perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / mtd / mtdconcat.c
blobcbc5925e6440746f7ad158bb6b24daf4a3e0267d
1 /*
2 * MTD device concatenation layer
4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7 * NAND support by Christian Gan <cgan@iders.ca>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
35 #include <asm/div64.h>
38 * Our storage structure:
39 * Subdev points to an array of pointers to struct mtd_info objects
40 * which is allocated along with this structure
43 struct mtd_concat {
44 struct mtd_info mtd;
45 int num_subdev;
46 struct mtd_info **subdev;
50 * how to calculate the size required for the above structure,
51 * including the pointer array subdev points to:
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
57 * Given a pointer to the MTD object in the mtd_concat structure,
58 * we can retrieve the pointer to that structure with this macro.
60 #define CONCAT(x) ((struct mtd_concat *)(x))
63 * MTD methods which look up the relevant subdevice, translate the
64 * effective address and pass through to the subdevice.
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 size_t * retlen, u_char * buf)
71 struct mtd_concat *concat = CONCAT(mtd);
72 int ret = 0, err;
73 int i;
75 for (i = 0; i < concat->num_subdev; i++) {
76 struct mtd_info *subdev = concat->subdev[i];
77 size_t size, retsize;
79 if (from >= subdev->size) {
80 /* Not destined for this subdev */
81 size = 0;
82 from -= subdev->size;
83 continue;
85 if (from + len > subdev->size)
86 /* First part goes into this subdev */
87 size = subdev->size - from;
88 else
89 /* Entire transaction goes into this subdev */
90 size = len;
92 err = mtd_read(subdev, from, size, &retsize, buf);
94 /* Save information about bitflips! */
95 if (unlikely(err)) {
96 if (mtd_is_eccerr(err)) {
97 mtd->ecc_stats.failed++;
98 ret = err;
99 } else if (mtd_is_bitflip(err)) {
100 mtd->ecc_stats.corrected++;
101 /* Do not overwrite -EBADMSG !! */
102 if (!ret)
103 ret = err;
104 } else
105 return err;
108 *retlen += retsize;
109 len -= size;
110 if (len == 0)
111 return ret;
113 buf += size;
114 from = 0;
116 return -EINVAL;
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 size_t * retlen, const u_char * buf)
123 struct mtd_concat *concat = CONCAT(mtd);
124 int err = -EINVAL;
125 int i;
127 for (i = 0; i < concat->num_subdev; i++) {
128 struct mtd_info *subdev = concat->subdev[i];
129 size_t size, retsize;
131 if (to >= subdev->size) {
132 size = 0;
133 to -= subdev->size;
134 continue;
136 if (to + len > subdev->size)
137 size = subdev->size - to;
138 else
139 size = len;
141 err = mtd_write(subdev, to, size, &retsize, buf);
142 if (err)
143 break;
145 *retlen += retsize;
146 len -= size;
147 if (len == 0)
148 break;
150 err = -EINVAL;
151 buf += size;
152 to = 0;
154 return err;
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159 unsigned long count, loff_t to, size_t * retlen)
161 struct mtd_concat *concat = CONCAT(mtd);
162 struct kvec *vecs_copy;
163 unsigned long entry_low, entry_high;
164 size_t total_len = 0;
165 int i;
166 int err = -EINVAL;
168 /* Calculate total length of data */
169 for (i = 0; i < count; i++)
170 total_len += vecs[i].iov_len;
172 /* Check alignment */
173 if (mtd->writesize > 1) {
174 uint64_t __to = to;
175 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176 return -EINVAL;
179 /* make a copy of vecs */
180 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181 if (!vecs_copy)
182 return -ENOMEM;
184 entry_low = 0;
185 for (i = 0; i < concat->num_subdev; i++) {
186 struct mtd_info *subdev = concat->subdev[i];
187 size_t size, wsize, retsize, old_iov_len;
189 if (to >= subdev->size) {
190 to -= subdev->size;
191 continue;
194 size = min_t(uint64_t, total_len, subdev->size - to);
195 wsize = size; /* store for future use */
197 entry_high = entry_low;
198 while (entry_high < count) {
199 if (size <= vecs_copy[entry_high].iov_len)
200 break;
201 size -= vecs_copy[entry_high++].iov_len;
204 old_iov_len = vecs_copy[entry_high].iov_len;
205 vecs_copy[entry_high].iov_len = size;
207 err = mtd_writev(subdev, &vecs_copy[entry_low],
208 entry_high - entry_low + 1, to, &retsize);
210 vecs_copy[entry_high].iov_len = old_iov_len - size;
211 vecs_copy[entry_high].iov_base += size;
213 entry_low = entry_high;
215 if (err)
216 break;
218 *retlen += retsize;
219 total_len -= wsize;
221 if (total_len == 0)
222 break;
224 err = -EINVAL;
225 to = 0;
228 kfree(vecs_copy);
229 return err;
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
235 struct mtd_concat *concat = CONCAT(mtd);
236 struct mtd_oob_ops devops = *ops;
237 int i, err, ret = 0;
239 ops->retlen = ops->oobretlen = 0;
241 for (i = 0; i < concat->num_subdev; i++) {
242 struct mtd_info *subdev = concat->subdev[i];
244 if (from >= subdev->size) {
245 from -= subdev->size;
246 continue;
249 /* partial read ? */
250 if (from + devops.len > subdev->size)
251 devops.len = subdev->size - from;
253 err = mtd_read_oob(subdev, from, &devops);
254 ops->retlen += devops.retlen;
255 ops->oobretlen += devops.oobretlen;
257 /* Save information about bitflips! */
258 if (unlikely(err)) {
259 if (mtd_is_eccerr(err)) {
260 mtd->ecc_stats.failed++;
261 ret = err;
262 } else if (mtd_is_bitflip(err)) {
263 mtd->ecc_stats.corrected++;
264 /* Do not overwrite -EBADMSG !! */
265 if (!ret)
266 ret = err;
267 } else
268 return err;
271 if (devops.datbuf) {
272 devops.len = ops->len - ops->retlen;
273 if (!devops.len)
274 return ret;
275 devops.datbuf += devops.retlen;
277 if (devops.oobbuf) {
278 devops.ooblen = ops->ooblen - ops->oobretlen;
279 if (!devops.ooblen)
280 return ret;
281 devops.oobbuf += ops->oobretlen;
284 from = 0;
286 return -EINVAL;
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
292 struct mtd_concat *concat = CONCAT(mtd);
293 struct mtd_oob_ops devops = *ops;
294 int i, err;
296 if (!(mtd->flags & MTD_WRITEABLE))
297 return -EROFS;
299 ops->retlen = ops->oobretlen = 0;
301 for (i = 0; i < concat->num_subdev; i++) {
302 struct mtd_info *subdev = concat->subdev[i];
304 if (to >= subdev->size) {
305 to -= subdev->size;
306 continue;
309 /* partial write ? */
310 if (to + devops.len > subdev->size)
311 devops.len = subdev->size - to;
313 err = mtd_write_oob(subdev, to, &devops);
314 ops->retlen += devops.retlen;
315 ops->oobretlen += devops.oobretlen;
316 if (err)
317 return err;
319 if (devops.datbuf) {
320 devops.len = ops->len - ops->retlen;
321 if (!devops.len)
322 return 0;
323 devops.datbuf += devops.retlen;
325 if (devops.oobbuf) {
326 devops.ooblen = ops->ooblen - ops->oobretlen;
327 if (!devops.ooblen)
328 return 0;
329 devops.oobbuf += devops.oobretlen;
331 to = 0;
333 return -EINVAL;
336 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
338 struct mtd_concat *concat = CONCAT(mtd);
339 struct mtd_info *subdev;
340 int i, err;
341 uint64_t length, offset = 0;
342 struct erase_info *erase;
345 * Check for proper erase block alignment of the to-be-erased area.
346 * It is easier to do this based on the super device's erase
347 * region info rather than looking at each particular sub-device
348 * in turn.
350 if (!concat->mtd.numeraseregions) {
351 /* the easy case: device has uniform erase block size */
352 if (instr->addr & (concat->mtd.erasesize - 1))
353 return -EINVAL;
354 if (instr->len & (concat->mtd.erasesize - 1))
355 return -EINVAL;
356 } else {
357 /* device has variable erase size */
358 struct mtd_erase_region_info *erase_regions =
359 concat->mtd.eraseregions;
362 * Find the erase region where the to-be-erased area begins:
364 for (i = 0; i < concat->mtd.numeraseregions &&
365 instr->addr >= erase_regions[i].offset; i++) ;
366 --i;
369 * Now erase_regions[i] is the region in which the
370 * to-be-erased area begins. Verify that the starting
371 * offset is aligned to this region's erase size:
373 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
374 return -EINVAL;
377 * now find the erase region where the to-be-erased area ends:
379 for (; i < concat->mtd.numeraseregions &&
380 (instr->addr + instr->len) >= erase_regions[i].offset;
381 ++i) ;
382 --i;
384 * check if the ending offset is aligned to this region's erase size
386 if (i < 0 || ((instr->addr + instr->len) &
387 (erase_regions[i].erasesize - 1)))
388 return -EINVAL;
391 /* make a local copy of instr to avoid modifying the caller's struct */
392 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
394 if (!erase)
395 return -ENOMEM;
397 *erase = *instr;
398 length = instr->len;
401 * find the subdevice where the to-be-erased area begins, adjust
402 * starting offset to be relative to the subdevice start
404 for (i = 0; i < concat->num_subdev; i++) {
405 subdev = concat->subdev[i];
406 if (subdev->size <= erase->addr) {
407 erase->addr -= subdev->size;
408 offset += subdev->size;
409 } else {
410 break;
414 /* must never happen since size limit has been verified above */
415 BUG_ON(i >= concat->num_subdev);
417 /* now do the erase: */
418 err = 0;
419 for (; length > 0; i++) {
420 /* loop for all subdevices affected by this request */
421 subdev = concat->subdev[i]; /* get current subdevice */
423 /* limit length to subdevice's size: */
424 if (erase->addr + length > subdev->size)
425 erase->len = subdev->size - erase->addr;
426 else
427 erase->len = length;
429 length -= erase->len;
430 if ((err = mtd_erase(subdev, erase))) {
431 /* sanity check: should never happen since
432 * block alignment has been checked above */
433 BUG_ON(err == -EINVAL);
434 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
435 instr->fail_addr = erase->fail_addr + offset;
436 break;
439 * erase->addr specifies the offset of the area to be
440 * erased *within the current subdevice*. It can be
441 * non-zero only the first time through this loop, i.e.
442 * for the first subdevice where blocks need to be erased.
443 * All the following erases must begin at the start of the
444 * current subdevice, i.e. at offset zero.
446 erase->addr = 0;
447 offset += subdev->size;
449 kfree(erase);
451 return err;
454 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
456 struct mtd_concat *concat = CONCAT(mtd);
457 int i, err = -EINVAL;
459 for (i = 0; i < concat->num_subdev; i++) {
460 struct mtd_info *subdev = concat->subdev[i];
461 uint64_t size;
463 if (ofs >= subdev->size) {
464 size = 0;
465 ofs -= subdev->size;
466 continue;
468 if (ofs + len > subdev->size)
469 size = subdev->size - ofs;
470 else
471 size = len;
473 err = mtd_lock(subdev, ofs, size);
474 if (err)
475 break;
477 len -= size;
478 if (len == 0)
479 break;
481 err = -EINVAL;
482 ofs = 0;
485 return err;
488 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
490 struct mtd_concat *concat = CONCAT(mtd);
491 int i, err = 0;
493 for (i = 0; i < concat->num_subdev; i++) {
494 struct mtd_info *subdev = concat->subdev[i];
495 uint64_t size;
497 if (ofs >= subdev->size) {
498 size = 0;
499 ofs -= subdev->size;
500 continue;
502 if (ofs + len > subdev->size)
503 size = subdev->size - ofs;
504 else
505 size = len;
507 err = mtd_unlock(subdev, ofs, size);
508 if (err)
509 break;
511 len -= size;
512 if (len == 0)
513 break;
515 err = -EINVAL;
516 ofs = 0;
519 return err;
522 static void concat_sync(struct mtd_info *mtd)
524 struct mtd_concat *concat = CONCAT(mtd);
525 int i;
527 for (i = 0; i < concat->num_subdev; i++) {
528 struct mtd_info *subdev = concat->subdev[i];
529 mtd_sync(subdev);
533 static int concat_suspend(struct mtd_info *mtd)
535 struct mtd_concat *concat = CONCAT(mtd);
536 int i, rc = 0;
538 for (i = 0; i < concat->num_subdev; i++) {
539 struct mtd_info *subdev = concat->subdev[i];
540 if ((rc = mtd_suspend(subdev)) < 0)
541 return rc;
543 return rc;
546 static void concat_resume(struct mtd_info *mtd)
548 struct mtd_concat *concat = CONCAT(mtd);
549 int i;
551 for (i = 0; i < concat->num_subdev; i++) {
552 struct mtd_info *subdev = concat->subdev[i];
553 mtd_resume(subdev);
557 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
559 struct mtd_concat *concat = CONCAT(mtd);
560 int i, res = 0;
562 if (!mtd_can_have_bb(concat->subdev[0]))
563 return res;
565 for (i = 0; i < concat->num_subdev; i++) {
566 struct mtd_info *subdev = concat->subdev[i];
568 if (ofs >= subdev->size) {
569 ofs -= subdev->size;
570 continue;
573 res = mtd_block_isbad(subdev, ofs);
574 break;
577 return res;
580 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
582 struct mtd_concat *concat = CONCAT(mtd);
583 int i, err = -EINVAL;
585 for (i = 0; i < concat->num_subdev; i++) {
586 struct mtd_info *subdev = concat->subdev[i];
588 if (ofs >= subdev->size) {
589 ofs -= subdev->size;
590 continue;
593 err = mtd_block_markbad(subdev, ofs);
594 if (!err)
595 mtd->ecc_stats.badblocks++;
596 break;
599 return err;
603 * This function constructs a virtual MTD device by concatenating
604 * num_devs MTD devices. A pointer to the new device object is
605 * stored to *new_dev upon success. This function does _not_
606 * register any devices: this is the caller's responsibility.
608 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
609 int num_devs, /* number of subdevices */
610 const char *name)
611 { /* name for the new device */
612 int i;
613 size_t size;
614 struct mtd_concat *concat;
615 uint32_t max_erasesize, curr_erasesize;
616 int num_erase_region;
617 int max_writebufsize = 0;
619 printk(KERN_NOTICE "Concatenating MTD devices:\n");
620 for (i = 0; i < num_devs; i++)
621 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
622 printk(KERN_NOTICE "into device \"%s\"\n", name);
624 /* allocate the device structure */
625 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
626 concat = kzalloc(size, GFP_KERNEL);
627 if (!concat) {
628 printk
629 ("memory allocation error while creating concatenated device \"%s\"\n",
630 name);
631 return NULL;
633 concat->subdev = (struct mtd_info **) (concat + 1);
636 * Set up the new "super" device's MTD object structure, check for
637 * incompatibilities between the subdevices.
639 concat->mtd.type = subdev[0]->type;
640 concat->mtd.flags = subdev[0]->flags;
641 concat->mtd.size = subdev[0]->size;
642 concat->mtd.erasesize = subdev[0]->erasesize;
643 concat->mtd.writesize = subdev[0]->writesize;
645 for (i = 0; i < num_devs; i++)
646 if (max_writebufsize < subdev[i]->writebufsize)
647 max_writebufsize = subdev[i]->writebufsize;
648 concat->mtd.writebufsize = max_writebufsize;
650 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
651 concat->mtd.oobsize = subdev[0]->oobsize;
652 concat->mtd.oobavail = subdev[0]->oobavail;
653 if (subdev[0]->_writev)
654 concat->mtd._writev = concat_writev;
655 if (subdev[0]->_read_oob)
656 concat->mtd._read_oob = concat_read_oob;
657 if (subdev[0]->_write_oob)
658 concat->mtd._write_oob = concat_write_oob;
659 if (subdev[0]->_block_isbad)
660 concat->mtd._block_isbad = concat_block_isbad;
661 if (subdev[0]->_block_markbad)
662 concat->mtd._block_markbad = concat_block_markbad;
664 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
666 concat->subdev[0] = subdev[0];
668 for (i = 1; i < num_devs; i++) {
669 if (concat->mtd.type != subdev[i]->type) {
670 kfree(concat);
671 printk("Incompatible device type on \"%s\"\n",
672 subdev[i]->name);
673 return NULL;
675 if (concat->mtd.flags != subdev[i]->flags) {
677 * Expect all flags except MTD_WRITEABLE to be
678 * equal on all subdevices.
680 if ((concat->mtd.flags ^ subdev[i]->
681 flags) & ~MTD_WRITEABLE) {
682 kfree(concat);
683 printk("Incompatible device flags on \"%s\"\n",
684 subdev[i]->name);
685 return NULL;
686 } else
687 /* if writeable attribute differs,
688 make super device writeable */
689 concat->mtd.flags |=
690 subdev[i]->flags & MTD_WRITEABLE;
693 concat->mtd.size += subdev[i]->size;
694 concat->mtd.ecc_stats.badblocks +=
695 subdev[i]->ecc_stats.badblocks;
696 if (concat->mtd.writesize != subdev[i]->writesize ||
697 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
698 concat->mtd.oobsize != subdev[i]->oobsize ||
699 !concat->mtd._read_oob != !subdev[i]->_read_oob ||
700 !concat->mtd._write_oob != !subdev[i]->_write_oob) {
701 kfree(concat);
702 printk("Incompatible OOB or ECC data on \"%s\"\n",
703 subdev[i]->name);
704 return NULL;
706 concat->subdev[i] = subdev[i];
710 mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
712 concat->num_subdev = num_devs;
713 concat->mtd.name = name;
715 concat->mtd._erase = concat_erase;
716 concat->mtd._read = concat_read;
717 concat->mtd._write = concat_write;
718 concat->mtd._sync = concat_sync;
719 concat->mtd._lock = concat_lock;
720 concat->mtd._unlock = concat_unlock;
721 concat->mtd._suspend = concat_suspend;
722 concat->mtd._resume = concat_resume;
725 * Combine the erase block size info of the subdevices:
727 * first, walk the map of the new device and see how
728 * many changes in erase size we have
730 max_erasesize = curr_erasesize = subdev[0]->erasesize;
731 num_erase_region = 1;
732 for (i = 0; i < num_devs; i++) {
733 if (subdev[i]->numeraseregions == 0) {
734 /* current subdevice has uniform erase size */
735 if (subdev[i]->erasesize != curr_erasesize) {
736 /* if it differs from the last subdevice's erase size, count it */
737 ++num_erase_region;
738 curr_erasesize = subdev[i]->erasesize;
739 if (curr_erasesize > max_erasesize)
740 max_erasesize = curr_erasesize;
742 } else {
743 /* current subdevice has variable erase size */
744 int j;
745 for (j = 0; j < subdev[i]->numeraseregions; j++) {
747 /* walk the list of erase regions, count any changes */
748 if (subdev[i]->eraseregions[j].erasesize !=
749 curr_erasesize) {
750 ++num_erase_region;
751 curr_erasesize =
752 subdev[i]->eraseregions[j].
753 erasesize;
754 if (curr_erasesize > max_erasesize)
755 max_erasesize = curr_erasesize;
761 if (num_erase_region == 1) {
763 * All subdevices have the same uniform erase size.
764 * This is easy:
766 concat->mtd.erasesize = curr_erasesize;
767 concat->mtd.numeraseregions = 0;
768 } else {
769 uint64_t tmp64;
772 * erase block size varies across the subdevices: allocate
773 * space to store the data describing the variable erase regions
775 struct mtd_erase_region_info *erase_region_p;
776 uint64_t begin, position;
778 concat->mtd.erasesize = max_erasesize;
779 concat->mtd.numeraseregions = num_erase_region;
780 concat->mtd.eraseregions = erase_region_p =
781 kmalloc_array(num_erase_region,
782 sizeof(struct mtd_erase_region_info),
783 GFP_KERNEL);
784 if (!erase_region_p) {
785 kfree(concat);
786 printk
787 ("memory allocation error while creating erase region list"
788 " for device \"%s\"\n", name);
789 return NULL;
793 * walk the map of the new device once more and fill in
794 * in erase region info:
796 curr_erasesize = subdev[0]->erasesize;
797 begin = position = 0;
798 for (i = 0; i < num_devs; i++) {
799 if (subdev[i]->numeraseregions == 0) {
800 /* current subdevice has uniform erase size */
801 if (subdev[i]->erasesize != curr_erasesize) {
803 * fill in an mtd_erase_region_info structure for the area
804 * we have walked so far:
806 erase_region_p->offset = begin;
807 erase_region_p->erasesize =
808 curr_erasesize;
809 tmp64 = position - begin;
810 do_div(tmp64, curr_erasesize);
811 erase_region_p->numblocks = tmp64;
812 begin = position;
814 curr_erasesize = subdev[i]->erasesize;
815 ++erase_region_p;
817 position += subdev[i]->size;
818 } else {
819 /* current subdevice has variable erase size */
820 int j;
821 for (j = 0; j < subdev[i]->numeraseregions; j++) {
822 /* walk the list of erase regions, count any changes */
823 if (subdev[i]->eraseregions[j].
824 erasesize != curr_erasesize) {
825 erase_region_p->offset = begin;
826 erase_region_p->erasesize =
827 curr_erasesize;
828 tmp64 = position - begin;
829 do_div(tmp64, curr_erasesize);
830 erase_region_p->numblocks = tmp64;
831 begin = position;
833 curr_erasesize =
834 subdev[i]->eraseregions[j].
835 erasesize;
836 ++erase_region_p;
838 position +=
839 subdev[i]->eraseregions[j].
840 numblocks * (uint64_t)curr_erasesize;
844 /* Now write the final entry */
845 erase_region_p->offset = begin;
846 erase_region_p->erasesize = curr_erasesize;
847 tmp64 = position - begin;
848 do_div(tmp64, curr_erasesize);
849 erase_region_p->numblocks = tmp64;
852 return &concat->mtd;
856 * This function destroys an MTD object obtained from concat_mtd_devs()
859 void mtd_concat_destroy(struct mtd_info *mtd)
861 struct mtd_concat *concat = CONCAT(mtd);
862 if (concat->mtd.numeraseregions)
863 kfree(concat->mtd.eraseregions);
864 kfree(concat);
867 EXPORT_SYMBOL(mtd_concat_create);
868 EXPORT_SYMBOL(mtd_concat_destroy);
870 MODULE_LICENSE("GPL");
871 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
872 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");