perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / media / i2c / ir-kbd-i2c.c
bloba14a74e6b986ebb7409ca871679d7e65af785987
1 /*
3 * keyboard input driver for i2c IR remote controls
5 * Copyright (c) 2000-2003 Gerd Knorr <kraxel@bytesex.org>
6 * modified for PixelView (BT878P+W/FM) by
7 * Michal Kochanowicz <mkochano@pld.org.pl>
8 * Christoph Bartelmus <lirc@bartelmus.de>
9 * modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by
10 * Ulrich Mueller <ulrich.mueller42@web.de>
11 * modified for em2820 based USB TV tuners by
12 * Markus Rechberger <mrechberger@gmail.com>
13 * modified for DViCO Fusion HDTV 5 RT GOLD by
14 * Chaogui Zhang <czhang1974@gmail.com>
15 * modified for MSI TV@nywhere Plus by
16 * Henry Wong <henry@stuffedcow.net>
17 * Mark Schultz <n9xmj@yahoo.com>
18 * Brian Rogers <brian_rogers@comcast.net>
19 * modified for AVerMedia Cardbus by
20 * Oldrich Jedlicka <oldium.pro@seznam.cz>
21 * Zilog Transmitter portions/ideas were derived from GPLv2+ sources:
22 * - drivers/char/pctv_zilogir.[ch] from Hauppauge Broadway product
23 * Copyright 2011 Hauppauge Computer works
24 * - drivers/staging/media/lirc/lirc_zilog.c
25 * Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de>
26 * Michal Kochanowicz <mkochano@pld.org.pl>
27 * Christoph Bartelmus <lirc@bartelmus.de>
28 * Ulrich Mueller <ulrich.mueller42@web.de>
29 * Stefan Jahn <stefan@lkcc.org>
30 * Jerome Brock <jbrock@users.sourceforge.net>
31 * Thomas Reitmayr (treitmayr@yahoo.com)
32 * Mark Weaver <mark@npsl.co.uk>
33 * Jarod Wilson <jarod@redhat.com>
34 * Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net>
36 * This program is free software; you can redistribute it and/or modify
37 * it under the terms of the GNU General Public License as published by
38 * the Free Software Foundation; either version 2 of the License, or
39 * (at your option) any later version.
41 * This program is distributed in the hope that it will be useful,
42 * but WITHOUT ANY WARRANTY; without even the implied warranty of
43 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
44 * GNU General Public License for more details.
48 #include <asm/unaligned.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 #include <linux/kernel.h>
52 #include <linux/string.h>
53 #include <linux/timer.h>
54 #include <linux/delay.h>
55 #include <linux/errno.h>
56 #include <linux/slab.h>
57 #include <linux/i2c.h>
58 #include <linux/workqueue.h>
60 #include <media/rc-core.h>
61 #include <media/i2c/ir-kbd-i2c.h>
63 #define FLAG_TX 1
64 #define FLAG_HDPVR 2
66 static bool enable_hdpvr;
67 module_param(enable_hdpvr, bool, 0644);
69 static int get_key_haup_common(struct IR_i2c *ir, enum rc_proto *protocol,
70 u32 *scancode, u8 *ptoggle, int size)
72 unsigned char buf[6];
73 int start, range, toggle, dev, code, ircode, vendor;
75 /* poll IR chip */
76 if (size != i2c_master_recv(ir->c, buf, size))
77 return -EIO;
79 if (buf[0] & 0x80) {
80 int offset = (size == 6) ? 3 : 0;
82 /* split rc5 data block ... */
83 start = (buf[offset] >> 7) & 1;
84 range = (buf[offset] >> 6) & 1;
85 toggle = (buf[offset] >> 5) & 1;
86 dev = buf[offset] & 0x1f;
87 code = (buf[offset+1] >> 2) & 0x3f;
89 /* rc5 has two start bits
90 * the first bit must be one
91 * the second bit defines the command range:
92 * 1 = 0-63, 0 = 64 - 127
94 if (!start)
95 /* no key pressed */
96 return 0;
98 /* filter out invalid key presses */
99 ircode = (start << 12) | (toggle << 11) | (dev << 6) | code;
100 if ((ircode & 0x1fff) == 0x1fff)
101 return 0;
103 if (!range)
104 code += 64;
106 dev_dbg(&ir->rc->dev,
107 "ir hauppauge (rc5): s%d r%d t%d dev=%d code=%d\n",
108 start, range, toggle, dev, code);
110 *protocol = RC_PROTO_RC5;
111 *scancode = RC_SCANCODE_RC5(dev, code);
112 *ptoggle = toggle;
114 return 1;
115 } else if (size == 6 && (buf[0] & 0x40)) {
116 code = buf[4];
117 dev = buf[3];
118 vendor = get_unaligned_be16(buf + 1);
120 if (vendor == 0x800f) {
121 *ptoggle = (dev & 0x80) != 0;
122 *protocol = RC_PROTO_RC6_MCE;
123 dev &= 0x7f;
124 dev_dbg(&ir->rc->dev,
125 "ir hauppauge (rc6-mce): t%d vendor=%d dev=%d code=%d\n",
126 *ptoggle, vendor, dev, code);
127 } else {
128 *ptoggle = 0;
129 *protocol = RC_PROTO_RC6_6A_32;
130 dev_dbg(&ir->rc->dev,
131 "ir hauppauge (rc6-6a-32): vendor=%d dev=%d code=%d\n",
132 vendor, dev, code);
135 *scancode = RC_SCANCODE_RC6_6A(vendor, dev, code);
137 return 1;
140 return 0;
143 static int get_key_haup(struct IR_i2c *ir, enum rc_proto *protocol,
144 u32 *scancode, u8 *toggle)
146 return get_key_haup_common(ir, protocol, scancode, toggle, 3);
149 static int get_key_haup_xvr(struct IR_i2c *ir, enum rc_proto *protocol,
150 u32 *scancode, u8 *toggle)
152 int ret;
153 unsigned char buf[1] = { 0 };
156 * This is the same apparent "are you ready?" poll command observed
157 * watching Windows driver traffic and implemented in lirc_zilog. With
158 * this added, we get far saner remote behavior with z8 chips on usb
159 * connected devices, even with the default polling interval of 100ms.
161 ret = i2c_master_send(ir->c, buf, 1);
162 if (ret != 1)
163 return (ret < 0) ? ret : -EINVAL;
165 return get_key_haup_common(ir, protocol, scancode, toggle, 6);
168 static int get_key_pixelview(struct IR_i2c *ir, enum rc_proto *protocol,
169 u32 *scancode, u8 *toggle)
171 int rc;
172 unsigned char b;
174 /* poll IR chip */
175 rc = i2c_master_recv(ir->c, &b, 1);
176 if (rc != 1) {
177 dev_dbg(&ir->rc->dev, "read error\n");
178 if (rc < 0)
179 return rc;
180 return -EIO;
183 *protocol = RC_PROTO_OTHER;
184 *scancode = b;
185 *toggle = 0;
186 return 1;
189 static int get_key_fusionhdtv(struct IR_i2c *ir, enum rc_proto *protocol,
190 u32 *scancode, u8 *toggle)
192 int rc;
193 unsigned char buf[4];
195 /* poll IR chip */
196 rc = i2c_master_recv(ir->c, buf, 4);
197 if (rc != 4) {
198 dev_dbg(&ir->rc->dev, "read error\n");
199 if (rc < 0)
200 return rc;
201 return -EIO;
204 if (buf[0] != 0 || buf[1] != 0 || buf[2] != 0 || buf[3] != 0)
205 dev_dbg(&ir->rc->dev, "%s: %*ph\n", __func__, 4, buf);
207 /* no key pressed or signal from other ir remote */
208 if(buf[0] != 0x1 || buf[1] != 0xfe)
209 return 0;
211 *protocol = RC_PROTO_UNKNOWN;
212 *scancode = buf[2];
213 *toggle = 0;
214 return 1;
217 static int get_key_knc1(struct IR_i2c *ir, enum rc_proto *protocol,
218 u32 *scancode, u8 *toggle)
220 int rc;
221 unsigned char b;
223 /* poll IR chip */
224 rc = i2c_master_recv(ir->c, &b, 1);
225 if (rc != 1) {
226 dev_dbg(&ir->rc->dev, "read error\n");
227 if (rc < 0)
228 return rc;
229 return -EIO;
232 /* it seems that 0xFE indicates that a button is still hold
233 down, while 0xff indicates that no button is hold
234 down. 0xfe sequences are sometimes interrupted by 0xFF */
236 dev_dbg(&ir->rc->dev, "key %02x\n", b);
238 if (b == 0xff)
239 return 0;
241 if (b == 0xfe)
242 /* keep old data */
243 return 1;
245 *protocol = RC_PROTO_UNKNOWN;
246 *scancode = b;
247 *toggle = 0;
248 return 1;
251 static int get_key_avermedia_cardbus(struct IR_i2c *ir, enum rc_proto *protocol,
252 u32 *scancode, u8 *toggle)
254 unsigned char subaddr, key, keygroup;
255 struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0,
256 .buf = &subaddr, .len = 1},
257 { .addr = ir->c->addr, .flags = I2C_M_RD,
258 .buf = &key, .len = 1} };
259 subaddr = 0x0d;
260 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
261 dev_dbg(&ir->rc->dev, "read error\n");
262 return -EIO;
265 if (key == 0xff)
266 return 0;
268 subaddr = 0x0b;
269 msg[1].buf = &keygroup;
270 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
271 dev_dbg(&ir->rc->dev, "read error\n");
272 return -EIO;
275 if (keygroup == 0xff)
276 return 0;
278 dev_dbg(&ir->rc->dev, "read key 0x%02x/0x%02x\n", key, keygroup);
279 if (keygroup < 2 || keygroup > 4) {
280 dev_warn(&ir->rc->dev, "warning: invalid key group 0x%02x for key 0x%02x\n",
281 keygroup, key);
283 key |= (keygroup & 1) << 6;
285 *protocol = RC_PROTO_UNKNOWN;
286 *scancode = key;
287 if (ir->c->addr == 0x41) /* AVerMedia EM78P153 */
288 *scancode |= keygroup << 8;
289 *toggle = 0;
290 return 1;
293 /* ----------------------------------------------------------------------- */
295 static int ir_key_poll(struct IR_i2c *ir)
297 enum rc_proto protocol;
298 u32 scancode;
299 u8 toggle;
300 int rc;
302 dev_dbg(&ir->rc->dev, "%s\n", __func__);
303 rc = ir->get_key(ir, &protocol, &scancode, &toggle);
304 if (rc < 0) {
305 dev_warn(&ir->rc->dev, "error %d\n", rc);
306 return rc;
309 if (rc) {
310 dev_dbg(&ir->rc->dev, "%s: proto = 0x%04x, scancode = 0x%08x\n",
311 __func__, protocol, scancode);
312 rc_keydown(ir->rc, protocol, scancode, toggle);
314 return 0;
317 static void ir_work(struct work_struct *work)
319 int rc;
320 struct IR_i2c *ir = container_of(work, struct IR_i2c, work.work);
323 * If the transmit code is holding the lock, skip polling for
324 * IR, we'll get it to it next time round
326 if (mutex_trylock(&ir->lock)) {
327 rc = ir_key_poll(ir);
328 mutex_unlock(&ir->lock);
329 if (rc == -ENODEV) {
330 rc_unregister_device(ir->rc);
331 ir->rc = NULL;
332 return;
336 schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling_interval));
339 static int ir_open(struct rc_dev *dev)
341 struct IR_i2c *ir = dev->priv;
343 schedule_delayed_work(&ir->work, 0);
345 return 0;
348 static void ir_close(struct rc_dev *dev)
350 struct IR_i2c *ir = dev->priv;
352 cancel_delayed_work_sync(&ir->work);
355 /* Zilog Transmit Interface */
356 #define XTAL_FREQ 18432000
358 #define ZILOG_SEND 0x80
359 #define ZILOG_UIR_END 0x40
360 #define ZILOG_INIT_END 0x20
361 #define ZILOG_LIR_END 0x10
363 #define ZILOG_STATUS_OK 0x80
364 #define ZILOG_STATUS_TX 0x40
365 #define ZILOG_STATUS_SET 0x20
368 * As you can see here, very few different lengths of pulse and space
369 * can be encoded. This means that the hardware does not work well with
370 * recorded IR. It's best to work with generated IR, like from ir-ctl or
371 * the in-kernel encoders.
373 struct code_block {
374 u8 length;
375 u16 pulse[7]; /* not aligned */
376 u8 carrier_pulse;
377 u8 carrier_space;
378 u16 space[8]; /* not aligned */
379 u8 codes[61];
380 u8 csum[2];
381 } __packed;
383 static int send_data_block(struct IR_i2c *ir, int cmd,
384 struct code_block *code_block)
386 int i, j, ret;
387 u8 buf[5], *p;
389 p = &code_block->length;
390 for (i = 0; p < code_block->csum; i++)
391 code_block->csum[i & 1] ^= *p++;
393 p = &code_block->length;
395 for (i = 0; i < sizeof(*code_block);) {
396 int tosend = sizeof(*code_block) - i;
398 if (tosend > 4)
399 tosend = 4;
400 buf[0] = i + 1;
401 for (j = 0; j < tosend; ++j)
402 buf[1 + j] = p[i + j];
403 dev_dbg(&ir->rc->dev, "%*ph", tosend + 1, buf);
404 ret = i2c_master_send(ir->tx_c, buf, tosend + 1);
405 if (ret != tosend + 1) {
406 dev_dbg(&ir->rc->dev,
407 "i2c_master_send failed with %d\n", ret);
408 return ret < 0 ? ret : -EIO;
410 i += tosend;
413 buf[0] = 0;
414 buf[1] = cmd;
415 ret = i2c_master_send(ir->tx_c, buf, 2);
416 if (ret != 2) {
417 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
418 return ret < 0 ? ret : -EIO;
421 usleep_range(2000, 5000);
423 ret = i2c_master_send(ir->tx_c, buf, 1);
424 if (ret != 1) {
425 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
426 return ret < 0 ? ret : -EIO;
429 return 0;
432 static int zilog_init(struct IR_i2c *ir)
434 struct code_block code_block = { .length = sizeof(code_block) };
435 u8 buf[4];
436 int ret;
438 put_unaligned_be16(0x1000, &code_block.pulse[3]);
440 ret = send_data_block(ir, ZILOG_INIT_END, &code_block);
441 if (ret)
442 return ret;
444 ret = i2c_master_recv(ir->tx_c, buf, 4);
445 if (ret != 4) {
446 dev_err(&ir->c->dev, "failed to retrieve firmware version: %d\n",
447 ret);
448 return ret < 0 ? ret : -EIO;
451 dev_info(&ir->c->dev, "Zilog/Hauppauge IR blaster firmware version %d.%d.%d\n",
452 buf[1], buf[2], buf[3]);
454 return 0;
458 * If the last slot for pulse is the same as the current slot for pulse,
459 * then use slot no 7.
461 static void copy_codes(u8 *dst, u8 *src, unsigned int count)
463 u8 c, last = 0xff;
465 while (count--) {
466 c = *src++;
467 if ((c & 0xf0) == last) {
468 *dst++ = 0x70 | (c & 0xf);
469 } else {
470 *dst++ = c;
471 last = c & 0xf0;
477 * When looking for repeats, we don't care about the trailing space. This
478 * is set to the shortest possible anyway.
480 static int cmp_no_trail(u8 *a, u8 *b, unsigned int count)
482 while (--count) {
483 if (*a++ != *b++)
484 return 1;
487 return (*a & 0xf0) - (*b & 0xf0);
490 static int find_slot(u16 *array, unsigned int size, u16 val)
492 int i;
494 for (i = 0; i < size; i++) {
495 if (get_unaligned_be16(&array[i]) == val) {
496 return i;
497 } else if (!array[i]) {
498 put_unaligned_be16(val, &array[i]);
499 return i;
503 return -1;
506 static int zilog_ir_format(struct rc_dev *rcdev, unsigned int *txbuf,
507 unsigned int count, struct code_block *code_block)
509 struct IR_i2c *ir = rcdev->priv;
510 int rep, i, l, p = 0, s, c = 0;
511 bool repeating;
512 u8 codes[174];
514 code_block->carrier_pulse = DIV_ROUND_CLOSEST(
515 ir->duty_cycle * XTAL_FREQ / 1000, ir->carrier);
516 code_block->carrier_space = DIV_ROUND_CLOSEST(
517 (100 - ir->duty_cycle) * XTAL_FREQ / 1000, ir->carrier);
519 for (i = 0; i < count; i++) {
520 if (c >= ARRAY_SIZE(codes) - 1) {
521 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
522 return -EINVAL;
526 * Lengths more than 142220us cannot be encoded; also
527 * this checks for multiply overflow
529 if (txbuf[i] > 142220)
530 return -EINVAL;
532 l = DIV_ROUND_CLOSEST((XTAL_FREQ / 1000) * txbuf[i], 40000);
534 if (i & 1) {
535 s = find_slot(code_block->space,
536 ARRAY_SIZE(code_block->space), l);
537 if (s == -1) {
538 dev_warn(&rcdev->dev, "Too many different lengths spaces, cannot transmit");
539 return -EINVAL;
542 /* We have a pulse and space */
543 codes[c++] = (p << 4) | s;
544 } else {
545 p = find_slot(code_block->pulse,
546 ARRAY_SIZE(code_block->pulse), l);
547 if (p == -1) {
548 dev_warn(&rcdev->dev, "Too many different lengths pulses, cannot transmit");
549 return -EINVAL;
554 /* We have to encode the trailing pulse. Find the shortest space */
555 s = 0;
556 for (i = 1; i < ARRAY_SIZE(code_block->space); i++) {
557 u16 d = get_unaligned_be16(&code_block->space[i]);
559 if (get_unaligned_be16(&code_block->space[s]) > d)
560 s = i;
563 codes[c++] = (p << 4) | s;
565 dev_dbg(&rcdev->dev, "generated %d codes\n", c);
568 * Are the last N codes (so pulse + space) repeating 3 times?
569 * if so we can shorten the codes list and use code 0xc0 to repeat
570 * them.
572 repeating = false;
574 for (rep = c / 3; rep >= 1; rep--) {
575 if (!memcmp(&codes[c - rep * 3], &codes[c - rep * 2], rep) &&
576 !cmp_no_trail(&codes[c - rep], &codes[c - rep * 2], rep)) {
577 repeating = true;
578 break;
582 if (repeating) {
583 /* first copy any leading non-repeating */
584 int leading = c - rep * 3;
586 if (leading >= ARRAY_SIZE(code_block->codes) - 3 - rep) {
587 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
588 return -EINVAL;
591 dev_dbg(&rcdev->dev, "found trailing %d repeat\n", rep);
592 copy_codes(code_block->codes, codes, leading);
593 code_block->codes[leading] = 0x82;
594 copy_codes(code_block->codes + leading + 1, codes + leading,
595 rep);
596 c = leading + 1 + rep;
597 code_block->codes[c++] = 0xc0;
598 } else {
599 if (c >= ARRAY_SIZE(code_block->codes) - 3) {
600 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
601 return -EINVAL;
604 dev_dbg(&rcdev->dev, "found no trailing repeat\n");
605 code_block->codes[0] = 0x82;
606 copy_codes(code_block->codes + 1, codes, c);
607 c++;
608 code_block->codes[c++] = 0xc4;
611 while (c < ARRAY_SIZE(code_block->codes))
612 code_block->codes[c++] = 0x83;
614 return 0;
617 static int zilog_tx(struct rc_dev *rcdev, unsigned int *txbuf,
618 unsigned int count)
620 struct IR_i2c *ir = rcdev->priv;
621 struct code_block code_block = { .length = sizeof(code_block) };
622 u8 buf[2];
623 int ret, i;
625 ret = zilog_ir_format(rcdev, txbuf, count, &code_block);
626 if (ret)
627 return ret;
629 ret = mutex_lock_interruptible(&ir->lock);
630 if (ret)
631 return ret;
633 ret = send_data_block(ir, ZILOG_UIR_END, &code_block);
634 if (ret)
635 goto out_unlock;
637 ret = i2c_master_recv(ir->tx_c, buf, 1);
638 if (ret != 1) {
639 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
640 goto out_unlock;
643 dev_dbg(&ir->rc->dev, "code set status: %02x\n", buf[0]);
645 if (buf[0] != (ZILOG_STATUS_OK | ZILOG_STATUS_SET)) {
646 dev_err(&ir->rc->dev, "unexpected IR TX response %02x\n",
647 buf[0]);
648 ret = -EIO;
649 goto out_unlock;
652 buf[0] = 0x00;
653 buf[1] = ZILOG_SEND;
655 ret = i2c_master_send(ir->tx_c, buf, 2);
656 if (ret != 2) {
657 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
658 if (ret >= 0)
659 ret = -EIO;
660 goto out_unlock;
663 dev_dbg(&ir->rc->dev, "send command sent\n");
666 * This bit NAKs until the device is ready, so we retry it
667 * sleeping a bit each time. This seems to be what the windows
668 * driver does, approximately.
669 * Try for up to 1s.
671 for (i = 0; i < 20; ++i) {
672 set_current_state(TASK_UNINTERRUPTIBLE);
673 schedule_timeout(msecs_to_jiffies(50));
674 ret = i2c_master_send(ir->tx_c, buf, 1);
675 if (ret == 1)
676 break;
677 dev_dbg(&ir->rc->dev,
678 "NAK expected: i2c_master_send failed with %d (try %d)\n",
679 ret, i + 1);
682 if (ret != 1) {
683 dev_err(&ir->rc->dev,
684 "IR TX chip never got ready: last i2c_master_send failed with %d\n",
685 ret);
686 if (ret >= 0)
687 ret = -EIO;
688 goto out_unlock;
691 i = i2c_master_recv(ir->tx_c, buf, 1);
692 if (i != 1) {
693 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
694 ret = -EIO;
695 goto out_unlock;
696 } else if (buf[0] != ZILOG_STATUS_OK) {
697 dev_err(&ir->rc->dev, "unexpected IR TX response #2: %02x\n",
698 buf[0]);
699 ret = -EIO;
700 goto out_unlock;
702 dev_dbg(&ir->rc->dev, "transmit complete\n");
704 /* Oh good, it worked */
705 ret = count;
706 out_unlock:
707 mutex_unlock(&ir->lock);
709 return ret;
712 static int zilog_tx_carrier(struct rc_dev *dev, u32 carrier)
714 struct IR_i2c *ir = dev->priv;
716 if (carrier > 500000 || carrier < 20000)
717 return -EINVAL;
719 ir->carrier = carrier;
721 return 0;
724 static int zilog_tx_duty_cycle(struct rc_dev *dev, u32 duty_cycle)
726 struct IR_i2c *ir = dev->priv;
728 ir->duty_cycle = duty_cycle;
730 return 0;
733 static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id)
735 char *ir_codes = NULL;
736 const char *name = NULL;
737 u64 rc_proto = RC_PROTO_BIT_UNKNOWN;
738 struct IR_i2c *ir;
739 struct rc_dev *rc = NULL;
740 struct i2c_adapter *adap = client->adapter;
741 unsigned short addr = client->addr;
742 bool probe_tx = (id->driver_data & FLAG_TX) != 0;
743 int err;
745 if ((id->driver_data & FLAG_HDPVR) && !enable_hdpvr) {
746 dev_err(&client->dev, "IR for HDPVR is known to cause problems during recording, use enable_hdpvr modparam to enable\n");
747 return -ENODEV;
750 ir = devm_kzalloc(&client->dev, sizeof(*ir), GFP_KERNEL);
751 if (!ir)
752 return -ENOMEM;
754 ir->c = client;
755 ir->polling_interval = DEFAULT_POLLING_INTERVAL;
756 i2c_set_clientdata(client, ir);
758 switch(addr) {
759 case 0x64:
760 name = "Pixelview";
761 ir->get_key = get_key_pixelview;
762 rc_proto = RC_PROTO_BIT_OTHER;
763 ir_codes = RC_MAP_EMPTY;
764 break;
765 case 0x18:
766 case 0x1f:
767 case 0x1a:
768 name = "Hauppauge";
769 ir->get_key = get_key_haup;
770 rc_proto = RC_PROTO_BIT_RC5;
771 ir_codes = RC_MAP_HAUPPAUGE;
772 break;
773 case 0x30:
774 name = "KNC One";
775 ir->get_key = get_key_knc1;
776 rc_proto = RC_PROTO_BIT_OTHER;
777 ir_codes = RC_MAP_EMPTY;
778 break;
779 case 0x6b:
780 name = "FusionHDTV";
781 ir->get_key = get_key_fusionhdtv;
782 rc_proto = RC_PROTO_BIT_UNKNOWN;
783 ir_codes = RC_MAP_FUSIONHDTV_MCE;
784 break;
785 case 0x40:
786 name = "AVerMedia Cardbus remote";
787 ir->get_key = get_key_avermedia_cardbus;
788 rc_proto = RC_PROTO_BIT_OTHER;
789 ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
790 break;
791 case 0x41:
792 name = "AVerMedia EM78P153";
793 ir->get_key = get_key_avermedia_cardbus;
794 rc_proto = RC_PROTO_BIT_OTHER;
795 /* RM-KV remote, seems to be same as RM-K6 */
796 ir_codes = RC_MAP_AVERMEDIA_M733A_RM_K6;
797 break;
798 case 0x71:
799 name = "Hauppauge/Zilog Z8";
800 ir->get_key = get_key_haup_xvr;
801 rc_proto = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
802 RC_PROTO_BIT_RC6_6A_32;
803 ir_codes = RC_MAP_HAUPPAUGE;
804 probe_tx = true;
805 break;
808 /* Let the caller override settings */
809 if (client->dev.platform_data) {
810 const struct IR_i2c_init_data *init_data =
811 client->dev.platform_data;
813 ir_codes = init_data->ir_codes;
814 rc = init_data->rc_dev;
816 name = init_data->name;
817 if (init_data->type)
818 rc_proto = init_data->type;
820 if (init_data->polling_interval)
821 ir->polling_interval = init_data->polling_interval;
823 switch (init_data->internal_get_key_func) {
824 case IR_KBD_GET_KEY_CUSTOM:
825 /* The bridge driver provided us its own function */
826 ir->get_key = init_data->get_key;
827 break;
828 case IR_KBD_GET_KEY_PIXELVIEW:
829 ir->get_key = get_key_pixelview;
830 break;
831 case IR_KBD_GET_KEY_HAUP:
832 ir->get_key = get_key_haup;
833 break;
834 case IR_KBD_GET_KEY_KNC1:
835 ir->get_key = get_key_knc1;
836 break;
837 case IR_KBD_GET_KEY_FUSIONHDTV:
838 ir->get_key = get_key_fusionhdtv;
839 break;
840 case IR_KBD_GET_KEY_HAUP_XVR:
841 ir->get_key = get_key_haup_xvr;
842 break;
843 case IR_KBD_GET_KEY_AVERMEDIA_CARDBUS:
844 ir->get_key = get_key_avermedia_cardbus;
845 break;
849 if (!rc) {
851 * If platform_data doesn't specify rc_dev, initialize it
852 * internally
854 rc = rc_allocate_device(RC_DRIVER_SCANCODE);
855 if (!rc)
856 return -ENOMEM;
858 ir->rc = rc;
860 /* Make sure we are all setup before going on */
861 if (!name || !ir->get_key || !rc_proto || !ir_codes) {
862 dev_warn(&client->dev, "Unsupported device at address 0x%02x\n",
863 addr);
864 err = -ENODEV;
865 goto err_out_free;
868 ir->ir_codes = ir_codes;
870 snprintf(ir->phys, sizeof(ir->phys), "%s/%s", dev_name(&adap->dev),
871 dev_name(&client->dev));
874 * Initialize input_dev fields
875 * It doesn't make sense to allow overriding them via platform_data
877 rc->input_id.bustype = BUS_I2C;
878 rc->input_phys = ir->phys;
879 rc->device_name = name;
880 rc->dev.parent = &client->dev;
881 rc->priv = ir;
882 rc->open = ir_open;
883 rc->close = ir_close;
886 * Initialize the other fields of rc_dev
888 rc->map_name = ir->ir_codes;
889 rc->allowed_protocols = rc_proto;
890 if (!rc->driver_name)
891 rc->driver_name = KBUILD_MODNAME;
893 mutex_init(&ir->lock);
895 INIT_DELAYED_WORK(&ir->work, ir_work);
897 if (probe_tx) {
898 ir->tx_c = i2c_new_dummy(client->adapter, 0x70);
899 if (!ir->tx_c) {
900 dev_err(&client->dev, "failed to setup tx i2c address");
901 } else if (!zilog_init(ir)) {
902 ir->carrier = 38000;
903 ir->duty_cycle = 40;
904 rc->tx_ir = zilog_tx;
905 rc->s_tx_carrier = zilog_tx_carrier;
906 rc->s_tx_duty_cycle = zilog_tx_duty_cycle;
910 err = rc_register_device(rc);
911 if (err)
912 goto err_out_free;
914 return 0;
916 err_out_free:
917 if (ir->tx_c)
918 i2c_unregister_device(ir->tx_c);
920 /* Only frees rc if it were allocated internally */
921 rc_free_device(rc);
922 return err;
925 static int ir_remove(struct i2c_client *client)
927 struct IR_i2c *ir = i2c_get_clientdata(client);
929 /* kill outstanding polls */
930 cancel_delayed_work_sync(&ir->work);
932 if (ir->tx_c)
933 i2c_unregister_device(ir->tx_c);
935 /* unregister device */
936 rc_unregister_device(ir->rc);
938 /* free memory */
939 return 0;
942 static const struct i2c_device_id ir_kbd_id[] = {
943 /* Generic entry for any IR receiver */
944 { "ir_video", 0 },
945 /* IR device specific entries should be added here */
946 { "ir_z8f0811_haup", FLAG_TX },
947 { "ir_z8f0811_hdpvr", FLAG_TX | FLAG_HDPVR },
950 MODULE_DEVICE_TABLE(i2c, ir_kbd_id);
952 static struct i2c_driver ir_kbd_driver = {
953 .driver = {
954 .name = "ir-kbd-i2c",
956 .probe = ir_probe,
957 .remove = ir_remove,
958 .id_table = ir_kbd_id,
961 module_i2c_driver(ir_kbd_driver);
963 /* ----------------------------------------------------------------------- */
965 MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller");
966 MODULE_DESCRIPTION("input driver for i2c IR remote controls");
967 MODULE_LICENSE("GPL");