1 // SPDX-License-Identifier: GPL-2.0-only
3 * Analog Devices ADV7511 HDMI Transmitter Device Driver
5 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/i2c.h>
13 #include <linux/delay.h>
14 #include <linux/videodev2.h>
15 #include <linux/gpio.h>
16 #include <linux/workqueue.h>
17 #include <linux/hdmi.h>
18 #include <linux/v4l2-dv-timings.h>
19 #include <media/v4l2-device.h>
20 #include <media/v4l2-common.h>
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-dv-timings.h>
23 #include <media/i2c/adv7511.h>
24 #include <media/cec.h>
27 module_param(debug
, int, 0644);
28 MODULE_PARM_DESC(debug
, "debug level (0-2)");
30 MODULE_DESCRIPTION("Analog Devices ADV7511 HDMI Transmitter Device Driver");
31 MODULE_AUTHOR("Hans Verkuil");
32 MODULE_LICENSE("GPL v2");
34 #define MASK_ADV7511_EDID_RDY_INT 0x04
35 #define MASK_ADV7511_MSEN_INT 0x40
36 #define MASK_ADV7511_HPD_INT 0x80
38 #define MASK_ADV7511_HPD_DETECT 0x40
39 #define MASK_ADV7511_MSEN_DETECT 0x20
40 #define MASK_ADV7511_EDID_RDY 0x10
42 #define EDID_MAX_RETRIES (8)
43 #define EDID_DELAY 250
44 #define EDID_MAX_SEGM 8
46 #define ADV7511_MAX_WIDTH 1920
47 #define ADV7511_MAX_HEIGHT 1200
48 #define ADV7511_MIN_PIXELCLOCK 20000000
49 #define ADV7511_MAX_PIXELCLOCK 225000000
51 #define ADV7511_MAX_ADDRS (3)
54 **********************************************************************
56 * Arrays with configuration parameters for the ADV7511
58 **********************************************************************
61 struct i2c_reg_value
{
66 struct adv7511_state_edid
{
67 /* total number of blocks */
69 /* Number of segments read */
71 u8 data
[EDID_MAX_SEGM
* 256];
72 /* Number of EDID read retries left */
73 unsigned read_retries
;
77 struct adv7511_state
{
78 struct adv7511_platform_data pdata
;
79 struct v4l2_subdev sd
;
81 struct v4l2_ctrl_handler hdl
;
87 struct i2c_client
*i2c_cec
;
88 struct cec_adapter
*cec_adap
;
89 u8 cec_addr
[ADV7511_MAX_ADDRS
];
91 bool cec_enabled_adap
;
93 /* Is the adv7511 powered on? */
95 /* Did we receive hotplug and rx-sense signals? */
98 /* timings from s_dv_timings */
99 struct v4l2_dv_timings dv_timings
;
107 struct v4l2_ctrl
*hdmi_mode_ctrl
;
108 struct v4l2_ctrl
*hotplug_ctrl
;
109 struct v4l2_ctrl
*rx_sense_ctrl
;
110 struct v4l2_ctrl
*have_edid0_ctrl
;
111 struct v4l2_ctrl
*rgb_quantization_range_ctrl
;
112 struct v4l2_ctrl
*content_type_ctrl
;
113 struct i2c_client
*i2c_edid
;
114 struct i2c_client
*i2c_pktmem
;
115 struct adv7511_state_edid edid
;
116 /* Running counter of the number of detected EDIDs (for debugging) */
117 unsigned edid_detect_counter
;
118 struct workqueue_struct
*work_queue
;
119 struct delayed_work edid_handler
; /* work entry */
122 static void adv7511_check_monitor_present_status(struct v4l2_subdev
*sd
);
123 static bool adv7511_check_edid_status(struct v4l2_subdev
*sd
);
124 static void adv7511_setup(struct v4l2_subdev
*sd
);
125 static int adv7511_s_i2s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
);
126 static int adv7511_s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
);
129 static const struct v4l2_dv_timings_cap adv7511_timings_cap
= {
130 .type
= V4L2_DV_BT_656_1120
,
131 /* keep this initialization for compatibility with GCC < 4.4.6 */
133 V4L2_INIT_BT_TIMINGS(0, ADV7511_MAX_WIDTH
, 0, ADV7511_MAX_HEIGHT
,
134 ADV7511_MIN_PIXELCLOCK
, ADV7511_MAX_PIXELCLOCK
,
135 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
136 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
137 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
138 V4L2_DV_BT_CAP_CUSTOM
)
141 static inline struct adv7511_state
*get_adv7511_state(struct v4l2_subdev
*sd
)
143 return container_of(sd
, struct adv7511_state
, sd
);
146 static inline struct v4l2_subdev
*to_sd(struct v4l2_ctrl
*ctrl
)
148 return &container_of(ctrl
->handler
, struct adv7511_state
, hdl
)->sd
;
151 /* ------------------------ I2C ----------------------------------------------- */
153 static s32
adv_smbus_read_byte_data_check(struct i2c_client
*client
,
154 u8 command
, bool check
)
156 union i2c_smbus_data data
;
158 if (!i2c_smbus_xfer(client
->adapter
, client
->addr
, client
->flags
,
159 I2C_SMBUS_READ
, command
,
160 I2C_SMBUS_BYTE_DATA
, &data
))
163 v4l_err(client
, "error reading %02x, %02x\n",
164 client
->addr
, command
);
168 static s32
adv_smbus_read_byte_data(struct i2c_client
*client
, u8 command
)
171 for (i
= 0; i
< 3; i
++) {
172 int ret
= adv_smbus_read_byte_data_check(client
, command
, true);
175 v4l_err(client
, "read ok after %d retries\n", i
);
179 v4l_err(client
, "read failed\n");
183 static int adv7511_rd(struct v4l2_subdev
*sd
, u8 reg
)
185 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
187 return adv_smbus_read_byte_data(client
, reg
);
190 static int adv7511_wr(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
192 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
196 for (i
= 0; i
< 3; i
++) {
197 ret
= i2c_smbus_write_byte_data(client
, reg
, val
);
201 v4l2_err(sd
, "%s: i2c write error\n", __func__
);
205 /* To set specific bits in the register, a clear-mask is given (to be AND-ed),
206 and then the value-mask (to be OR-ed). */
207 static inline void adv7511_wr_and_or(struct v4l2_subdev
*sd
, u8 reg
, u8 clr_mask
, u8 val_mask
)
209 adv7511_wr(sd
, reg
, (adv7511_rd(sd
, reg
) & clr_mask
) | val_mask
);
212 static int adv_smbus_read_i2c_block_data(struct i2c_client
*client
,
213 u8 command
, unsigned length
, u8
*values
)
215 union i2c_smbus_data data
;
218 if (length
> I2C_SMBUS_BLOCK_MAX
)
219 length
= I2C_SMBUS_BLOCK_MAX
;
220 data
.block
[0] = length
;
222 ret
= i2c_smbus_xfer(client
->adapter
, client
->addr
, client
->flags
,
223 I2C_SMBUS_READ
, command
,
224 I2C_SMBUS_I2C_BLOCK_DATA
, &data
);
225 memcpy(values
, data
.block
+ 1, length
);
229 static void adv7511_edid_rd(struct v4l2_subdev
*sd
, uint16_t len
, uint8_t *buf
)
231 struct adv7511_state
*state
= get_adv7511_state(sd
);
235 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
237 for (i
= 0; !err
&& i
< len
; i
+= I2C_SMBUS_BLOCK_MAX
)
238 err
= adv_smbus_read_i2c_block_data(state
->i2c_edid
, i
,
239 I2C_SMBUS_BLOCK_MAX
, buf
+ i
);
241 v4l2_err(sd
, "%s: i2c read error\n", __func__
);
244 static inline int adv7511_cec_read(struct v4l2_subdev
*sd
, u8 reg
)
246 struct adv7511_state
*state
= get_adv7511_state(sd
);
248 return i2c_smbus_read_byte_data(state
->i2c_cec
, reg
);
251 static int adv7511_cec_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
253 struct adv7511_state
*state
= get_adv7511_state(sd
);
257 for (i
= 0; i
< 3; i
++) {
258 ret
= i2c_smbus_write_byte_data(state
->i2c_cec
, reg
, val
);
262 v4l2_err(sd
, "%s: I2C Write Problem\n", __func__
);
266 static inline int adv7511_cec_write_and_or(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
269 return adv7511_cec_write(sd
, reg
, (adv7511_cec_read(sd
, reg
) & mask
) | val
);
272 static int adv7511_pktmem_rd(struct v4l2_subdev
*sd
, u8 reg
)
274 struct adv7511_state
*state
= get_adv7511_state(sd
);
276 return adv_smbus_read_byte_data(state
->i2c_pktmem
, reg
);
279 static int adv7511_pktmem_wr(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
281 struct adv7511_state
*state
= get_adv7511_state(sd
);
285 for (i
= 0; i
< 3; i
++) {
286 ret
= i2c_smbus_write_byte_data(state
->i2c_pktmem
, reg
, val
);
290 v4l2_err(sd
, "%s: i2c write error\n", __func__
);
294 /* To set specific bits in the register, a clear-mask is given (to be AND-ed),
295 and then the value-mask (to be OR-ed). */
296 static inline void adv7511_pktmem_wr_and_or(struct v4l2_subdev
*sd
, u8 reg
, u8 clr_mask
, u8 val_mask
)
298 adv7511_pktmem_wr(sd
, reg
, (adv7511_pktmem_rd(sd
, reg
) & clr_mask
) | val_mask
);
301 static inline bool adv7511_have_hotplug(struct v4l2_subdev
*sd
)
303 return adv7511_rd(sd
, 0x42) & MASK_ADV7511_HPD_DETECT
;
306 static inline bool adv7511_have_rx_sense(struct v4l2_subdev
*sd
)
308 return adv7511_rd(sd
, 0x42) & MASK_ADV7511_MSEN_DETECT
;
311 static void adv7511_csc_conversion_mode(struct v4l2_subdev
*sd
, u8 mode
)
313 adv7511_wr_and_or(sd
, 0x18, 0x9f, (mode
& 0x3)<<5);
316 static void adv7511_csc_coeff(struct v4l2_subdev
*sd
,
317 u16 A1
, u16 A2
, u16 A3
, u16 A4
,
318 u16 B1
, u16 B2
, u16 B3
, u16 B4
,
319 u16 C1
, u16 C2
, u16 C3
, u16 C4
)
322 adv7511_wr_and_or(sd
, 0x18, 0xe0, A1
>>8);
323 adv7511_wr(sd
, 0x19, A1
);
324 adv7511_wr_and_or(sd
, 0x1A, 0xe0, A2
>>8);
325 adv7511_wr(sd
, 0x1B, A2
);
326 adv7511_wr_and_or(sd
, 0x1c, 0xe0, A3
>>8);
327 adv7511_wr(sd
, 0x1d, A3
);
328 adv7511_wr_and_or(sd
, 0x1e, 0xe0, A4
>>8);
329 adv7511_wr(sd
, 0x1f, A4
);
332 adv7511_wr_and_or(sd
, 0x20, 0xe0, B1
>>8);
333 adv7511_wr(sd
, 0x21, B1
);
334 adv7511_wr_and_or(sd
, 0x22, 0xe0, B2
>>8);
335 adv7511_wr(sd
, 0x23, B2
);
336 adv7511_wr_and_or(sd
, 0x24, 0xe0, B3
>>8);
337 adv7511_wr(sd
, 0x25, B3
);
338 adv7511_wr_and_or(sd
, 0x26, 0xe0, B4
>>8);
339 adv7511_wr(sd
, 0x27, B4
);
342 adv7511_wr_and_or(sd
, 0x28, 0xe0, C1
>>8);
343 adv7511_wr(sd
, 0x29, C1
);
344 adv7511_wr_and_or(sd
, 0x2A, 0xe0, C2
>>8);
345 adv7511_wr(sd
, 0x2B, C2
);
346 adv7511_wr_and_or(sd
, 0x2C, 0xe0, C3
>>8);
347 adv7511_wr(sd
, 0x2D, C3
);
348 adv7511_wr_and_or(sd
, 0x2E, 0xe0, C4
>>8);
349 adv7511_wr(sd
, 0x2F, C4
);
352 static void adv7511_csc_rgb_full2limit(struct v4l2_subdev
*sd
, bool enable
)
356 adv7511_csc_conversion_mode(sd
, csc_mode
);
357 adv7511_csc_coeff(sd
,
360 0, 0, 4096-564, 256);
362 adv7511_wr_and_or(sd
, 0x18, 0x7f, 0x80);
363 /* AVI infoframe: Limited range RGB (16-235) */
364 adv7511_wr_and_or(sd
, 0x57, 0xf3, 0x04);
367 adv7511_wr_and_or(sd
, 0x18, 0x7f, 0x0);
368 /* AVI infoframe: Full range RGB (0-255) */
369 adv7511_wr_and_or(sd
, 0x57, 0xf3, 0x08);
373 static void adv7511_set_rgb_quantization_mode(struct v4l2_subdev
*sd
, struct v4l2_ctrl
*ctrl
)
375 struct adv7511_state
*state
= get_adv7511_state(sd
);
377 /* Only makes sense for RGB formats */
378 if (state
->fmt_code
!= MEDIA_BUS_FMT_RGB888_1X24
) {
379 /* so just keep quantization */
380 adv7511_csc_rgb_full2limit(sd
, false);
385 case V4L2_DV_RGB_RANGE_AUTO
:
387 if (state
->dv_timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
388 /* CE format, RGB limited range (16-235) */
389 adv7511_csc_rgb_full2limit(sd
, true);
391 /* not CE format, RGB full range (0-255) */
392 adv7511_csc_rgb_full2limit(sd
, false);
395 case V4L2_DV_RGB_RANGE_LIMITED
:
396 /* RGB limited range (16-235) */
397 adv7511_csc_rgb_full2limit(sd
, true);
399 case V4L2_DV_RGB_RANGE_FULL
:
400 /* RGB full range (0-255) */
401 adv7511_csc_rgb_full2limit(sd
, false);
406 /* ------------------------------ CTRL OPS ------------------------------ */
408 static int adv7511_s_ctrl(struct v4l2_ctrl
*ctrl
)
410 struct v4l2_subdev
*sd
= to_sd(ctrl
);
411 struct adv7511_state
*state
= get_adv7511_state(sd
);
413 v4l2_dbg(1, debug
, sd
, "%s: ctrl id: %d, ctrl->val %d\n", __func__
, ctrl
->id
, ctrl
->val
);
415 if (state
->hdmi_mode_ctrl
== ctrl
) {
416 /* Set HDMI or DVI-D */
417 adv7511_wr_and_or(sd
, 0xaf, 0xfd, ctrl
->val
== V4L2_DV_TX_MODE_HDMI
? 0x02 : 0x00);
420 if (state
->rgb_quantization_range_ctrl
== ctrl
) {
421 adv7511_set_rgb_quantization_mode(sd
, ctrl
);
424 if (state
->content_type_ctrl
== ctrl
) {
427 state
->content_type
= ctrl
->val
;
428 itc
= state
->content_type
!= V4L2_DV_IT_CONTENT_TYPE_NO_ITC
;
429 cn
= itc
? state
->content_type
: V4L2_DV_IT_CONTENT_TYPE_GRAPHICS
;
430 adv7511_wr_and_or(sd
, 0x57, 0x7f, itc
<< 7);
431 adv7511_wr_and_or(sd
, 0x59, 0xcf, cn
<< 4);
438 static const struct v4l2_ctrl_ops adv7511_ctrl_ops
= {
439 .s_ctrl
= adv7511_s_ctrl
,
442 /* ---------------------------- CORE OPS ------------------------------------------- */
444 #ifdef CONFIG_VIDEO_ADV_DEBUG
445 static void adv7511_inv_register(struct v4l2_subdev
*sd
)
447 struct adv7511_state
*state
= get_adv7511_state(sd
);
449 v4l2_info(sd
, "0x000-0x0ff: Main Map\n");
451 v4l2_info(sd
, "0x100-0x1ff: CEC Map\n");
454 static int adv7511_g_register(struct v4l2_subdev
*sd
, struct v4l2_dbg_register
*reg
)
456 struct adv7511_state
*state
= get_adv7511_state(sd
);
459 switch (reg
->reg
>> 8) {
461 reg
->val
= adv7511_rd(sd
, reg
->reg
& 0xff);
464 if (state
->i2c_cec
) {
465 reg
->val
= adv7511_cec_read(sd
, reg
->reg
& 0xff);
470 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
471 adv7511_inv_register(sd
);
477 static int adv7511_s_register(struct v4l2_subdev
*sd
, const struct v4l2_dbg_register
*reg
)
479 struct adv7511_state
*state
= get_adv7511_state(sd
);
481 switch (reg
->reg
>> 8) {
483 adv7511_wr(sd
, reg
->reg
& 0xff, reg
->val
& 0xff);
486 if (state
->i2c_cec
) {
487 adv7511_cec_write(sd
, reg
->reg
& 0xff, reg
->val
& 0xff);
492 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
493 adv7511_inv_register(sd
);
500 struct adv7511_cfg_read_infoframe
{
508 static u8
hdmi_infoframe_checksum(u8
*ptr
, size_t size
)
513 /* compute checksum */
514 for (i
= 0; i
< size
; i
++)
520 static void log_infoframe(struct v4l2_subdev
*sd
, const struct adv7511_cfg_read_infoframe
*cri
)
522 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
523 struct device
*dev
= &client
->dev
;
524 union hdmi_infoframe frame
;
529 if (!(adv7511_rd(sd
, cri
->present_reg
) & cri
->present_mask
)) {
530 v4l2_info(sd
, "%s infoframe not transmitted\n", cri
->desc
);
534 memcpy(buffer
, cri
->header
, sizeof(cri
->header
));
538 if (len
+ 4 > sizeof(buffer
)) {
539 v4l2_err(sd
, "%s: invalid %s infoframe length %d\n", __func__
, cri
->desc
, len
);
543 if (cri
->payload_addr
>= 0x100) {
544 for (i
= 0; i
< len
; i
++)
545 buffer
[i
+ 4] = adv7511_pktmem_rd(sd
, cri
->payload_addr
+ i
- 0x100);
547 for (i
= 0; i
< len
; i
++)
548 buffer
[i
+ 4] = adv7511_rd(sd
, cri
->payload_addr
+ i
);
551 buffer
[3] = hdmi_infoframe_checksum(buffer
, len
+ 4);
553 if (hdmi_infoframe_unpack(&frame
, buffer
) < 0) {
554 v4l2_err(sd
, "%s: unpack of %s infoframe failed\n", __func__
, cri
->desc
);
558 hdmi_infoframe_log(KERN_INFO
, dev
, &frame
);
561 static void adv7511_log_infoframes(struct v4l2_subdev
*sd
)
563 static const struct adv7511_cfg_read_infoframe cri
[] = {
564 { "AVI", 0x44, 0x10, { 0x82, 2, 13 }, 0x55 },
565 { "Audio", 0x44, 0x08, { 0x84, 1, 10 }, 0x73 },
566 { "SDP", 0x40, 0x40, { 0x83, 1, 25 }, 0x103 },
570 for (i
= 0; i
< ARRAY_SIZE(cri
); i
++)
571 log_infoframe(sd
, &cri
[i
]);
574 static int adv7511_log_status(struct v4l2_subdev
*sd
)
576 struct adv7511_state
*state
= get_adv7511_state(sd
);
577 struct adv7511_state_edid
*edid
= &state
->edid
;
580 static const char * const states
[] = {
586 "initializing HDCP repeater",
587 "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
589 static const char * const errors
[] = {
596 "max repeater cascade exceeded",
599 "9", "A", "B", "C", "D", "E", "F"
602 v4l2_info(sd
, "power %s\n", state
->power_on
? "on" : "off");
603 v4l2_info(sd
, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n",
604 (adv7511_rd(sd
, 0x42) & MASK_ADV7511_HPD_DETECT
) ? "detected" : "no",
605 (adv7511_rd(sd
, 0x42) & MASK_ADV7511_MSEN_DETECT
) ? "detected" : "no",
606 edid
->segments
? "found" : "no",
608 v4l2_info(sd
, "%s output %s\n",
609 (adv7511_rd(sd
, 0xaf) & 0x02) ?
611 (adv7511_rd(sd
, 0xa1) & 0x3c) ?
612 "disabled" : "enabled");
613 v4l2_info(sd
, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n",
614 states
[adv7511_rd(sd
, 0xc8) & 0xf],
615 errors
[adv7511_rd(sd
, 0xc8) >> 4], state
->edid_detect_counter
,
616 adv7511_rd(sd
, 0x94), adv7511_rd(sd
, 0x96));
617 v4l2_info(sd
, "RGB quantization: %s range\n", adv7511_rd(sd
, 0x18) & 0x80 ? "limited" : "full");
618 if (adv7511_rd(sd
, 0xaf) & 0x02) {
620 u8 manual_cts
= adv7511_rd(sd
, 0x0a) & 0x80;
621 u32 N
= (adv7511_rd(sd
, 0x01) & 0xf) << 16 |
622 adv7511_rd(sd
, 0x02) << 8 |
623 adv7511_rd(sd
, 0x03);
624 u8 vic_detect
= adv7511_rd(sd
, 0x3e) >> 2;
625 u8 vic_sent
= adv7511_rd(sd
, 0x3d) & 0x3f;
629 CTS
= (adv7511_rd(sd
, 0x07) & 0xf) << 16 |
630 adv7511_rd(sd
, 0x08) << 8 |
631 adv7511_rd(sd
, 0x09);
633 CTS
= (adv7511_rd(sd
, 0x04) & 0xf) << 16 |
634 adv7511_rd(sd
, 0x05) << 8 |
635 adv7511_rd(sd
, 0x06);
636 v4l2_info(sd
, "CTS %s mode: N %d, CTS %d\n",
637 manual_cts
? "manual" : "automatic", N
, CTS
);
638 v4l2_info(sd
, "VIC: detected %d, sent %d\n",
639 vic_detect
, vic_sent
);
640 adv7511_log_infoframes(sd
);
642 if (state
->dv_timings
.type
== V4L2_DV_BT_656_1120
)
643 v4l2_print_dv_timings(sd
->name
, "timings: ",
644 &state
->dv_timings
, false);
646 v4l2_info(sd
, "no timings set\n");
647 v4l2_info(sd
, "i2c edid addr: 0x%x\n", state
->i2c_edid_addr
);
649 if (state
->i2c_cec
== NULL
)
652 v4l2_info(sd
, "i2c cec addr: 0x%x\n", state
->i2c_cec_addr
);
654 v4l2_info(sd
, "CEC: %s\n", state
->cec_enabled_adap
?
655 "enabled" : "disabled");
656 if (state
->cec_enabled_adap
) {
657 for (i
= 0; i
< ADV7511_MAX_ADDRS
; i
++) {
658 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
661 v4l2_info(sd
, "CEC Logical Address: 0x%x\n",
665 v4l2_info(sd
, "i2c pktmem addr: 0x%x\n", state
->i2c_pktmem_addr
);
669 /* Power up/down adv7511 */
670 static int adv7511_s_power(struct v4l2_subdev
*sd
, int on
)
672 struct adv7511_state
*state
= get_adv7511_state(sd
);
673 const int retries
= 20;
676 v4l2_dbg(1, debug
, sd
, "%s: power %s\n", __func__
, on
? "on" : "off");
678 state
->power_on
= on
;
682 adv7511_wr_and_or(sd
, 0x41, 0xbf, 0x40);
687 /* The adv7511 does not always come up immediately.
688 Retry multiple times. */
689 for (i
= 0; i
< retries
; i
++) {
690 adv7511_wr_and_or(sd
, 0x41, 0xbf, 0x0);
691 if ((adv7511_rd(sd
, 0x41) & 0x40) == 0)
693 adv7511_wr_and_or(sd
, 0x41, 0xbf, 0x40);
697 v4l2_dbg(1, debug
, sd
, "%s: failed to powerup the adv7511!\n", __func__
);
698 adv7511_s_power(sd
, 0);
702 v4l2_dbg(1, debug
, sd
, "%s: needed %d retries to powerup the adv7511\n", __func__
, i
);
704 /* Reserved registers that must be set */
705 adv7511_wr(sd
, 0x98, 0x03);
706 adv7511_wr_and_or(sd
, 0x9a, 0xfe, 0x70);
707 adv7511_wr(sd
, 0x9c, 0x30);
708 adv7511_wr_and_or(sd
, 0x9d, 0xfc, 0x01);
709 adv7511_wr(sd
, 0xa2, 0xa4);
710 adv7511_wr(sd
, 0xa3, 0xa4);
711 adv7511_wr(sd
, 0xe0, 0xd0);
712 adv7511_wr(sd
, 0xf9, 0x00);
714 adv7511_wr(sd
, 0x43, state
->i2c_edid_addr
);
715 adv7511_wr(sd
, 0x45, state
->i2c_pktmem_addr
);
717 /* Set number of attempts to read the EDID */
718 adv7511_wr(sd
, 0xc9, 0xf);
722 #if IS_ENABLED(CONFIG_VIDEO_ADV7511_CEC)
723 static int adv7511_cec_adap_enable(struct cec_adapter
*adap
, bool enable
)
725 struct adv7511_state
*state
= cec_get_drvdata(adap
);
726 struct v4l2_subdev
*sd
= &state
->sd
;
728 if (state
->i2c_cec
== NULL
)
731 if (!state
->cec_enabled_adap
&& enable
) {
732 /* power up cec section */
733 adv7511_cec_write_and_or(sd
, 0x4e, 0xfc, 0x01);
734 /* legacy mode and clear all rx buffers */
735 adv7511_cec_write(sd
, 0x4a, 0x00);
736 adv7511_cec_write(sd
, 0x4a, 0x07);
737 adv7511_cec_write_and_or(sd
, 0x11, 0xfe, 0); /* initially disable tx */
740 /* tx: arbitration lost */
741 /* tx: retry timeout */
743 if (state
->enabled_irq
)
744 adv7511_wr_and_or(sd
, 0x95, 0xc0, 0x39);
745 } else if (state
->cec_enabled_adap
&& !enable
) {
746 if (state
->enabled_irq
)
747 adv7511_wr_and_or(sd
, 0x95, 0xc0, 0x00);
748 /* disable address mask 1-3 */
749 adv7511_cec_write_and_or(sd
, 0x4b, 0x8f, 0x00);
750 /* power down cec section */
751 adv7511_cec_write_and_or(sd
, 0x4e, 0xfc, 0x00);
752 state
->cec_valid_addrs
= 0;
754 state
->cec_enabled_adap
= enable
;
758 static int adv7511_cec_adap_log_addr(struct cec_adapter
*adap
, u8 addr
)
760 struct adv7511_state
*state
= cec_get_drvdata(adap
);
761 struct v4l2_subdev
*sd
= &state
->sd
;
762 unsigned int i
, free_idx
= ADV7511_MAX_ADDRS
;
764 if (!state
->cec_enabled_adap
)
765 return addr
== CEC_LOG_ADDR_INVALID
? 0 : -EIO
;
767 if (addr
== CEC_LOG_ADDR_INVALID
) {
768 adv7511_cec_write_and_or(sd
, 0x4b, 0x8f, 0);
769 state
->cec_valid_addrs
= 0;
773 for (i
= 0; i
< ADV7511_MAX_ADDRS
; i
++) {
774 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
776 if (free_idx
== ADV7511_MAX_ADDRS
&& !is_valid
)
778 if (is_valid
&& state
->cec_addr
[i
] == addr
)
781 if (i
== ADV7511_MAX_ADDRS
) {
783 if (i
== ADV7511_MAX_ADDRS
)
786 state
->cec_addr
[i
] = addr
;
787 state
->cec_valid_addrs
|= 1 << i
;
791 /* enable address mask 0 */
792 adv7511_cec_write_and_or(sd
, 0x4b, 0xef, 0x10);
793 /* set address for mask 0 */
794 adv7511_cec_write_and_or(sd
, 0x4c, 0xf0, addr
);
797 /* enable address mask 1 */
798 adv7511_cec_write_and_or(sd
, 0x4b, 0xdf, 0x20);
799 /* set address for mask 1 */
800 adv7511_cec_write_and_or(sd
, 0x4c, 0x0f, addr
<< 4);
803 /* enable address mask 2 */
804 adv7511_cec_write_and_or(sd
, 0x4b, 0xbf, 0x40);
805 /* set address for mask 1 */
806 adv7511_cec_write_and_or(sd
, 0x4d, 0xf0, addr
);
812 static int adv7511_cec_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
813 u32 signal_free_time
, struct cec_msg
*msg
)
815 struct adv7511_state
*state
= cec_get_drvdata(adap
);
816 struct v4l2_subdev
*sd
= &state
->sd
;
820 v4l2_dbg(1, debug
, sd
, "%s: len %d\n", __func__
, len
);
823 v4l2_err(sd
, "%s: len exceeded 16 (%d)\n", __func__
, len
);
828 * The number of retries is the number of attempts - 1, but retry
829 * at least once. It's not clear if a value of 0 is allowed, so
830 * let's do at least one retry.
832 adv7511_cec_write_and_or(sd
, 0x12, ~0x70, max(1, attempts
- 1) << 4);
834 /* clear cec tx irq status */
835 adv7511_wr(sd
, 0x97, 0x38);
838 for (i
= 0; i
< len
; i
++)
839 adv7511_cec_write(sd
, i
, msg
->msg
[i
]);
841 /* set length (data + header) */
842 adv7511_cec_write(sd
, 0x10, len
);
843 /* start transmit, enable tx */
844 adv7511_cec_write(sd
, 0x11, 0x01);
848 static void adv_cec_tx_raw_status(struct v4l2_subdev
*sd
, u8 tx_raw_status
)
850 struct adv7511_state
*state
= get_adv7511_state(sd
);
852 if ((adv7511_cec_read(sd
, 0x11) & 0x01) == 0) {
853 v4l2_dbg(1, debug
, sd
, "%s: tx raw: tx disabled\n", __func__
);
857 if (tx_raw_status
& 0x10) {
858 v4l2_dbg(1, debug
, sd
,
859 "%s: tx raw: arbitration lost\n", __func__
);
860 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_ARB_LOST
,
864 if (tx_raw_status
& 0x08) {
869 v4l2_dbg(1, debug
, sd
, "%s: tx raw: retry failed\n", __func__
);
871 * We set this status bit since this hardware performs
874 status
= CEC_TX_STATUS_MAX_RETRIES
;
875 nack_cnt
= adv7511_cec_read(sd
, 0x14) & 0xf;
877 status
|= CEC_TX_STATUS_NACK
;
878 low_drive_cnt
= adv7511_cec_read(sd
, 0x14) >> 4;
880 status
|= CEC_TX_STATUS_LOW_DRIVE
;
881 cec_transmit_done(state
->cec_adap
, status
,
882 0, nack_cnt
, low_drive_cnt
, 0);
885 if (tx_raw_status
& 0x20) {
886 v4l2_dbg(1, debug
, sd
, "%s: tx raw: ready ok\n", __func__
);
887 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_OK
, 0, 0, 0, 0);
892 static const struct cec_adap_ops adv7511_cec_adap_ops
= {
893 .adap_enable
= adv7511_cec_adap_enable
,
894 .adap_log_addr
= adv7511_cec_adap_log_addr
,
895 .adap_transmit
= adv7511_cec_adap_transmit
,
899 /* Enable interrupts */
900 static void adv7511_set_isr(struct v4l2_subdev
*sd
, bool enable
)
902 struct adv7511_state
*state
= get_adv7511_state(sd
);
903 u8 irqs
= MASK_ADV7511_HPD_INT
| MASK_ADV7511_MSEN_INT
;
907 v4l2_dbg(2, debug
, sd
, "%s: %s\n", __func__
, enable
? "enable" : "disable");
909 if (state
->enabled_irq
== enable
)
911 state
->enabled_irq
= enable
;
913 /* The datasheet says that the EDID ready interrupt should be
914 disabled if there is no hotplug. */
917 else if (adv7511_have_hotplug(sd
))
918 irqs
|= MASK_ADV7511_EDID_RDY_INT
;
921 * This i2c write can fail (approx. 1 in 1000 writes). But it
922 * is essential that this register is correct, so retry it
925 * Note that the i2c write does not report an error, but the readback
926 * clearly shows the wrong value.
929 adv7511_wr(sd
, 0x94, irqs
);
930 irqs_rd
= adv7511_rd(sd
, 0x94);
931 } while (retries
-- && irqs_rd
!= irqs
);
934 v4l2_err(sd
, "Could not set interrupts: hw failure?\n");
936 adv7511_wr_and_or(sd
, 0x95, 0xc0,
937 (state
->cec_enabled_adap
&& enable
) ? 0x39 : 0x00);
940 /* Interrupt handler */
941 static int adv7511_isr(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
946 /* disable interrupts to prevent a race condition */
947 adv7511_set_isr(sd
, false);
948 irq_status
= adv7511_rd(sd
, 0x96);
949 cec_irq
= adv7511_rd(sd
, 0x97);
950 /* clear detected interrupts */
951 adv7511_wr(sd
, 0x96, irq_status
);
952 adv7511_wr(sd
, 0x97, cec_irq
);
954 v4l2_dbg(1, debug
, sd
, "%s: irq 0x%x, cec-irq 0x%x\n", __func__
,
955 irq_status
, cec_irq
);
957 if (irq_status
& (MASK_ADV7511_HPD_INT
| MASK_ADV7511_MSEN_INT
))
958 adv7511_check_monitor_present_status(sd
);
959 if (irq_status
& MASK_ADV7511_EDID_RDY_INT
)
960 adv7511_check_edid_status(sd
);
962 #if IS_ENABLED(CONFIG_VIDEO_ADV7511_CEC)
964 adv_cec_tx_raw_status(sd
, cec_irq
);
967 struct adv7511_state
*state
= get_adv7511_state(sd
);
970 msg
.len
= adv7511_cec_read(sd
, 0x25) & 0x1f;
972 v4l2_dbg(1, debug
, sd
, "%s: cec msg len %d\n", __func__
,
981 for (i
= 0; i
< msg
.len
; i
++)
982 msg
.msg
[i
] = adv7511_cec_read(sd
, i
+ 0x15);
984 adv7511_cec_write(sd
, 0x4a, 0); /* toggle to re-enable rx 1 */
985 adv7511_cec_write(sd
, 0x4a, 1);
986 cec_received_msg(state
->cec_adap
, &msg
);
991 /* enable interrupts */
992 adv7511_set_isr(sd
, true);
999 static const struct v4l2_subdev_core_ops adv7511_core_ops
= {
1000 .log_status
= adv7511_log_status
,
1001 #ifdef CONFIG_VIDEO_ADV_DEBUG
1002 .g_register
= adv7511_g_register
,
1003 .s_register
= adv7511_s_register
,
1005 .s_power
= adv7511_s_power
,
1006 .interrupt_service_routine
= adv7511_isr
,
1009 /* ------------------------------ VIDEO OPS ------------------------------ */
1011 /* Enable/disable adv7511 output */
1012 static int adv7511_s_stream(struct v4l2_subdev
*sd
, int enable
)
1014 struct adv7511_state
*state
= get_adv7511_state(sd
);
1016 v4l2_dbg(1, debug
, sd
, "%s: %sable\n", __func__
, (enable
? "en" : "dis"));
1017 adv7511_wr_and_or(sd
, 0xa1, ~0x3c, (enable
? 0 : 0x3c));
1019 adv7511_check_monitor_present_status(sd
);
1021 adv7511_s_power(sd
, 0);
1022 state
->have_monitor
= false;
1027 static int adv7511_s_dv_timings(struct v4l2_subdev
*sd
,
1028 struct v4l2_dv_timings
*timings
)
1030 struct adv7511_state
*state
= get_adv7511_state(sd
);
1031 struct v4l2_bt_timings
*bt
= &timings
->bt
;
1034 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
1036 /* quick sanity check */
1037 if (!v4l2_valid_dv_timings(timings
, &adv7511_timings_cap
, NULL
, NULL
))
1040 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1041 if the format is one of the CEA or DMT timings. */
1042 v4l2_find_dv_timings_cap(timings
, &adv7511_timings_cap
, 0, NULL
, NULL
);
1045 state
->dv_timings
= *timings
;
1047 /* set h/vsync polarities */
1048 adv7511_wr_and_or(sd
, 0x17, 0x9f,
1049 ((bt
->polarities
& V4L2_DV_VSYNC_POS_POL
) ? 0 : 0x40) |
1050 ((bt
->polarities
& V4L2_DV_HSYNC_POS_POL
) ? 0 : 0x20));
1052 fps
= (u32
)bt
->pixelclock
/ (V4L2_DV_BT_FRAME_WIDTH(bt
) * V4L2_DV_BT_FRAME_HEIGHT(bt
));
1055 adv7511_wr_and_or(sd
, 0xfb, 0xf9, 1 << 1);
1058 adv7511_wr_and_or(sd
, 0xfb, 0xf9, 2 << 1);
1061 adv7511_wr_and_or(sd
, 0xfb, 0xf9, 3 << 1);
1064 adv7511_wr_and_or(sd
, 0xfb, 0xf9, 0);
1068 /* update quantization range based on new dv_timings */
1069 adv7511_set_rgb_quantization_mode(sd
, state
->rgb_quantization_range_ctrl
);
1074 static int adv7511_g_dv_timings(struct v4l2_subdev
*sd
,
1075 struct v4l2_dv_timings
*timings
)
1077 struct adv7511_state
*state
= get_adv7511_state(sd
);
1079 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
1084 *timings
= state
->dv_timings
;
1089 static int adv7511_enum_dv_timings(struct v4l2_subdev
*sd
,
1090 struct v4l2_enum_dv_timings
*timings
)
1092 if (timings
->pad
!= 0)
1095 return v4l2_enum_dv_timings_cap(timings
, &adv7511_timings_cap
, NULL
, NULL
);
1098 static int adv7511_dv_timings_cap(struct v4l2_subdev
*sd
,
1099 struct v4l2_dv_timings_cap
*cap
)
1104 *cap
= adv7511_timings_cap
;
1108 static const struct v4l2_subdev_video_ops adv7511_video_ops
= {
1109 .s_stream
= adv7511_s_stream
,
1110 .s_dv_timings
= adv7511_s_dv_timings
,
1111 .g_dv_timings
= adv7511_g_dv_timings
,
1114 /* ------------------------------ AUDIO OPS ------------------------------ */
1115 static int adv7511_s_audio_stream(struct v4l2_subdev
*sd
, int enable
)
1117 v4l2_dbg(1, debug
, sd
, "%s: %sable\n", __func__
, (enable
? "en" : "dis"));
1120 adv7511_wr_and_or(sd
, 0x4b, 0x3f, 0x80);
1122 adv7511_wr_and_or(sd
, 0x4b, 0x3f, 0x40);
1127 static int adv7511_s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
)
1132 case 32000: N
= 4096; break;
1133 case 44100: N
= 6272; break;
1134 case 48000: N
= 6144; break;
1135 case 88200: N
= 12544; break;
1136 case 96000: N
= 12288; break;
1137 case 176400: N
= 25088; break;
1138 case 192000: N
= 24576; break;
1143 /* Set N (used with CTS to regenerate the audio clock) */
1144 adv7511_wr(sd
, 0x01, (N
>> 16) & 0xf);
1145 adv7511_wr(sd
, 0x02, (N
>> 8) & 0xff);
1146 adv7511_wr(sd
, 0x03, N
& 0xff);
1151 static int adv7511_s_i2s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
)
1156 case 32000: i2s_sf
= 0x30; break;
1157 case 44100: i2s_sf
= 0x00; break;
1158 case 48000: i2s_sf
= 0x20; break;
1159 case 88200: i2s_sf
= 0x80; break;
1160 case 96000: i2s_sf
= 0xa0; break;
1161 case 176400: i2s_sf
= 0xc0; break;
1162 case 192000: i2s_sf
= 0xe0; break;
1167 /* Set sampling frequency for I2S audio to 48 kHz */
1168 adv7511_wr_and_or(sd
, 0x15, 0xf, i2s_sf
);
1173 static int adv7511_s_routing(struct v4l2_subdev
*sd
, u32 input
, u32 output
, u32 config
)
1175 /* Only 2 channels in use for application */
1176 adv7511_wr_and_or(sd
, 0x73, 0xf8, 0x1);
1177 /* Speaker mapping */
1178 adv7511_wr(sd
, 0x76, 0x00);
1180 /* 16 bit audio word length */
1181 adv7511_wr_and_or(sd
, 0x14, 0xf0, 0x02);
1186 static const struct v4l2_subdev_audio_ops adv7511_audio_ops
= {
1187 .s_stream
= adv7511_s_audio_stream
,
1188 .s_clock_freq
= adv7511_s_clock_freq
,
1189 .s_i2s_clock_freq
= adv7511_s_i2s_clock_freq
,
1190 .s_routing
= adv7511_s_routing
,
1193 /* ---------------------------- PAD OPS ------------------------------------- */
1195 static int adv7511_get_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
1197 struct adv7511_state
*state
= get_adv7511_state(sd
);
1199 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
1204 if (edid
->start_block
== 0 && edid
->blocks
== 0) {
1205 edid
->blocks
= state
->edid
.segments
* 2;
1209 if (state
->edid
.segments
== 0)
1212 if (edid
->start_block
>= state
->edid
.segments
* 2)
1215 if (edid
->start_block
+ edid
->blocks
> state
->edid
.segments
* 2)
1216 edid
->blocks
= state
->edid
.segments
* 2 - edid
->start_block
;
1218 memcpy(edid
->edid
, &state
->edid
.data
[edid
->start_block
* 128],
1219 128 * edid
->blocks
);
1224 static int adv7511_enum_mbus_code(struct v4l2_subdev
*sd
,
1225 struct v4l2_subdev_pad_config
*cfg
,
1226 struct v4l2_subdev_mbus_code_enum
*code
)
1231 switch (code
->index
) {
1233 code
->code
= MEDIA_BUS_FMT_RGB888_1X24
;
1236 code
->code
= MEDIA_BUS_FMT_YUYV8_1X16
;
1239 code
->code
= MEDIA_BUS_FMT_UYVY8_1X16
;
1247 static void adv7511_fill_format(struct adv7511_state
*state
,
1248 struct v4l2_mbus_framefmt
*format
)
1250 format
->width
= state
->dv_timings
.bt
.width
;
1251 format
->height
= state
->dv_timings
.bt
.height
;
1252 format
->field
= V4L2_FIELD_NONE
;
1255 static int adv7511_get_fmt(struct v4l2_subdev
*sd
,
1256 struct v4l2_subdev_pad_config
*cfg
,
1257 struct v4l2_subdev_format
*format
)
1259 struct adv7511_state
*state
= get_adv7511_state(sd
);
1261 if (format
->pad
!= 0)
1264 memset(&format
->format
, 0, sizeof(format
->format
));
1265 adv7511_fill_format(state
, &format
->format
);
1267 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1268 struct v4l2_mbus_framefmt
*fmt
;
1270 fmt
= v4l2_subdev_get_try_format(sd
, cfg
, format
->pad
);
1271 format
->format
.code
= fmt
->code
;
1272 format
->format
.colorspace
= fmt
->colorspace
;
1273 format
->format
.ycbcr_enc
= fmt
->ycbcr_enc
;
1274 format
->format
.quantization
= fmt
->quantization
;
1275 format
->format
.xfer_func
= fmt
->xfer_func
;
1277 format
->format
.code
= state
->fmt_code
;
1278 format
->format
.colorspace
= state
->colorspace
;
1279 format
->format
.ycbcr_enc
= state
->ycbcr_enc
;
1280 format
->format
.quantization
= state
->quantization
;
1281 format
->format
.xfer_func
= state
->xfer_func
;
1287 static int adv7511_set_fmt(struct v4l2_subdev
*sd
,
1288 struct v4l2_subdev_pad_config
*cfg
,
1289 struct v4l2_subdev_format
*format
)
1291 struct adv7511_state
*state
= get_adv7511_state(sd
);
1293 * Bitfield namings come the CEA-861-F standard, table 8 "Auxiliary
1294 * Video Information (AVI) InfoFrame Format"
1297 * ec = Extended Colorimetry
1299 * q = RGB Quantization Range
1300 * yq = YCC Quantization Range
1302 u8 c
= HDMI_COLORIMETRY_NONE
;
1303 u8 ec
= HDMI_EXTENDED_COLORIMETRY_XV_YCC_601
;
1304 u8 y
= HDMI_COLORSPACE_RGB
;
1305 u8 q
= HDMI_QUANTIZATION_RANGE_DEFAULT
;
1306 u8 yq
= HDMI_YCC_QUANTIZATION_RANGE_LIMITED
;
1307 u8 itc
= state
->content_type
!= V4L2_DV_IT_CONTENT_TYPE_NO_ITC
;
1308 u8 cn
= itc
? state
->content_type
: V4L2_DV_IT_CONTENT_TYPE_GRAPHICS
;
1310 if (format
->pad
!= 0)
1312 switch (format
->format
.code
) {
1313 case MEDIA_BUS_FMT_UYVY8_1X16
:
1314 case MEDIA_BUS_FMT_YUYV8_1X16
:
1315 case MEDIA_BUS_FMT_RGB888_1X24
:
1321 adv7511_fill_format(state
, &format
->format
);
1322 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1323 struct v4l2_mbus_framefmt
*fmt
;
1325 fmt
= v4l2_subdev_get_try_format(sd
, cfg
, format
->pad
);
1326 fmt
->code
= format
->format
.code
;
1327 fmt
->colorspace
= format
->format
.colorspace
;
1328 fmt
->ycbcr_enc
= format
->format
.ycbcr_enc
;
1329 fmt
->quantization
= format
->format
.quantization
;
1330 fmt
->xfer_func
= format
->format
.xfer_func
;
1334 switch (format
->format
.code
) {
1335 case MEDIA_BUS_FMT_UYVY8_1X16
:
1336 adv7511_wr_and_or(sd
, 0x15, 0xf0, 0x01);
1337 adv7511_wr_and_or(sd
, 0x16, 0x03, 0xb8);
1338 y
= HDMI_COLORSPACE_YUV422
;
1340 case MEDIA_BUS_FMT_YUYV8_1X16
:
1341 adv7511_wr_and_or(sd
, 0x15, 0xf0, 0x01);
1342 adv7511_wr_and_or(sd
, 0x16, 0x03, 0xbc);
1343 y
= HDMI_COLORSPACE_YUV422
;
1345 case MEDIA_BUS_FMT_RGB888_1X24
:
1347 adv7511_wr_and_or(sd
, 0x15, 0xf0, 0x00);
1348 adv7511_wr_and_or(sd
, 0x16, 0x03, 0x00);
1351 state
->fmt_code
= format
->format
.code
;
1352 state
->colorspace
= format
->format
.colorspace
;
1353 state
->ycbcr_enc
= format
->format
.ycbcr_enc
;
1354 state
->quantization
= format
->format
.quantization
;
1355 state
->xfer_func
= format
->format
.xfer_func
;
1357 switch (format
->format
.colorspace
) {
1358 case V4L2_COLORSPACE_ADOBERGB
:
1359 c
= HDMI_COLORIMETRY_EXTENDED
;
1360 ec
= y
? HDMI_EXTENDED_COLORIMETRY_ADOBE_YCC_601
:
1361 HDMI_EXTENDED_COLORIMETRY_ADOBE_RGB
;
1363 case V4L2_COLORSPACE_SMPTE170M
:
1364 c
= y
? HDMI_COLORIMETRY_ITU_601
: HDMI_COLORIMETRY_NONE
;
1365 if (y
&& format
->format
.ycbcr_enc
== V4L2_YCBCR_ENC_XV601
) {
1366 c
= HDMI_COLORIMETRY_EXTENDED
;
1367 ec
= HDMI_EXTENDED_COLORIMETRY_XV_YCC_601
;
1370 case V4L2_COLORSPACE_REC709
:
1371 c
= y
? HDMI_COLORIMETRY_ITU_709
: HDMI_COLORIMETRY_NONE
;
1372 if (y
&& format
->format
.ycbcr_enc
== V4L2_YCBCR_ENC_XV709
) {
1373 c
= HDMI_COLORIMETRY_EXTENDED
;
1374 ec
= HDMI_EXTENDED_COLORIMETRY_XV_YCC_709
;
1377 case V4L2_COLORSPACE_SRGB
:
1378 c
= y
? HDMI_COLORIMETRY_EXTENDED
: HDMI_COLORIMETRY_NONE
;
1379 ec
= y
? HDMI_EXTENDED_COLORIMETRY_S_YCC_601
:
1380 HDMI_EXTENDED_COLORIMETRY_XV_YCC_601
;
1382 case V4L2_COLORSPACE_BT2020
:
1383 c
= HDMI_COLORIMETRY_EXTENDED
;
1384 if (y
&& format
->format
.ycbcr_enc
== V4L2_YCBCR_ENC_BT2020_CONST_LUM
)
1385 ec
= 5; /* Not yet available in hdmi.h */
1387 ec
= 6; /* Not yet available in hdmi.h */
1394 * CEA-861-F says that for RGB formats the YCC range must match the
1395 * RGB range, although sources should ignore the YCC range.
1397 * The RGB quantization range shouldn't be non-zero if the EDID doesn't
1398 * have the Q bit set in the Video Capabilities Data Block, however this
1399 * isn't checked at the moment. The assumption is that the application
1400 * knows the EDID and can detect this.
1402 * The same is true for the YCC quantization range: non-standard YCC
1403 * quantization ranges should only be sent if the EDID has the YQ bit
1404 * set in the Video Capabilities Data Block.
1406 switch (format
->format
.quantization
) {
1407 case V4L2_QUANTIZATION_FULL_RANGE
:
1408 q
= y
? HDMI_QUANTIZATION_RANGE_DEFAULT
:
1409 HDMI_QUANTIZATION_RANGE_FULL
;
1410 yq
= q
? q
- 1 : HDMI_YCC_QUANTIZATION_RANGE_FULL
;
1412 case V4L2_QUANTIZATION_LIM_RANGE
:
1413 q
= y
? HDMI_QUANTIZATION_RANGE_DEFAULT
:
1414 HDMI_QUANTIZATION_RANGE_LIMITED
;
1415 yq
= q
? q
- 1 : HDMI_YCC_QUANTIZATION_RANGE_LIMITED
;
1419 adv7511_wr_and_or(sd
, 0x4a, 0xbf, 0);
1420 adv7511_wr_and_or(sd
, 0x55, 0x9f, y
<< 5);
1421 adv7511_wr_and_or(sd
, 0x56, 0x3f, c
<< 6);
1422 adv7511_wr_and_or(sd
, 0x57, 0x83, (ec
<< 4) | (q
<< 2) | (itc
<< 7));
1423 adv7511_wr_and_or(sd
, 0x59, 0x0f, (yq
<< 6) | (cn
<< 4));
1424 adv7511_wr_and_or(sd
, 0x4a, 0xff, 1);
1425 adv7511_set_rgb_quantization_mode(sd
, state
->rgb_quantization_range_ctrl
);
1430 static const struct v4l2_subdev_pad_ops adv7511_pad_ops
= {
1431 .get_edid
= adv7511_get_edid
,
1432 .enum_mbus_code
= adv7511_enum_mbus_code
,
1433 .get_fmt
= adv7511_get_fmt
,
1434 .set_fmt
= adv7511_set_fmt
,
1435 .enum_dv_timings
= adv7511_enum_dv_timings
,
1436 .dv_timings_cap
= adv7511_dv_timings_cap
,
1439 /* --------------------- SUBDEV OPS --------------------------------------- */
1441 static const struct v4l2_subdev_ops adv7511_ops
= {
1442 .core
= &adv7511_core_ops
,
1443 .pad
= &adv7511_pad_ops
,
1444 .video
= &adv7511_video_ops
,
1445 .audio
= &adv7511_audio_ops
,
1448 /* ----------------------------------------------------------------------- */
1449 static void adv7511_dbg_dump_edid(int lvl
, int debug
, struct v4l2_subdev
*sd
, int segment
, u8
*buf
)
1453 v4l2_dbg(lvl
, debug
, sd
, "edid segment %d\n", segment
);
1454 for (i
= 0; i
< 256; i
+= 16) {
1458 v4l2_dbg(lvl
, debug
, sd
, "\n");
1459 for (j
= i
; j
< i
+ 16; j
++) {
1460 sprintf(bp
, "0x%02x, ", buf
[j
]);
1464 v4l2_dbg(lvl
, debug
, sd
, "%s\n", b
);
1469 static void adv7511_notify_no_edid(struct v4l2_subdev
*sd
)
1471 struct adv7511_state
*state
= get_adv7511_state(sd
);
1472 struct adv7511_edid_detect ed
;
1474 /* We failed to read the EDID, so send an event for this. */
1476 ed
.segment
= adv7511_rd(sd
, 0xc4);
1477 ed
.phys_addr
= CEC_PHYS_ADDR_INVALID
;
1478 cec_s_phys_addr(state
->cec_adap
, ed
.phys_addr
, false);
1479 v4l2_subdev_notify(sd
, ADV7511_EDID_DETECT
, (void *)&ed
);
1480 v4l2_ctrl_s_ctrl(state
->have_edid0_ctrl
, 0x0);
1483 static void adv7511_edid_handler(struct work_struct
*work
)
1485 struct delayed_work
*dwork
= to_delayed_work(work
);
1486 struct adv7511_state
*state
= container_of(dwork
, struct adv7511_state
, edid_handler
);
1487 struct v4l2_subdev
*sd
= &state
->sd
;
1489 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
1491 if (adv7511_check_edid_status(sd
)) {
1492 /* Return if we received the EDID. */
1496 if (adv7511_have_hotplug(sd
)) {
1497 /* We must retry reading the EDID several times, it is possible
1498 * that initially the EDID couldn't be read due to i2c errors
1499 * (DVI connectors are particularly prone to this problem). */
1500 if (state
->edid
.read_retries
) {
1501 state
->edid
.read_retries
--;
1502 v4l2_dbg(1, debug
, sd
, "%s: edid read failed\n", __func__
);
1503 state
->have_monitor
= false;
1504 adv7511_s_power(sd
, false);
1505 adv7511_s_power(sd
, true);
1506 queue_delayed_work(state
->work_queue
, &state
->edid_handler
, EDID_DELAY
);
1511 /* We failed to read the EDID, so send an event for this. */
1512 adv7511_notify_no_edid(sd
);
1513 v4l2_dbg(1, debug
, sd
, "%s: no edid found\n", __func__
);
1516 static void adv7511_audio_setup(struct v4l2_subdev
*sd
)
1518 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
1520 adv7511_s_i2s_clock_freq(sd
, 48000);
1521 adv7511_s_clock_freq(sd
, 48000);
1522 adv7511_s_routing(sd
, 0, 0, 0);
1525 /* Configure hdmi transmitter. */
1526 static void adv7511_setup(struct v4l2_subdev
*sd
)
1528 struct adv7511_state
*state
= get_adv7511_state(sd
);
1529 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
1531 /* Input format: RGB 4:4:4 */
1532 adv7511_wr_and_or(sd
, 0x15, 0xf0, 0x0);
1533 /* Output format: RGB 4:4:4 */
1534 adv7511_wr_and_or(sd
, 0x16, 0x7f, 0x0);
1535 /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion, Aspect ratio: 16:9 */
1536 adv7511_wr_and_or(sd
, 0x17, 0xf9, 0x06);
1537 /* Disable pixel repetition */
1538 adv7511_wr_and_or(sd
, 0x3b, 0x9f, 0x0);
1540 adv7511_wr_and_or(sd
, 0x18, 0x7f, 0x0);
1541 /* Output format: RGB 4:4:4, Active Format Information is valid,
1543 adv7511_wr_and_or(sd
, 0x55, 0x9c, 0x12);
1544 /* AVI Info frame packet enable, Audio Info frame disable */
1545 adv7511_wr_and_or(sd
, 0x44, 0xe7, 0x10);
1546 /* Colorimetry, Active format aspect ratio: same as picure. */
1547 adv7511_wr(sd
, 0x56, 0xa8);
1549 adv7511_wr_and_or(sd
, 0xaf, 0xed, 0x0);
1551 /* Positive clk edge capture for input video clock */
1552 adv7511_wr_and_or(sd
, 0xba, 0x1f, 0x60);
1554 adv7511_audio_setup(sd
);
1556 v4l2_ctrl_handler_setup(&state
->hdl
);
1559 static void adv7511_notify_monitor_detect(struct v4l2_subdev
*sd
)
1561 struct adv7511_monitor_detect mdt
;
1562 struct adv7511_state
*state
= get_adv7511_state(sd
);
1564 mdt
.present
= state
->have_monitor
;
1565 v4l2_subdev_notify(sd
, ADV7511_MONITOR_DETECT
, (void *)&mdt
);
1568 static void adv7511_check_monitor_present_status(struct v4l2_subdev
*sd
)
1570 struct adv7511_state
*state
= get_adv7511_state(sd
);
1571 /* read hotplug and rx-sense state */
1572 u8 status
= adv7511_rd(sd
, 0x42);
1574 v4l2_dbg(1, debug
, sd
, "%s: status: 0x%x%s%s\n",
1577 status
& MASK_ADV7511_HPD_DETECT
? ", hotplug" : "",
1578 status
& MASK_ADV7511_MSEN_DETECT
? ", rx-sense" : "");
1580 /* update read only ctrls */
1581 v4l2_ctrl_s_ctrl(state
->hotplug_ctrl
, adv7511_have_hotplug(sd
) ? 0x1 : 0x0);
1582 v4l2_ctrl_s_ctrl(state
->rx_sense_ctrl
, adv7511_have_rx_sense(sd
) ? 0x1 : 0x0);
1584 if ((status
& MASK_ADV7511_HPD_DETECT
) && ((status
& MASK_ADV7511_MSEN_DETECT
) || state
->edid
.segments
)) {
1585 v4l2_dbg(1, debug
, sd
, "%s: hotplug and (rx-sense or edid)\n", __func__
);
1586 if (!state
->have_monitor
) {
1587 v4l2_dbg(1, debug
, sd
, "%s: monitor detected\n", __func__
);
1588 state
->have_monitor
= true;
1589 adv7511_set_isr(sd
, true);
1590 if (!adv7511_s_power(sd
, true)) {
1591 v4l2_dbg(1, debug
, sd
, "%s: monitor detected, powerup failed\n", __func__
);
1595 adv7511_notify_monitor_detect(sd
);
1596 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
1597 queue_delayed_work(state
->work_queue
, &state
->edid_handler
, EDID_DELAY
);
1599 } else if (status
& MASK_ADV7511_HPD_DETECT
) {
1600 v4l2_dbg(1, debug
, sd
, "%s: hotplug detected\n", __func__
);
1601 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
1602 queue_delayed_work(state
->work_queue
, &state
->edid_handler
, EDID_DELAY
);
1603 } else if (!(status
& MASK_ADV7511_HPD_DETECT
)) {
1604 v4l2_dbg(1, debug
, sd
, "%s: hotplug not detected\n", __func__
);
1605 if (state
->have_monitor
) {
1606 v4l2_dbg(1, debug
, sd
, "%s: monitor not detected\n", __func__
);
1607 state
->have_monitor
= false;
1608 adv7511_notify_monitor_detect(sd
);
1610 adv7511_s_power(sd
, false);
1611 memset(&state
->edid
, 0, sizeof(struct adv7511_state_edid
));
1612 adv7511_notify_no_edid(sd
);
1616 static bool edid_block_verify_crc(u8
*edid_block
)
1621 for (i
= 0; i
< 128; i
++)
1622 sum
+= edid_block
[i
];
1626 static bool edid_verify_crc(struct v4l2_subdev
*sd
, u32 segment
)
1628 struct adv7511_state
*state
= get_adv7511_state(sd
);
1629 u32 blocks
= state
->edid
.blocks
;
1630 u8
*data
= state
->edid
.data
;
1632 if (!edid_block_verify_crc(&data
[segment
* 256]))
1634 if ((segment
+ 1) * 2 <= blocks
)
1635 return edid_block_verify_crc(&data
[segment
* 256 + 128]);
1639 static bool edid_verify_header(struct v4l2_subdev
*sd
, u32 segment
)
1641 static const u8 hdmi_header
[] = {
1642 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1644 struct adv7511_state
*state
= get_adv7511_state(sd
);
1645 u8
*data
= state
->edid
.data
;
1649 return !memcmp(data
, hdmi_header
, sizeof(hdmi_header
));
1652 static bool adv7511_check_edid_status(struct v4l2_subdev
*sd
)
1654 struct adv7511_state
*state
= get_adv7511_state(sd
);
1655 u8 edidRdy
= adv7511_rd(sd
, 0xc5);
1657 v4l2_dbg(1, debug
, sd
, "%s: edid ready (retries: %d)\n",
1658 __func__
, EDID_MAX_RETRIES
- state
->edid
.read_retries
);
1660 if (state
->edid
.complete
)
1663 if (edidRdy
& MASK_ADV7511_EDID_RDY
) {
1664 int segment
= adv7511_rd(sd
, 0xc4);
1665 struct adv7511_edid_detect ed
;
1667 if (segment
>= EDID_MAX_SEGM
) {
1668 v4l2_err(sd
, "edid segment number too big\n");
1671 v4l2_dbg(1, debug
, sd
, "%s: got segment %d\n", __func__
, segment
);
1672 adv7511_edid_rd(sd
, 256, &state
->edid
.data
[segment
* 256]);
1673 adv7511_dbg_dump_edid(2, debug
, sd
, segment
, &state
->edid
.data
[segment
* 256]);
1675 state
->edid
.blocks
= state
->edid
.data
[0x7e] + 1;
1676 v4l2_dbg(1, debug
, sd
, "%s: %d blocks in total\n", __func__
, state
->edid
.blocks
);
1678 if (!edid_verify_crc(sd
, segment
) ||
1679 !edid_verify_header(sd
, segment
)) {
1680 /* edid crc error, force reread of edid segment */
1681 v4l2_err(sd
, "%s: edid crc or header error\n", __func__
);
1682 state
->have_monitor
= false;
1683 adv7511_s_power(sd
, false);
1684 adv7511_s_power(sd
, true);
1687 /* one more segment read ok */
1688 state
->edid
.segments
= segment
+ 1;
1689 v4l2_ctrl_s_ctrl(state
->have_edid0_ctrl
, 0x1);
1690 if (((state
->edid
.data
[0x7e] >> 1) + 1) > state
->edid
.segments
) {
1691 /* Request next EDID segment */
1692 v4l2_dbg(1, debug
, sd
, "%s: request segment %d\n", __func__
, state
->edid
.segments
);
1693 adv7511_wr(sd
, 0xc9, 0xf);
1694 adv7511_wr(sd
, 0xc4, state
->edid
.segments
);
1695 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
1696 queue_delayed_work(state
->work_queue
, &state
->edid_handler
, EDID_DELAY
);
1700 v4l2_dbg(1, debug
, sd
, "%s: edid complete with %d segment(s)\n", __func__
, state
->edid
.segments
);
1701 state
->edid
.complete
= true;
1702 ed
.phys_addr
= cec_get_edid_phys_addr(state
->edid
.data
,
1703 state
->edid
.segments
* 256,
1705 /* report when we have all segments
1706 but report only for segment 0
1710 state
->edid_detect_counter
++;
1711 cec_s_phys_addr(state
->cec_adap
, ed
.phys_addr
, false);
1712 v4l2_subdev_notify(sd
, ADV7511_EDID_DETECT
, (void *)&ed
);
1719 static int adv7511_registered(struct v4l2_subdev
*sd
)
1721 struct adv7511_state
*state
= get_adv7511_state(sd
);
1722 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
1725 err
= cec_register_adapter(state
->cec_adap
, &client
->dev
);
1727 cec_delete_adapter(state
->cec_adap
);
1731 static void adv7511_unregistered(struct v4l2_subdev
*sd
)
1733 struct adv7511_state
*state
= get_adv7511_state(sd
);
1735 cec_unregister_adapter(state
->cec_adap
);
1738 static const struct v4l2_subdev_internal_ops adv7511_int_ops
= {
1739 .registered
= adv7511_registered
,
1740 .unregistered
= adv7511_unregistered
,
1743 /* ----------------------------------------------------------------------- */
1745 static void adv7511_init_setup(struct v4l2_subdev
*sd
)
1747 struct adv7511_state
*state
= get_adv7511_state(sd
);
1748 struct adv7511_state_edid
*edid
= &state
->edid
;
1749 u32 cec_clk
= state
->pdata
.cec_clk
;
1752 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
1754 /* clear all interrupts */
1755 adv7511_wr(sd
, 0x96, 0xff);
1756 adv7511_wr(sd
, 0x97, 0xff);
1758 * Stop HPD from resetting a lot of registers.
1759 * It might leave the chip in a partly un-initialized state,
1760 * in particular with regards to hotplug bounces.
1762 adv7511_wr_and_or(sd
, 0xd6, 0x3f, 0xc0);
1763 memset(edid
, 0, sizeof(struct adv7511_state_edid
));
1764 state
->have_monitor
= false;
1765 adv7511_set_isr(sd
, false);
1766 adv7511_s_stream(sd
, false);
1767 adv7511_s_audio_stream(sd
, false);
1769 if (state
->i2c_cec
== NULL
)
1772 v4l2_dbg(1, debug
, sd
, "%s: cec_clk %d\n", __func__
, cec_clk
);
1774 /* cec soft reset */
1775 adv7511_cec_write(sd
, 0x50, 0x01);
1776 adv7511_cec_write(sd
, 0x50, 0x00);
1779 adv7511_cec_write(sd
, 0x4a, 0x00);
1780 adv7511_cec_write(sd
, 0x4a, 0x07);
1782 if (cec_clk
% 750000 != 0)
1783 v4l2_err(sd
, "%s: cec_clk %d, not multiple of 750 Khz\n",
1786 ratio
= (cec_clk
/ 750000) - 1;
1787 adv7511_cec_write(sd
, 0x4e, ratio
<< 2);
1790 static int adv7511_probe(struct i2c_client
*client
, const struct i2c_device_id
*id
)
1792 struct adv7511_state
*state
;
1793 struct adv7511_platform_data
*pdata
= client
->dev
.platform_data
;
1794 struct v4l2_ctrl_handler
*hdl
;
1795 struct v4l2_subdev
*sd
;
1799 /* Check if the adapter supports the needed features */
1800 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_SMBUS_BYTE_DATA
))
1803 state
= devm_kzalloc(&client
->dev
, sizeof(struct adv7511_state
), GFP_KERNEL
);
1809 v4l_err(client
, "No platform data!\n");
1812 memcpy(&state
->pdata
, pdata
, sizeof(state
->pdata
));
1813 state
->fmt_code
= MEDIA_BUS_FMT_RGB888_1X24
;
1814 state
->colorspace
= V4L2_COLORSPACE_SRGB
;
1818 v4l2_dbg(1, debug
, sd
, "detecting adv7511 client on address 0x%x\n",
1821 v4l2_i2c_subdev_init(sd
, client
, &adv7511_ops
);
1822 sd
->internal_ops
= &adv7511_int_ops
;
1825 v4l2_ctrl_handler_init(hdl
, 10);
1826 /* add in ascending ID order */
1827 state
->hdmi_mode_ctrl
= v4l2_ctrl_new_std_menu(hdl
, &adv7511_ctrl_ops
,
1828 V4L2_CID_DV_TX_MODE
, V4L2_DV_TX_MODE_HDMI
,
1829 0, V4L2_DV_TX_MODE_DVI_D
);
1830 state
->hotplug_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1831 V4L2_CID_DV_TX_HOTPLUG
, 0, 1, 0, 0);
1832 state
->rx_sense_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1833 V4L2_CID_DV_TX_RXSENSE
, 0, 1, 0, 0);
1834 state
->have_edid0_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1835 V4L2_CID_DV_TX_EDID_PRESENT
, 0, 1, 0, 0);
1836 state
->rgb_quantization_range_ctrl
=
1837 v4l2_ctrl_new_std_menu(hdl
, &adv7511_ctrl_ops
,
1838 V4L2_CID_DV_TX_RGB_RANGE
, V4L2_DV_RGB_RANGE_FULL
,
1839 0, V4L2_DV_RGB_RANGE_AUTO
);
1840 state
->content_type_ctrl
=
1841 v4l2_ctrl_new_std_menu(hdl
, &adv7511_ctrl_ops
,
1842 V4L2_CID_DV_TX_IT_CONTENT_TYPE
, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
,
1843 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
);
1844 sd
->ctrl_handler
= hdl
;
1849 state
->pad
.flags
= MEDIA_PAD_FL_SINK
;
1850 sd
->entity
.function
= MEDIA_ENT_F_DV_ENCODER
;
1851 err
= media_entity_pads_init(&sd
->entity
, 1, &state
->pad
);
1855 /* EDID and CEC i2c addr */
1856 state
->i2c_edid_addr
= state
->pdata
.i2c_edid
<< 1;
1857 state
->i2c_cec_addr
= state
->pdata
.i2c_cec
<< 1;
1858 state
->i2c_pktmem_addr
= state
->pdata
.i2c_pktmem
<< 1;
1860 state
->chip_revision
= adv7511_rd(sd
, 0x0);
1861 chip_id
[0] = adv7511_rd(sd
, 0xf5);
1862 chip_id
[1] = adv7511_rd(sd
, 0xf6);
1863 if (chip_id
[0] != 0x75 || chip_id
[1] != 0x11) {
1864 v4l2_err(sd
, "chip_id != 0x7511, read 0x%02x%02x\n", chip_id
[0],
1870 state
->i2c_edid
= i2c_new_dummy(client
->adapter
,
1871 state
->i2c_edid_addr
>> 1);
1872 if (state
->i2c_edid
== NULL
) {
1873 v4l2_err(sd
, "failed to register edid i2c client\n");
1878 adv7511_wr(sd
, 0xe1, state
->i2c_cec_addr
);
1879 if (state
->pdata
.cec_clk
< 3000000 ||
1880 state
->pdata
.cec_clk
> 100000000) {
1881 v4l2_err(sd
, "%s: cec_clk %u outside range, disabling cec\n",
1882 __func__
, state
->pdata
.cec_clk
);
1883 state
->pdata
.cec_clk
= 0;
1886 if (state
->pdata
.cec_clk
) {
1887 state
->i2c_cec
= i2c_new_dummy(client
->adapter
,
1888 state
->i2c_cec_addr
>> 1);
1889 if (state
->i2c_cec
== NULL
) {
1890 v4l2_err(sd
, "failed to register cec i2c client\n");
1892 goto err_unreg_edid
;
1894 adv7511_wr(sd
, 0xe2, 0x00); /* power up cec section */
1896 adv7511_wr(sd
, 0xe2, 0x01); /* power down cec section */
1899 state
->i2c_pktmem
= i2c_new_dummy(client
->adapter
, state
->i2c_pktmem_addr
>> 1);
1900 if (state
->i2c_pktmem
== NULL
) {
1901 v4l2_err(sd
, "failed to register pktmem i2c client\n");
1906 state
->work_queue
= create_singlethread_workqueue(sd
->name
);
1907 if (state
->work_queue
== NULL
) {
1908 v4l2_err(sd
, "could not create workqueue\n");
1910 goto err_unreg_pktmem
;
1913 INIT_DELAYED_WORK(&state
->edid_handler
, adv7511_edid_handler
);
1915 adv7511_init_setup(sd
);
1917 #if IS_ENABLED(CONFIG_VIDEO_ADV7511_CEC)
1918 state
->cec_adap
= cec_allocate_adapter(&adv7511_cec_adap_ops
,
1919 state
, dev_name(&client
->dev
), CEC_CAP_DEFAULTS
,
1921 err
= PTR_ERR_OR_ZERO(state
->cec_adap
);
1923 destroy_workqueue(state
->work_queue
);
1924 goto err_unreg_pktmem
;
1928 adv7511_set_isr(sd
, true);
1929 adv7511_check_monitor_present_status(sd
);
1931 v4l2_info(sd
, "%s found @ 0x%x (%s)\n", client
->name
,
1932 client
->addr
<< 1, client
->adapter
->name
);
1936 i2c_unregister_device(state
->i2c_pktmem
);
1939 i2c_unregister_device(state
->i2c_cec
);
1941 i2c_unregister_device(state
->i2c_edid
);
1943 media_entity_cleanup(&sd
->entity
);
1945 v4l2_ctrl_handler_free(&state
->hdl
);
1949 /* ----------------------------------------------------------------------- */
1951 static int adv7511_remove(struct i2c_client
*client
)
1953 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
1954 struct adv7511_state
*state
= get_adv7511_state(sd
);
1956 state
->chip_revision
= -1;
1958 v4l2_dbg(1, debug
, sd
, "%s removed @ 0x%x (%s)\n", client
->name
,
1959 client
->addr
<< 1, client
->adapter
->name
);
1961 adv7511_set_isr(sd
, false);
1962 adv7511_init_setup(sd
);
1963 cancel_delayed_work(&state
->edid_handler
);
1964 i2c_unregister_device(state
->i2c_edid
);
1966 i2c_unregister_device(state
->i2c_cec
);
1967 i2c_unregister_device(state
->i2c_pktmem
);
1968 destroy_workqueue(state
->work_queue
);
1969 v4l2_device_unregister_subdev(sd
);
1970 media_entity_cleanup(&sd
->entity
);
1971 v4l2_ctrl_handler_free(sd
->ctrl_handler
);
1975 /* ----------------------------------------------------------------------- */
1977 static const struct i2c_device_id adv7511_id
[] = {
1981 MODULE_DEVICE_TABLE(i2c
, adv7511_id
);
1983 static struct i2c_driver adv7511_driver
= {
1987 .probe
= adv7511_probe
,
1988 .remove
= adv7511_remove
,
1989 .id_table
= adv7511_id
,
1992 module_i2c_driver(adv7511_driver
);