perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / media / pci / tw68 / tw68-video.c
blob8c1f4a049764bda53cd98230c5577a640e037896
1 /*
2 * tw68 functions to handle video data
4 * Much of this code is derived from the cx88 and sa7134 drivers, which
5 * were in turn derived from the bt87x driver. The original work was by
6 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab,
7 * Hans Verkuil, Andy Walls and many others. Their work is gratefully
8 * acknowledged. Full credit goes to them - any problems within this code
9 * are mine.
11 * Copyright (C) 2009 William M. Brack
13 * Refactored and updated to the latest v4l core frameworks:
15 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl>
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/module.h>
29 #include <media/v4l2-common.h>
30 #include <media/v4l2-event.h>
31 #include <media/videobuf2-dma-sg.h>
33 #include "tw68.h"
34 #include "tw68-reg.h"
36 /* ------------------------------------------------------------------ */
37 /* data structs for video */
39 * FIXME -
40 * Note that the saa7134 has formats, e.g. YUV420, which are classified
41 * as "planar". These affect overlay mode, and are flagged with a field
42 * ".planar" in the format. Do we need to implement this in this driver?
44 static const struct tw68_format formats[] = {
46 .name = "15 bpp RGB, le",
47 .fourcc = V4L2_PIX_FMT_RGB555,
48 .depth = 16,
49 .twformat = ColorFormatRGB15,
50 }, {
51 .name = "15 bpp RGB, be",
52 .fourcc = V4L2_PIX_FMT_RGB555X,
53 .depth = 16,
54 .twformat = ColorFormatRGB15 | ColorFormatBSWAP,
55 }, {
56 .name = "16 bpp RGB, le",
57 .fourcc = V4L2_PIX_FMT_RGB565,
58 .depth = 16,
59 .twformat = ColorFormatRGB16,
60 }, {
61 .name = "16 bpp RGB, be",
62 .fourcc = V4L2_PIX_FMT_RGB565X,
63 .depth = 16,
64 .twformat = ColorFormatRGB16 | ColorFormatBSWAP,
65 }, {
66 .name = "24 bpp RGB, le",
67 .fourcc = V4L2_PIX_FMT_BGR24,
68 .depth = 24,
69 .twformat = ColorFormatRGB24,
70 }, {
71 .name = "24 bpp RGB, be",
72 .fourcc = V4L2_PIX_FMT_RGB24,
73 .depth = 24,
74 .twformat = ColorFormatRGB24 | ColorFormatBSWAP,
75 }, {
76 .name = "32 bpp RGB, le",
77 .fourcc = V4L2_PIX_FMT_BGR32,
78 .depth = 32,
79 .twformat = ColorFormatRGB32,
80 }, {
81 .name = "32 bpp RGB, be",
82 .fourcc = V4L2_PIX_FMT_RGB32,
83 .depth = 32,
84 .twformat = ColorFormatRGB32 | ColorFormatBSWAP |
85 ColorFormatWSWAP,
86 }, {
87 .name = "4:2:2 packed, YUYV",
88 .fourcc = V4L2_PIX_FMT_YUYV,
89 .depth = 16,
90 .twformat = ColorFormatYUY2,
91 }, {
92 .name = "4:2:2 packed, UYVY",
93 .fourcc = V4L2_PIX_FMT_UYVY,
94 .depth = 16,
95 .twformat = ColorFormatYUY2 | ColorFormatBSWAP,
98 #define FORMATS ARRAY_SIZE(formats)
100 #define NORM_625_50 \
101 .h_delay = 3, \
102 .h_delay0 = 133, \
103 .h_start = 0, \
104 .h_stop = 719, \
105 .v_delay = 24, \
106 .vbi_v_start_0 = 7, \
107 .vbi_v_stop_0 = 22, \
108 .video_v_start = 24, \
109 .video_v_stop = 311, \
110 .vbi_v_start_1 = 319
112 #define NORM_525_60 \
113 .h_delay = 8, \
114 .h_delay0 = 138, \
115 .h_start = 0, \
116 .h_stop = 719, \
117 .v_delay = 22, \
118 .vbi_v_start_0 = 10, \
119 .vbi_v_stop_0 = 21, \
120 .video_v_start = 22, \
121 .video_v_stop = 262, \
122 .vbi_v_start_1 = 273
125 * The following table is searched by tw68_s_std, first for a specific
126 * match, then for an entry which contains the desired id. The table
127 * entries should therefore be ordered in ascending order of specificity.
129 static const struct tw68_tvnorm tvnorms[] = {
131 .name = "PAL", /* autodetect */
132 .id = V4L2_STD_PAL,
133 NORM_625_50,
135 .sync_control = 0x18,
136 .luma_control = 0x40,
137 .chroma_ctrl1 = 0x81,
138 .chroma_gain = 0x2a,
139 .chroma_ctrl2 = 0x06,
140 .vgate_misc = 0x1c,
141 .format = VideoFormatPALBDGHI,
142 }, {
143 .name = "NTSC",
144 .id = V4L2_STD_NTSC,
145 NORM_525_60,
147 .sync_control = 0x59,
148 .luma_control = 0x40,
149 .chroma_ctrl1 = 0x89,
150 .chroma_gain = 0x2a,
151 .chroma_ctrl2 = 0x0e,
152 .vgate_misc = 0x18,
153 .format = VideoFormatNTSC,
154 }, {
155 .name = "SECAM",
156 .id = V4L2_STD_SECAM,
157 NORM_625_50,
159 .sync_control = 0x18,
160 .luma_control = 0x1b,
161 .chroma_ctrl1 = 0xd1,
162 .chroma_gain = 0x80,
163 .chroma_ctrl2 = 0x00,
164 .vgate_misc = 0x1c,
165 .format = VideoFormatSECAM,
166 }, {
167 .name = "PAL-M",
168 .id = V4L2_STD_PAL_M,
169 NORM_525_60,
171 .sync_control = 0x59,
172 .luma_control = 0x40,
173 .chroma_ctrl1 = 0xb9,
174 .chroma_gain = 0x2a,
175 .chroma_ctrl2 = 0x0e,
176 .vgate_misc = 0x18,
177 .format = VideoFormatPALM,
178 }, {
179 .name = "PAL-Nc",
180 .id = V4L2_STD_PAL_Nc,
181 NORM_625_50,
183 .sync_control = 0x18,
184 .luma_control = 0x40,
185 .chroma_ctrl1 = 0xa1,
186 .chroma_gain = 0x2a,
187 .chroma_ctrl2 = 0x06,
188 .vgate_misc = 0x1c,
189 .format = VideoFormatPALNC,
190 }, {
191 .name = "PAL-60",
192 .id = V4L2_STD_PAL_60,
193 .h_delay = 186,
194 .h_start = 0,
195 .h_stop = 719,
196 .v_delay = 26,
197 .video_v_start = 23,
198 .video_v_stop = 262,
199 .vbi_v_start_0 = 10,
200 .vbi_v_stop_0 = 21,
201 .vbi_v_start_1 = 273,
203 .sync_control = 0x18,
204 .luma_control = 0x40,
205 .chroma_ctrl1 = 0x81,
206 .chroma_gain = 0x2a,
207 .chroma_ctrl2 = 0x06,
208 .vgate_misc = 0x1c,
209 .format = VideoFormatPAL60,
212 #define TVNORMS ARRAY_SIZE(tvnorms)
214 static const struct tw68_format *format_by_fourcc(unsigned int fourcc)
216 unsigned int i;
218 for (i = 0; i < FORMATS; i++)
219 if (formats[i].fourcc == fourcc)
220 return formats+i;
221 return NULL;
225 /* ------------------------------------------------------------------ */
227 * Note that the cropping rectangles are described in terms of a single
228 * frame, i.e. line positions are only 1/2 the interlaced equivalent
230 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm)
232 if (norm != dev->tvnorm) {
233 dev->width = 720;
234 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576;
235 dev->tvnorm = norm;
236 tw68_set_tvnorm_hw(dev);
241 * tw68_set_scale
243 * Scaling and Cropping for video decoding
245 * We are working with 3 values for horizontal and vertical - scale,
246 * delay and active.
248 * HACTIVE represent the actual number of pixels in the "usable" image,
249 * before scaling. HDELAY represents the number of pixels skipped
250 * between the start of the horizontal sync and the start of the image.
251 * HSCALE is calculated using the formula
252 * HSCALE = (HACTIVE / (#pixels desired)) * 256
254 * The vertical registers are similar, except based upon the total number
255 * of lines in the image, and the first line of the image (i.e. ignoring
256 * vertical sync and VBI).
258 * Note that the number of bytes reaching the FIFO (and hence needing
259 * to be processed by the DMAP program) is completely dependent upon
260 * these values, especially HSCALE.
262 * Parameters:
263 * @dev pointer to the device structure, needed for
264 * getting current norm (as well as debug print)
265 * @width actual image width (from user buffer)
266 * @height actual image height
267 * @field indicates Top, Bottom or Interlaced
269 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width,
270 unsigned int height, enum v4l2_field field)
272 const struct tw68_tvnorm *norm = dev->tvnorm;
273 /* set individually for debugging clarity */
274 int hactive, hdelay, hscale;
275 int vactive, vdelay, vscale;
276 int comb;
278 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */
279 height /= 2; /* we must set for 1-frame */
281 pr_debug("%s: width=%d, height=%d, both=%d\n"
282 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, v_delay=%d, v_start=%d, v_stop=%d\n",
283 __func__, width, height, V4L2_FIELD_HAS_BOTH(field),
284 norm->h_delay, norm->h_start, norm->h_stop,
285 norm->v_delay, norm->video_v_start,
286 norm->video_v_stop);
288 switch (dev->vdecoder) {
289 case TW6800:
290 hdelay = norm->h_delay0;
291 break;
292 default:
293 hdelay = norm->h_delay;
294 break;
297 hdelay += norm->h_start;
298 hactive = norm->h_stop - norm->h_start + 1;
300 hscale = (hactive * 256) / (width);
302 vdelay = norm->v_delay;
303 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start;
304 vscale = (vactive * 256) / height;
306 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__,
307 width, height,
308 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
309 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
310 v4l2_norm_to_name(dev->tvnorm->id));
311 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; vactive=%d, vdelay=%d, vscale=%d\n",
312 __func__,
313 hactive, hdelay, hscale, vactive, vdelay, vscale);
315 comb = ((vdelay & 0x300) >> 2) |
316 ((vactive & 0x300) >> 4) |
317 ((hdelay & 0x300) >> 6) |
318 ((hactive & 0x300) >> 8);
319 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n",
320 __func__, comb, vdelay, vactive, hdelay, hactive);
321 tw_writeb(TW68_CROP_HI, comb);
322 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff);
323 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff);
324 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff);
325 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff);
327 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8);
328 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, HSCALE_LO=%02x\n",
329 __func__, comb, vscale, hscale);
330 tw_writeb(TW68_SCALE_HI, comb);
331 tw_writeb(TW68_VSCALE_LO, vscale);
332 tw_writeb(TW68_HSCALE_LO, hscale);
334 return 0;
337 /* ------------------------------------------------------------------ */
339 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf)
341 /* Set cropping and scaling */
342 tw68_set_scale(dev, dev->width, dev->height, dev->field);
344 * Set start address for RISC program. Note that if the DMAP
345 * processor is currently running, it must be stopped before
346 * a new address can be set.
348 tw_clearl(TW68_DMAC, TW68_DMAP_EN);
349 tw_writel(TW68_DMAP_SA, buf->dma);
350 /* Clear any pending interrupts */
351 tw_writel(TW68_INTSTAT, dev->board_virqmask);
352 /* Enable the risc engine and the fifo */
353 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat |
354 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN);
355 dev->pci_irqmask |= dev->board_virqmask;
356 tw_setl(TW68_INTMASK, dev->pci_irqmask);
357 return 0;
360 /* ------------------------------------------------------------------ */
362 /* calc max # of buffers from size (must not exceed the 4MB virtual
363 * address space per DMA channel) */
364 static int tw68_buffer_count(unsigned int size, unsigned int count)
366 unsigned int maxcount;
368 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE);
369 if (count > maxcount)
370 count = maxcount;
371 return count;
374 /* ------------------------------------------------------------- */
375 /* vb2 queue operations */
377 static int tw68_queue_setup(struct vb2_queue *q,
378 unsigned int *num_buffers, unsigned int *num_planes,
379 unsigned int sizes[], struct device *alloc_devs[])
381 struct tw68_dev *dev = vb2_get_drv_priv(q);
382 unsigned tot_bufs = q->num_buffers + *num_buffers;
383 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3;
385 if (tot_bufs < 2)
386 tot_bufs = 2;
387 tot_bufs = tw68_buffer_count(size, tot_bufs);
388 *num_buffers = tot_bufs - q->num_buffers;
390 * We allow create_bufs, but only if the sizeimage is >= as the
391 * current sizeimage. The tw68_buffer_count calculation becomes quite
392 * difficult otherwise.
394 if (*num_planes)
395 return sizes[0] < size ? -EINVAL : 0;
396 *num_planes = 1;
397 sizes[0] = size;
399 return 0;
403 * The risc program for each buffers works as follows: it starts with a simple
404 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the
405 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping
406 * the initial JUMP).
408 * This is the program of the first buffer to be queued if the active list is
409 * empty and it just keeps DMAing this buffer without generating any interrupts.
411 * If a new buffer is added then the initial JUMP in the program generates an
412 * interrupt as well which signals that the previous buffer has been DMAed
413 * successfully and that it can be returned to userspace.
415 * It also sets the final jump of the previous buffer to the start of the new
416 * buffer, thus chaining the new buffer into the DMA chain. This is a single
417 * atomic u32 write, so there is no race condition.
419 * The end-result of all this that you only get an interrupt when a buffer
420 * is ready, so the control flow is very easy.
422 static void tw68_buf_queue(struct vb2_buffer *vb)
424 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
425 struct vb2_queue *vq = vb->vb2_queue;
426 struct tw68_dev *dev = vb2_get_drv_priv(vq);
427 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
428 struct tw68_buf *prev;
429 unsigned long flags;
431 spin_lock_irqsave(&dev->slock, flags);
433 /* append a 'JUMP to start of buffer' to the buffer risc program */
434 buf->jmp[0] = cpu_to_le32(RISC_JUMP);
435 buf->jmp[1] = cpu_to_le32(buf->dma + 8);
437 if (!list_empty(&dev->active)) {
438 prev = list_entry(dev->active.prev, struct tw68_buf, list);
439 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT);
440 prev->jmp[1] = cpu_to_le32(buf->dma);
442 list_add_tail(&buf->list, &dev->active);
443 spin_unlock_irqrestore(&dev->slock, flags);
447 * buffer_prepare
449 * Set the ancilliary information into the buffer structure. This
450 * includes generating the necessary risc program if it hasn't already
451 * been done for the current buffer format.
452 * The structure fh contains the details of the format requested by the
453 * user - type, width, height and #fields. This is compared with the
454 * last format set for the current buffer. If they differ, the risc
455 * code (which controls the filling of the buffer) is (re-)generated.
457 static int tw68_buf_prepare(struct vb2_buffer *vb)
459 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
460 struct vb2_queue *vq = vb->vb2_queue;
461 struct tw68_dev *dev = vb2_get_drv_priv(vq);
462 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
463 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0);
464 unsigned size, bpl;
466 size = (dev->width * dev->height * dev->fmt->depth) >> 3;
467 if (vb2_plane_size(vb, 0) < size)
468 return -EINVAL;
469 vb2_set_plane_payload(vb, 0, size);
471 bpl = (dev->width * dev->fmt->depth) >> 3;
472 switch (dev->field) {
473 case V4L2_FIELD_TOP:
474 tw68_risc_buffer(dev->pci, buf, dma->sgl,
475 0, UNSET, bpl, 0, dev->height);
476 break;
477 case V4L2_FIELD_BOTTOM:
478 tw68_risc_buffer(dev->pci, buf, dma->sgl,
479 UNSET, 0, bpl, 0, dev->height);
480 break;
481 case V4L2_FIELD_SEQ_TB:
482 tw68_risc_buffer(dev->pci, buf, dma->sgl,
483 0, bpl * (dev->height >> 1),
484 bpl, 0, dev->height >> 1);
485 break;
486 case V4L2_FIELD_SEQ_BT:
487 tw68_risc_buffer(dev->pci, buf, dma->sgl,
488 bpl * (dev->height >> 1), 0,
489 bpl, 0, dev->height >> 1);
490 break;
491 case V4L2_FIELD_INTERLACED:
492 default:
493 tw68_risc_buffer(dev->pci, buf, dma->sgl,
494 0, bpl, bpl, bpl, dev->height >> 1);
495 break;
497 return 0;
500 static void tw68_buf_finish(struct vb2_buffer *vb)
502 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
503 struct vb2_queue *vq = vb->vb2_queue;
504 struct tw68_dev *dev = vb2_get_drv_priv(vq);
505 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
507 pci_free_consistent(dev->pci, buf->size, buf->cpu, buf->dma);
510 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count)
512 struct tw68_dev *dev = vb2_get_drv_priv(q);
513 struct tw68_buf *buf =
514 container_of(dev->active.next, struct tw68_buf, list);
516 dev->seqnr = 0;
517 tw68_video_start_dma(dev, buf);
518 return 0;
521 static void tw68_stop_streaming(struct vb2_queue *q)
523 struct tw68_dev *dev = vb2_get_drv_priv(q);
525 /* Stop risc & fifo */
526 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
527 while (!list_empty(&dev->active)) {
528 struct tw68_buf *buf =
529 container_of(dev->active.next, struct tw68_buf, list);
531 list_del(&buf->list);
532 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
536 static const struct vb2_ops tw68_video_qops = {
537 .queue_setup = tw68_queue_setup,
538 .buf_queue = tw68_buf_queue,
539 .buf_prepare = tw68_buf_prepare,
540 .buf_finish = tw68_buf_finish,
541 .start_streaming = tw68_start_streaming,
542 .stop_streaming = tw68_stop_streaming,
543 .wait_prepare = vb2_ops_wait_prepare,
544 .wait_finish = vb2_ops_wait_finish,
547 /* ------------------------------------------------------------------ */
549 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl)
551 struct tw68_dev *dev =
552 container_of(ctrl->handler, struct tw68_dev, hdl);
554 switch (ctrl->id) {
555 case V4L2_CID_BRIGHTNESS:
556 tw_writeb(TW68_BRIGHT, ctrl->val);
557 break;
558 case V4L2_CID_HUE:
559 tw_writeb(TW68_HUE, ctrl->val);
560 break;
561 case V4L2_CID_CONTRAST:
562 tw_writeb(TW68_CONTRAST, ctrl->val);
563 break;
564 case V4L2_CID_SATURATION:
565 tw_writeb(TW68_SAT_U, ctrl->val);
566 tw_writeb(TW68_SAT_V, ctrl->val);
567 break;
568 case V4L2_CID_COLOR_KILLER:
569 if (ctrl->val)
570 tw_andorb(TW68_MISC2, 0xe0, 0xe0);
571 else
572 tw_andorb(TW68_MISC2, 0xe0, 0x00);
573 break;
574 case V4L2_CID_CHROMA_AGC:
575 if (ctrl->val)
576 tw_andorb(TW68_LOOP, 0x30, 0x20);
577 else
578 tw_andorb(TW68_LOOP, 0x30, 0x00);
579 break;
581 return 0;
584 /* ------------------------------------------------------------------ */
587 * Note that this routine returns what is stored in the fh structure, and
588 * does not interrogate any of the device registers.
590 static int tw68_g_fmt_vid_cap(struct file *file, void *priv,
591 struct v4l2_format *f)
593 struct tw68_dev *dev = video_drvdata(file);
595 f->fmt.pix.width = dev->width;
596 f->fmt.pix.height = dev->height;
597 f->fmt.pix.field = dev->field;
598 f->fmt.pix.pixelformat = dev->fmt->fourcc;
599 f->fmt.pix.bytesperline =
600 (f->fmt.pix.width * (dev->fmt->depth)) >> 3;
601 f->fmt.pix.sizeimage =
602 f->fmt.pix.height * f->fmt.pix.bytesperline;
603 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
604 f->fmt.pix.priv = 0;
605 return 0;
608 static int tw68_try_fmt_vid_cap(struct file *file, void *priv,
609 struct v4l2_format *f)
611 struct tw68_dev *dev = video_drvdata(file);
612 const struct tw68_format *fmt;
613 enum v4l2_field field;
614 unsigned int maxh;
616 fmt = format_by_fourcc(f->fmt.pix.pixelformat);
617 if (NULL == fmt)
618 return -EINVAL;
620 field = f->fmt.pix.field;
621 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576;
623 switch (field) {
624 case V4L2_FIELD_TOP:
625 case V4L2_FIELD_BOTTOM:
626 break;
627 case V4L2_FIELD_INTERLACED:
628 case V4L2_FIELD_SEQ_BT:
629 case V4L2_FIELD_SEQ_TB:
630 maxh = maxh * 2;
631 break;
632 default:
633 field = (f->fmt.pix.height > maxh / 2)
634 ? V4L2_FIELD_INTERLACED
635 : V4L2_FIELD_BOTTOM;
636 break;
639 f->fmt.pix.field = field;
640 if (f->fmt.pix.width < 48)
641 f->fmt.pix.width = 48;
642 if (f->fmt.pix.height < 32)
643 f->fmt.pix.height = 32;
644 if (f->fmt.pix.width > 720)
645 f->fmt.pix.width = 720;
646 if (f->fmt.pix.height > maxh)
647 f->fmt.pix.height = maxh;
648 f->fmt.pix.width &= ~0x03;
649 f->fmt.pix.bytesperline =
650 (f->fmt.pix.width * (fmt->depth)) >> 3;
651 f->fmt.pix.sizeimage =
652 f->fmt.pix.height * f->fmt.pix.bytesperline;
653 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
654 return 0;
658 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure,
659 * and it will be used for all future new buffers. However, there could be
660 * some number of buffers on the "active" chain which will be filled before
661 * the change takes place.
663 static int tw68_s_fmt_vid_cap(struct file *file, void *priv,
664 struct v4l2_format *f)
666 struct tw68_dev *dev = video_drvdata(file);
667 int err;
669 err = tw68_try_fmt_vid_cap(file, priv, f);
670 if (0 != err)
671 return err;
673 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat);
674 dev->width = f->fmt.pix.width;
675 dev->height = f->fmt.pix.height;
676 dev->field = f->fmt.pix.field;
677 return 0;
680 static int tw68_enum_input(struct file *file, void *priv,
681 struct v4l2_input *i)
683 struct tw68_dev *dev = video_drvdata(file);
684 unsigned int n;
686 n = i->index;
687 if (n >= TW68_INPUT_MAX)
688 return -EINVAL;
689 i->index = n;
690 i->type = V4L2_INPUT_TYPE_CAMERA;
691 snprintf(i->name, sizeof(i->name), "Composite %d", n);
693 /* If the query is for the current input, get live data */
694 if (n == dev->input) {
695 int v1 = tw_readb(TW68_STATUS1);
696 int v2 = tw_readb(TW68_MVSN);
698 if (0 != (v1 & (1 << 7)))
699 i->status |= V4L2_IN_ST_NO_SYNC;
700 if (0 != (v1 & (1 << 6)))
701 i->status |= V4L2_IN_ST_NO_H_LOCK;
702 if (0 != (v1 & (1 << 2)))
703 i->status |= V4L2_IN_ST_NO_SIGNAL;
704 if (0 != (v1 & 1 << 1))
705 i->status |= V4L2_IN_ST_NO_COLOR;
706 if (0 != (v2 & (1 << 2)))
707 i->status |= V4L2_IN_ST_MACROVISION;
709 i->std = video_devdata(file)->tvnorms;
710 return 0;
713 static int tw68_g_input(struct file *file, void *priv, unsigned int *i)
715 struct tw68_dev *dev = video_drvdata(file);
717 *i = dev->input;
718 return 0;
721 static int tw68_s_input(struct file *file, void *priv, unsigned int i)
723 struct tw68_dev *dev = video_drvdata(file);
725 if (i >= TW68_INPUT_MAX)
726 return -EINVAL;
727 dev->input = i;
728 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2);
729 return 0;
732 static int tw68_querycap(struct file *file, void *priv,
733 struct v4l2_capability *cap)
735 struct tw68_dev *dev = video_drvdata(file);
737 strcpy(cap->driver, "tw68");
738 strlcpy(cap->card, "Techwell Capture Card",
739 sizeof(cap->card));
740 sprintf(cap->bus_info, "PCI:%s", pci_name(dev->pci));
741 cap->device_caps =
742 V4L2_CAP_VIDEO_CAPTURE |
743 V4L2_CAP_READWRITE |
744 V4L2_CAP_STREAMING;
746 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
747 return 0;
750 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id)
752 struct tw68_dev *dev = video_drvdata(file);
753 unsigned int i;
755 if (vb2_is_busy(&dev->vidq))
756 return -EBUSY;
758 /* Look for match on complete norm id (may have mult bits) */
759 for (i = 0; i < TVNORMS; i++) {
760 if (id == tvnorms[i].id)
761 break;
764 /* If no exact match, look for norm which contains this one */
765 if (i == TVNORMS) {
766 for (i = 0; i < TVNORMS; i++)
767 if (id & tvnorms[i].id)
768 break;
770 /* If still not matched, give up */
771 if (i == TVNORMS)
772 return -EINVAL;
774 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */
775 return 0;
778 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id)
780 struct tw68_dev *dev = video_drvdata(file);
782 *id = dev->tvnorm->id;
783 return 0;
786 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv,
787 struct v4l2_fmtdesc *f)
789 if (f->index >= FORMATS)
790 return -EINVAL;
792 strlcpy(f->description, formats[f->index].name,
793 sizeof(f->description));
795 f->pixelformat = formats[f->index].fourcc;
797 return 0;
801 * Used strictly for internal development and debugging, this routine
802 * prints out the current register contents for the tw68xx device.
804 static void tw68_dump_regs(struct tw68_dev *dev)
806 unsigned char line[80];
807 int i, j, k;
808 unsigned char *cptr;
810 pr_info("Full dump of TW68 registers:\n");
811 /* First we do the PCI regs, 8 4-byte regs per line */
812 for (i = 0; i < 0x100; i += 32) {
813 cptr = line;
814 cptr += sprintf(cptr, "%03x ", i);
815 /* j steps through the next 4 words */
816 for (j = i; j < i + 16; j += 4)
817 cptr += sprintf(cptr, "%08x ", tw_readl(j));
818 *cptr++ = ' ';
819 for (; j < i + 32; j += 4)
820 cptr += sprintf(cptr, "%08x ", tw_readl(j));
821 *cptr++ = '\n';
822 *cptr = 0;
823 pr_info("%s", line);
825 /* Next the control regs, which are single-byte, address mod 4 */
826 while (i < 0x400) {
827 cptr = line;
828 cptr += sprintf(cptr, "%03x ", i);
829 /* Print out 4 groups of 4 bytes */
830 for (j = 0; j < 4; j++) {
831 for (k = 0; k < 4; k++) {
832 cptr += sprintf(cptr, "%02x ",
833 tw_readb(i));
834 i += 4;
836 *cptr++ = ' ';
838 *cptr++ = '\n';
839 *cptr = 0;
840 pr_info("%s", line);
844 static int vidioc_log_status(struct file *file, void *priv)
846 struct tw68_dev *dev = video_drvdata(file);
848 tw68_dump_regs(dev);
849 return v4l2_ctrl_log_status(file, priv);
852 #ifdef CONFIG_VIDEO_ADV_DEBUG
853 static int vidioc_g_register(struct file *file, void *priv,
854 struct v4l2_dbg_register *reg)
856 struct tw68_dev *dev = video_drvdata(file);
858 if (reg->size == 1)
859 reg->val = tw_readb(reg->reg);
860 else
861 reg->val = tw_readl(reg->reg);
862 return 0;
865 static int vidioc_s_register(struct file *file, void *priv,
866 const struct v4l2_dbg_register *reg)
868 struct tw68_dev *dev = video_drvdata(file);
870 if (reg->size == 1)
871 tw_writeb(reg->reg, reg->val);
872 else
873 tw_writel(reg->reg & 0xffff, reg->val);
874 return 0;
876 #endif
878 static const struct v4l2_ctrl_ops tw68_ctrl_ops = {
879 .s_ctrl = tw68_s_ctrl,
882 static const struct v4l2_file_operations video_fops = {
883 .owner = THIS_MODULE,
884 .open = v4l2_fh_open,
885 .release = vb2_fop_release,
886 .read = vb2_fop_read,
887 .poll = vb2_fop_poll,
888 .mmap = vb2_fop_mmap,
889 .unlocked_ioctl = video_ioctl2,
892 static const struct v4l2_ioctl_ops video_ioctl_ops = {
893 .vidioc_querycap = tw68_querycap,
894 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap,
895 .vidioc_reqbufs = vb2_ioctl_reqbufs,
896 .vidioc_create_bufs = vb2_ioctl_create_bufs,
897 .vidioc_querybuf = vb2_ioctl_querybuf,
898 .vidioc_qbuf = vb2_ioctl_qbuf,
899 .vidioc_dqbuf = vb2_ioctl_dqbuf,
900 .vidioc_s_std = tw68_s_std,
901 .vidioc_g_std = tw68_g_std,
902 .vidioc_enum_input = tw68_enum_input,
903 .vidioc_g_input = tw68_g_input,
904 .vidioc_s_input = tw68_s_input,
905 .vidioc_streamon = vb2_ioctl_streamon,
906 .vidioc_streamoff = vb2_ioctl_streamoff,
907 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap,
908 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap,
909 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap,
910 .vidioc_log_status = vidioc_log_status,
911 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
912 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
913 #ifdef CONFIG_VIDEO_ADV_DEBUG
914 .vidioc_g_register = vidioc_g_register,
915 .vidioc_s_register = vidioc_s_register,
916 #endif
919 static const struct video_device tw68_video_template = {
920 .name = "tw68_video",
921 .fops = &video_fops,
922 .ioctl_ops = &video_ioctl_ops,
923 .release = video_device_release_empty,
924 .tvnorms = TW68_NORMS,
927 /* ------------------------------------------------------------------ */
928 /* exported stuff */
929 void tw68_set_tvnorm_hw(struct tw68_dev *dev)
931 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format);
934 int tw68_video_init1(struct tw68_dev *dev)
936 struct v4l2_ctrl_handler *hdl = &dev->hdl;
938 v4l2_ctrl_handler_init(hdl, 6);
939 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
940 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20);
941 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
942 V4L2_CID_CONTRAST, 0, 255, 1, 100);
943 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
944 V4L2_CID_SATURATION, 0, 255, 1, 128);
945 /* NTSC only */
946 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
947 V4L2_CID_HUE, -128, 127, 1, 0);
948 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
949 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0);
950 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
951 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1);
952 if (hdl->error) {
953 v4l2_ctrl_handler_free(hdl);
954 return hdl->error;
956 dev->v4l2_dev.ctrl_handler = hdl;
957 v4l2_ctrl_handler_setup(hdl);
958 return 0;
961 int tw68_video_init2(struct tw68_dev *dev, int video_nr)
963 int ret;
965 set_tvnorm(dev, &tvnorms[0]);
967 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24);
968 dev->width = 720;
969 dev->height = 576;
970 dev->field = V4L2_FIELD_INTERLACED;
972 INIT_LIST_HEAD(&dev->active);
973 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
974 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
975 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF;
976 dev->vidq.ops = &tw68_video_qops;
977 dev->vidq.mem_ops = &vb2_dma_sg_memops;
978 dev->vidq.drv_priv = dev;
979 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM;
980 dev->vidq.buf_struct_size = sizeof(struct tw68_buf);
981 dev->vidq.lock = &dev->lock;
982 dev->vidq.min_buffers_needed = 2;
983 dev->vidq.dev = &dev->pci->dev;
984 ret = vb2_queue_init(&dev->vidq);
985 if (ret)
986 return ret;
987 dev->vdev = tw68_video_template;
988 dev->vdev.v4l2_dev = &dev->v4l2_dev;
989 dev->vdev.lock = &dev->lock;
990 dev->vdev.queue = &dev->vidq;
991 video_set_drvdata(&dev->vdev, dev);
992 return video_register_device(&dev->vdev, VFL_TYPE_GRABBER, video_nr);
996 * tw68_irq_video_done
998 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status)
1000 __u32 reg;
1002 /* reset interrupts handled by this routine */
1003 tw_writel(TW68_INTSTAT, status);
1005 * Check most likely first
1007 * DMAPI shows we have reached the end of the risc code
1008 * for the current buffer.
1010 if (status & TW68_DMAPI) {
1011 struct tw68_buf *buf;
1013 spin_lock(&dev->slock);
1014 buf = list_entry(dev->active.next, struct tw68_buf, list);
1015 list_del(&buf->list);
1016 spin_unlock(&dev->slock);
1017 buf->vb.vb2_buf.timestamp = ktime_get_ns();
1018 buf->vb.field = dev->field;
1019 buf->vb.sequence = dev->seqnr++;
1020 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
1021 status &= ~(TW68_DMAPI);
1022 if (0 == status)
1023 return;
1025 if (status & (TW68_VLOCK | TW68_HLOCK))
1026 dev_dbg(&dev->pci->dev, "Lost sync\n");
1027 if (status & TW68_PABORT)
1028 dev_err(&dev->pci->dev, "PABORT interrupt\n");
1029 if (status & TW68_DMAPERR)
1030 dev_err(&dev->pci->dev, "DMAPERR interrupt\n");
1032 * On TW6800, FDMIS is apparently generated if video input is switched
1033 * during operation. Therefore, it is not enabled for that chip.
1035 if (status & TW68_FDMIS)
1036 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n");
1037 if (status & TW68_FFOF) {
1038 /* probably a logic error */
1039 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN;
1040 tw_clearl(TW68_DMAC, TW68_FIFO_EN);
1041 dev_dbg(&dev->pci->dev, "FFOF interrupt\n");
1042 tw_setl(TW68_DMAC, reg);
1044 if (status & TW68_FFERR)
1045 dev_dbg(&dev->pci->dev, "FFERR interrupt\n");