2 * SN Platform GRU Driver
4 * KERNEL SERVICES THAT USE THE GRU
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include <linux/export.h>
35 #include <asm/io_apic.h>
38 #include "grutables.h"
39 #include "grukservices.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
46 * The following is an interim algorithm for management of kernel GRU
47 * resources. This will likely be replaced when we better understand the
48 * kernel/user requirements.
50 * Blade percpu resources reserved for kernel use. These resources are
51 * reserved whenever the the kernel context for the blade is loaded. Note
52 * that the kernel context is not guaranteed to be always available. It is
53 * loaded on demand & can be stolen by a user if the user demand exceeds the
54 * kernel demand. The kernel can always reload the kernel context but
55 * a SLEEP may be required!!!.
59 * Each blade has one "kernel context" that owns GRU kernel resources
60 * located on the blade. Kernel drivers use GRU resources in this context
61 * for sending messages, zeroing memory, etc.
63 * The kernel context is dynamically loaded on demand. If it is not in
64 * use by the kernel, the kernel context can be unloaded & given to a user.
65 * The kernel context will be reloaded when needed. This may require that
66 * a context be stolen from a user.
67 * NOTE: frequent unloading/reloading of the kernel context is
68 * expensive. We are depending on batch schedulers, cpusets, sane
69 * drivers or some other mechanism to prevent the need for frequent
72 * The kernel context consists of two parts:
73 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
74 * Each cpu has it's own private resources & does not share them
75 * with other cpus. These resources are used serially, ie,
76 * locked, used & unlocked on each call to a function in
78 * (Now that we have dynamic loading of kernel contexts, I
79 * may rethink this & allow sharing between cpus....)
81 * - Additional resources can be reserved long term & used directly
82 * by UV drivers located in the kernel. Drivers using these GRU
83 * resources can use asynchronous GRU instructions that send
84 * interrupts on completion.
85 * - these resources must be explicitly locked/unlocked
86 * - locked resources prevent (obviously) the kernel
87 * context from being unloaded.
88 * - drivers using these resource directly issue their own
89 * GRU instruction and must wait/check completion.
91 * When these resources are reserved, the caller can optionally
92 * associate a wait_queue with the resources and use asynchronous
93 * GRU instructions. When an async GRU instruction completes, the
94 * driver will do a wakeup on the event.
99 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
100 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
101 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
103 #define GRU_NUM_KERNEL_CBR 1
104 #define GRU_NUM_KERNEL_DSR_BYTES 256
105 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
106 GRU_CACHE_LINE_BYTES)
108 /* GRU instruction attributes for all instructions */
109 #define IMA IMA_CB_DELAY
111 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
112 #define __gru_cacheline_aligned__ \
113 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
115 #define MAGIC 0x1234567887654321UL
117 /* Default retry count for GRU errors on kernel instructions */
118 #define EXCEPTION_RETRY_LIMIT 3
120 /* Status of message queue sections */
125 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
126 /* optimized for x86_64 */
127 struct message_queue
{
128 union gru_mesqhead head __gru_cacheline_aligned__
; /* CL 0 */
129 int qlines
; /* DW 1 */
131 void *next __gru_cacheline_aligned__
;/* CL 1 */
135 char data ____cacheline_aligned
; /* CL 2 */
138 /* First word in every message - used by mesq interface */
139 struct message_header
{
146 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
149 * Reload the blade's kernel context into a GRU chiplet. Called holding
150 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
152 static void gru_load_kernel_context(struct gru_blade_state
*bs
, int blade_id
)
154 struct gru_state
*gru
;
155 struct gru_thread_state
*kgts
;
159 up_read(&bs
->bs_kgts_sema
);
160 down_write(&bs
->bs_kgts_sema
);
164 bs
->bs_kgts
= gru_alloc_gts(NULL
, 0, 0, 0, 0, 0);
165 if (!IS_ERR(bs
->bs_kgts
))
169 bs
->bs_kgts
->ts_user_blade_id
= blade_id
;
174 STAT(load_kernel_context
);
175 ncpus
= uv_blade_nr_possible_cpus(blade_id
);
176 kgts
->ts_cbr_au_count
= GRU_CB_COUNT_TO_AU(
177 GRU_NUM_KERNEL_CBR
* ncpus
+ bs
->bs_async_cbrs
);
178 kgts
->ts_dsr_au_count
= GRU_DS_BYTES_TO_AU(
179 GRU_NUM_KERNEL_DSR_BYTES
* ncpus
+
180 bs
->bs_async_dsr_bytes
);
181 while (!gru_assign_gru_context(kgts
)) {
183 gru_steal_context(kgts
);
185 gru_load_context(kgts
);
186 gru
= bs
->bs_kgts
->ts_gru
;
187 vaddr
= gru
->gs_gru_base_vaddr
;
188 ctxnum
= kgts
->ts_ctxnum
;
189 bs
->kernel_cb
= get_gseg_base_address_cb(vaddr
, ctxnum
, 0);
190 bs
->kernel_dsr
= get_gseg_base_address_ds(vaddr
, ctxnum
, 0);
192 downgrade_write(&bs
->bs_kgts_sema
);
196 * Free all kernel contexts that are not currently in use.
197 * Returns 0 if all freed, else number of inuse context.
199 static int gru_free_kernel_contexts(void)
201 struct gru_blade_state
*bs
;
202 struct gru_thread_state
*kgts
;
205 for (bid
= 0; bid
< GRU_MAX_BLADES
; bid
++) {
210 /* Ignore busy contexts. Don't want to block here. */
211 if (down_write_trylock(&bs
->bs_kgts_sema
)) {
213 if (kgts
&& kgts
->ts_gru
)
214 gru_unload_context(kgts
, 0);
216 up_write(&bs
->bs_kgts_sema
);
226 * Lock & load the kernel context for the specified blade.
228 static struct gru_blade_state
*gru_lock_kernel_context(int blade_id
)
230 struct gru_blade_state
*bs
;
233 STAT(lock_kernel_context
);
235 bid
= blade_id
< 0 ? uv_numa_blade_id() : blade_id
;
238 /* Handle the case where migration occurred while waiting for the sema */
239 down_read(&bs
->bs_kgts_sema
);
240 if (blade_id
< 0 && bid
!= uv_numa_blade_id()) {
241 up_read(&bs
->bs_kgts_sema
);
244 if (!bs
->bs_kgts
|| !bs
->bs_kgts
->ts_gru
)
245 gru_load_kernel_context(bs
, bid
);
251 * Unlock the kernel context for the specified blade. Context is not
252 * unloaded but may be stolen before next use.
254 static void gru_unlock_kernel_context(int blade_id
)
256 struct gru_blade_state
*bs
;
258 bs
= gru_base
[blade_id
];
259 up_read(&bs
->bs_kgts_sema
);
260 STAT(unlock_kernel_context
);
264 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
265 * - returns with preemption disabled
267 static int gru_get_cpu_resources(int dsr_bytes
, void **cb
, void **dsr
)
269 struct gru_blade_state
*bs
;
272 BUG_ON(dsr_bytes
> GRU_NUM_KERNEL_DSR_BYTES
);
274 bs
= gru_lock_kernel_context(-1);
275 lcpu
= uv_blade_processor_id();
276 *cb
= bs
->kernel_cb
+ lcpu
* GRU_HANDLE_STRIDE
;
277 *dsr
= bs
->kernel_dsr
+ lcpu
* GRU_NUM_KERNEL_DSR_BYTES
;
282 * Free the current cpus reserved DSR/CBR resources.
284 static void gru_free_cpu_resources(void *cb
, void *dsr
)
286 gru_unlock_kernel_context(uv_numa_blade_id());
291 * Reserve GRU resources to be used asynchronously.
292 * Note: currently supports only 1 reservation per blade.
295 * blade_id - blade on which resources should be reserved
296 * cbrs - number of CBRs
297 * dsr_bytes - number of DSR bytes needed
299 * handle to identify resource
300 * (0 = async resources already reserved)
302 unsigned long gru_reserve_async_resources(int blade_id
, int cbrs
, int dsr_bytes
,
303 struct completion
*cmp
)
305 struct gru_blade_state
*bs
;
306 struct gru_thread_state
*kgts
;
309 bs
= gru_base
[blade_id
];
311 down_write(&bs
->bs_kgts_sema
);
313 /* Verify no resources already reserved */
314 if (bs
->bs_async_dsr_bytes
+ bs
->bs_async_cbrs
)
316 bs
->bs_async_dsr_bytes
= dsr_bytes
;
317 bs
->bs_async_cbrs
= cbrs
;
318 bs
->bs_async_wq
= cmp
;
321 /* Resources changed. Unload context if already loaded */
322 if (kgts
&& kgts
->ts_gru
)
323 gru_unload_context(kgts
, 0);
324 ret
= ASYNC_BID_TO_HAN(blade_id
);
327 up_write(&bs
->bs_kgts_sema
);
332 * Release async resources previously reserved.
335 * han - handle to identify resources
337 void gru_release_async_resources(unsigned long han
)
339 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
341 down_write(&bs
->bs_kgts_sema
);
342 bs
->bs_async_dsr_bytes
= 0;
343 bs
->bs_async_cbrs
= 0;
344 bs
->bs_async_wq
= NULL
;
345 up_write(&bs
->bs_kgts_sema
);
349 * Wait for async GRU instructions to complete.
352 * han - handle to identify resources
354 void gru_wait_async_cbr(unsigned long han
)
356 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
358 wait_for_completion(bs
->bs_async_wq
);
363 * Lock previous reserved async GRU resources
366 * han - handle to identify resources
368 * cb - pointer to first CBR
369 * dsr - pointer to first DSR
371 void gru_lock_async_resource(unsigned long han
, void **cb
, void **dsr
)
373 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
374 int blade_id
= ASYNC_HAN_TO_BID(han
);
377 gru_lock_kernel_context(blade_id
);
378 ncpus
= uv_blade_nr_possible_cpus(blade_id
);
380 *cb
= bs
->kernel_cb
+ ncpus
* GRU_HANDLE_STRIDE
;
382 *dsr
= bs
->kernel_dsr
+ ncpus
* GRU_NUM_KERNEL_DSR_BYTES
;
386 * Unlock previous reserved async GRU resources
389 * han - handle to identify resources
391 void gru_unlock_async_resource(unsigned long han
)
393 int blade_id
= ASYNC_HAN_TO_BID(han
);
395 gru_unlock_kernel_context(blade_id
);
398 /*----------------------------------------------------------------------*/
399 int gru_get_cb_exception_detail(void *cb
,
400 struct control_block_extended_exc_detail
*excdet
)
402 struct gru_control_block_extended
*cbe
;
403 struct gru_thread_state
*kgts
= NULL
;
408 * Locate kgts for cb. This algorithm is SLOW but
409 * this function is rarely called (ie., almost never).
410 * Performance does not matter.
412 for_each_possible_blade(bid
) {
415 kgts
= gru_base
[bid
]->bs_kgts
;
416 if (!kgts
|| !kgts
->ts_gru
)
418 off
= cb
- kgts
->ts_gru
->gs_gru_base_vaddr
;
424 cbrnum
= thread_cbr_number(kgts
, get_cb_number(cb
));
425 cbe
= get_cbe(GRUBASE(cb
), cbrnum
);
426 gru_flush_cache(cbe
); /* CBE not coherent */
428 excdet
->opc
= cbe
->opccpy
;
429 excdet
->exopc
= cbe
->exopccpy
;
430 excdet
->ecause
= cbe
->ecause
;
431 excdet
->exceptdet0
= cbe
->idef1upd
;
432 excdet
->exceptdet1
= cbe
->idef3upd
;
433 gru_flush_cache(cbe
);
437 static char *gru_get_cb_exception_detail_str(int ret
, void *cb
,
440 struct gru_control_block_status
*gen
= (void *)cb
;
441 struct control_block_extended_exc_detail excdet
;
443 if (ret
> 0 && gen
->istatus
== CBS_EXCEPTION
) {
444 gru_get_cb_exception_detail(cb
, &excdet
);
446 "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
447 "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
448 gen
, excdet
.opc
, excdet
.exopc
, excdet
.ecause
,
449 excdet
.exceptdet0
, excdet
.exceptdet1
);
451 snprintf(buf
, size
, "No exception");
456 static int gru_wait_idle_or_exception(struct gru_control_block_status
*gen
)
458 while (gen
->istatus
>= CBS_ACTIVE
) {
465 static int gru_retry_exception(void *cb
)
467 struct gru_control_block_status
*gen
= (void *)cb
;
468 struct control_block_extended_exc_detail excdet
;
469 int retry
= EXCEPTION_RETRY_LIMIT
;
472 if (gru_wait_idle_or_exception(gen
) == CBS_IDLE
)
474 if (gru_get_cb_message_queue_substatus(cb
))
475 return CBS_EXCEPTION
;
476 gru_get_cb_exception_detail(cb
, &excdet
);
477 if ((excdet
.ecause
& ~EXCEPTION_RETRY_BITS
) ||
478 (excdet
.cbrexecstatus
& CBR_EXS_ABORT_OCC
))
483 gru_flush_cache(gen
);
485 return CBS_EXCEPTION
;
488 int gru_check_status_proc(void *cb
)
490 struct gru_control_block_status
*gen
= (void *)cb
;
494 if (ret
== CBS_EXCEPTION
)
495 ret
= gru_retry_exception(cb
);
501 int gru_wait_proc(void *cb
)
503 struct gru_control_block_status
*gen
= (void *)cb
;
506 ret
= gru_wait_idle_or_exception(gen
);
507 if (ret
== CBS_EXCEPTION
)
508 ret
= gru_retry_exception(cb
);
513 static void gru_abort(int ret
, void *cb
, char *str
)
515 char buf
[GRU_EXC_STR_SIZE
];
517 panic("GRU FATAL ERROR: %s - %s\n", str
,
518 gru_get_cb_exception_detail_str(ret
, cb
, buf
, sizeof(buf
)));
521 void gru_wait_abort_proc(void *cb
)
525 ret
= gru_wait_proc(cb
);
527 gru_abort(ret
, cb
, "gru_wait_abort");
531 /*------------------------------ MESSAGE QUEUES -----------------------------*/
533 /* Internal status . These are NOT returned to the user. */
534 #define MQIE_AGAIN -1 /* try again */
538 * Save/restore the "present" flag that is in the second line of 2-line
541 static inline int get_present2(void *p
)
543 struct message_header
*mhdr
= p
+ GRU_CACHE_LINE_BYTES
;
544 return mhdr
->present
;
547 static inline void restore_present2(void *p
, int val
)
549 struct message_header
*mhdr
= p
+ GRU_CACHE_LINE_BYTES
;
554 * Create a message queue.
555 * qlines - message queue size in cache lines. Includes 2-line header.
557 int gru_create_message_queue(struct gru_message_queue_desc
*mqd
,
558 void *p
, unsigned int bytes
, int nasid
, int vector
, int apicid
)
560 struct message_queue
*mq
= p
;
563 qlines
= bytes
/ GRU_CACHE_LINE_BYTES
- 2;
564 memset(mq
, 0, bytes
);
565 mq
->start
= &mq
->data
;
566 mq
->start2
= &mq
->data
+ (qlines
/ 2 - 1) * GRU_CACHE_LINE_BYTES
;
567 mq
->next
= &mq
->data
;
568 mq
->limit
= &mq
->data
+ (qlines
- 2) * GRU_CACHE_LINE_BYTES
;
572 mq
->head
= gru_mesq_head(2, qlines
/ 2 + 1);
574 mqd
->mq_gpa
= uv_gpa(mq
);
575 mqd
->qlines
= qlines
;
576 mqd
->interrupt_pnode
= nasid
>> 1;
577 mqd
->interrupt_vector
= vector
;
578 mqd
->interrupt_apicid
= apicid
;
581 EXPORT_SYMBOL_GPL(gru_create_message_queue
);
584 * Send a NOOP message to a message queue
586 * 0 - if queue is full after the send. This is the normal case
587 * but various races can change this.
588 * -1 - if mesq sent successfully but queue not full
589 * >0 - unexpected error. MQE_xxx returned
591 static int send_noop_message(void *cb
, struct gru_message_queue_desc
*mqd
,
594 const struct message_header noop_header
= {
595 .present
= MQS_NOOP
, .lines
= 1};
598 struct message_header save_mhdr
, *mhdr
= mesg
;
603 gru_mesq(cb
, mqd
->mq_gpa
, gru_get_tri(mhdr
), 1, IMA
);
607 substatus
= gru_get_cb_message_queue_substatus(cb
);
610 STAT(mesq_noop_unexpected_error
);
611 ret
= MQE_UNEXPECTED_CB_ERR
;
613 case CBSS_LB_OVERFLOWED
:
614 STAT(mesq_noop_lb_overflow
);
615 ret
= MQE_CONGESTION
;
617 case CBSS_QLIMIT_REACHED
:
618 STAT(mesq_noop_qlimit_reached
);
621 case CBSS_AMO_NACKED
:
622 STAT(mesq_noop_amo_nacked
);
623 ret
= MQE_CONGESTION
;
625 case CBSS_PUT_NACKED
:
626 STAT(mesq_noop_put_nacked
);
627 m
= mqd
->mq_gpa
+ (gru_get_amo_value_head(cb
) << 6);
628 gru_vstore(cb
, m
, gru_get_tri(mesg
), XTYPE_CL
, 1, 1,
630 if (gru_wait(cb
) == CBS_IDLE
)
633 ret
= MQE_UNEXPECTED_CB_ERR
;
635 case CBSS_PAGE_OVERFLOW
:
636 STAT(mesq_noop_page_overflow
);
647 * Handle a gru_mesq full.
649 static int send_message_queue_full(void *cb
, struct gru_message_queue_desc
*mqd
,
650 void *mesg
, int lines
)
652 union gru_mesqhead mqh
;
653 unsigned int limit
, head
;
654 unsigned long avalue
;
657 /* Determine if switching to first/second half of q */
658 avalue
= gru_get_amo_value(cb
);
659 head
= gru_get_amo_value_head(cb
);
660 limit
= gru_get_amo_value_limit(cb
);
662 qlines
= mqd
->qlines
;
663 half
= (limit
!= qlines
);
666 mqh
= gru_mesq_head(qlines
/ 2 + 1, qlines
);
668 mqh
= gru_mesq_head(2, qlines
/ 2 + 1);
670 /* Try to get lock for switching head pointer */
671 gru_gamir(cb
, EOP_IR_CLR
, HSTATUS(mqd
->mq_gpa
, half
), XTYPE_DW
, IMA
);
672 if (gru_wait(cb
) != CBS_IDLE
)
674 if (!gru_get_amo_value(cb
)) {
675 STAT(mesq_qf_locked
);
676 return MQE_QUEUE_FULL
;
679 /* Got the lock. Send optional NOP if queue not full, */
681 if (send_noop_message(cb
, mqd
, mesg
)) {
682 gru_gamir(cb
, EOP_IR_INC
, HSTATUS(mqd
->mq_gpa
, half
),
684 if (gru_wait(cb
) != CBS_IDLE
)
686 STAT(mesq_qf_noop_not_full
);
692 /* Then flip queuehead to other half of queue. */
693 gru_gamer(cb
, EOP_ERR_CSWAP
, mqd
->mq_gpa
, XTYPE_DW
, mqh
.val
, avalue
,
695 if (gru_wait(cb
) != CBS_IDLE
)
698 /* If not successfully in swapping queue head, clear the hstatus lock */
699 if (gru_get_amo_value(cb
) != avalue
) {
700 STAT(mesq_qf_switch_head_failed
);
701 gru_gamir(cb
, EOP_IR_INC
, HSTATUS(mqd
->mq_gpa
, half
), XTYPE_DW
,
703 if (gru_wait(cb
) != CBS_IDLE
)
708 STAT(mesq_qf_unexpected_error
);
709 return MQE_UNEXPECTED_CB_ERR
;
713 * Handle a PUT failure. Note: if message was a 2-line message, one of the
714 * lines might have successfully have been written. Before sending the
715 * message, "present" must be cleared in BOTH lines to prevent the receiver
716 * from prematurely seeing the full message.
718 static int send_message_put_nacked(void *cb
, struct gru_message_queue_desc
*mqd
,
719 void *mesg
, int lines
)
722 int ret
, loops
= 200; /* experimentally determined */
724 m
= mqd
->mq_gpa
+ (gru_get_amo_value_head(cb
) << 6);
726 gru_vset(cb
, m
, 0, XTYPE_CL
, lines
, 1, IMA
);
727 if (gru_wait(cb
) != CBS_IDLE
)
728 return MQE_UNEXPECTED_CB_ERR
;
730 gru_vstore(cb
, m
, gru_get_tri(mesg
), XTYPE_CL
, lines
, 1, IMA
);
731 if (gru_wait(cb
) != CBS_IDLE
)
732 return MQE_UNEXPECTED_CB_ERR
;
734 if (!mqd
->interrupt_vector
)
738 * Send a noop message in order to deliver a cross-partition interrupt
739 * to the SSI that contains the target message queue. Normally, the
740 * interrupt is automatically delivered by hardware following mesq
741 * operations, but some error conditions require explicit delivery.
742 * The noop message will trigger delivery. Otherwise partition failures
743 * could cause unrecovered errors.
746 ret
= send_noop_message(cb
, mqd
, mesg
);
747 } while ((ret
== MQIE_AGAIN
|| ret
== MQE_CONGESTION
) && (loops
-- > 0));
749 if (ret
== MQIE_AGAIN
|| ret
== MQE_CONGESTION
) {
751 * Don't indicate to the app to resend the message, as it's
752 * already been successfully sent. We simply send an OK
753 * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
754 * assuming that the other side is receiving enough
755 * interrupts to get this message processed anyway.
763 * Handle a gru_mesq failure. Some of these failures are software recoverable
766 static int send_message_failure(void *cb
, struct gru_message_queue_desc
*mqd
,
767 void *mesg
, int lines
)
769 int substatus
, ret
= 0;
771 substatus
= gru_get_cb_message_queue_substatus(cb
);
774 STAT(mesq_send_unexpected_error
);
775 ret
= MQE_UNEXPECTED_CB_ERR
;
777 case CBSS_LB_OVERFLOWED
:
778 STAT(mesq_send_lb_overflow
);
779 ret
= MQE_CONGESTION
;
781 case CBSS_QLIMIT_REACHED
:
782 STAT(mesq_send_qlimit_reached
);
783 ret
= send_message_queue_full(cb
, mqd
, mesg
, lines
);
785 case CBSS_AMO_NACKED
:
786 STAT(mesq_send_amo_nacked
);
787 ret
= MQE_CONGESTION
;
789 case CBSS_PUT_NACKED
:
790 STAT(mesq_send_put_nacked
);
791 ret
= send_message_put_nacked(cb
, mqd
, mesg
, lines
);
793 case CBSS_PAGE_OVERFLOW
:
794 STAT(mesq_page_overflow
);
803 * Send a message to a message queue
804 * mqd message queue descriptor
805 * mesg message. ust be vaddr within a GSEG
806 * bytes message size (<= 2 CL)
808 int gru_send_message_gpa(struct gru_message_queue_desc
*mqd
, void *mesg
,
811 struct message_header
*mhdr
;
814 int istatus
, clines
, ret
;
817 BUG_ON(bytes
< sizeof(int) || bytes
> 2 * GRU_CACHE_LINE_BYTES
);
819 clines
= DIV_ROUND_UP(bytes
, GRU_CACHE_LINE_BYTES
);
820 if (gru_get_cpu_resources(bytes
, &cb
, &dsr
))
821 return MQE_BUG_NO_RESOURCES
;
822 memcpy(dsr
, mesg
, bytes
);
824 mhdr
->present
= MQS_FULL
;
825 mhdr
->lines
= clines
;
827 mhdr
->present2
= get_present2(mhdr
);
828 restore_present2(mhdr
, MQS_FULL
);
833 gru_mesq(cb
, mqd
->mq_gpa
, gru_get_tri(mhdr
), clines
, IMA
);
834 istatus
= gru_wait(cb
);
835 if (istatus
!= CBS_IDLE
)
836 ret
= send_message_failure(cb
, mqd
, dsr
, clines
);
837 } while (ret
== MQIE_AGAIN
);
838 gru_free_cpu_resources(cb
, dsr
);
841 STAT(mesq_send_failed
);
844 EXPORT_SYMBOL_GPL(gru_send_message_gpa
);
847 * Advance the receive pointer for the queue to the next message.
849 void gru_free_message(struct gru_message_queue_desc
*mqd
, void *mesg
)
851 struct message_queue
*mq
= mqd
->mq
;
852 struct message_header
*mhdr
= mq
->next
;
855 int lines
= mhdr
->lines
;
858 restore_present2(mhdr
, MQS_EMPTY
);
859 mhdr
->present
= MQS_EMPTY
;
862 next
= pnext
+ GRU_CACHE_LINE_BYTES
* lines
;
863 if (next
== mq
->limit
) {
866 } else if (pnext
< mq
->start2
&& next
>= mq
->start2
) {
871 mq
->hstatus
[half
] = 1;
874 EXPORT_SYMBOL_GPL(gru_free_message
);
877 * Get next message from message queue. Return NULL if no message
878 * present. User must call next_message() to move to next message.
881 void *gru_get_next_message(struct gru_message_queue_desc
*mqd
)
883 struct message_queue
*mq
= mqd
->mq
;
884 struct message_header
*mhdr
= mq
->next
;
885 int present
= mhdr
->present
;
887 /* skip NOOP messages */
888 while (present
== MQS_NOOP
) {
889 gru_free_message(mqd
, mhdr
);
891 present
= mhdr
->present
;
894 /* Wait for both halves of 2 line messages */
895 if (present
== MQS_FULL
&& mhdr
->lines
== 2 &&
896 get_present2(mhdr
) == MQS_EMPTY
)
900 STAT(mesq_receive_none
);
904 if (mhdr
->lines
== 2)
905 restore_present2(mhdr
, mhdr
->present2
);
910 EXPORT_SYMBOL_GPL(gru_get_next_message
);
912 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
915 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
917 int gru_read_gpa(unsigned long *value
, unsigned long gpa
)
924 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES
, &cb
, &dsr
))
925 return MQE_BUG_NO_RESOURCES
;
927 gru_vload_phys(cb
, gpa
, gru_get_tri(dsr
), iaa
, IMA
);
930 *value
= *(unsigned long *)dsr
;
931 gru_free_cpu_resources(cb
, dsr
);
934 EXPORT_SYMBOL_GPL(gru_read_gpa
);
938 * Copy a block of data using the GRU resources
940 int gru_copy_gpa(unsigned long dest_gpa
, unsigned long src_gpa
,
948 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES
, &cb
, &dsr
))
949 return MQE_BUG_NO_RESOURCES
;
950 gru_bcopy(cb
, src_gpa
, dest_gpa
, gru_get_tri(dsr
),
951 XTYPE_B
, bytes
, GRU_NUM_KERNEL_DSR_CL
, IMA
);
953 gru_free_cpu_resources(cb
, dsr
);
956 EXPORT_SYMBOL_GPL(gru_copy_gpa
);
958 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
959 /* Temp - will delete after we gain confidence in the GRU */
961 static int quicktest0(unsigned long arg
)
970 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES
, &cb
, &dsr
))
971 return MQE_BUG_NO_RESOURCES
;
976 gru_vload(cb
, uv_gpa(&word0
), gru_get_tri(dsr
), XTYPE_DW
, 1, 1, IMA
);
977 if (gru_wait(cb
) != CBS_IDLE
) {
978 printk(KERN_DEBUG
"GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
983 printk(KERN_DEBUG
"GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p
);
986 gru_vstore(cb
, uv_gpa(&word1
), gru_get_tri(dsr
), XTYPE_DW
, 1, 1, IMA
);
987 if (gru_wait(cb
) != CBS_IDLE
) {
988 printk(KERN_DEBUG
"GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
992 if (word0
!= word1
|| word1
!= MAGIC
) {
994 "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
995 smp_processor_id(), word1
, MAGIC
);
1001 gru_free_cpu_resources(cb
, dsr
);
1005 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
1007 static int quicktest1(unsigned long arg
)
1009 struct gru_message_queue_desc mqd
;
1012 char mes
[GRU_CACHE_LINE_BYTES
], *m
;
1014 /* Need 1K cacheline aligned that does not cross page boundary */
1015 p
= kmalloc(4096, 0);
1018 mq
= ALIGNUP(p
, 1024);
1019 memset(mes
, 0xee, sizeof(mes
));
1021 gru_create_message_queue(&mqd
, mq
, 8 * GRU_CACHE_LINE_BYTES
, 0, 0, 0);
1022 for (i
= 0; i
< 6; i
++) {
1025 ret
= gru_send_message_gpa(&mqd
, mes
, sizeof(mes
));
1026 } while (ret
== MQE_CONGESTION
);
1030 if (ret
!= MQE_QUEUE_FULL
|| i
!= 4) {
1031 printk(KERN_DEBUG
"GRU:%d quicktest1: unexpect status %d, i %d\n",
1032 smp_processor_id(), ret
, i
);
1036 for (i
= 0; i
< 6; i
++) {
1037 m
= gru_get_next_message(&mqd
);
1038 if (!m
|| m
[8] != i
)
1040 gru_free_message(&mqd
, m
);
1043 printk(KERN_DEBUG
"GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1044 smp_processor_id(), i
, m
, m
? m
[8] : -1);
1054 static int quicktest2(unsigned long arg
)
1056 static DECLARE_COMPLETION(cmp
);
1063 struct gru_control_block_status
*gen
;
1064 int i
, k
, istatus
, bytes
;
1066 bytes
= numcb
* 4 * 8;
1067 buf
= kmalloc(bytes
, GFP_KERNEL
);
1072 han
= gru_reserve_async_resources(blade_id
, numcb
, 0, &cmp
);
1076 gru_lock_async_resource(han
, &cb0
, NULL
);
1077 memset(buf
, 0xee, bytes
);
1078 for (i
= 0; i
< numcb
; i
++)
1079 gru_vset(cb0
+ i
* GRU_HANDLE_STRIDE
, uv_gpa(&buf
[i
* 4]), 0,
1080 XTYPE_DW
, 4, 1, IMA_INTERRUPT
);
1085 gru_wait_async_cbr(han
);
1086 for (i
= 0; i
< numcb
; i
++) {
1087 cb
= cb0
+ i
* GRU_HANDLE_STRIDE
;
1088 istatus
= gru_check_status(cb
);
1089 if (istatus
!= CBS_ACTIVE
&& istatus
!= CBS_CALL_OS
)
1094 if (istatus
!= CBS_IDLE
) {
1095 printk(KERN_DEBUG
"GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i
);
1097 } else if (buf
[4 * i
] || buf
[4 * i
+ 1] || buf
[4 * i
+ 2] ||
1099 printk(KERN_DEBUG
"GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1100 smp_processor_id(), i
, buf
[4 * i
], buf
[4 * i
+ 1], buf
[4 * i
+ 2], buf
[4 * i
+ 3]);
1105 gen
->istatus
= CBS_CALL_OS
; /* don't handle this CBR again */
1109 gru_unlock_async_resource(han
);
1110 gru_release_async_resources(han
);
1117 static int quicktest3(unsigned long arg
)
1119 char buf1
[BUFSIZE
], buf2
[BUFSIZE
];
1122 memset(buf2
, 0, sizeof(buf2
));
1123 memset(buf1
, get_cycles() & 255, sizeof(buf1
));
1124 gru_copy_gpa(uv_gpa(buf2
), uv_gpa(buf1
), BUFSIZE
);
1125 if (memcmp(buf1
, buf2
, BUFSIZE
)) {
1126 printk(KERN_DEBUG
"GRU:%d quicktest3 error\n", smp_processor_id());
1133 * Debugging only. User hook for various kernel tests
1136 int gru_ktest(unsigned long arg
)
1140 switch (arg
& 0xff) {
1142 ret
= quicktest0(arg
);
1145 ret
= quicktest1(arg
);
1148 ret
= quicktest2(arg
);
1151 ret
= quicktest3(arg
);
1154 ret
= gru_free_kernel_contexts();
1161 int gru_kservices_init(void)
1166 void gru_kservices_exit(void)
1168 if (gru_free_kernel_contexts())