perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / mmc / host / sh_mmcif.c
blob81bd9afb0980525e23658953e03b6e9dcb1e2c33
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MMCIF eMMC driver.
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
9 /*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
59 #define DRIVER_NAME "sh_mmcif"
61 /* CE_CMD_SET */
62 #define CMD_MASK 0x3f000000
63 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN (1 << 20)
68 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH (1 << 5)
83 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK (1 << 0)
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK 0x0000ffff
94 /* CE_INT */
95 #define INT_CCSDE (1 << 29)
96 #define INT_CMD12DRE (1 << 26)
97 #define INT_CMD12RBE (1 << 25)
98 #define INT_CMD12CRE (1 << 24)
99 #define INT_DTRANE (1 << 23)
100 #define INT_BUFRE (1 << 22)
101 #define INT_BUFWEN (1 << 21)
102 #define INT_BUFREN (1 << 20)
103 #define INT_CCSRCV (1 << 19)
104 #define INT_RBSYE (1 << 17)
105 #define INT_CRSPE (1 << 16)
106 #define INT_CMDVIO (1 << 15)
107 #define INT_BUFVIO (1 << 14)
108 #define INT_WDATERR (1 << 11)
109 #define INT_RDATERR (1 << 10)
110 #define INT_RIDXERR (1 << 9)
111 #define INT_RSPERR (1 << 8)
112 #define INT_CCSTO (1 << 5)
113 #define INT_CRCSTO (1 << 4)
114 #define INT_WDATTO (1 << 3)
115 #define INT_RDATTO (1 << 2)
116 #define INT_RBSYTO (1 << 1)
117 #define INT_RSPTO (1 << 0)
118 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
119 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
121 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
123 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
124 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
127 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
129 /* CE_INT_MASK */
130 #define MASK_ALL 0x00000000
131 #define MASK_MCCSDE (1 << 29)
132 #define MASK_MCMD12DRE (1 << 26)
133 #define MASK_MCMD12RBE (1 << 25)
134 #define MASK_MCMD12CRE (1 << 24)
135 #define MASK_MDTRANE (1 << 23)
136 #define MASK_MBUFRE (1 << 22)
137 #define MASK_MBUFWEN (1 << 21)
138 #define MASK_MBUFREN (1 << 20)
139 #define MASK_MCCSRCV (1 << 19)
140 #define MASK_MRBSYE (1 << 17)
141 #define MASK_MCRSPE (1 << 16)
142 #define MASK_MCMDVIO (1 << 15)
143 #define MASK_MBUFVIO (1 << 14)
144 #define MASK_MWDATERR (1 << 11)
145 #define MASK_MRDATERR (1 << 10)
146 #define MASK_MRIDXERR (1 << 9)
147 #define MASK_MRSPERR (1 << 8)
148 #define MASK_MCCSTO (1 << 5)
149 #define MASK_MCRCSTO (1 << 4)
150 #define MASK_MWDATTO (1 << 3)
151 #define MASK_MRDATTO (1 << 2)
152 #define MASK_MRBSYTO (1 << 1)
153 #define MASK_MRSPTO (1 << 0)
155 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157 MASK_MCRCSTO | MASK_MWDATTO | \
158 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
161 MASK_MBUFREN | MASK_MBUFWEN | \
162 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
163 MASK_MCMD12RBE | MASK_MCMD12CRE)
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ (1 << 31)
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE (1 << 31)
170 #define STS2_CRC16E (1 << 30)
171 #define STS2_AC12CRCE (1 << 29)
172 #define STS2_RSPCRC7E (1 << 28)
173 #define STS2_CRCSTEBE (1 << 27)
174 #define STS2_RDATEBE (1 << 26)
175 #define STS2_AC12REBE (1 << 25)
176 #define STS2_RSPEBE (1 << 24)
177 #define STS2_AC12IDXE (1 << 23)
178 #define STS2_RSPIDXE (1 << 22)
179 #define STS2_CCSTO (1 << 15)
180 #define STS2_RDATTO (1 << 14)
181 #define STS2_DATBSYTO (1 << 13)
182 #define STS2_CRCSTTO (1 << 12)
183 #define STS2_AC12BSYTO (1 << 11)
184 #define STS2_RSPBSYTO (1 << 10)
185 #define STS2_AC12RSPTO (1 << 9)
186 #define STS2_RSPTO (1 << 8)
187 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
188 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
190 STS2_DATBSYTO | STS2_CRCSTTO | \
191 STS2_AC12BSYTO | STS2_RSPBSYTO | \
192 STS2_AC12RSPTO | STS2_RSPTO)
194 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
195 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
196 #define CLKDEV_INIT 400000 /* 400 KHz */
198 enum sh_mmcif_state {
199 STATE_IDLE,
200 STATE_REQUEST,
201 STATE_IOS,
202 STATE_TIMEOUT,
205 enum sh_mmcif_wait_for {
206 MMCIF_WAIT_FOR_REQUEST,
207 MMCIF_WAIT_FOR_CMD,
208 MMCIF_WAIT_FOR_MREAD,
209 MMCIF_WAIT_FOR_MWRITE,
210 MMCIF_WAIT_FOR_READ,
211 MMCIF_WAIT_FOR_WRITE,
212 MMCIF_WAIT_FOR_READ_END,
213 MMCIF_WAIT_FOR_WRITE_END,
214 MMCIF_WAIT_FOR_STOP,
218 * difference for each SoC
220 struct sh_mmcif_host {
221 struct mmc_host *mmc;
222 struct mmc_request *mrq;
223 struct platform_device *pd;
224 struct clk *clk;
225 int bus_width;
226 unsigned char timing;
227 bool sd_error;
228 bool dying;
229 long timeout;
230 void __iomem *addr;
231 u32 *pio_ptr;
232 spinlock_t lock; /* protect sh_mmcif_host::state */
233 enum sh_mmcif_state state;
234 enum sh_mmcif_wait_for wait_for;
235 struct delayed_work timeout_work;
236 size_t blocksize;
237 int sg_idx;
238 int sg_blkidx;
239 bool power;
240 bool ccs_enable; /* Command Completion Signal support */
241 bool clk_ctrl2_enable;
242 struct mutex thread_lock;
243 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
245 /* DMA support */
246 struct dma_chan *chan_rx;
247 struct dma_chan *chan_tx;
248 struct completion dma_complete;
249 bool dma_active;
252 static const struct of_device_id sh_mmcif_of_match[] = {
253 { .compatible = "renesas,sh-mmcif" },
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
263 writel(val | readl(host->addr + reg), host->addr + reg);
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
269 writel(~val & readl(host->addr + reg), host->addr + reg);
272 static void sh_mmcif_dma_complete(void *arg)
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
276 struct device *dev = sh_mmcif_host_to_dev(host);
278 dev_dbg(dev, "Command completed\n");
280 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281 dev_name(dev)))
282 return;
284 complete(&host->dma_complete);
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
289 struct mmc_data *data = host->mrq->data;
290 struct scatterlist *sg = data->sg;
291 struct dma_async_tx_descriptor *desc = NULL;
292 struct dma_chan *chan = host->chan_rx;
293 struct device *dev = sh_mmcif_host_to_dev(host);
294 dma_cookie_t cookie = -EINVAL;
295 int ret;
297 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298 DMA_FROM_DEVICE);
299 if (ret > 0) {
300 host->dma_active = true;
301 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
305 if (desc) {
306 desc->callback = sh_mmcif_dma_complete;
307 desc->callback_param = host;
308 cookie = dmaengine_submit(desc);
309 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310 dma_async_issue_pending(chan);
312 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313 __func__, data->sg_len, ret, cookie);
315 if (!desc) {
316 /* DMA failed, fall back to PIO */
317 if (ret >= 0)
318 ret = -EIO;
319 host->chan_rx = NULL;
320 host->dma_active = false;
321 dma_release_channel(chan);
322 /* Free the Tx channel too */
323 chan = host->chan_tx;
324 if (chan) {
325 host->chan_tx = NULL;
326 dma_release_channel(chan);
328 dev_warn(dev,
329 "DMA failed: %d, falling back to PIO\n", ret);
330 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
333 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334 desc, cookie, data->sg_len);
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
339 struct mmc_data *data = host->mrq->data;
340 struct scatterlist *sg = data->sg;
341 struct dma_async_tx_descriptor *desc = NULL;
342 struct dma_chan *chan = host->chan_tx;
343 struct device *dev = sh_mmcif_host_to_dev(host);
344 dma_cookie_t cookie = -EINVAL;
345 int ret;
347 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348 DMA_TO_DEVICE);
349 if (ret > 0) {
350 host->dma_active = true;
351 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
355 if (desc) {
356 desc->callback = sh_mmcif_dma_complete;
357 desc->callback_param = host;
358 cookie = dmaengine_submit(desc);
359 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360 dma_async_issue_pending(chan);
362 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363 __func__, data->sg_len, ret, cookie);
365 if (!desc) {
366 /* DMA failed, fall back to PIO */
367 if (ret >= 0)
368 ret = -EIO;
369 host->chan_tx = NULL;
370 host->dma_active = false;
371 dma_release_channel(chan);
372 /* Free the Rx channel too */
373 chan = host->chan_rx;
374 if (chan) {
375 host->chan_rx = NULL;
376 dma_release_channel(chan);
378 dev_warn(dev,
379 "DMA failed: %d, falling back to PIO\n", ret);
380 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
383 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384 desc, cookie);
387 static struct dma_chan *
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
390 dma_cap_mask_t mask;
392 dma_cap_zero(mask);
393 dma_cap_set(DMA_SLAVE, mask);
394 if (slave_id <= 0)
395 return NULL;
397 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401 struct dma_chan *chan,
402 enum dma_transfer_direction direction)
404 struct resource *res;
405 struct dma_slave_config cfg = { 0, };
407 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408 cfg.direction = direction;
410 if (direction == DMA_DEV_TO_MEM) {
411 cfg.src_addr = res->start + MMCIF_CE_DATA;
412 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 } else {
414 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
418 return dmaengine_slave_config(chan, &cfg);
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
423 struct device *dev = sh_mmcif_host_to_dev(host);
424 host->dma_active = false;
426 /* We can only either use DMA for both Tx and Rx or not use it at all */
427 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 struct sh_mmcif_plat_data *pdata = dev->platform_data;
430 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 pdata->slave_id_tx);
432 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 pdata->slave_id_rx);
434 } else {
435 host->chan_tx = dma_request_slave_channel(dev, "tx");
436 host->chan_rx = dma_request_slave_channel(dev, "rx");
438 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
439 host->chan_rx);
441 if (!host->chan_tx || !host->chan_rx ||
442 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
443 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
444 goto error;
446 return;
448 error:
449 if (host->chan_tx)
450 dma_release_channel(host->chan_tx);
451 if (host->chan_rx)
452 dma_release_channel(host->chan_rx);
453 host->chan_tx = host->chan_rx = NULL;
456 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
458 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
459 /* Descriptors are freed automatically */
460 if (host->chan_tx) {
461 struct dma_chan *chan = host->chan_tx;
462 host->chan_tx = NULL;
463 dma_release_channel(chan);
465 if (host->chan_rx) {
466 struct dma_chan *chan = host->chan_rx;
467 host->chan_rx = NULL;
468 dma_release_channel(chan);
471 host->dma_active = false;
474 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
476 struct device *dev = sh_mmcif_host_to_dev(host);
477 struct sh_mmcif_plat_data *p = dev->platform_data;
478 bool sup_pclk = p ? p->sup_pclk : false;
479 unsigned int current_clk = clk_get_rate(host->clk);
480 unsigned int clkdiv;
482 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
485 if (!clk)
486 return;
488 if (host->clkdiv_map) {
489 unsigned int freq, best_freq, myclk, div, diff_min, diff;
490 int i;
492 clkdiv = 0;
493 diff_min = ~0;
494 best_freq = 0;
495 for (i = 31; i >= 0; i--) {
496 if (!((1 << i) & host->clkdiv_map))
497 continue;
500 * clk = parent_freq / div
501 * -> parent_freq = clk x div
504 div = 1 << (i + 1);
505 freq = clk_round_rate(host->clk, clk * div);
506 myclk = freq / div;
507 diff = (myclk > clk) ? myclk - clk : clk - myclk;
509 if (diff <= diff_min) {
510 best_freq = freq;
511 clkdiv = i;
512 diff_min = diff;
516 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
517 (best_freq / (1 << (clkdiv + 1))), clk,
518 best_freq, clkdiv);
520 clk_set_rate(host->clk, best_freq);
521 clkdiv = clkdiv << 16;
522 } else if (sup_pclk && clk == current_clk) {
523 clkdiv = CLK_SUP_PCLK;
524 } else {
525 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
528 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
529 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
532 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
534 u32 tmp;
536 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
538 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
539 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
540 if (host->ccs_enable)
541 tmp |= SCCSTO_29;
542 if (host->clk_ctrl2_enable)
543 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
544 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
545 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
546 /* byte swap on */
547 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
550 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
552 struct device *dev = sh_mmcif_host_to_dev(host);
553 u32 state1, state2;
554 int ret, timeout;
556 host->sd_error = false;
558 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
559 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
560 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
561 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
563 if (state1 & STS1_CMDSEQ) {
564 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
565 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
566 for (timeout = 10000; timeout; timeout--) {
567 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
568 & STS1_CMDSEQ))
569 break;
570 mdelay(1);
572 if (!timeout) {
573 dev_err(dev,
574 "Forced end of command sequence timeout err\n");
575 return -EIO;
577 sh_mmcif_sync_reset(host);
578 dev_dbg(dev, "Forced end of command sequence\n");
579 return -EIO;
582 if (state2 & STS2_CRC_ERR) {
583 dev_err(dev, " CRC error: state %u, wait %u\n",
584 host->state, host->wait_for);
585 ret = -EIO;
586 } else if (state2 & STS2_TIMEOUT_ERR) {
587 dev_err(dev, " Timeout: state %u, wait %u\n",
588 host->state, host->wait_for);
589 ret = -ETIMEDOUT;
590 } else {
591 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
592 host->state, host->wait_for);
593 ret = -EIO;
595 return ret;
598 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
600 struct mmc_data *data = host->mrq->data;
602 host->sg_blkidx += host->blocksize;
604 /* data->sg->length must be a multiple of host->blocksize? */
605 BUG_ON(host->sg_blkidx > data->sg->length);
607 if (host->sg_blkidx == data->sg->length) {
608 host->sg_blkidx = 0;
609 if (++host->sg_idx < data->sg_len)
610 host->pio_ptr = sg_virt(++data->sg);
611 } else {
612 host->pio_ptr = p;
615 return host->sg_idx != data->sg_len;
618 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
619 struct mmc_request *mrq)
621 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
622 BLOCK_SIZE_MASK) + 3;
624 host->wait_for = MMCIF_WAIT_FOR_READ;
626 /* buf read enable */
627 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
630 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
632 struct device *dev = sh_mmcif_host_to_dev(host);
633 struct mmc_data *data = host->mrq->data;
634 u32 *p = sg_virt(data->sg);
635 int i;
637 if (host->sd_error) {
638 data->error = sh_mmcif_error_manage(host);
639 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
640 return false;
643 for (i = 0; i < host->blocksize / 4; i++)
644 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
646 /* buffer read end */
647 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
648 host->wait_for = MMCIF_WAIT_FOR_READ_END;
650 return true;
653 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
654 struct mmc_request *mrq)
656 struct mmc_data *data = mrq->data;
658 if (!data->sg_len || !data->sg->length)
659 return;
661 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
662 BLOCK_SIZE_MASK;
664 host->wait_for = MMCIF_WAIT_FOR_MREAD;
665 host->sg_idx = 0;
666 host->sg_blkidx = 0;
667 host->pio_ptr = sg_virt(data->sg);
669 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
672 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
674 struct device *dev = sh_mmcif_host_to_dev(host);
675 struct mmc_data *data = host->mrq->data;
676 u32 *p = host->pio_ptr;
677 int i;
679 if (host->sd_error) {
680 data->error = sh_mmcif_error_manage(host);
681 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
682 return false;
685 BUG_ON(!data->sg->length);
687 for (i = 0; i < host->blocksize / 4; i++)
688 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
690 if (!sh_mmcif_next_block(host, p))
691 return false;
693 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
695 return true;
698 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
699 struct mmc_request *mrq)
701 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
702 BLOCK_SIZE_MASK) + 3;
704 host->wait_for = MMCIF_WAIT_FOR_WRITE;
706 /* buf write enable */
707 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
710 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
712 struct device *dev = sh_mmcif_host_to_dev(host);
713 struct mmc_data *data = host->mrq->data;
714 u32 *p = sg_virt(data->sg);
715 int i;
717 if (host->sd_error) {
718 data->error = sh_mmcif_error_manage(host);
719 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
720 return false;
723 for (i = 0; i < host->blocksize / 4; i++)
724 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
726 /* buffer write end */
727 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
728 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
730 return true;
733 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
734 struct mmc_request *mrq)
736 struct mmc_data *data = mrq->data;
738 if (!data->sg_len || !data->sg->length)
739 return;
741 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
742 BLOCK_SIZE_MASK;
744 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
745 host->sg_idx = 0;
746 host->sg_blkidx = 0;
747 host->pio_ptr = sg_virt(data->sg);
749 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
752 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
754 struct device *dev = sh_mmcif_host_to_dev(host);
755 struct mmc_data *data = host->mrq->data;
756 u32 *p = host->pio_ptr;
757 int i;
759 if (host->sd_error) {
760 data->error = sh_mmcif_error_manage(host);
761 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
762 return false;
765 BUG_ON(!data->sg->length);
767 for (i = 0; i < host->blocksize / 4; i++)
768 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
770 if (!sh_mmcif_next_block(host, p))
771 return false;
773 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
775 return true;
778 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
779 struct mmc_command *cmd)
781 if (cmd->flags & MMC_RSP_136) {
782 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
783 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
784 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
785 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
786 } else
787 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
790 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
791 struct mmc_command *cmd)
793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
796 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
797 struct mmc_request *mrq)
799 struct device *dev = sh_mmcif_host_to_dev(host);
800 struct mmc_data *data = mrq->data;
801 struct mmc_command *cmd = mrq->cmd;
802 u32 opc = cmd->opcode;
803 u32 tmp = 0;
805 /* Response Type check */
806 switch (mmc_resp_type(cmd)) {
807 case MMC_RSP_NONE:
808 tmp |= CMD_SET_RTYP_NO;
809 break;
810 case MMC_RSP_R1:
811 case MMC_RSP_R3:
812 tmp |= CMD_SET_RTYP_6B;
813 break;
814 case MMC_RSP_R1B:
815 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
816 break;
817 case MMC_RSP_R2:
818 tmp |= CMD_SET_RTYP_17B;
819 break;
820 default:
821 dev_err(dev, "Unsupported response type.\n");
822 break;
825 /* WDAT / DATW */
826 if (data) {
827 tmp |= CMD_SET_WDAT;
828 switch (host->bus_width) {
829 case MMC_BUS_WIDTH_1:
830 tmp |= CMD_SET_DATW_1;
831 break;
832 case MMC_BUS_WIDTH_4:
833 tmp |= CMD_SET_DATW_4;
834 break;
835 case MMC_BUS_WIDTH_8:
836 tmp |= CMD_SET_DATW_8;
837 break;
838 default:
839 dev_err(dev, "Unsupported bus width.\n");
840 break;
842 switch (host->timing) {
843 case MMC_TIMING_MMC_DDR52:
845 * MMC core will only set this timing, if the host
846 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
847 * capability. MMCIF implementations with this
848 * capability, e.g. sh73a0, will have to set it
849 * in their platform data.
851 tmp |= CMD_SET_DARS;
852 break;
855 /* DWEN */
856 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
857 tmp |= CMD_SET_DWEN;
858 /* CMLTE/CMD12EN */
859 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
860 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
861 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
862 data->blocks << 16);
864 /* RIDXC[1:0] check bits */
865 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
866 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
867 tmp |= CMD_SET_RIDXC_BITS;
868 /* RCRC7C[1:0] check bits */
869 if (opc == MMC_SEND_OP_COND)
870 tmp |= CMD_SET_CRC7C_BITS;
871 /* RCRC7C[1:0] internal CRC7 */
872 if (opc == MMC_ALL_SEND_CID ||
873 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
874 tmp |= CMD_SET_CRC7C_INTERNAL;
876 return (opc << 24) | tmp;
879 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
880 struct mmc_request *mrq, u32 opc)
882 struct device *dev = sh_mmcif_host_to_dev(host);
884 switch (opc) {
885 case MMC_READ_MULTIPLE_BLOCK:
886 sh_mmcif_multi_read(host, mrq);
887 return 0;
888 case MMC_WRITE_MULTIPLE_BLOCK:
889 sh_mmcif_multi_write(host, mrq);
890 return 0;
891 case MMC_WRITE_BLOCK:
892 sh_mmcif_single_write(host, mrq);
893 return 0;
894 case MMC_READ_SINGLE_BLOCK:
895 case MMC_SEND_EXT_CSD:
896 sh_mmcif_single_read(host, mrq);
897 return 0;
898 default:
899 dev_err(dev, "Unsupported CMD%d\n", opc);
900 return -EINVAL;
904 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
905 struct mmc_request *mrq)
907 struct mmc_command *cmd = mrq->cmd;
908 u32 opc;
909 u32 mask = 0;
910 unsigned long flags;
912 if (cmd->flags & MMC_RSP_BUSY)
913 mask = MASK_START_CMD | MASK_MRBSYE;
914 else
915 mask = MASK_START_CMD | MASK_MCRSPE;
917 if (host->ccs_enable)
918 mask |= MASK_MCCSTO;
920 if (mrq->data) {
921 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
922 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
923 mrq->data->blksz);
925 opc = sh_mmcif_set_cmd(host, mrq);
927 if (host->ccs_enable)
928 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
929 else
930 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
931 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
932 /* set arg */
933 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
934 /* set cmd */
935 spin_lock_irqsave(&host->lock, flags);
936 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
938 host->wait_for = MMCIF_WAIT_FOR_CMD;
939 schedule_delayed_work(&host->timeout_work, host->timeout);
940 spin_unlock_irqrestore(&host->lock, flags);
943 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
944 struct mmc_request *mrq)
946 struct device *dev = sh_mmcif_host_to_dev(host);
948 switch (mrq->cmd->opcode) {
949 case MMC_READ_MULTIPLE_BLOCK:
950 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
951 break;
952 case MMC_WRITE_MULTIPLE_BLOCK:
953 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
954 break;
955 default:
956 dev_err(dev, "unsupported stop cmd\n");
957 mrq->stop->error = sh_mmcif_error_manage(host);
958 return;
961 host->wait_for = MMCIF_WAIT_FOR_STOP;
964 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
966 struct sh_mmcif_host *host = mmc_priv(mmc);
967 struct device *dev = sh_mmcif_host_to_dev(host);
968 unsigned long flags;
970 spin_lock_irqsave(&host->lock, flags);
971 if (host->state != STATE_IDLE) {
972 dev_dbg(dev, "%s() rejected, state %u\n",
973 __func__, host->state);
974 spin_unlock_irqrestore(&host->lock, flags);
975 mrq->cmd->error = -EAGAIN;
976 mmc_request_done(mmc, mrq);
977 return;
980 host->state = STATE_REQUEST;
981 spin_unlock_irqrestore(&host->lock, flags);
983 host->mrq = mrq;
985 sh_mmcif_start_cmd(host, mrq);
988 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
990 struct device *dev = sh_mmcif_host_to_dev(host);
992 if (host->mmc->f_max) {
993 unsigned int f_max, f_min = 0, f_min_old;
995 f_max = host->mmc->f_max;
996 for (f_min_old = f_max; f_min_old > 2;) {
997 f_min = clk_round_rate(host->clk, f_min_old / 2);
998 if (f_min == f_min_old)
999 break;
1000 f_min_old = f_min;
1004 * This driver assumes this SoC is R-Car Gen2 or later
1006 host->clkdiv_map = 0x3ff;
1008 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010 } else {
1011 unsigned int clk = clk_get_rate(host->clk);
1013 host->mmc->f_max = clk / 2;
1014 host->mmc->f_min = clk / 512;
1017 dev_dbg(dev, "clk max/min = %d/%d\n",
1018 host->mmc->f_max, host->mmc->f_min);
1021 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1023 struct sh_mmcif_host *host = mmc_priv(mmc);
1024 struct device *dev = sh_mmcif_host_to_dev(host);
1025 unsigned long flags;
1027 spin_lock_irqsave(&host->lock, flags);
1028 if (host->state != STATE_IDLE) {
1029 dev_dbg(dev, "%s() rejected, state %u\n",
1030 __func__, host->state);
1031 spin_unlock_irqrestore(&host->lock, flags);
1032 return;
1035 host->state = STATE_IOS;
1036 spin_unlock_irqrestore(&host->lock, flags);
1038 switch (ios->power_mode) {
1039 case MMC_POWER_UP:
1040 if (!IS_ERR(mmc->supply.vmmc))
1041 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042 if (!host->power) {
1043 clk_prepare_enable(host->clk);
1044 pm_runtime_get_sync(dev);
1045 sh_mmcif_sync_reset(host);
1046 sh_mmcif_request_dma(host);
1047 host->power = true;
1049 break;
1050 case MMC_POWER_OFF:
1051 if (!IS_ERR(mmc->supply.vmmc))
1052 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053 if (host->power) {
1054 sh_mmcif_clock_control(host, 0);
1055 sh_mmcif_release_dma(host);
1056 pm_runtime_put(dev);
1057 clk_disable_unprepare(host->clk);
1058 host->power = false;
1060 break;
1061 case MMC_POWER_ON:
1062 sh_mmcif_clock_control(host, ios->clock);
1063 break;
1066 host->timing = ios->timing;
1067 host->bus_width = ios->bus_width;
1068 host->state = STATE_IDLE;
1071 static const struct mmc_host_ops sh_mmcif_ops = {
1072 .request = sh_mmcif_request,
1073 .set_ios = sh_mmcif_set_ios,
1074 .get_cd = mmc_gpio_get_cd,
1077 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1079 struct mmc_command *cmd = host->mrq->cmd;
1080 struct mmc_data *data = host->mrq->data;
1081 struct device *dev = sh_mmcif_host_to_dev(host);
1082 long time;
1084 if (host->sd_error) {
1085 switch (cmd->opcode) {
1086 case MMC_ALL_SEND_CID:
1087 case MMC_SELECT_CARD:
1088 case MMC_APP_CMD:
1089 cmd->error = -ETIMEDOUT;
1090 break;
1091 default:
1092 cmd->error = sh_mmcif_error_manage(host);
1093 break;
1095 dev_dbg(dev, "CMD%d error %d\n",
1096 cmd->opcode, cmd->error);
1097 host->sd_error = false;
1098 return false;
1100 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101 cmd->error = 0;
1102 return false;
1105 sh_mmcif_get_response(host, cmd);
1107 if (!data)
1108 return false;
1111 * Completion can be signalled from DMA callback and error, so, have to
1112 * reset here, before setting .dma_active
1114 init_completion(&host->dma_complete);
1116 if (data->flags & MMC_DATA_READ) {
1117 if (host->chan_rx)
1118 sh_mmcif_start_dma_rx(host);
1119 } else {
1120 if (host->chan_tx)
1121 sh_mmcif_start_dma_tx(host);
1124 if (!host->dma_active) {
1125 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126 return !data->error;
1129 /* Running in the IRQ thread, can sleep */
1130 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131 host->timeout);
1133 if (data->flags & MMC_DATA_READ)
1134 dma_unmap_sg(host->chan_rx->device->dev,
1135 data->sg, data->sg_len,
1136 DMA_FROM_DEVICE);
1137 else
1138 dma_unmap_sg(host->chan_tx->device->dev,
1139 data->sg, data->sg_len,
1140 DMA_TO_DEVICE);
1142 if (host->sd_error) {
1143 dev_err(host->mmc->parent,
1144 "Error IRQ while waiting for DMA completion!\n");
1145 /* Woken up by an error IRQ: abort DMA */
1146 data->error = sh_mmcif_error_manage(host);
1147 } else if (!time) {
1148 dev_err(host->mmc->parent, "DMA timeout!\n");
1149 data->error = -ETIMEDOUT;
1150 } else if (time < 0) {
1151 dev_err(host->mmc->parent,
1152 "wait_for_completion_...() error %ld!\n", time);
1153 data->error = time;
1155 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157 host->dma_active = false;
1159 if (data->error) {
1160 data->bytes_xfered = 0;
1161 /* Abort DMA */
1162 if (data->flags & MMC_DATA_READ)
1163 dmaengine_terminate_all(host->chan_rx);
1164 else
1165 dmaengine_terminate_all(host->chan_tx);
1168 return false;
1171 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1173 struct sh_mmcif_host *host = dev_id;
1174 struct mmc_request *mrq;
1175 struct device *dev = sh_mmcif_host_to_dev(host);
1176 bool wait = false;
1177 unsigned long flags;
1178 int wait_work;
1180 spin_lock_irqsave(&host->lock, flags);
1181 wait_work = host->wait_for;
1182 spin_unlock_irqrestore(&host->lock, flags);
1184 cancel_delayed_work_sync(&host->timeout_work);
1186 mutex_lock(&host->thread_lock);
1188 mrq = host->mrq;
1189 if (!mrq) {
1190 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191 host->state, host->wait_for);
1192 mutex_unlock(&host->thread_lock);
1193 return IRQ_HANDLED;
1197 * All handlers return true, if processing continues, and false, if the
1198 * request has to be completed - successfully or not
1200 switch (wait_work) {
1201 case MMCIF_WAIT_FOR_REQUEST:
1202 /* We're too late, the timeout has already kicked in */
1203 mutex_unlock(&host->thread_lock);
1204 return IRQ_HANDLED;
1205 case MMCIF_WAIT_FOR_CMD:
1206 /* Wait for data? */
1207 wait = sh_mmcif_end_cmd(host);
1208 break;
1209 case MMCIF_WAIT_FOR_MREAD:
1210 /* Wait for more data? */
1211 wait = sh_mmcif_mread_block(host);
1212 break;
1213 case MMCIF_WAIT_FOR_READ:
1214 /* Wait for data end? */
1215 wait = sh_mmcif_read_block(host);
1216 break;
1217 case MMCIF_WAIT_FOR_MWRITE:
1218 /* Wait data to write? */
1219 wait = sh_mmcif_mwrite_block(host);
1220 break;
1221 case MMCIF_WAIT_FOR_WRITE:
1222 /* Wait for data end? */
1223 wait = sh_mmcif_write_block(host);
1224 break;
1225 case MMCIF_WAIT_FOR_STOP:
1226 if (host->sd_error) {
1227 mrq->stop->error = sh_mmcif_error_manage(host);
1228 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229 break;
1231 sh_mmcif_get_cmd12response(host, mrq->stop);
1232 mrq->stop->error = 0;
1233 break;
1234 case MMCIF_WAIT_FOR_READ_END:
1235 case MMCIF_WAIT_FOR_WRITE_END:
1236 if (host->sd_error) {
1237 mrq->data->error = sh_mmcif_error_manage(host);
1238 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1240 break;
1241 default:
1242 BUG();
1245 if (wait) {
1246 schedule_delayed_work(&host->timeout_work, host->timeout);
1247 /* Wait for more data */
1248 mutex_unlock(&host->thread_lock);
1249 return IRQ_HANDLED;
1252 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253 struct mmc_data *data = mrq->data;
1254 if (!mrq->cmd->error && data && !data->error)
1255 data->bytes_xfered =
1256 data->blocks * data->blksz;
1258 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259 sh_mmcif_stop_cmd(host, mrq);
1260 if (!mrq->stop->error) {
1261 schedule_delayed_work(&host->timeout_work, host->timeout);
1262 mutex_unlock(&host->thread_lock);
1263 return IRQ_HANDLED;
1268 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269 host->state = STATE_IDLE;
1270 host->mrq = NULL;
1271 mmc_request_done(host->mmc, mrq);
1273 mutex_unlock(&host->thread_lock);
1275 return IRQ_HANDLED;
1278 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1280 struct sh_mmcif_host *host = dev_id;
1281 struct device *dev = sh_mmcif_host_to_dev(host);
1282 u32 state, mask;
1284 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286 if (host->ccs_enable)
1287 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288 else
1289 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1292 if (state & ~MASK_CLEAN)
1293 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294 state);
1296 if (state & INT_ERR_STS || state & ~INT_ALL) {
1297 host->sd_error = true;
1298 dev_dbg(dev, "int err state = 0x%08x\n", state);
1300 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301 if (!host->mrq)
1302 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303 if (!host->dma_active)
1304 return IRQ_WAKE_THREAD;
1305 else if (host->sd_error)
1306 sh_mmcif_dma_complete(host);
1307 } else {
1308 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1311 return IRQ_HANDLED;
1314 static void sh_mmcif_timeout_work(struct work_struct *work)
1316 struct delayed_work *d = to_delayed_work(work);
1317 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318 struct mmc_request *mrq = host->mrq;
1319 struct device *dev = sh_mmcif_host_to_dev(host);
1320 unsigned long flags;
1322 if (host->dying)
1323 /* Don't run after mmc_remove_host() */
1324 return;
1326 spin_lock_irqsave(&host->lock, flags);
1327 if (host->state == STATE_IDLE) {
1328 spin_unlock_irqrestore(&host->lock, flags);
1329 return;
1332 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333 host->wait_for, mrq->cmd->opcode);
1335 host->state = STATE_TIMEOUT;
1336 spin_unlock_irqrestore(&host->lock, flags);
1339 * Handle races with cancel_delayed_work(), unless
1340 * cancel_delayed_work_sync() is used
1342 switch (host->wait_for) {
1343 case MMCIF_WAIT_FOR_CMD:
1344 mrq->cmd->error = sh_mmcif_error_manage(host);
1345 break;
1346 case MMCIF_WAIT_FOR_STOP:
1347 mrq->stop->error = sh_mmcif_error_manage(host);
1348 break;
1349 case MMCIF_WAIT_FOR_MREAD:
1350 case MMCIF_WAIT_FOR_MWRITE:
1351 case MMCIF_WAIT_FOR_READ:
1352 case MMCIF_WAIT_FOR_WRITE:
1353 case MMCIF_WAIT_FOR_READ_END:
1354 case MMCIF_WAIT_FOR_WRITE_END:
1355 mrq->data->error = sh_mmcif_error_manage(host);
1356 break;
1357 default:
1358 BUG();
1361 host->state = STATE_IDLE;
1362 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363 host->mrq = NULL;
1364 mmc_request_done(host->mmc, mrq);
1367 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1369 struct device *dev = sh_mmcif_host_to_dev(host);
1370 struct sh_mmcif_plat_data *pd = dev->platform_data;
1371 struct mmc_host *mmc = host->mmc;
1373 mmc_regulator_get_supply(mmc);
1375 if (!pd)
1376 return;
1378 if (!mmc->ocr_avail)
1379 mmc->ocr_avail = pd->ocr;
1380 else if (pd->ocr)
1381 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1384 static int sh_mmcif_probe(struct platform_device *pdev)
1386 int ret = 0, irq[2];
1387 struct mmc_host *mmc;
1388 struct sh_mmcif_host *host;
1389 struct device *dev = &pdev->dev;
1390 struct sh_mmcif_plat_data *pd = dev->platform_data;
1391 struct resource *res;
1392 void __iomem *reg;
1393 const char *name;
1395 irq[0] = platform_get_irq(pdev, 0);
1396 irq[1] = platform_get_irq(pdev, 1);
1397 if (irq[0] < 0) {
1398 dev_err(dev, "Get irq error\n");
1399 return -ENXIO;
1402 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1403 reg = devm_ioremap_resource(dev, res);
1404 if (IS_ERR(reg))
1405 return PTR_ERR(reg);
1407 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408 if (!mmc)
1409 return -ENOMEM;
1411 ret = mmc_of_parse(mmc);
1412 if (ret < 0)
1413 goto err_host;
1415 host = mmc_priv(mmc);
1416 host->mmc = mmc;
1417 host->addr = reg;
1418 host->timeout = msecs_to_jiffies(10000);
1419 host->ccs_enable = true;
1420 host->clk_ctrl2_enable = false;
1422 host->pd = pdev;
1424 spin_lock_init(&host->lock);
1426 mmc->ops = &sh_mmcif_ops;
1427 sh_mmcif_init_ocr(host);
1429 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431 mmc->max_busy_timeout = 10000;
1433 if (pd && pd->caps)
1434 mmc->caps |= pd->caps;
1435 mmc->max_segs = 32;
1436 mmc->max_blk_size = 512;
1437 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439 mmc->max_seg_size = mmc->max_req_size;
1441 platform_set_drvdata(pdev, host);
1443 host->clk = devm_clk_get(dev, NULL);
1444 if (IS_ERR(host->clk)) {
1445 ret = PTR_ERR(host->clk);
1446 dev_err(dev, "cannot get clock: %d\n", ret);
1447 goto err_host;
1450 ret = clk_prepare_enable(host->clk);
1451 if (ret < 0)
1452 goto err_host;
1454 sh_mmcif_clk_setup(host);
1456 pm_runtime_enable(dev);
1457 host->power = false;
1459 ret = pm_runtime_get_sync(dev);
1460 if (ret < 0)
1461 goto err_clk;
1463 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1465 sh_mmcif_sync_reset(host);
1466 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1468 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470 sh_mmcif_irqt, 0, name, host);
1471 if (ret) {
1472 dev_err(dev, "request_irq error (%s)\n", name);
1473 goto err_clk;
1475 if (irq[1] >= 0) {
1476 ret = devm_request_threaded_irq(dev, irq[1],
1477 sh_mmcif_intr, sh_mmcif_irqt,
1478 0, "sh_mmc:int", host);
1479 if (ret) {
1480 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481 goto err_clk;
1485 mutex_init(&host->thread_lock);
1487 ret = mmc_add_host(mmc);
1488 if (ret < 0)
1489 goto err_clk;
1491 dev_pm_qos_expose_latency_limit(dev, 100);
1493 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495 clk_get_rate(host->clk) / 1000000UL);
1497 pm_runtime_put(dev);
1498 clk_disable_unprepare(host->clk);
1499 return ret;
1501 err_clk:
1502 clk_disable_unprepare(host->clk);
1503 pm_runtime_put_sync(dev);
1504 pm_runtime_disable(dev);
1505 err_host:
1506 mmc_free_host(mmc);
1507 return ret;
1510 static int sh_mmcif_remove(struct platform_device *pdev)
1512 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1514 host->dying = true;
1515 clk_prepare_enable(host->clk);
1516 pm_runtime_get_sync(&pdev->dev);
1518 dev_pm_qos_hide_latency_limit(&pdev->dev);
1520 mmc_remove_host(host->mmc);
1521 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525 * mmc_remove_host() call above. But swapping order doesn't help either
1526 * (a query on the linux-mmc mailing list didn't bring any replies).
1528 cancel_delayed_work_sync(&host->timeout_work);
1530 clk_disable_unprepare(host->clk);
1531 mmc_free_host(host->mmc);
1532 pm_runtime_put_sync(&pdev->dev);
1533 pm_runtime_disable(&pdev->dev);
1535 return 0;
1538 #ifdef CONFIG_PM_SLEEP
1539 static int sh_mmcif_suspend(struct device *dev)
1541 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1543 pm_runtime_get_sync(dev);
1544 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545 pm_runtime_put(dev);
1547 return 0;
1550 static int sh_mmcif_resume(struct device *dev)
1552 return 0;
1554 #endif
1556 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1560 static struct platform_driver sh_mmcif_driver = {
1561 .probe = sh_mmcif_probe,
1562 .remove = sh_mmcif_remove,
1563 .driver = {
1564 .name = DRIVER_NAME,
1565 .pm = &sh_mmcif_dev_pm_ops,
1566 .of_match_table = sh_mmcif_of_match,
1570 module_platform_driver(sh_mmcif_driver);
1572 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573 MODULE_LICENSE("GPL v2");
1574 MODULE_ALIAS("platform:" DRIVER_NAME);
1575 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");