100 { "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE
},
101 { "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH
- CEC_TIM_DATA_BIT_SAMPLE
},
102 { "Rx Data Wait for Low", CEC_TIM_SAMPLE
},
103 { "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW
},
104 { "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH
- CEC_TIM_DATA_BIT_0_LOW
},
105 { "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH
},
106 { "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN
- CEC_TIM_DATA_BIT_HIGH
},
107 { "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR
},
111 static void cec_pin_update(struct cec_pin
*pin
, bool v
, bool force
)
113 if (!force
&& v
== pin
->adap
->cec_pin_is_high
)
116 pin
->adap
->cec_pin_is_high
= v
;
117 if (atomic_read(&pin
->work_pin_num_events
) < CEC_NUM_PIN_EVENTS
) {
120 if (pin
->work_pin_events_dropped
) {
121 pin
->work_pin_events_dropped
= false;
122 ev
|= CEC_PIN_EVENT_FL_DROPPED
;
124 pin
->work_pin_events
[pin
->work_pin_events_wr
] = ev
;
125 pin
->work_pin_ts
[pin
->work_pin_events_wr
] = ktime_get();
126 pin
->work_pin_events_wr
=
127 (pin
->work_pin_events_wr
+ 1) % CEC_NUM_PIN_EVENTS
;
128 atomic_inc(&pin
->work_pin_num_events
);
130 pin
->work_pin_events_dropped
= true;
131 pin
->work_pin_events_dropped_cnt
++;
133 wake_up_interruptible(&pin
->kthread_waitq
);
136 static bool cec_pin_read(struct cec_pin
*pin
)
138 bool v
= pin
->ops
->read(pin
->adap
);
140 cec_pin_update(pin
, v
, false);
144 static void cec_pin_low(struct cec_pin
*pin
)
146 pin
->ops
->low(pin
->adap
);
147 cec_pin_update(pin
, false, false);
150 static bool cec_pin_high(struct cec_pin
*pin
)
152 pin
->ops
->high(pin
->adap
);
153 return cec_pin_read(pin
);
156 static bool rx_error_inj(struct cec_pin
*pin
, unsigned int mode_offset
,
157 int arg_idx
, u8
*arg
)
159 #ifdef CONFIG_CEC_PIN_ERROR_INJ
160 u16 cmd
= cec_pin_rx_error_inj(pin
);
161 u64 e
= pin
->error_inj
[cmd
];
162 unsigned int mode
= (e
>> mode_offset
) & CEC_ERROR_INJ_MODE_MASK
;
165 u8 pos
= pin
->error_inj_args
[cmd
][arg_idx
];
169 else if (pos
!= pin
->rx_bit
)
174 case CEC_ERROR_INJ_MODE_ONCE
:
175 pin
->error_inj
[cmd
] &=
176 ~(CEC_ERROR_INJ_MODE_MASK
<< mode_offset
);
178 case CEC_ERROR_INJ_MODE_ALWAYS
:
180 case CEC_ERROR_INJ_MODE_TOGGLE
:
181 return pin
->rx_toggle
;
190 static bool rx_nack(struct cec_pin
*pin
)
192 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_NACK_OFFSET
, -1, NULL
);
195 static bool rx_low_drive(struct cec_pin
*pin
)
197 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_LOW_DRIVE_OFFSET
,
198 CEC_ERROR_INJ_RX_LOW_DRIVE_ARG_IDX
, NULL
);
201 static bool rx_add_byte(struct cec_pin
*pin
)
203 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_ADD_BYTE_OFFSET
, -1, NULL
);
206 static bool rx_remove_byte(struct cec_pin
*pin
)
208 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_REMOVE_BYTE_OFFSET
, -1, NULL
);
211 static bool rx_arb_lost(struct cec_pin
*pin
, u8
*poll
)
213 return pin
->tx_msg
.len
== 0 &&
214 rx_error_inj(pin
, CEC_ERROR_INJ_RX_ARB_LOST_OFFSET
,
215 CEC_ERROR_INJ_RX_ARB_LOST_ARG_IDX
, poll
);
218 static bool tx_error_inj(struct cec_pin
*pin
, unsigned int mode_offset
,
219 int arg_idx
, u8
*arg
)
221 #ifdef CONFIG_CEC_PIN_ERROR_INJ
222 u16 cmd
= cec_pin_tx_error_inj(pin
);
223 u64 e
= pin
->error_inj
[cmd
];
224 unsigned int mode
= (e
>> mode_offset
) & CEC_ERROR_INJ_MODE_MASK
;
227 u8 pos
= pin
->error_inj_args
[cmd
][arg_idx
];
231 else if (pos
!= pin
->tx_bit
)
236 case CEC_ERROR_INJ_MODE_ONCE
:
237 pin
->error_inj
[cmd
] &=
238 ~(CEC_ERROR_INJ_MODE_MASK
<< mode_offset
);
240 case CEC_ERROR_INJ_MODE_ALWAYS
:
242 case CEC_ERROR_INJ_MODE_TOGGLE
:
243 return pin
->tx_toggle
;
252 static bool tx_no_eom(struct cec_pin
*pin
)
254 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_NO_EOM_OFFSET
, -1, NULL
);
257 static bool tx_early_eom(struct cec_pin
*pin
)
259 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_EARLY_EOM_OFFSET
, -1, NULL
);
262 static bool tx_short_bit(struct cec_pin
*pin
)
264 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_SHORT_BIT_OFFSET
,
265 CEC_ERROR_INJ_TX_SHORT_BIT_ARG_IDX
, NULL
);
268 static bool tx_long_bit(struct cec_pin
*pin
)
270 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LONG_BIT_OFFSET
,
271 CEC_ERROR_INJ_TX_LONG_BIT_ARG_IDX
, NULL
);
274 static bool tx_custom_bit(struct cec_pin
*pin
)
276 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_CUSTOM_BIT_OFFSET
,
277 CEC_ERROR_INJ_TX_CUSTOM_BIT_ARG_IDX
, NULL
);
280 static bool tx_short_start(struct cec_pin
*pin
)
282 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_SHORT_START_OFFSET
, -1, NULL
);
285 static bool tx_long_start(struct cec_pin
*pin
)
287 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LONG_START_OFFSET
, -1, NULL
);
290 static bool tx_custom_start(struct cec_pin
*pin
)
292 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_CUSTOM_START_OFFSET
,
296 static bool tx_last_bit(struct cec_pin
*pin
)
298 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LAST_BIT_OFFSET
,
299 CEC_ERROR_INJ_TX_LAST_BIT_ARG_IDX
, NULL
);
302 static u8
tx_add_bytes(struct cec_pin
*pin
)
306 if (tx_error_inj(pin
, CEC_ERROR_INJ_TX_ADD_BYTES_OFFSET
,
307 CEC_ERROR_INJ_TX_ADD_BYTES_ARG_IDX
, &bytes
))
312 static bool tx_remove_byte(struct cec_pin
*pin
)
314 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_REMOVE_BYTE_OFFSET
, -1, NULL
);
317 static bool tx_low_drive(struct cec_pin
*pin
)
319 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LOW_DRIVE_OFFSET
,
320 CEC_ERROR_INJ_TX_LOW_DRIVE_ARG_IDX
, NULL
);
323 static void cec_pin_to_idle(struct cec_pin
*pin
)
326 * Reset all status fields, release the bus and
329 pin
->rx_bit
= pin
->tx_bit
= 0;
331 memset(pin
->rx_msg
.msg
, 0, sizeof(pin
->rx_msg
.msg
));
332 pin
->ts
= ns_to_ktime(0);
333 pin
->tx_generated_poll
= false;
334 pin
->tx_post_eom
= false;
335 if (pin
->state
>= CEC_ST_TX_WAIT
&&
336 pin
->state
<= CEC_ST_TX_LOW_DRIVE
)
338 if (pin
->state
>= CEC_ST_RX_START_BIT_LOW
&&
339 pin
->state
<= CEC_ST_RX_LOW_DRIVE
)
341 pin
->state
= CEC_ST_IDLE
;
345 * Handle Transmit-related states
347 * Basic state changes when transmitting:
349 * Idle -> Tx Wait (waiting for the end of signal free time) ->
350 * Tx Start Bit Low -> Tx Start Bit High ->
352 * Regular data bits + EOM:
353 * Tx Data 0 Low -> Tx Data 0 High ->
355 * Tx Data 1 Low -> Tx Data 1 High ->
357 * First 4 data bits or Ack bit:
358 * Tx Data 0 Low -> Tx Data 0 High ->
360 * Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
361 * Tx Data 1 Post Sample ->
363 * After the last Ack go to Idle.
365 * If it detects a Low Drive condition then:
366 * Tx Wait For High -> Idle
368 * If it loses arbitration, then it switches to state Rx Data Post Sample.
370 static void cec_pin_tx_states(struct cec_pin
*pin
, ktime_t ts
)
373 bool is_ack_bit
, ack
;
375 switch (pin
->state
) {
376 case CEC_ST_TX_WAIT_FOR_HIGH
:
377 if (cec_pin_read(pin
))
378 cec_pin_to_idle(pin
);
381 case CEC_ST_TX_START_BIT_LOW
:
382 if (tx_short_start(pin
)) {
384 * Error Injection: send an invalid (too short)
387 pin
->state
= CEC_ST_TX_START_BIT_HIGH_SHORT
;
388 } else if (tx_long_start(pin
)) {
390 * Error Injection: send an invalid (too long)
393 pin
->state
= CEC_ST_TX_START_BIT_HIGH_LONG
;
395 pin
->state
= CEC_ST_TX_START_BIT_HIGH
;
397 /* Generate start bit */
401 case CEC_ST_TX_START_BIT_LOW_CUSTOM
:
402 pin
->state
= CEC_ST_TX_START_BIT_HIGH_CUSTOM
;
403 /* Generate start bit */
407 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
:
408 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT
:
409 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG
:
410 if (pin
->tx_nacked
) {
411 cec_pin_to_idle(pin
);
413 if (pin
->tx_generated_poll
)
415 pin
->work_tx_ts
= ts
;
416 pin
->work_tx_status
= CEC_TX_STATUS_NACK
;
417 wake_up_interruptible(&pin
->kthread_waitq
);
421 case CEC_ST_TX_DATA_BIT_0_HIGH
:
422 case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT
:
423 case CEC_ST_TX_DATA_BIT_0_HIGH_LONG
:
424 case CEC_ST_TX_DATA_BIT_1_HIGH
:
425 case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT
:
426 case CEC_ST_TX_DATA_BIT_1_HIGH_LONG
:
428 * If the read value is 1, then all is OK, otherwise we have a
429 * low drive condition.
431 * Special case: when we generate a poll message due to an
432 * Arbitration Lost error injection, then ignore this since
433 * the pin can actually be low in that case.
435 if (!cec_pin_read(pin
) && !pin
->tx_generated_poll
) {
437 * It's 0, so someone detected an error and pulled the
438 * line low for 1.5 times the nominal bit period.
441 pin
->state
= CEC_ST_TX_WAIT_FOR_HIGH
;
442 pin
->work_tx_ts
= ts
;
443 pin
->work_tx_status
= CEC_TX_STATUS_LOW_DRIVE
;
444 pin
->tx_low_drive_cnt
++;
445 wake_up_interruptible(&pin
->kthread_waitq
);
449 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
:
450 if (tx_last_bit(pin
)) {
451 /* Error Injection: just stop sending after this bit */
452 cec_pin_to_idle(pin
);
454 if (pin
->tx_generated_poll
)
456 pin
->work_tx_ts
= ts
;
457 pin
->work_tx_status
= CEC_TX_STATUS_OK
;
458 wake_up_interruptible(&pin
->kthread_waitq
);
463 case CEC_ST_TX_START_BIT_HIGH
:
464 case CEC_ST_TX_START_BIT_HIGH_SHORT
:
465 case CEC_ST_TX_START_BIT_HIGH_LONG
:
466 case CEC_ST_TX_START_BIT_HIGH_CUSTOM
:
467 if (tx_low_drive(pin
)) {
468 /* Error injection: go to low drive */
470 pin
->state
= CEC_ST_TX_LOW_DRIVE
;
472 if (pin
->tx_generated_poll
)
474 pin
->work_tx_ts
= ts
;
475 pin
->work_tx_status
= CEC_TX_STATUS_LOW_DRIVE
;
476 pin
->tx_low_drive_cnt
++;
477 wake_up_interruptible(&pin
->kthread_waitq
);
480 if (pin
->tx_bit
/ 10 >= pin
->tx_msg
.len
+ pin
->tx_extra_bytes
) {
481 cec_pin_to_idle(pin
);
483 if (pin
->tx_generated_poll
)
485 pin
->work_tx_ts
= ts
;
486 pin
->work_tx_status
= CEC_TX_STATUS_OK
;
487 wake_up_interruptible(&pin
->kthread_waitq
);
491 switch (pin
->tx_bit
% 10) {
494 * In the CEC_ERROR_INJ_TX_ADD_BYTES case we transmit
495 * extra bytes, so pin->tx_bit / 10 can become >= 16.
496 * Generate bit values for those extra bytes instead
497 * of reading them from the transmit buffer.
499 unsigned int idx
= (pin
->tx_bit
/ 10);
502 if (idx
< pin
->tx_msg
.len
)
503 val
= pin
->tx_msg
.msg
[idx
];
504 v
= val
& (1 << (7 - (pin
->tx_bit
% 10)));
506 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_LOW
:
507 CEC_ST_TX_DATA_BIT_0_LOW
;
511 unsigned int tot_len
= pin
->tx_msg
.len
+
513 unsigned int tx_byte_idx
= pin
->tx_bit
/ 10;
515 v
= !pin
->tx_post_eom
&& tx_byte_idx
== tot_len
- 1;
516 if (tot_len
> 1 && tx_byte_idx
== tot_len
- 2 &&
518 /* Error injection: set EOM one byte early */
520 pin
->tx_post_eom
= true;
521 } else if (v
&& tx_no_eom(pin
)) {
522 /* Error injection: no EOM */
525 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_LOW
:
526 CEC_ST_TX_DATA_BIT_0_LOW
;
530 pin
->state
= CEC_ST_TX_DATA_BIT_1_LOW
;
533 if (tx_custom_bit(pin
))
534 pin
->state
= CEC_ST_TX_DATA_BIT_LOW_CUSTOM
;
538 case CEC_ST_TX_DATA_BIT_0_LOW
:
539 case CEC_ST_TX_DATA_BIT_1_LOW
:
540 v
= pin
->state
== CEC_ST_TX_DATA_BIT_1_LOW
;
541 is_ack_bit
= pin
->tx_bit
% 10 == ACK_BIT
;
542 if (v
&& (pin
->tx_bit
< 4 || is_ack_bit
)) {
543 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
;
544 } else if (!is_ack_bit
&& tx_short_bit(pin
)) {
545 /* Error Injection: send an invalid (too short) bit */
546 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH_SHORT
:
547 CEC_ST_TX_DATA_BIT_0_HIGH_SHORT
;
548 } else if (!is_ack_bit
&& tx_long_bit(pin
)) {
549 /* Error Injection: send an invalid (too long) bit */
550 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH_LONG
:
551 CEC_ST_TX_DATA_BIT_0_HIGH_LONG
;
553 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH
:
554 CEC_ST_TX_DATA_BIT_0_HIGH
;
559 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM
:
560 pin
->state
= CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
;
564 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
:
565 /* Read the CEC value at the sample time */
566 v
= cec_pin_read(pin
);
567 is_ack_bit
= pin
->tx_bit
% 10 == ACK_BIT
;
569 * If v == 0 and we're within the first 4 bits
570 * of the initiator, then someone else started
571 * transmitting and we lost the arbitration
572 * (i.e. the logical address of the other
573 * transmitter has more leading 0 bits in the
576 if (!v
&& !is_ack_bit
&& !pin
->tx_generated_poll
) {
578 pin
->work_tx_ts
= ts
;
579 pin
->work_tx_status
= CEC_TX_STATUS_ARB_LOST
;
580 wake_up_interruptible(&pin
->kthread_waitq
);
581 pin
->rx_bit
= pin
->tx_bit
;
583 memset(pin
->rx_msg
.msg
, 0, sizeof(pin
->rx_msg
.msg
));
584 pin
->rx_msg
.msg
[0] = pin
->tx_msg
.msg
[0];
585 pin
->rx_msg
.msg
[0] &= (0xff << (8 - pin
->rx_bit
));
587 pin
->ts
= ktime_sub_us(ts
, CEC_TIM_DATA_BIT_SAMPLE
);
588 pin
->state
= CEC_ST_RX_DATA_POST_SAMPLE
;
592 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
;
593 if (!is_ack_bit
&& tx_short_bit(pin
)) {
594 /* Error Injection: send an invalid (too short) bit */
595 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT
;
596 } else if (!is_ack_bit
&& tx_long_bit(pin
)) {
597 /* Error Injection: send an invalid (too long) bit */
598 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG
;
602 /* Was the message ACKed? */
603 ack
= cec_msg_is_broadcast(&pin
->tx_msg
) ? v
: !v
;
604 if (!ack
&& !pin
->tx_ignore_nack_until_eom
&&
605 pin
->tx_bit
/ 10 < pin
->tx_msg
.len
&& !pin
->tx_post_eom
) {
607 * Note: the CEC spec is ambiguous regarding
608 * what action to take when a NACK appears
609 * before the last byte of the payload was
610 * transmitted: either stop transmitting
611 * immediately, or wait until the last byte
614 * Most CEC implementations appear to stop
615 * immediately, and that's what we do here
618 pin
->tx_nacked
= true;
622 case CEC_ST_TX_PULSE_LOW_CUSTOM
:
624 pin
->state
= CEC_ST_TX_PULSE_HIGH_CUSTOM
;
627 case CEC_ST_TX_PULSE_HIGH_CUSTOM
:
628 cec_pin_to_idle(pin
);
637 * Handle Receive-related states
639 * Basic state changes when receiving:
641 * Rx Start Bit Low -> Rx Start Bit High ->
642 * Regular data bits + EOM:
643 * Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
645 * Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
647 * Rx Ack High Post -> Rx Data High ->
649 * Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
651 static void cec_pin_rx_states(struct cec_pin
*pin
, ktime_t ts
)
660 switch (pin
->state
) {
662 case CEC_ST_RX_START_BIT_LOW
:
663 v
= cec_pin_read(pin
);
666 pin
->state
= CEC_ST_RX_START_BIT_HIGH
;
667 delta
= ktime_us_delta(ts
, pin
->ts
);
668 /* Start bit low is too short, go back to idle */
669 if (delta
< CEC_TIM_START_BIT_LOW_MIN
- CEC_TIM_IDLE_SAMPLE
) {
670 if (!pin
->rx_start_bit_low_too_short_cnt
++) {
671 pin
->rx_start_bit_low_too_short_ts
= ktime_to_ns(pin
->ts
);
672 pin
->rx_start_bit_low_too_short_delta
= delta
;
674 cec_pin_to_idle(pin
);
677 if (rx_arb_lost(pin
, &poll
)) {
678 cec_msg_init(&pin
->tx_msg
, poll
>> 4, poll
& 0xf);
679 pin
->tx_generated_poll
= true;
680 pin
->tx_extra_bytes
= 0;
681 pin
->state
= CEC_ST_TX_START_BIT_HIGH
;
686 case CEC_ST_RX_START_BIT_HIGH
:
687 v
= cec_pin_read(pin
);
688 delta
= ktime_us_delta(ts
, pin
->ts
);
690 * Unfortunately the spec does not specify when to give up
691 * and go to idle. We just pick TOTAL_LONG.
693 if (v
&& delta
> CEC_TIM_START_BIT_TOTAL_LONG
) {
694 pin
->rx_start_bit_too_long_cnt
++;
695 cec_pin_to_idle(pin
);
700 /* Start bit is too short, go back to idle */
701 if (delta
< CEC_TIM_START_BIT_TOTAL_MIN
- CEC_TIM_IDLE_SAMPLE
) {
702 if (!pin
->rx_start_bit_too_short_cnt
++) {
703 pin
->rx_start_bit_too_short_ts
= ktime_to_ns(pin
->ts
);
704 pin
->rx_start_bit_too_short_delta
= delta
;
706 cec_pin_to_idle(pin
);
709 if (rx_low_drive(pin
)) {
710 /* Error injection: go to low drive */
712 pin
->state
= CEC_ST_RX_LOW_DRIVE
;
713 pin
->rx_low_drive_cnt
++;
716 pin
->state
= CEC_ST_RX_DATA_SAMPLE
;
721 case CEC_ST_RX_DATA_SAMPLE
:
722 v
= cec_pin_read(pin
);
723 pin
->state
= CEC_ST_RX_DATA_POST_SAMPLE
;
724 switch (pin
->rx_bit
% 10) {
726 if (pin
->rx_bit
/ 10 < CEC_MAX_MSG_SIZE
)
727 pin
->rx_msg
.msg
[pin
->rx_bit
/ 10] |=
728 v
<< (7 - (pin
->rx_bit
% 10));
732 pin
->rx_msg
.len
= pin
->rx_bit
/ 10 + 1;
740 case CEC_ST_RX_DATA_POST_SAMPLE
:
741 pin
->state
= CEC_ST_RX_DATA_WAIT_FOR_LOW
;
744 case CEC_ST_RX_DATA_WAIT_FOR_LOW
:
745 v
= cec_pin_read(pin
);
746 delta
= ktime_us_delta(ts
, pin
->ts
);
748 * Unfortunately the spec does not specify when to give up
749 * and go to idle. We just pick TOTAL_LONG.
751 if (v
&& delta
> CEC_TIM_DATA_BIT_TOTAL_LONG
) {
752 pin
->rx_data_bit_too_long_cnt
++;
753 cec_pin_to_idle(pin
);
759 if (rx_low_drive(pin
)) {
760 /* Error injection: go to low drive */
762 pin
->state
= CEC_ST_RX_LOW_DRIVE
;
763 pin
->rx_low_drive_cnt
++;
768 * Go to low drive state when the total bit time is
771 if (delta
< CEC_TIM_DATA_BIT_TOTAL_MIN
) {
772 if (!pin
->rx_data_bit_too_short_cnt
++) {
773 pin
->rx_data_bit_too_short_ts
= ktime_to_ns(pin
->ts
);
774 pin
->rx_data_bit_too_short_delta
= delta
;
777 pin
->state
= CEC_ST_RX_LOW_DRIVE
;
778 pin
->rx_low_drive_cnt
++;
782 if (pin
->rx_bit
% 10 != 9) {
783 pin
->state
= CEC_ST_RX_DATA_SAMPLE
;
787 dest
= cec_msg_destination(&pin
->rx_msg
);
788 bcast
= dest
== CEC_LOG_ADDR_BROADCAST
;
789 /* for_us == broadcast or directed to us */
790 for_us
= bcast
|| (pin
->la_mask
& (1 << dest
));
792 ack
= bcast
? 1 : !for_us
;
794 if (for_us
&& rx_nack(pin
)) {
795 /* Error injection: toggle the ACK bit */
800 /* No need to write to the bus, just wait */
801 pin
->state
= CEC_ST_RX_ACK_HIGH_POST
;
805 pin
->state
= CEC_ST_RX_ACK_LOW
;
808 case CEC_ST_RX_ACK_LOW
:
810 pin
->state
= CEC_ST_RX_ACK_LOW_POST
;
813 case CEC_ST_RX_ACK_LOW_POST
:
814 case CEC_ST_RX_ACK_HIGH_POST
:
815 v
= cec_pin_read(pin
);
816 if (v
&& pin
->rx_eom
) {
817 pin
->work_rx_msg
= pin
->rx_msg
;
818 pin
->work_rx_msg
.rx_ts
= ktime_to_ns(ts
);
819 wake_up_interruptible(&pin
->kthread_waitq
);
821 pin
->state
= CEC_ST_RX_ACK_FINISH
;
825 pin
->state
= CEC_ST_RX_DATA_WAIT_FOR_LOW
;
828 case CEC_ST_RX_ACK_FINISH
:
829 cec_pin_to_idle(pin
);
838 * Main timer function
841 static enum hrtimer_restart
cec_pin_timer(struct hrtimer
*timer
)
843 struct cec_pin
*pin
= container_of(timer
, struct cec_pin
, timer
);
844 struct cec_adapter
*adap
= pin
->adap
;
850 if (ktime_to_ns(pin
->timer_ts
)) {
851 delta
= ktime_us_delta(ts
, pin
->timer_ts
);
853 if (delta
> 100 && pin
->state
!= CEC_ST_IDLE
) {
854 /* Keep track of timer overruns */
855 pin
->timer_sum_overrun
+= delta
;
856 pin
->timer_100ms_overruns
++;
858 pin
->timer_300ms_overruns
++;
859 if (delta
> pin
->timer_max_overrun
)
860 pin
->timer_max_overrun
= delta
;
863 if (adap
->monitor_pin_cnt
)
866 if (pin
->wait_usecs
) {
868 * If we are monitoring the pin, then we have to
869 * sample at regular intervals.
871 if (pin
->wait_usecs
> 150) {
872 pin
->wait_usecs
-= 100;
873 pin
->timer_ts
= ktime_add_us(ts
, 100);
874 hrtimer_forward_now(timer
, ns_to_ktime(100000));
875 return HRTIMER_RESTART
;
877 if (pin
->wait_usecs
> 100) {
878 pin
->wait_usecs
/= 2;
879 pin
->timer_ts
= ktime_add_us(ts
, pin
->wait_usecs
);
880 hrtimer_forward_now(timer
,
881 ns_to_ktime(pin
->wait_usecs
* 1000));
882 return HRTIMER_RESTART
;
884 pin
->timer_ts
= ktime_add_us(ts
, pin
->wait_usecs
);
885 hrtimer_forward_now(timer
,
886 ns_to_ktime(pin
->wait_usecs
* 1000));
888 return HRTIMER_RESTART
;
891 switch (pin
->state
) {
892 /* Transmit states */
893 case CEC_ST_TX_WAIT_FOR_HIGH
:
894 case CEC_ST_TX_START_BIT_LOW
:
895 case CEC_ST_TX_START_BIT_HIGH
:
896 case CEC_ST_TX_START_BIT_HIGH_SHORT
:
897 case CEC_ST_TX_START_BIT_HIGH_LONG
:
898 case CEC_ST_TX_START_BIT_LOW_CUSTOM
:
899 case CEC_ST_TX_START_BIT_HIGH_CUSTOM
:
900 case CEC_ST_TX_DATA_BIT_0_LOW
:
901 case CEC_ST_TX_DATA_BIT_0_HIGH
:
902 case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT
:
903 case CEC_ST_TX_DATA_BIT_0_HIGH_LONG
:
904 case CEC_ST_TX_DATA_BIT_1_LOW
:
905 case CEC_ST_TX_DATA_BIT_1_HIGH
:
906 case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT
:
907 case CEC_ST_TX_DATA_BIT_1_HIGH_LONG
:
908 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
:
909 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
:
910 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT
:
911 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG
:
912 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM
:
913 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
:
914 case CEC_ST_TX_PULSE_LOW_CUSTOM
:
915 case CEC_ST_TX_PULSE_HIGH_CUSTOM
:
916 cec_pin_tx_states(pin
, ts
);
920 case CEC_ST_RX_START_BIT_LOW
:
921 case CEC_ST_RX_START_BIT_HIGH
:
922 case CEC_ST_RX_DATA_SAMPLE
:
923 case CEC_ST_RX_DATA_POST_SAMPLE
:
924 case CEC_ST_RX_DATA_WAIT_FOR_LOW
:
925 case CEC_ST_RX_ACK_LOW
:
926 case CEC_ST_RX_ACK_LOW_POST
:
927 case CEC_ST_RX_ACK_HIGH_POST
:
928 case CEC_ST_RX_ACK_FINISH
:
929 cec_pin_rx_states(pin
, ts
);
934 if (!cec_pin_high(pin
)) {
935 /* Start bit, switch to receive state */
937 pin
->state
= CEC_ST_RX_START_BIT_LOW
;
940 if (ktime_to_ns(pin
->ts
) == 0)
942 if (pin
->tx_msg
.len
) {
944 * Check if the bus has been free for long enough
945 * so we can kick off the pending transmit.
947 delta
= ktime_us_delta(ts
, pin
->ts
);
948 if (delta
/ CEC_TIM_DATA_BIT_TOTAL
>
949 pin
->tx_signal_free_time
) {
950 pin
->tx_nacked
= false;
951 if (tx_custom_start(pin
))
952 pin
->state
= CEC_ST_TX_START_BIT_LOW_CUSTOM
;
954 pin
->state
= CEC_ST_TX_START_BIT_LOW
;
955 /* Generate start bit */
959 if (delta
/ CEC_TIM_DATA_BIT_TOTAL
>
960 pin
->tx_signal_free_time
- 1)
961 pin
->state
= CEC_ST_TX_WAIT
;
964 if (pin
->tx_custom_pulse
&& pin
->state
== CEC_ST_IDLE
) {
965 pin
->tx_custom_pulse
= false;
966 /* Generate custom pulse */
968 pin
->state
= CEC_ST_TX_PULSE_LOW_CUSTOM
;
971 if (pin
->state
!= CEC_ST_IDLE
|| pin
->ops
->enable_irq
== NULL
||
972 pin
->enable_irq_failed
|| adap
->is_configuring
||
973 adap
->is_configured
|| adap
->monitor_all_cnt
)
975 /* Switch to interrupt mode */
976 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_ENABLE
);
977 pin
->state
= CEC_ST_RX_IRQ
;
978 wake_up_interruptible(&pin
->kthread_waitq
);
979 return HRTIMER_NORESTART
;
981 case CEC_ST_TX_LOW_DRIVE
:
982 case CEC_ST_RX_LOW_DRIVE
:
984 cec_pin_to_idle(pin
);
991 switch (pin
->state
) {
992 case CEC_ST_TX_START_BIT_LOW_CUSTOM
:
993 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM
:
994 case CEC_ST_TX_PULSE_LOW_CUSTOM
:
995 usecs
= pin
->tx_custom_low_usecs
;
997 case CEC_ST_TX_START_BIT_HIGH_CUSTOM
:
998 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
:
999 case CEC_ST_TX_PULSE_HIGH_CUSTOM
:
1000 usecs
= pin
->tx_custom_high_usecs
;
1003 usecs
= states
[pin
->state
].usecs
;
1007 if (!adap
->monitor_pin_cnt
|| usecs
<= 150) {
1008 pin
->wait_usecs
= 0;
1009 pin
->timer_ts
= ktime_add_us(ts
, usecs
);
1010 hrtimer_forward_now(timer
,
1011 ns_to_ktime(usecs
* 1000));
1012 return HRTIMER_RESTART
;
1014 pin
->wait_usecs
= usecs
- 100;
1015 pin
->timer_ts
= ktime_add_us(ts
, 100);
1016 hrtimer_forward_now(timer
, ns_to_ktime(100000));
1017 return HRTIMER_RESTART
;
1020 static int cec_pin_thread_func(void *_adap
)
1022 struct cec_adapter
*adap
= _adap
;
1023 struct cec_pin
*pin
= adap
->pin
;
1026 wait_event_interruptible(pin
->kthread_waitq
,
1027 kthread_should_stop() ||
1028 pin
->work_rx_msg
.len
||
1029 pin
->work_tx_status
||
1030 atomic_read(&pin
->work_irq_change
) ||
1031 atomic_read(&pin
->work_pin_num_events
));
1033 if (pin
->work_rx_msg
.len
) {
1034 struct cec_msg
*msg
= &pin
->work_rx_msg
;
1036 if (msg
->len
> 1 && msg
->len
< CEC_MAX_MSG_SIZE
&&
1038 /* Error injection: add byte to the message */
1039 msg
->msg
[msg
->len
++] = 0x55;
1041 if (msg
->len
> 2 && rx_remove_byte(pin
)) {
1042 /* Error injection: remove byte from message */
1045 if (msg
->len
> CEC_MAX_MSG_SIZE
)
1046 msg
->len
= CEC_MAX_MSG_SIZE
;
1047 cec_received_msg_ts(adap
, msg
,
1048 ns_to_ktime(pin
->work_rx_msg
.rx_ts
));
1051 if (pin
->work_tx_status
) {
1052 unsigned int tx_status
= pin
->work_tx_status
;
1054 pin
->work_tx_status
= 0;
1055 cec_transmit_attempt_done_ts(adap
, tx_status
,
1059 while (atomic_read(&pin
->work_pin_num_events
)) {
1060 unsigned int idx
= pin
->work_pin_events_rd
;
1061 u8 v
= pin
->work_pin_events
[idx
];
1063 cec_queue_pin_cec_event(adap
,
1064 v
& CEC_PIN_EVENT_FL_IS_HIGH
,
1065 v
& CEC_PIN_EVENT_FL_DROPPED
,
1066 pin
->work_pin_ts
[idx
]);
1067 pin
->work_pin_events_rd
= (idx
+ 1) % CEC_NUM_PIN_EVENTS
;
1068 atomic_dec(&pin
->work_pin_num_events
);
1071 switch (atomic_xchg(&pin
->work_irq_change
,
1072 CEC_PIN_IRQ_UNCHANGED
)) {
1073 case CEC_PIN_IRQ_DISABLE
:
1074 pin
->ops
->disable_irq(adap
);
1076 cec_pin_to_idle(pin
);
1077 hrtimer_start(&pin
->timer
, ns_to_ktime(0),
1080 case CEC_PIN_IRQ_ENABLE
:
1081 pin
->enable_irq_failed
= !pin
->ops
->enable_irq(adap
);
1082 if (pin
->enable_irq_failed
) {
1083 cec_pin_to_idle(pin
);
1084 hrtimer_start(&pin
->timer
, ns_to_ktime(0),
1092 if (kthread_should_stop())
1098 static int cec_pin_adap_enable(struct cec_adapter
*adap
, bool enable
)
1100 struct cec_pin
*pin
= adap
->pin
;
1102 pin
->enabled
= enable
;
1104 atomic_set(&pin
->work_pin_num_events
, 0);
1105 pin
->work_pin_events_rd
= pin
->work_pin_events_wr
= 0;
1106 pin
->work_pin_events_dropped
= false;
1108 cec_pin_to_idle(pin
);
1109 pin
->tx_msg
.len
= 0;
1110 pin
->timer_ts
= ns_to_ktime(0);
1111 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_UNCHANGED
);
1112 pin
->kthread
= kthread_run(cec_pin_thread_func
, adap
,
1114 if (IS_ERR(pin
->kthread
)) {
1115 pr_err("cec-pin: kernel_thread() failed\n");
1116 return PTR_ERR(pin
->kthread
);
1118 hrtimer_start(&pin
->timer
, ns_to_ktime(0),
1121 if (pin
->ops
->disable_irq
)
1122 pin
->ops
->disable_irq(adap
);
1123 hrtimer_cancel(&pin
->timer
);
1124 kthread_stop(pin
->kthread
);
1126 cec_pin_to_idle(pin
);
1127 pin
->state
= CEC_ST_OFF
;
1132 static int cec_pin_adap_log_addr(struct cec_adapter
*adap
, u8 log_addr
)
1134 struct cec_pin
*pin
= adap
->pin
;
1136 if (log_addr
== CEC_LOG_ADDR_INVALID
)
1139 pin
->la_mask
|= (1 << log_addr
);
1143 void cec_pin_start_timer(struct cec_pin
*pin
)
1145 if (pin
->state
!= CEC_ST_RX_IRQ
)
1148 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_UNCHANGED
);
1149 pin
->ops
->disable_irq(pin
->adap
);
1151 cec_pin_to_idle(pin
);
1152 hrtimer_start(&pin
->timer
, ns_to_ktime(0), HRTIMER_MODE_REL
);
1155 static int cec_pin_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
1156 u32 signal_free_time
, struct cec_msg
*msg
)
1158 struct cec_pin
*pin
= adap
->pin
;
1160 pin
->tx_signal_free_time
= signal_free_time
;
1161 pin
->tx_extra_bytes
= 0;
1164 /* Error injection: add byte to the message */
1165 pin
->tx_extra_bytes
= tx_add_bytes(pin
);
1167 if (msg
->len
> 2 && tx_remove_byte(pin
)) {
1168 /* Error injection: remove byte from the message */
1171 pin
->work_tx_status
= 0;
1173 cec_pin_start_timer(pin
);
1177 static void cec_pin_adap_status(struct cec_adapter
*adap
,
1178 struct seq_file
*file
)
1180 struct cec_pin
*pin
= adap
->pin
;
1182 seq_printf(file
, "state: %s\n", states
[pin
->state
].name
);
1183 seq_printf(file
, "tx_bit: %d\n", pin
->tx_bit
);
1184 seq_printf(file
, "rx_bit: %d\n", pin
->rx_bit
);
1185 seq_printf(file
, "cec pin: %d\n", pin
->ops
->read(adap
));
1186 seq_printf(file
, "cec pin events dropped: %u\n",
1187 pin
->work_pin_events_dropped_cnt
);
1188 seq_printf(file
, "irq failed: %d\n", pin
->enable_irq_failed
);
1189 if (pin
->timer_100ms_overruns
) {
1190 seq_printf(file
, "timer overruns > 100ms: %u of %u\n",
1191 pin
->timer_100ms_overruns
, pin
->timer_cnt
);
1192 seq_printf(file
, "timer overruns > 300ms: %u of %u\n",
1193 pin
->timer_300ms_overruns
, pin
->timer_cnt
);
1194 seq_printf(file
, "max timer overrun: %u usecs\n",
1195 pin
->timer_max_overrun
);
1196 seq_printf(file
, "avg timer overrun: %u usecs\n",
1197 pin
->timer_sum_overrun
/ pin
->timer_100ms_overruns
);
1199 if (pin
->rx_start_bit_low_too_short_cnt
)
1201 "rx start bit low too short: %u (delta %u, ts %llu)\n",
1202 pin
->rx_start_bit_low_too_short_cnt
,
1203 pin
->rx_start_bit_low_too_short_delta
,
1204 pin
->rx_start_bit_low_too_short_ts
);
1205 if (pin
->rx_start_bit_too_short_cnt
)
1207 "rx start bit too short: %u (delta %u, ts %llu)\n",
1208 pin
->rx_start_bit_too_short_cnt
,
1209 pin
->rx_start_bit_too_short_delta
,
1210 pin
->rx_start_bit_too_short_ts
);
1211 if (pin
->rx_start_bit_too_long_cnt
)
1212 seq_printf(file
, "rx start bit too long: %u\n",
1213 pin
->rx_start_bit_too_long_cnt
);
1214 if (pin
->rx_data_bit_too_short_cnt
)
1216 "rx data bit too short: %u (delta %u, ts %llu)\n",
1217 pin
->rx_data_bit_too_short_cnt
,
1218 pin
->rx_data_bit_too_short_delta
,
1219 pin
->rx_data_bit_too_short_ts
);
1220 if (pin
->rx_data_bit_too_long_cnt
)
1221 seq_printf(file
, "rx data bit too long: %u\n",
1222 pin
->rx_data_bit_too_long_cnt
);
1223 seq_printf(file
, "rx initiated low drive: %u\n", pin
->rx_low_drive_cnt
);
1224 seq_printf(file
, "tx detected low drive: %u\n", pin
->tx_low_drive_cnt
);
1225 pin
->work_pin_events_dropped_cnt
= 0;
1227 pin
->timer_100ms_overruns
= 0;
1228 pin
->timer_300ms_overruns
= 0;
1229 pin
->timer_max_overrun
= 0;
1230 pin
->timer_sum_overrun
= 0;
1231 pin
->rx_start_bit_low_too_short_cnt
= 0;
1232 pin
->rx_start_bit_too_short_cnt
= 0;
1233 pin
->rx_start_bit_too_long_cnt
= 0;
1234 pin
->rx_data_bit_too_short_cnt
= 0;
1235 pin
->rx_data_bit_too_long_cnt
= 0;
1236 pin
->rx_low_drive_cnt
= 0;
1237 pin
->tx_low_drive_cnt
= 0;
1238 if (pin
->ops
->status
)
1239 pin
->ops
->status(adap
, file
);
1242 static int cec_pin_adap_monitor_all_enable(struct cec_adapter
*adap
,
1245 struct cec_pin
*pin
= adap
->pin
;
1247 pin
->monitor_all
= enable
;
1251 static void cec_pin_adap_free(struct cec_adapter
*adap
)
1253 struct cec_pin
*pin
= adap
->pin
;
1256 pin
->ops
->free(adap
);
1261 void cec_pin_changed(struct cec_adapter
*adap
, bool value
)
1263 struct cec_pin
*pin
= adap
->pin
;
1265 cec_pin_update(pin
, value
, false);
1266 if (!value
&& (adap
->is_configuring
|| adap
->is_configured
||
1267 adap
->monitor_all_cnt
))
1268 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_DISABLE
);
1270 EXPORT_SYMBOL_GPL(cec_pin_changed
);
1272 static const struct cec_adap_ops cec_pin_adap_ops
= {
1273 .adap_enable
= cec_pin_adap_enable
,
1274 .adap_monitor_all_enable
= cec_pin_adap_monitor_all_enable
,
1275 .adap_log_addr
= cec_pin_adap_log_addr
,
1276 .adap_transmit
= cec_pin_adap_transmit
,
1277 .adap_status
= cec_pin_adap_status
,
1278 .adap_free
= cec_pin_adap_free
,
1279 #ifdef CONFIG_CEC_PIN_ERROR_INJ
1280 .error_inj_parse_line
= cec_pin_error_inj_parse_line
,
1281 .error_inj_show
= cec_pin_error_inj_show
,
1285 struct cec_adapter
*cec_pin_allocate_adapter(const struct cec_pin_ops
*pin_ops
,
1286 void *priv
, const char *name
, u32 caps
)
1288 struct cec_adapter
*adap
;
1289 struct cec_pin
*pin
= kzalloc(sizeof(*pin
), GFP_KERNEL
);
1292 return ERR_PTR(-ENOMEM
);
1294 hrtimer_init(&pin
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1295 pin
->timer
.function
= cec_pin_timer
;
1296 init_waitqueue_head(&pin
->kthread_waitq
);
1297 pin
->tx_custom_low_usecs
= CEC_TIM_CUSTOM_DEFAULT
;
1298 pin
->tx_custom_high_usecs
= CEC_TIM_CUSTOM_DEFAULT
;
1300 adap
= cec_allocate_adapter(&cec_pin_adap_ops
, priv
, name
,
1301 caps
| CEC_CAP_MONITOR_ALL
| CEC_CAP_MONITOR_PIN
,
1311 cec_pin_update(pin
, cec_pin_high(pin
), true);
1314 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter
);