3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sizes.h>
28 #include "hw-me-regs.h"
30 #include "mei-trace.h"
33 * mei_me_reg_read - Reads 32bit data from the mei device
35 * @hw: the me hardware structure
36 * @offset: offset from which to read the data
38 * Return: register value (u32)
40 static inline u32
mei_me_reg_read(const struct mei_me_hw
*hw
,
43 return ioread32(hw
->mem_addr
+ offset
);
48 * mei_me_reg_write - Writes 32bit data to the mei device
50 * @hw: the me hardware structure
51 * @offset: offset from which to write the data
52 * @value: register value to write (u32)
54 static inline void mei_me_reg_write(const struct mei_me_hw
*hw
,
55 unsigned long offset
, u32 value
)
57 iowrite32(value
, hw
->mem_addr
+ offset
);
61 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
62 * read window register
64 * @dev: the device structure
66 * Return: ME_CB_RW register value (u32)
68 static inline u32
mei_me_mecbrw_read(const struct mei_device
*dev
)
70 return mei_me_reg_read(to_me_hw(dev
), ME_CB_RW
);
74 * mei_me_hcbww_write - write 32bit data to the host circular buffer
76 * @dev: the device structure
77 * @data: 32bit data to be written to the host circular buffer
79 static inline void mei_me_hcbww_write(struct mei_device
*dev
, u32 data
)
81 mei_me_reg_write(to_me_hw(dev
), H_CB_WW
, data
);
85 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
87 * @dev: the device structure
89 * Return: ME_CSR_HA register value (u32)
91 static inline u32
mei_me_mecsr_read(const struct mei_device
*dev
)
95 reg
= mei_me_reg_read(to_me_hw(dev
), ME_CSR_HA
);
96 trace_mei_reg_read(dev
->dev
, "ME_CSR_HA", ME_CSR_HA
, reg
);
102 * mei_hcsr_read - Reads 32bit data from the host CSR
104 * @dev: the device structure
106 * Return: H_CSR register value (u32)
108 static inline u32
mei_hcsr_read(const struct mei_device
*dev
)
112 reg
= mei_me_reg_read(to_me_hw(dev
), H_CSR
);
113 trace_mei_reg_read(dev
->dev
, "H_CSR", H_CSR
, reg
);
119 * mei_hcsr_write - writes H_CSR register to the mei device
121 * @dev: the device structure
122 * @reg: new register value
124 static inline void mei_hcsr_write(struct mei_device
*dev
, u32 reg
)
126 trace_mei_reg_write(dev
->dev
, "H_CSR", H_CSR
, reg
);
127 mei_me_reg_write(to_me_hw(dev
), H_CSR
, reg
);
131 * mei_hcsr_set - writes H_CSR register to the mei device,
132 * and ignores the H_IS bit for it is write-one-to-zero.
134 * @dev: the device structure
135 * @reg: new register value
137 static inline void mei_hcsr_set(struct mei_device
*dev
, u32 reg
)
139 reg
&= ~H_CSR_IS_MASK
;
140 mei_hcsr_write(dev
, reg
);
144 * mei_hcsr_set_hig - set host interrupt (set H_IG)
146 * @dev: the device structure
148 static inline void mei_hcsr_set_hig(struct mei_device
*dev
)
152 hcsr
= mei_hcsr_read(dev
) | H_IG
;
153 mei_hcsr_set(dev
, hcsr
);
157 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
159 * @dev: the device structure
161 * Return: H_D0I3C register value (u32)
163 static inline u32
mei_me_d0i3c_read(const struct mei_device
*dev
)
167 reg
= mei_me_reg_read(to_me_hw(dev
), H_D0I3C
);
168 trace_mei_reg_read(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
174 * mei_me_d0i3c_write - writes H_D0I3C register to device
176 * @dev: the device structure
177 * @reg: new register value
179 static inline void mei_me_d0i3c_write(struct mei_device
*dev
, u32 reg
)
181 trace_mei_reg_write(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
182 mei_me_reg_write(to_me_hw(dev
), H_D0I3C
, reg
);
186 * mei_me_fw_status - read fw status register from pci config space
189 * @fw_status: fw status register values
191 * Return: 0 on success, error otherwise
193 static int mei_me_fw_status(struct mei_device
*dev
,
194 struct mei_fw_status
*fw_status
)
196 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
197 struct mei_me_hw
*hw
= to_me_hw(dev
);
198 const struct mei_fw_status
*fw_src
= &hw
->cfg
->fw_status
;
205 fw_status
->count
= fw_src
->count
;
206 for (i
= 0; i
< fw_src
->count
&& i
< MEI_FW_STATUS_MAX
; i
++) {
207 ret
= pci_read_config_dword(pdev
, fw_src
->status
[i
],
208 &fw_status
->status
[i
]);
209 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HSF_X",
211 fw_status
->status
[i
]);
220 * mei_me_hw_config - configure hw dependent settings
224 static void mei_me_hw_config(struct mei_device
*dev
)
226 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
227 struct mei_me_hw
*hw
= to_me_hw(dev
);
230 /* Doesn't change in runtime */
231 hcsr
= mei_hcsr_read(dev
);
232 hw
->hbuf_depth
= (hcsr
& H_CBD
) >> 24;
235 pci_read_config_dword(pdev
, PCI_CFG_HFS_1
, ®
);
236 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HFS_1", PCI_CFG_HFS_1
, reg
);
238 ((reg
& PCI_CFG_HFS_1_D0I3_MSK
) == PCI_CFG_HFS_1_D0I3_MSK
);
240 hw
->pg_state
= MEI_PG_OFF
;
241 if (hw
->d0i3_supported
) {
242 reg
= mei_me_d0i3c_read(dev
);
243 if (reg
& H_D0I3C_I3
)
244 hw
->pg_state
= MEI_PG_ON
;
249 * mei_me_pg_state - translate internal pg state
250 * to the mei power gating state
254 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
256 static inline enum mei_pg_state
mei_me_pg_state(struct mei_device
*dev
)
258 struct mei_me_hw
*hw
= to_me_hw(dev
);
263 static inline u32
me_intr_src(u32 hcsr
)
265 return hcsr
& H_CSR_IS_MASK
;
269 * me_intr_disable - disables mei device interrupts
270 * using supplied hcsr register value.
272 * @dev: the device structure
273 * @hcsr: supplied hcsr register value
275 static inline void me_intr_disable(struct mei_device
*dev
, u32 hcsr
)
277 hcsr
&= ~H_CSR_IE_MASK
;
278 mei_hcsr_set(dev
, hcsr
);
282 * mei_me_intr_clear - clear and stop interrupts
284 * @dev: the device structure
285 * @hcsr: supplied hcsr register value
287 static inline void me_intr_clear(struct mei_device
*dev
, u32 hcsr
)
289 if (me_intr_src(hcsr
))
290 mei_hcsr_write(dev
, hcsr
);
294 * mei_me_intr_clear - clear and stop interrupts
296 * @dev: the device structure
298 static void mei_me_intr_clear(struct mei_device
*dev
)
300 u32 hcsr
= mei_hcsr_read(dev
);
302 me_intr_clear(dev
, hcsr
);
305 * mei_me_intr_enable - enables mei device interrupts
307 * @dev: the device structure
309 static void mei_me_intr_enable(struct mei_device
*dev
)
311 u32 hcsr
= mei_hcsr_read(dev
);
313 hcsr
|= H_CSR_IE_MASK
;
314 mei_hcsr_set(dev
, hcsr
);
318 * mei_me_intr_disable - disables mei device interrupts
320 * @dev: the device structure
322 static void mei_me_intr_disable(struct mei_device
*dev
)
324 u32 hcsr
= mei_hcsr_read(dev
);
326 me_intr_disable(dev
, hcsr
);
330 * mei_me_synchronize_irq - wait for pending IRQ handlers
332 * @dev: the device structure
334 static void mei_me_synchronize_irq(struct mei_device
*dev
)
336 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
338 synchronize_irq(pdev
->irq
);
342 * mei_me_hw_reset_release - release device from the reset
344 * @dev: the device structure
346 static void mei_me_hw_reset_release(struct mei_device
*dev
)
348 u32 hcsr
= mei_hcsr_read(dev
);
352 mei_hcsr_set(dev
, hcsr
);
354 /* complete this write before we set host ready on another CPU */
359 * mei_me_host_set_ready - enable device
363 static void mei_me_host_set_ready(struct mei_device
*dev
)
365 u32 hcsr
= mei_hcsr_read(dev
);
367 hcsr
|= H_CSR_IE_MASK
| H_IG
| H_RDY
;
368 mei_hcsr_set(dev
, hcsr
);
372 * mei_me_host_is_ready - check whether the host has turned ready
377 static bool mei_me_host_is_ready(struct mei_device
*dev
)
379 u32 hcsr
= mei_hcsr_read(dev
);
381 return (hcsr
& H_RDY
) == H_RDY
;
385 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
390 static bool mei_me_hw_is_ready(struct mei_device
*dev
)
392 u32 mecsr
= mei_me_mecsr_read(dev
);
394 return (mecsr
& ME_RDY_HRA
) == ME_RDY_HRA
;
398 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
403 static bool mei_me_hw_is_resetting(struct mei_device
*dev
)
405 u32 mecsr
= mei_me_mecsr_read(dev
);
407 return (mecsr
& ME_RST_HRA
) == ME_RST_HRA
;
411 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
412 * or timeout is reached
415 * Return: 0 on success, error otherwise
417 static int mei_me_hw_ready_wait(struct mei_device
*dev
)
419 mutex_unlock(&dev
->device_lock
);
420 wait_event_timeout(dev
->wait_hw_ready
,
422 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT
));
423 mutex_lock(&dev
->device_lock
);
424 if (!dev
->recvd_hw_ready
) {
425 dev_err(dev
->dev
, "wait hw ready failed\n");
429 mei_me_hw_reset_release(dev
);
430 dev
->recvd_hw_ready
= false;
435 * mei_me_hw_start - hw start routine
438 * Return: 0 on success, error otherwise
440 static int mei_me_hw_start(struct mei_device
*dev
)
442 int ret
= mei_me_hw_ready_wait(dev
);
446 dev_dbg(dev
->dev
, "hw is ready\n");
448 mei_me_host_set_ready(dev
);
454 * mei_hbuf_filled_slots - gets number of device filled buffer slots
456 * @dev: the device structure
458 * Return: number of filled slots
460 static unsigned char mei_hbuf_filled_slots(struct mei_device
*dev
)
463 char read_ptr
, write_ptr
;
465 hcsr
= mei_hcsr_read(dev
);
467 read_ptr
= (char) ((hcsr
& H_CBRP
) >> 8);
468 write_ptr
= (char) ((hcsr
& H_CBWP
) >> 16);
470 return (unsigned char) (write_ptr
- read_ptr
);
474 * mei_me_hbuf_is_empty - checks if host buffer is empty.
476 * @dev: the device structure
478 * Return: true if empty, false - otherwise.
480 static bool mei_me_hbuf_is_empty(struct mei_device
*dev
)
482 return mei_hbuf_filled_slots(dev
) == 0;
486 * mei_me_hbuf_empty_slots - counts write empty slots.
488 * @dev: the device structure
490 * Return: -EOVERFLOW if overflow, otherwise empty slots count
492 static int mei_me_hbuf_empty_slots(struct mei_device
*dev
)
494 struct mei_me_hw
*hw
= to_me_hw(dev
);
495 unsigned char filled_slots
, empty_slots
;
497 filled_slots
= mei_hbuf_filled_slots(dev
);
498 empty_slots
= hw
->hbuf_depth
- filled_slots
;
500 /* check for overflow */
501 if (filled_slots
> hw
->hbuf_depth
)
508 * mei_me_hbuf_depth - returns depth of the hw buffer.
510 * @dev: the device structure
512 * Return: size of hw buffer in slots
514 static u32
mei_me_hbuf_depth(const struct mei_device
*dev
)
516 struct mei_me_hw
*hw
= to_me_hw(dev
);
518 return hw
->hbuf_depth
;
522 * mei_me_hbuf_write - writes a message to host hw buffer.
524 * @dev: the device structure
525 * @hdr: header of message
526 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
528 * @data_len: payload length in bytes
530 * Return: 0 if success, < 0 - otherwise.
532 static int mei_me_hbuf_write(struct mei_device
*dev
,
533 const void *hdr
, size_t hdr_len
,
534 const void *data
, size_t data_len
)
542 if (WARN_ON(!hdr
|| !data
|| hdr_len
& 0x3))
545 dev_dbg(dev
->dev
, MEI_HDR_FMT
, MEI_HDR_PRM((struct mei_msg_hdr
*)hdr
));
547 empty_slots
= mei_hbuf_empty_slots(dev
);
548 dev_dbg(dev
->dev
, "empty slots = %hu.\n", empty_slots
);
553 dw_cnt
= mei_data2slots(hdr_len
+ data_len
);
554 if (dw_cnt
> (u32
)empty_slots
)
558 for (i
= 0; i
< hdr_len
/ MEI_SLOT_SIZE
; i
++)
559 mei_me_hcbww_write(dev
, reg_buf
[i
]);
562 for (i
= 0; i
< data_len
/ MEI_SLOT_SIZE
; i
++)
563 mei_me_hcbww_write(dev
, reg_buf
[i
]);
565 rem
= data_len
& 0x3;
569 memcpy(®
, (const u8
*)data
+ data_len
- rem
, rem
);
570 mei_me_hcbww_write(dev
, reg
);
573 mei_hcsr_set_hig(dev
);
574 if (!mei_me_hw_is_ready(dev
))
581 * mei_me_count_full_read_slots - counts read full slots.
583 * @dev: the device structure
585 * Return: -EOVERFLOW if overflow, otherwise filled slots count
587 static int mei_me_count_full_read_slots(struct mei_device
*dev
)
590 char read_ptr
, write_ptr
;
591 unsigned char buffer_depth
, filled_slots
;
593 me_csr
= mei_me_mecsr_read(dev
);
594 buffer_depth
= (unsigned char)((me_csr
& ME_CBD_HRA
) >> 24);
595 read_ptr
= (char) ((me_csr
& ME_CBRP_HRA
) >> 8);
596 write_ptr
= (char) ((me_csr
& ME_CBWP_HRA
) >> 16);
597 filled_slots
= (unsigned char) (write_ptr
- read_ptr
);
599 /* check for overflow */
600 if (filled_slots
> buffer_depth
)
603 dev_dbg(dev
->dev
, "filled_slots =%08x\n", filled_slots
);
604 return (int)filled_slots
;
608 * mei_me_read_slots - reads a message from mei device.
610 * @dev: the device structure
611 * @buffer: message buffer will be written
612 * @buffer_length: message size will be read
616 static int mei_me_read_slots(struct mei_device
*dev
, unsigned char *buffer
,
617 unsigned long buffer_length
)
619 u32
*reg_buf
= (u32
*)buffer
;
621 for (; buffer_length
>= MEI_SLOT_SIZE
; buffer_length
-= MEI_SLOT_SIZE
)
622 *reg_buf
++ = mei_me_mecbrw_read(dev
);
624 if (buffer_length
> 0) {
625 u32 reg
= mei_me_mecbrw_read(dev
);
627 memcpy(reg_buf
, ®
, buffer_length
);
630 mei_hcsr_set_hig(dev
);
635 * mei_me_pg_set - write pg enter register
637 * @dev: the device structure
639 static void mei_me_pg_set(struct mei_device
*dev
)
641 struct mei_me_hw
*hw
= to_me_hw(dev
);
644 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
645 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
647 reg
|= H_HPG_CSR_PGI
;
649 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
650 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
654 * mei_me_pg_unset - write pg exit register
656 * @dev: the device structure
658 static void mei_me_pg_unset(struct mei_device
*dev
)
660 struct mei_me_hw
*hw
= to_me_hw(dev
);
663 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
664 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
666 WARN(!(reg
& H_HPG_CSR_PGI
), "PGI is not set\n");
668 reg
|= H_HPG_CSR_PGIHEXR
;
670 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
671 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
675 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
677 * @dev: the device structure
679 * Return: 0 on success an error code otherwise
681 static int mei_me_pg_legacy_enter_sync(struct mei_device
*dev
)
683 struct mei_me_hw
*hw
= to_me_hw(dev
);
684 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
687 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
689 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
693 mutex_unlock(&dev
->device_lock
);
694 wait_event_timeout(dev
->wait_pg
,
695 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
696 mutex_lock(&dev
->device_lock
);
698 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
) {
705 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
706 hw
->pg_state
= MEI_PG_ON
;
712 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
714 * @dev: the device structure
716 * Return: 0 on success an error code otherwise
718 static int mei_me_pg_legacy_exit_sync(struct mei_device
*dev
)
720 struct mei_me_hw
*hw
= to_me_hw(dev
);
721 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
724 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
)
727 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
729 mei_me_pg_unset(dev
);
731 mutex_unlock(&dev
->device_lock
);
732 wait_event_timeout(dev
->wait_pg
,
733 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
734 mutex_lock(&dev
->device_lock
);
737 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
742 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
743 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_EXIT_RES_CMD
);
747 mutex_unlock(&dev
->device_lock
);
748 wait_event_timeout(dev
->wait_pg
,
749 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
750 mutex_lock(&dev
->device_lock
);
752 if (dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
)
758 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
759 hw
->pg_state
= MEI_PG_OFF
;
765 * mei_me_pg_in_transition - is device now in pg transition
767 * @dev: the device structure
769 * Return: true if in pg transition, false otherwise
771 static bool mei_me_pg_in_transition(struct mei_device
*dev
)
773 return dev
->pg_event
>= MEI_PG_EVENT_WAIT
&&
774 dev
->pg_event
<= MEI_PG_EVENT_INTR_WAIT
;
778 * mei_me_pg_is_enabled - detect if PG is supported by HW
780 * @dev: the device structure
782 * Return: true is pg supported, false otherwise
784 static bool mei_me_pg_is_enabled(struct mei_device
*dev
)
786 struct mei_me_hw
*hw
= to_me_hw(dev
);
787 u32 reg
= mei_me_mecsr_read(dev
);
789 if (hw
->d0i3_supported
)
792 if ((reg
& ME_PGIC_HRA
) == 0)
795 if (!dev
->hbm_f_pg_supported
)
801 dev_dbg(dev
->dev
, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
803 !!(reg
& ME_PGIC_HRA
),
804 dev
->version
.major_version
,
805 dev
->version
.minor_version
,
806 HBM_MAJOR_VERSION_PGI
,
807 HBM_MINOR_VERSION_PGI
);
813 * mei_me_d0i3_set - write d0i3 register bit on mei device.
815 * @dev: the device structure
816 * @intr: ask for interrupt
818 * Return: D0I3C register value
820 static u32
mei_me_d0i3_set(struct mei_device
*dev
, bool intr
)
822 u32 reg
= mei_me_d0i3c_read(dev
);
829 mei_me_d0i3c_write(dev
, reg
);
830 /* read it to ensure HW consistency */
831 reg
= mei_me_d0i3c_read(dev
);
836 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
838 * @dev: the device structure
840 * Return: D0I3C register value
842 static u32
mei_me_d0i3_unset(struct mei_device
*dev
)
844 u32 reg
= mei_me_d0i3c_read(dev
);
848 mei_me_d0i3c_write(dev
, reg
);
849 /* read it to ensure HW consistency */
850 reg
= mei_me_d0i3c_read(dev
);
855 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
857 * @dev: the device structure
859 * Return: 0 on success an error code otherwise
861 static int mei_me_d0i3_enter_sync(struct mei_device
*dev
)
863 struct mei_me_hw
*hw
= to_me_hw(dev
);
864 unsigned long d0i3_timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
865 unsigned long pgi_timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
869 reg
= mei_me_d0i3c_read(dev
);
870 if (reg
& H_D0I3C_I3
) {
871 /* we are in d0i3, nothing to do */
872 dev_dbg(dev
->dev
, "d0i3 set not needed\n");
877 /* PGI entry procedure */
878 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
880 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
882 /* FIXME: should we reset here? */
885 mutex_unlock(&dev
->device_lock
);
886 wait_event_timeout(dev
->wait_pg
,
887 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, pgi_timeout
);
888 mutex_lock(&dev
->device_lock
);
890 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
894 /* end PGI entry procedure */
896 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
898 reg
= mei_me_d0i3_set(dev
, true);
899 if (!(reg
& H_D0I3C_CIP
)) {
900 dev_dbg(dev
->dev
, "d0i3 enter wait not needed\n");
905 mutex_unlock(&dev
->device_lock
);
906 wait_event_timeout(dev
->wait_pg
,
907 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, d0i3_timeout
);
908 mutex_lock(&dev
->device_lock
);
910 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
911 reg
= mei_me_d0i3c_read(dev
);
912 if (!(reg
& H_D0I3C_I3
)) {
920 hw
->pg_state
= MEI_PG_ON
;
922 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
923 dev_dbg(dev
->dev
, "d0i3 enter ret = %d\n", ret
);
928 * mei_me_d0i3_enter - perform d0i3 entry procedure
929 * no hbm PG handshake
930 * no waiting for confirmation; runs with interrupts
933 * @dev: the device structure
935 * Return: 0 on success an error code otherwise
937 static int mei_me_d0i3_enter(struct mei_device
*dev
)
939 struct mei_me_hw
*hw
= to_me_hw(dev
);
942 reg
= mei_me_d0i3c_read(dev
);
943 if (reg
& H_D0I3C_I3
) {
944 /* we are in d0i3, nothing to do */
945 dev_dbg(dev
->dev
, "already d0i3 : set not needed\n");
949 mei_me_d0i3_set(dev
, false);
951 hw
->pg_state
= MEI_PG_ON
;
952 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
953 dev_dbg(dev
->dev
, "d0i3 enter\n");
958 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
960 * @dev: the device structure
962 * Return: 0 on success an error code otherwise
964 static int mei_me_d0i3_exit_sync(struct mei_device
*dev
)
966 struct mei_me_hw
*hw
= to_me_hw(dev
);
967 unsigned long timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
971 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
973 reg
= mei_me_d0i3c_read(dev
);
974 if (!(reg
& H_D0I3C_I3
)) {
975 /* we are not in d0i3, nothing to do */
976 dev_dbg(dev
->dev
, "d0i3 exit not needed\n");
981 reg
= mei_me_d0i3_unset(dev
);
982 if (!(reg
& H_D0I3C_CIP
)) {
983 dev_dbg(dev
->dev
, "d0i3 exit wait not needed\n");
988 mutex_unlock(&dev
->device_lock
);
989 wait_event_timeout(dev
->wait_pg
,
990 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
991 mutex_lock(&dev
->device_lock
);
993 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
994 reg
= mei_me_d0i3c_read(dev
);
995 if (reg
& H_D0I3C_I3
) {
1003 hw
->pg_state
= MEI_PG_OFF
;
1005 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
1007 dev_dbg(dev
->dev
, "d0i3 exit ret = %d\n", ret
);
1012 * mei_me_pg_legacy_intr - perform legacy pg processing
1013 * in interrupt thread handler
1015 * @dev: the device structure
1017 static void mei_me_pg_legacy_intr(struct mei_device
*dev
)
1019 struct mei_me_hw
*hw
= to_me_hw(dev
);
1021 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_WAIT
)
1024 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
1025 hw
->pg_state
= MEI_PG_OFF
;
1026 if (waitqueue_active(&dev
->wait_pg
))
1027 wake_up(&dev
->wait_pg
);
1031 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1033 * @dev: the device structure
1034 * @intr_source: interrupt source
1036 static void mei_me_d0i3_intr(struct mei_device
*dev
, u32 intr_source
)
1038 struct mei_me_hw
*hw
= to_me_hw(dev
);
1040 if (dev
->pg_event
== MEI_PG_EVENT_INTR_WAIT
&&
1041 (intr_source
& H_D0I3C_IS
)) {
1042 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
1043 if (hw
->pg_state
== MEI_PG_ON
) {
1044 hw
->pg_state
= MEI_PG_OFF
;
1045 if (dev
->hbm_state
!= MEI_HBM_IDLE
) {
1047 * force H_RDY because it could be
1048 * wiped off during PG
1050 dev_dbg(dev
->dev
, "d0i3 set host ready\n");
1051 mei_me_host_set_ready(dev
);
1054 hw
->pg_state
= MEI_PG_ON
;
1057 wake_up(&dev
->wait_pg
);
1060 if (hw
->pg_state
== MEI_PG_ON
&& (intr_source
& H_IS
)) {
1062 * HW sent some data and we are in D0i3, so
1063 * we got here because of HW initiated exit from D0i3.
1064 * Start runtime pm resume sequence to exit low power state.
1066 dev_dbg(dev
->dev
, "d0i3 want resume\n");
1067 mei_hbm_pg_resume(dev
);
1072 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1074 * @dev: the device structure
1075 * @intr_source: interrupt source
1077 static void mei_me_pg_intr(struct mei_device
*dev
, u32 intr_source
)
1079 struct mei_me_hw
*hw
= to_me_hw(dev
);
1081 if (hw
->d0i3_supported
)
1082 mei_me_d0i3_intr(dev
, intr_source
);
1084 mei_me_pg_legacy_intr(dev
);
1088 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1090 * @dev: the device structure
1092 * Return: 0 on success an error code otherwise
1094 int mei_me_pg_enter_sync(struct mei_device
*dev
)
1096 struct mei_me_hw
*hw
= to_me_hw(dev
);
1098 if (hw
->d0i3_supported
)
1099 return mei_me_d0i3_enter_sync(dev
);
1101 return mei_me_pg_legacy_enter_sync(dev
);
1105 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1107 * @dev: the device structure
1109 * Return: 0 on success an error code otherwise
1111 int mei_me_pg_exit_sync(struct mei_device
*dev
)
1113 struct mei_me_hw
*hw
= to_me_hw(dev
);
1115 if (hw
->d0i3_supported
)
1116 return mei_me_d0i3_exit_sync(dev
);
1118 return mei_me_pg_legacy_exit_sync(dev
);
1122 * mei_me_hw_reset - resets fw via mei csr register.
1124 * @dev: the device structure
1125 * @intr_enable: if interrupt should be enabled after reset.
1127 * Return: 0 on success an error code otherwise
1129 static int mei_me_hw_reset(struct mei_device
*dev
, bool intr_enable
)
1131 struct mei_me_hw
*hw
= to_me_hw(dev
);
1136 mei_me_intr_enable(dev
);
1137 if (hw
->d0i3_supported
) {
1138 ret
= mei_me_d0i3_exit_sync(dev
);
1144 pm_runtime_set_active(dev
->dev
);
1146 hcsr
= mei_hcsr_read(dev
);
1147 /* H_RST may be found lit before reset is started,
1148 * for example if preceding reset flow hasn't completed.
1149 * In that case asserting H_RST will be ignored, therefore
1150 * we need to clean H_RST bit to start a successful reset sequence.
1152 if ((hcsr
& H_RST
) == H_RST
) {
1153 dev_warn(dev
->dev
, "H_RST is set = 0x%08X", hcsr
);
1155 mei_hcsr_set(dev
, hcsr
);
1156 hcsr
= mei_hcsr_read(dev
);
1159 hcsr
|= H_RST
| H_IG
| H_CSR_IS_MASK
;
1162 hcsr
&= ~H_CSR_IE_MASK
;
1164 dev
->recvd_hw_ready
= false;
1165 mei_hcsr_write(dev
, hcsr
);
1168 * Host reads the H_CSR once to ensure that the
1169 * posted write to H_CSR completes.
1171 hcsr
= mei_hcsr_read(dev
);
1173 if ((hcsr
& H_RST
) == 0)
1174 dev_warn(dev
->dev
, "H_RST is not set = 0x%08X", hcsr
);
1176 if ((hcsr
& H_RDY
) == H_RDY
)
1177 dev_warn(dev
->dev
, "H_RDY is not cleared 0x%08X", hcsr
);
1180 mei_me_hw_reset_release(dev
);
1181 if (hw
->d0i3_supported
) {
1182 ret
= mei_me_d0i3_enter(dev
);
1191 * mei_me_irq_quick_handler - The ISR of the MEI device
1193 * @irq: The irq number
1194 * @dev_id: pointer to the device structure
1196 * Return: irqreturn_t
1198 irqreturn_t
mei_me_irq_quick_handler(int irq
, void *dev_id
)
1200 struct mei_device
*dev
= (struct mei_device
*)dev_id
;
1203 hcsr
= mei_hcsr_read(dev
);
1204 if (!me_intr_src(hcsr
))
1207 dev_dbg(dev
->dev
, "interrupt source 0x%08X\n", me_intr_src(hcsr
));
1209 /* disable interrupts on device */
1210 me_intr_disable(dev
, hcsr
);
1211 return IRQ_WAKE_THREAD
;
1215 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1218 * @irq: The irq number
1219 * @dev_id: pointer to the device structure
1221 * Return: irqreturn_t
1224 irqreturn_t
mei_me_irq_thread_handler(int irq
, void *dev_id
)
1226 struct mei_device
*dev
= (struct mei_device
*) dev_id
;
1227 struct list_head cmpl_list
;
1232 dev_dbg(dev
->dev
, "function called after ISR to handle the interrupt processing.\n");
1233 /* initialize our complete list */
1234 mutex_lock(&dev
->device_lock
);
1236 hcsr
= mei_hcsr_read(dev
);
1237 me_intr_clear(dev
, hcsr
);
1239 INIT_LIST_HEAD(&cmpl_list
);
1241 /* check if ME wants a reset */
1242 if (!mei_hw_is_ready(dev
) && dev
->dev_state
!= MEI_DEV_RESETTING
) {
1243 dev_warn(dev
->dev
, "FW not ready: resetting.\n");
1244 schedule_work(&dev
->reset_work
);
1248 if (mei_me_hw_is_resetting(dev
))
1249 mei_hcsr_set_hig(dev
);
1251 mei_me_pg_intr(dev
, me_intr_src(hcsr
));
1253 /* check if we need to start the dev */
1254 if (!mei_host_is_ready(dev
)) {
1255 if (mei_hw_is_ready(dev
)) {
1256 dev_dbg(dev
->dev
, "we need to start the dev.\n");
1257 dev
->recvd_hw_ready
= true;
1258 wake_up(&dev
->wait_hw_ready
);
1260 dev_dbg(dev
->dev
, "Spurious Interrupt\n");
1264 /* check slots available for reading */
1265 slots
= mei_count_full_read_slots(dev
);
1267 dev_dbg(dev
->dev
, "slots to read = %08x\n", slots
);
1268 rets
= mei_irq_read_handler(dev
, &cmpl_list
, &slots
);
1269 /* There is a race between ME write and interrupt delivery:
1270 * Not all data is always available immediately after the
1271 * interrupt, so try to read again on the next interrupt.
1273 if (rets
== -ENODATA
)
1277 (dev
->dev_state
!= MEI_DEV_RESETTING
&&
1278 dev
->dev_state
!= MEI_DEV_POWER_DOWN
)) {
1279 dev_err(dev
->dev
, "mei_irq_read_handler ret = %d.\n",
1281 schedule_work(&dev
->reset_work
);
1286 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1289 * During PG handshake only allowed write is the replay to the
1290 * PG exit message, so block calling write function
1291 * if the pg event is in PG handshake
1293 if (dev
->pg_event
!= MEI_PG_EVENT_WAIT
&&
1294 dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
1295 rets
= mei_irq_write_handler(dev
, &cmpl_list
);
1296 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1299 mei_irq_compl_handler(dev
, &cmpl_list
);
1302 dev_dbg(dev
->dev
, "interrupt thread end ret = %d\n", rets
);
1303 mei_me_intr_enable(dev
);
1304 mutex_unlock(&dev
->device_lock
);
1308 static const struct mei_hw_ops mei_me_hw_ops
= {
1310 .fw_status
= mei_me_fw_status
,
1311 .pg_state
= mei_me_pg_state
,
1313 .host_is_ready
= mei_me_host_is_ready
,
1315 .hw_is_ready
= mei_me_hw_is_ready
,
1316 .hw_reset
= mei_me_hw_reset
,
1317 .hw_config
= mei_me_hw_config
,
1318 .hw_start
= mei_me_hw_start
,
1320 .pg_in_transition
= mei_me_pg_in_transition
,
1321 .pg_is_enabled
= mei_me_pg_is_enabled
,
1323 .intr_clear
= mei_me_intr_clear
,
1324 .intr_enable
= mei_me_intr_enable
,
1325 .intr_disable
= mei_me_intr_disable
,
1326 .synchronize_irq
= mei_me_synchronize_irq
,
1328 .hbuf_free_slots
= mei_me_hbuf_empty_slots
,
1329 .hbuf_is_ready
= mei_me_hbuf_is_empty
,
1330 .hbuf_depth
= mei_me_hbuf_depth
,
1332 .write
= mei_me_hbuf_write
,
1334 .rdbuf_full_slots
= mei_me_count_full_read_slots
,
1335 .read_hdr
= mei_me_mecbrw_read
,
1336 .read
= mei_me_read_slots
1339 static bool mei_me_fw_type_nm(struct pci_dev
*pdev
)
1343 pci_read_config_dword(pdev
, PCI_CFG_HFS_2
, ®
);
1344 trace_mei_pci_cfg_read(&pdev
->dev
, "PCI_CFG_HFS_2", PCI_CFG_HFS_2
, reg
);
1345 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1346 return (reg
& 0x600) == 0x200;
1349 #define MEI_CFG_FW_NM \
1350 .quirk_probe = mei_me_fw_type_nm
1352 static bool mei_me_fw_type_sps(struct pci_dev
*pdev
)
1358 * Read ME FW Status register to check for SPS Firmware
1359 * The SPS FW is only signaled in pci function 0
1361 devfn
= PCI_DEVFN(PCI_SLOT(pdev
->devfn
), 0);
1362 pci_bus_read_config_dword(pdev
->bus
, devfn
, PCI_CFG_HFS_1
, ®
);
1363 trace_mei_pci_cfg_read(&pdev
->dev
, "PCI_CFG_HFS_1", PCI_CFG_HFS_1
, reg
);
1364 /* if bits [19:16] = 15, running SPS Firmware */
1365 return (reg
& 0xf0000) == 0xf0000;
1368 #define MEI_CFG_FW_SPS \
1369 .quirk_probe = mei_me_fw_type_sps
1372 #define MEI_CFG_ICH_HFS \
1373 .fw_status.count = 0
1375 #define MEI_CFG_ICH10_HFS \
1376 .fw_status.count = 1, \
1377 .fw_status.status[0] = PCI_CFG_HFS_1
1379 #define MEI_CFG_PCH_HFS \
1380 .fw_status.count = 2, \
1381 .fw_status.status[0] = PCI_CFG_HFS_1, \
1382 .fw_status.status[1] = PCI_CFG_HFS_2
1384 #define MEI_CFG_PCH8_HFS \
1385 .fw_status.count = 6, \
1386 .fw_status.status[0] = PCI_CFG_HFS_1, \
1387 .fw_status.status[1] = PCI_CFG_HFS_2, \
1388 .fw_status.status[2] = PCI_CFG_HFS_3, \
1389 .fw_status.status[3] = PCI_CFG_HFS_4, \
1390 .fw_status.status[4] = PCI_CFG_HFS_5, \
1391 .fw_status.status[5] = PCI_CFG_HFS_6
1393 #define MEI_CFG_DMA_128 \
1394 .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1395 .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1396 .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1398 /* ICH Legacy devices */
1399 static const struct mei_cfg mei_me_ich_cfg
= {
1404 static const struct mei_cfg mei_me_ich10_cfg
= {
1409 static const struct mei_cfg mei_me_pch_cfg
= {
1413 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1414 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg
= {
1419 /* PCH8 Lynx Point and newer devices */
1420 static const struct mei_cfg mei_me_pch8_cfg
= {
1424 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1425 static const struct mei_cfg mei_me_pch8_sps_cfg
= {
1430 /* Cannon Lake and newer devices */
1431 static const struct mei_cfg mei_me_pch12_cfg
= {
1437 * mei_cfg_list - A list of platform platform specific configurations.
1438 * Note: has to be synchronized with enum mei_cfg_idx.
1440 static const struct mei_cfg
*const mei_cfg_list
[] = {
1441 [MEI_ME_UNDEF_CFG
] = NULL
,
1442 [MEI_ME_ICH_CFG
] = &mei_me_ich_cfg
,
1443 [MEI_ME_ICH10_CFG
] = &mei_me_ich10_cfg
,
1444 [MEI_ME_PCH_CFG
] = &mei_me_pch_cfg
,
1445 [MEI_ME_PCH_CPT_PBG_CFG
] = &mei_me_pch_cpt_pbg_cfg
,
1446 [MEI_ME_PCH8_CFG
] = &mei_me_pch8_cfg
,
1447 [MEI_ME_PCH8_SPS_CFG
] = &mei_me_pch8_sps_cfg
,
1448 [MEI_ME_PCH12_CFG
] = &mei_me_pch12_cfg
,
1451 const struct mei_cfg
*mei_me_get_cfg(kernel_ulong_t idx
)
1453 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list
) != MEI_ME_NUM_CFG
);
1455 if (idx
>= MEI_ME_NUM_CFG
)
1458 return mei_cfg_list
[idx
];
1462 * mei_me_dev_init - allocates and initializes the mei device structure
1464 * @pdev: The pci device structure
1465 * @cfg: per device generation config
1467 * Return: The mei_device pointer on success, NULL on failure.
1469 struct mei_device
*mei_me_dev_init(struct pci_dev
*pdev
,
1470 const struct mei_cfg
*cfg
)
1472 struct mei_device
*dev
;
1473 struct mei_me_hw
*hw
;
1475 dev
= devm_kzalloc(&pdev
->dev
, sizeof(struct mei_device
) +
1476 sizeof(struct mei_me_hw
), GFP_KERNEL
);
1481 mei_device_init(dev
, &pdev
->dev
, &mei_me_hw_ops
);