2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
4 * Integrated Consumer Infrared Controller
6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include <linux/slab.h>
20 #include <linux/kfifo.h>
21 #include <linux/module.h>
22 #include <media/drv-intf/cx25840.h>
23 #include <media/rc-core.h>
25 #include "cx25840-core.h"
27 static unsigned int ir_debug
;
28 module_param(ir_debug
, int, 0644);
29 MODULE_PARM_DESC(ir_debug
, "enable integrated IR debug messages");
31 #define CX25840_IR_REG_BASE 0x200
33 #define CX25840_IR_CNTRL_REG 0x200
34 #define CNTRL_WIN_3_3 0x00000000
35 #define CNTRL_WIN_4_3 0x00000001
36 #define CNTRL_WIN_3_4 0x00000002
37 #define CNTRL_WIN_4_4 0x00000003
38 #define CNTRL_WIN 0x00000003
39 #define CNTRL_EDG_NONE 0x00000000
40 #define CNTRL_EDG_FALL 0x00000004
41 #define CNTRL_EDG_RISE 0x00000008
42 #define CNTRL_EDG_BOTH 0x0000000C
43 #define CNTRL_EDG 0x0000000C
44 #define CNTRL_DMD 0x00000010
45 #define CNTRL_MOD 0x00000020
46 #define CNTRL_RFE 0x00000040
47 #define CNTRL_TFE 0x00000080
48 #define CNTRL_RXE 0x00000100
49 #define CNTRL_TXE 0x00000200
50 #define CNTRL_RIC 0x00000400
51 #define CNTRL_TIC 0x00000800
52 #define CNTRL_CPL 0x00001000
53 #define CNTRL_LBM 0x00002000
54 #define CNTRL_R 0x00004000
56 #define CX25840_IR_TXCLK_REG 0x204
57 #define TXCLK_TCD 0x0000FFFF
59 #define CX25840_IR_RXCLK_REG 0x208
60 #define RXCLK_RCD 0x0000FFFF
62 #define CX25840_IR_CDUTY_REG 0x20C
63 #define CDUTY_CDC 0x0000000F
65 #define CX25840_IR_STATS_REG 0x210
66 #define STATS_RTO 0x00000001
67 #define STATS_ROR 0x00000002
68 #define STATS_RBY 0x00000004
69 #define STATS_TBY 0x00000008
70 #define STATS_RSR 0x00000010
71 #define STATS_TSR 0x00000020
73 #define CX25840_IR_IRQEN_REG 0x214
74 #define IRQEN_RTE 0x00000001
75 #define IRQEN_ROE 0x00000002
76 #define IRQEN_RSE 0x00000010
77 #define IRQEN_TSE 0x00000020
78 #define IRQEN_MSK 0x00000033
80 #define CX25840_IR_FILTR_REG 0x218
81 #define FILTR_LPF 0x0000FFFF
83 #define CX25840_IR_FIFO_REG 0x23C
84 #define FIFO_RXTX 0x0000FFFF
85 #define FIFO_RXTX_LVL 0x00010000
86 #define FIFO_RXTX_RTO 0x0001FFFF
87 #define FIFO_RX_NDV 0x00020000
88 #define FIFO_RX_DEPTH 8
89 #define FIFO_TX_DEPTH 8
91 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
92 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
95 * We use this union internally for convenience, but callers to tx_write
96 * and rx_read will be expecting records of type struct ir_raw_event.
97 * Always ensure the size of this union is dictated by struct ir_raw_event.
99 union cx25840_ir_fifo_rec
{
101 struct ir_raw_event ir_core_data
;
104 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
105 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
107 struct cx25840_ir_state
{
108 struct i2c_client
*c
;
110 struct v4l2_subdev_ir_parameters rx_params
;
111 struct mutex rx_params_lock
; /* protects Rx parameter settings cache */
112 atomic_t rxclk_divider
;
115 struct kfifo rx_kfifo
;
116 spinlock_t rx_kfifo_lock
; /* protect Rx data kfifo */
118 struct v4l2_subdev_ir_parameters tx_params
;
119 struct mutex tx_params_lock
; /* protects Tx parameter settings cache */
120 atomic_t txclk_divider
;
123 static inline struct cx25840_ir_state
*to_ir_state(struct v4l2_subdev
*sd
)
125 struct cx25840_state
*state
= to_state(sd
);
126 return state
? state
->ir_state
: NULL
;
131 * Rx and Tx Clock Divider register computations
133 * Note the largest clock divider value of 0xffff corresponds to:
134 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
135 * which fits in 21 bits, so we'll use unsigned int for time arguments.
137 static inline u16
count_to_clock_divider(unsigned int d
)
139 if (d
> RXCLK_RCD
+ 1)
148 static inline u16
ns_to_clock_divider(unsigned int ns
)
150 return count_to_clock_divider(
151 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
154 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
156 /* Period of the Rx or Tx clock in ns */
157 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
158 CX25840_IR_REFCLK_FREQ
/ 1000000);
161 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
163 return count_to_clock_divider(
164 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, freq
* 16));
167 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
169 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
172 static inline u16
freq_to_clock_divider(unsigned int freq
,
173 unsigned int rollovers
)
175 return count_to_clock_divider(
176 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, freq
* rollovers
));
179 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
180 unsigned int rollovers
)
182 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
,
183 (divider
+ 1) * rollovers
);
187 * Low Pass Filter register calculations
189 * Note the largest count value of 0xffff corresponds to:
190 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
191 * which fits in 21 bits, so we'll use unsigned int for time arguments.
193 static inline u16
count_to_lpf_count(unsigned int d
)
202 static inline u16
ns_to_lpf_count(unsigned int ns
)
204 return count_to_lpf_count(
205 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
208 static inline unsigned int lpf_count_to_ns(unsigned int count
)
210 /* Duration of the Low Pass Filter rejection window in ns */
211 return DIV_ROUND_CLOSEST(count
* 1000,
212 CX25840_IR_REFCLK_FREQ
/ 1000000);
215 static inline unsigned int lpf_count_to_us(unsigned int count
)
217 /* Duration of the Low Pass Filter rejection window in us */
218 return DIV_ROUND_CLOSEST(count
, CX25840_IR_REFCLK_FREQ
/ 1000000);
222 * FIFO register pulse width count computations
224 static u32
clock_divider_to_resolution(u16 divider
)
227 * Resolution is the duration of 1 tick of the readable portion of
228 * of the pulse width counter as read from the FIFO. The two lsb's are
229 * not readable, hence the << 2. This function returns ns.
231 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
232 CX25840_IR_REFCLK_FREQ
/ 1000000);
235 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
241 * The 2 lsb's of the pulse width timer count are not readable, hence
242 * the (count << 2) | 0x3
244 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
245 rem
= do_div(n
, CX25840_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
246 if (rem
>= CX25840_IR_REFCLK_FREQ
/ 1000000 / 2)
252 /* Keep as we will need this for Transmit functionality */
253 static u16
ns_to_pulse_width_count(u32 ns
, u16 divider
)
260 * The 2 lsb's of the pulse width timer count are not accessible, hence
263 n
= ((u64
) ns
) * CX25840_IR_REFCLK_FREQ
/ 1000000; /* millicycles */
264 d
= (1 << 2) * ((u32
) divider
+ 1) * 1000; /* millicycles/count */
277 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
283 * The 2 lsb's of the pulse width timer count are not readable, hence
284 * the (count << 2) | 0x3
286 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
287 rem
= do_div(n
, CX25840_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
288 if (rem
>= CX25840_IR_REFCLK_FREQ
/ 1000000 / 2)
290 return (unsigned int) n
;
294 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
296 * The total pulse clock count is an 18 bit pulse width timer count as the most
297 * significant part and (up to) 16 bit clock divider count as a modulus.
298 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
299 * width timer count's least significant bit.
301 static u64
ns_to_pulse_clocks(u32 ns
)
305 clocks
= CX25840_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
306 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
312 static u16
pulse_clocks_to_clock_divider(u64 count
)
314 do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
316 /* net result needs to be rounded down and decremented by 1 */
317 if (count
> RXCLK_RCD
+ 1)
327 * IR Control Register helpers
329 enum tx_fifo_watermark
{
330 TX_FIFO_HALF_EMPTY
= 0,
331 TX_FIFO_EMPTY
= CNTRL_TIC
,
334 enum rx_fifo_watermark
{
335 RX_FIFO_HALF_FULL
= 0,
336 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
339 static inline void control_tx_irq_watermark(struct i2c_client
*c
,
340 enum tx_fifo_watermark level
)
342 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
345 static inline void control_rx_irq_watermark(struct i2c_client
*c
,
346 enum rx_fifo_watermark level
)
348 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
351 static inline void control_tx_enable(struct i2c_client
*c
, bool enable
)
353 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
354 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
357 static inline void control_rx_enable(struct i2c_client
*c
, bool enable
)
359 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
360 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
363 static inline void control_tx_modulation_enable(struct i2c_client
*c
,
366 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_MOD
,
367 enable
? CNTRL_MOD
: 0);
370 static inline void control_rx_demodulation_enable(struct i2c_client
*c
,
373 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_DMD
,
374 enable
? CNTRL_DMD
: 0);
377 static inline void control_rx_s_edge_detection(struct i2c_client
*c
,
380 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
381 edge_types
& CNTRL_EDG_BOTH
);
384 static void control_rx_s_carrier_window(struct i2c_client
*c
,
385 unsigned int carrier
,
386 unsigned int *carrier_range_low
,
387 unsigned int *carrier_range_high
)
390 unsigned int c16
= carrier
* 16;
392 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
394 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
397 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
400 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
402 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
405 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
407 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
410 static inline void control_tx_polarity_invert(struct i2c_client
*c
,
413 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_CPL
,
414 invert
? CNTRL_CPL
: 0);
418 * IR Rx & Tx Clock Register helpers
420 static unsigned int txclk_tx_s_carrier(struct i2c_client
*c
,
424 *divider
= carrier_freq_to_clock_divider(freq
);
425 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, *divider
);
426 return clock_divider_to_carrier_freq(*divider
);
429 static unsigned int rxclk_rx_s_carrier(struct i2c_client
*c
,
433 *divider
= carrier_freq_to_clock_divider(freq
);
434 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, *divider
);
435 return clock_divider_to_carrier_freq(*divider
);
438 static u32
txclk_tx_s_max_pulse_width(struct i2c_client
*c
, u32 ns
,
443 if (ns
> IR_MAX_DURATION
)
444 ns
= IR_MAX_DURATION
;
445 pulse_clocks
= ns_to_pulse_clocks(ns
);
446 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
447 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, *divider
);
448 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
451 static u32
rxclk_rx_s_max_pulse_width(struct i2c_client
*c
, u32 ns
,
456 if (ns
> IR_MAX_DURATION
)
457 ns
= IR_MAX_DURATION
;
458 pulse_clocks
= ns_to_pulse_clocks(ns
);
459 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
460 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, *divider
);
461 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
465 * IR Tx Carrier Duty Cycle register helpers
467 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client
*c
,
468 unsigned int duty_cycle
)
471 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
476 cx25840_write4(c
, CX25840_IR_CDUTY_REG
, n
);
477 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
481 * IR Filter Register helpers
483 static u32
filter_rx_s_min_width(struct i2c_client
*c
, u32 min_width_ns
)
485 u32 count
= ns_to_lpf_count(min_width_ns
);
486 cx25840_write4(c
, CX25840_IR_FILTR_REG
, count
);
487 return lpf_count_to_ns(count
);
491 * IR IRQ Enable Register helpers
493 static inline void irqenable_rx(struct v4l2_subdev
*sd
, u32 mask
)
495 struct cx25840_state
*state
= to_state(sd
);
497 if (is_cx23885(state
) || is_cx23887(state
))
499 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
500 cx25840_and_or4(state
->c
, CX25840_IR_IRQEN_REG
,
501 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
504 static inline void irqenable_tx(struct v4l2_subdev
*sd
, u32 mask
)
506 struct cx25840_state
*state
= to_state(sd
);
508 if (is_cx23885(state
) || is_cx23887(state
))
511 cx25840_and_or4(state
->c
, CX25840_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
515 * V4L2 Subdevice IR Ops
517 int cx25840_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
519 struct cx25840_state
*state
= to_state(sd
);
520 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
521 struct i2c_client
*c
= NULL
;
524 union cx25840_ir_fifo_rec rx_data
[FIFO_RX_DEPTH
];
525 unsigned int i
, j
, k
;
527 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
528 u32 cntrl
, irqen
, stats
;
531 if (ir_state
== NULL
)
536 /* Only support the IR controller for the CX2388[57] AV Core for now */
537 if (!(is_cx23885(state
) || is_cx23887(state
)))
540 cntrl
= cx25840_read4(c
, CX25840_IR_CNTRL_REG
);
541 irqen
= cx25840_read4(c
, CX25840_IR_IRQEN_REG
);
542 if (is_cx23885(state
) || is_cx23887(state
))
544 stats
= cx25840_read4(c
, CX25840_IR_STATS_REG
);
546 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
547 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
548 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
549 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
551 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
552 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
553 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
554 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
556 v4l2_dbg(2, ir_debug
, sd
, "IR IRQ Status: %s %s %s %s %s %s\n",
557 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
558 rto
? "rto" : " ", ror
? "ror" : " ",
559 stats
& STATS_TBY
? "tby" : " ",
560 stats
& STATS_RBY
? "rby" : " ");
562 v4l2_dbg(2, ir_debug
, sd
, "IR IRQ Enables: %s %s %s %s\n",
563 tse
? "tse" : " ", rse
? "rse" : " ",
564 rte
? "rte" : " ", roe
? "roe" : " ");
567 * Transmitter interrupt service
572 * Check the watermark threshold setting
573 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
574 * Push the data to the hardware FIFO.
575 * If there was nothing more to send in the tx_kfifo, disable
576 * the TSR IRQ and notify the v4l2_device.
577 * If there was something in the tx_kfifo, check the tx_kfifo
578 * level and notify the v4l2_device, if it is low.
580 /* For now, inhibit TSR interrupt until Tx is implemented */
582 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
583 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
588 * Receiver interrupt service
591 if ((rse
&& rsr
) || (rte
&& rto
)) {
593 * Receive data on RSR to clear the STATS_RSR.
594 * Receive data on RTO, since we may not have yet hit the RSR
595 * watermark when we receive the RTO.
597 for (i
= 0, v
= FIFO_RX_NDV
;
598 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
600 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
601 v
= cx25840_read4(c
, CX25840_IR_FIFO_REG
);
602 rx_data
[i
].hw_fifo_data
= v
& ~FIFO_RX_NDV
;
607 j
= i
* sizeof(union cx25840_ir_fifo_rec
);
608 k
= kfifo_in_locked(&ir_state
->rx_kfifo
,
609 (unsigned char *) rx_data
, j
,
610 &ir_state
->rx_kfifo_lock
);
612 kror
++; /* rx_kfifo over run */
620 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
621 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
625 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
626 * the Rx FIFO Over Run status (STATS_ROR)
629 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
630 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
634 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
635 * the Rx Pulse Width Timer Time Out (STATS_RTO)
638 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
641 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
642 cx25840_write4(c
, CX25840_IR_CNTRL_REG
, cntrl
& ~v
);
643 cx25840_write4(c
, CX25840_IR_CNTRL_REG
, cntrl
);
646 spin_lock_irqsave(&ir_state
->rx_kfifo_lock
, flags
);
647 if (kfifo_len(&ir_state
->rx_kfifo
) >= CX25840_IR_RX_KFIFO_SIZE
/ 2)
648 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
649 spin_unlock_irqrestore(&ir_state
->rx_kfifo_lock
, flags
);
652 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
657 static int cx25840_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
660 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
664 union cx25840_ir_fifo_rec
*p
;
667 if (ir_state
== NULL
)
670 invert
= (bool) atomic_read(&ir_state
->rx_invert
);
671 divider
= (u16
) atomic_read(&ir_state
->rxclk_divider
);
673 n
= count
/ sizeof(union cx25840_ir_fifo_rec
)
674 * sizeof(union cx25840_ir_fifo_rec
);
680 n
= kfifo_out_locked(&ir_state
->rx_kfifo
, buf
, n
,
681 &ir_state
->rx_kfifo_lock
);
683 n
/= sizeof(union cx25840_ir_fifo_rec
);
684 *num
= n
* sizeof(union cx25840_ir_fifo_rec
);
686 for (p
= (union cx25840_ir_fifo_rec
*) buf
, i
= 0; i
< n
; p
++, i
++) {
688 if ((p
->hw_fifo_data
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
689 /* Assume RTO was because of no IR light input */
693 u
= (p
->hw_fifo_data
& FIFO_RXTX_LVL
) ? 1 : 0;
699 v
= (unsigned) pulse_width_count_to_ns(
700 (u16
) (p
->hw_fifo_data
& FIFO_RXTX
), divider
);
701 if (v
> IR_MAX_DURATION
)
704 init_ir_raw_event(&p
->ir_core_data
);
705 p
->ir_core_data
.pulse
= u
;
706 p
->ir_core_data
.duration
= v
;
707 p
->ir_core_data
.timeout
= w
;
709 v4l2_dbg(2, ir_debug
, sd
, "rx read: %10u ns %s %s\n",
710 v
, u
? "mark" : "space", w
? "(timed out)" : "");
712 v4l2_dbg(2, ir_debug
, sd
, "rx read: end of rx\n");
717 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
718 struct v4l2_subdev_ir_parameters
*p
)
720 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
722 if (ir_state
== NULL
)
725 mutex_lock(&ir_state
->rx_params_lock
);
726 memcpy(p
, &ir_state
->rx_params
,
727 sizeof(struct v4l2_subdev_ir_parameters
));
728 mutex_unlock(&ir_state
->rx_params_lock
);
732 static int cx25840_ir_rx_shutdown(struct v4l2_subdev
*sd
)
734 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
735 struct i2c_client
*c
;
737 if (ir_state
== NULL
)
741 mutex_lock(&ir_state
->rx_params_lock
);
743 /* Disable or slow down all IR Rx circuits and counters */
745 control_rx_enable(c
, false);
746 control_rx_demodulation_enable(c
, false);
747 control_rx_s_edge_detection(c
, CNTRL_EDG_NONE
);
748 filter_rx_s_min_width(c
, 0);
749 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, RXCLK_RCD
);
751 ir_state
->rx_params
.shutdown
= true;
753 mutex_unlock(&ir_state
->rx_params_lock
);
757 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
758 struct v4l2_subdev_ir_parameters
*p
)
760 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
761 struct i2c_client
*c
;
762 struct v4l2_subdev_ir_parameters
*o
;
765 if (ir_state
== NULL
)
769 return cx25840_ir_rx_shutdown(sd
);
771 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
775 o
= &ir_state
->rx_params
;
777 mutex_lock(&ir_state
->rx_params_lock
);
779 o
->shutdown
= p
->shutdown
;
781 p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
784 p
->bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
);
785 o
->bytes_per_data_element
= p
->bytes_per_data_element
;
787 /* Before we tweak the hardware, we have to disable the receiver */
789 control_rx_enable(c
, false);
791 control_rx_demodulation_enable(c
, p
->modulation
);
792 o
->modulation
= p
->modulation
;
795 p
->carrier_freq
= rxclk_rx_s_carrier(c
, p
->carrier_freq
,
798 o
->carrier_freq
= p
->carrier_freq
;
801 o
->duty_cycle
= p
->duty_cycle
;
803 control_rx_s_carrier_window(c
, p
->carrier_freq
,
804 &p
->carrier_range_lower
,
805 &p
->carrier_range_upper
);
806 o
->carrier_range_lower
= p
->carrier_range_lower
;
807 o
->carrier_range_upper
= p
->carrier_range_upper
;
810 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, rxclk_divider
);
813 rxclk_rx_s_max_pulse_width(c
, p
->max_pulse_width
,
816 o
->max_pulse_width
= p
->max_pulse_width
;
817 atomic_set(&ir_state
->rxclk_divider
, rxclk_divider
);
819 p
->noise_filter_min_width
=
820 filter_rx_s_min_width(c
, p
->noise_filter_min_width
);
821 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
823 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
824 o
->resolution
= p
->resolution
;
826 /* FIXME - make this dependent on resolution for better performance */
827 control_rx_irq_watermark(c
, RX_FIFO_HALF_FULL
);
829 control_rx_s_edge_detection(c
, CNTRL_EDG_BOTH
);
831 o
->invert_level
= p
->invert_level
;
832 atomic_set(&ir_state
->rx_invert
, p
->invert_level
);
834 o
->interrupt_enable
= p
->interrupt_enable
;
835 o
->enable
= p
->enable
;
839 spin_lock_irqsave(&ir_state
->rx_kfifo_lock
, flags
);
840 kfifo_reset(&ir_state
->rx_kfifo
);
841 spin_unlock_irqrestore(&ir_state
->rx_kfifo_lock
, flags
);
842 if (p
->interrupt_enable
)
843 irqenable_rx(sd
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
844 control_rx_enable(c
, p
->enable
);
847 mutex_unlock(&ir_state
->rx_params_lock
);
852 static int cx25840_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
855 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
857 if (ir_state
== NULL
)
862 * FIXME - the code below is an incomplete and untested sketch of what
863 * may need to be done. The critical part is to get 4 (or 8) pulses
864 * from the tx_kfifo, or converted from ns to the proper units from the
865 * input, and push them off to the hardware Tx FIFO right away, if the
866 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
867 * a less critical timeframe. Also watch out for overruning the
868 * tx_kfifo - don't let it happen and let the caller know not all his
869 * pulses were written.
871 u32
*ns_pulse
= (u32
*) buf
;
873 u32 fifo_pulse
[FIFO_TX_DEPTH
];
876 /* Compute how much we can fit in the tx kfifo */
877 n
= CX25840_IR_TX_KFIFO_SIZE
- kfifo_len(ir_state
->tx_kfifo
);
878 n
= min(n
, (unsigned int) count
);
881 /* FIXME - turn on Tx Fifo service interrupt
882 * check hardware fifo level, and other stuff
884 for (i
= 0; i
< n
; ) {
885 for (j
= 0; j
< FIFO_TX_DEPTH
/ 2 && i
< n
; j
++) {
886 mark
= ns_pulse
[i
] & LEVEL_MASK
;
887 fifo_pulse
[j
] = ns_to_pulse_width_count(
890 ir_state
->txclk_divider
);
892 fifo_pulse
[j
] &= FIFO_RXTX_LVL
;
895 kfifo_put(ir_state
->tx_kfifo
, (u8
*) fifo_pulse
,
898 *num
= n
* sizeof(u32
);
900 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
901 irqenable_tx(sd
, IRQEN_TSE
);
907 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
908 struct v4l2_subdev_ir_parameters
*p
)
910 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
912 if (ir_state
== NULL
)
915 mutex_lock(&ir_state
->tx_params_lock
);
916 memcpy(p
, &ir_state
->tx_params
,
917 sizeof(struct v4l2_subdev_ir_parameters
));
918 mutex_unlock(&ir_state
->tx_params_lock
);
922 static int cx25840_ir_tx_shutdown(struct v4l2_subdev
*sd
)
924 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
925 struct i2c_client
*c
;
927 if (ir_state
== NULL
)
931 mutex_lock(&ir_state
->tx_params_lock
);
933 /* Disable or slow down all IR Tx circuits and counters */
935 control_tx_enable(c
, false);
936 control_tx_modulation_enable(c
, false);
937 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, TXCLK_TCD
);
939 ir_state
->tx_params
.shutdown
= true;
941 mutex_unlock(&ir_state
->tx_params_lock
);
945 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
946 struct v4l2_subdev_ir_parameters
*p
)
948 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
949 struct i2c_client
*c
;
950 struct v4l2_subdev_ir_parameters
*o
;
953 if (ir_state
== NULL
)
957 return cx25840_ir_tx_shutdown(sd
);
959 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
963 o
= &ir_state
->tx_params
;
964 mutex_lock(&ir_state
->tx_params_lock
);
966 o
->shutdown
= p
->shutdown
;
968 p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
971 p
->bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
);
972 o
->bytes_per_data_element
= p
->bytes_per_data_element
;
974 /* Before we tweak the hardware, we have to disable the transmitter */
976 control_tx_enable(c
, false);
978 control_tx_modulation_enable(c
, p
->modulation
);
979 o
->modulation
= p
->modulation
;
982 p
->carrier_freq
= txclk_tx_s_carrier(c
, p
->carrier_freq
,
984 o
->carrier_freq
= p
->carrier_freq
;
986 p
->duty_cycle
= cduty_tx_s_duty_cycle(c
, p
->duty_cycle
);
987 o
->duty_cycle
= p
->duty_cycle
;
990 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, txclk_divider
);
993 txclk_tx_s_max_pulse_width(c
, p
->max_pulse_width
,
996 o
->max_pulse_width
= p
->max_pulse_width
;
997 atomic_set(&ir_state
->txclk_divider
, txclk_divider
);
999 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
1000 o
->resolution
= p
->resolution
;
1002 /* FIXME - make this dependent on resolution for better performance */
1003 control_tx_irq_watermark(c
, TX_FIFO_HALF_EMPTY
);
1005 control_tx_polarity_invert(c
, p
->invert_carrier_sense
);
1006 o
->invert_carrier_sense
= p
->invert_carrier_sense
;
1009 * FIXME: we don't have hardware help for IO pin level inversion
1010 * here like we have on the CX23888.
1011 * Act on this with some mix of logical inversion of data levels,
1012 * carrier polarity, and carrier duty cycle.
1014 o
->invert_level
= p
->invert_level
;
1016 o
->interrupt_enable
= p
->interrupt_enable
;
1017 o
->enable
= p
->enable
;
1019 /* reset tx_fifo here */
1020 if (p
->interrupt_enable
)
1021 irqenable_tx(sd
, IRQEN_TSE
);
1022 control_tx_enable(c
, p
->enable
);
1025 mutex_unlock(&ir_state
->tx_params_lock
);
1031 * V4L2 Subdevice Core Ops support
1033 int cx25840_ir_log_status(struct v4l2_subdev
*sd
)
1035 struct cx25840_state
*state
= to_state(sd
);
1036 struct i2c_client
*c
= state
->c
;
1039 u32 cntrl
, txclk
, rxclk
, cduty
, stats
, irqen
, filtr
;
1041 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1042 if (is_cx23888(state
))
1045 cntrl
= cx25840_read4(c
, CX25840_IR_CNTRL_REG
);
1046 txclk
= cx25840_read4(c
, CX25840_IR_TXCLK_REG
) & TXCLK_TCD
;
1047 rxclk
= cx25840_read4(c
, CX25840_IR_RXCLK_REG
) & RXCLK_RCD
;
1048 cduty
= cx25840_read4(c
, CX25840_IR_CDUTY_REG
) & CDUTY_CDC
;
1049 stats
= cx25840_read4(c
, CX25840_IR_STATS_REG
);
1050 irqen
= cx25840_read4(c
, CX25840_IR_IRQEN_REG
);
1051 if (is_cx23885(state
) || is_cx23887(state
))
1053 filtr
= cx25840_read4(c
, CX25840_IR_FILTR_REG
) & FILTR_LPF
;
1055 v4l2_info(sd
, "IR Receiver:\n");
1056 v4l2_info(sd
, "\tEnabled: %s\n",
1057 cntrl
& CNTRL_RXE
? "yes" : "no");
1058 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
1059 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
1060 v4l2_info(sd
, "\tFIFO: %s\n",
1061 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
1062 switch (cntrl
& CNTRL_EDG
) {
1063 case CNTRL_EDG_NONE
:
1066 case CNTRL_EDG_FALL
:
1069 case CNTRL_EDG_RISE
:
1072 case CNTRL_EDG_BOTH
:
1073 s
= "rising & falling edges";
1079 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
1080 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
1081 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
1082 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1083 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
1084 v4l2_info(sd
, "\tLoopback mode: %s\n",
1085 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
1086 if (cntrl
& CNTRL_DMD
) {
1087 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
1088 clock_divider_to_carrier_freq(rxclk
));
1089 switch (cntrl
& CNTRL_WIN
) {
1111 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
1113 clock_divider_to_freq(rxclk
, 16 + j
),
1114 clock_divider_to_freq(rxclk
, 16 - i
));
1116 v4l2_info(sd
, "\tMax measurable pulse width: %u us, %llu ns\n",
1117 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
1118 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
1119 v4l2_info(sd
, "\tLow pass filter: %s\n",
1120 filtr
? "enabled" : "disabled");
1122 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
1123 lpf_count_to_us(filtr
),
1124 lpf_count_to_ns(filtr
));
1125 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1126 stats
& STATS_RTO
? "yes" : "no");
1127 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1128 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1129 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1130 stats
& STATS_ROR
? "yes" : "no");
1131 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1132 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1133 v4l2_info(sd
, "\tBusy: %s\n",
1134 stats
& STATS_RBY
? "yes" : "no");
1135 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1136 stats
& STATS_RSR
? "yes" : "no");
1137 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1138 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1140 v4l2_info(sd
, "IR Transmitter:\n");
1141 v4l2_info(sd
, "\tEnabled: %s\n",
1142 cntrl
& CNTRL_TXE
? "yes" : "no");
1143 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1144 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1145 v4l2_info(sd
, "\tFIFO: %s\n",
1146 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1147 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1148 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1149 v4l2_info(sd
, "\tCarrier polarity: %s\n",
1150 cntrl
& CNTRL_CPL
? "space:burst mark:noburst"
1151 : "space:noburst mark:burst");
1152 if (cntrl
& CNTRL_MOD
) {
1153 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1154 clock_divider_to_carrier_freq(txclk
));
1155 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1158 v4l2_info(sd
, "\tMax pulse width: %u us, %llu ns\n",
1159 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1160 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1161 v4l2_info(sd
, "\tBusy: %s\n",
1162 stats
& STATS_TBY
? "yes" : "no");
1163 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1164 stats
& STATS_TSR
? "yes" : "no");
1165 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1166 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1172 const struct v4l2_subdev_ir_ops cx25840_ir_ops
= {
1173 .rx_read
= cx25840_ir_rx_read
,
1174 .rx_g_parameters
= cx25840_ir_rx_g_parameters
,
1175 .rx_s_parameters
= cx25840_ir_rx_s_parameters
,
1177 .tx_write
= cx25840_ir_tx_write
,
1178 .tx_g_parameters
= cx25840_ir_tx_g_parameters
,
1179 .tx_s_parameters
= cx25840_ir_tx_s_parameters
,
1183 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1184 .bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
),
1185 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1188 .interrupt_enable
= false,
1192 .carrier_freq
= 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1194 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1195 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1196 .noise_filter_min_width
= 333333, /* ns */
1197 .carrier_range_lower
= 35000,
1198 .carrier_range_upper
= 37000,
1199 .invert_level
= false,
1202 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1203 .bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
),
1204 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1207 .interrupt_enable
= false,
1211 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1212 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1213 .invert_level
= false,
1214 .invert_carrier_sense
= false,
1217 int cx25840_ir_probe(struct v4l2_subdev
*sd
)
1219 struct cx25840_state
*state
= to_state(sd
);
1220 struct cx25840_ir_state
*ir_state
;
1221 struct v4l2_subdev_ir_parameters default_params
;
1223 /* Only init the IR controller for the CX2388[57] AV Core for now */
1224 if (!(is_cx23885(state
) || is_cx23887(state
)))
1227 ir_state
= devm_kzalloc(&state
->c
->dev
, sizeof(*ir_state
), GFP_KERNEL
);
1228 if (ir_state
== NULL
)
1231 spin_lock_init(&ir_state
->rx_kfifo_lock
);
1232 if (kfifo_alloc(&ir_state
->rx_kfifo
,
1233 CX25840_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1236 ir_state
->c
= state
->c
;
1237 state
->ir_state
= ir_state
;
1239 /* Ensure no interrupts arrive yet */
1240 if (is_cx23885(state
) || is_cx23887(state
))
1241 cx25840_write4(ir_state
->c
, CX25840_IR_IRQEN_REG
, IRQEN_MSK
);
1243 cx25840_write4(ir_state
->c
, CX25840_IR_IRQEN_REG
, 0);
1245 mutex_init(&ir_state
->rx_params_lock
);
1246 default_params
= default_rx_params
;
1247 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1249 mutex_init(&ir_state
->tx_params_lock
);
1250 default_params
= default_tx_params
;
1251 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1256 int cx25840_ir_remove(struct v4l2_subdev
*sd
)
1258 struct cx25840_state
*state
= to_state(sd
);
1259 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
1261 if (ir_state
== NULL
)
1264 cx25840_ir_rx_shutdown(sd
);
1265 cx25840_ir_tx_shutdown(sd
);
1267 kfifo_free(&ir_state
->rx_kfifo
);
1268 state
->ir_state
= NULL
;