perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / mtd / mtdcore.c
blob97ac219c082e7ef78993084ffcc8c9e98abaaac4
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
48 #include "mtdcore.h"
50 struct backing_dev_info *mtd_bdi;
52 #ifdef CONFIG_PM_SLEEP
54 static int mtd_cls_suspend(struct device *dev)
56 struct mtd_info *mtd = dev_get_drvdata(dev);
58 return mtd ? mtd_suspend(mtd) : 0;
61 static int mtd_cls_resume(struct device *dev)
63 struct mtd_info *mtd = dev_get_drvdata(dev);
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
82 static DEFINE_IDR(mtd_idr);
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 struct mtd_info *__mtd_next_device(int i)
91 return idr_get_next(&mtd_idr, &i);
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 static LIST_HEAD(mtd_notifiers);
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
103 static void mtd_release(struct device *dev)
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
154 struct mtd_info *mtd = dev_get_drvdata(dev);
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
164 struct mtd_info *mtd = dev_get_drvdata(dev);
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
175 struct mtd_info *mtd = dev_get_drvdata(dev);
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
185 struct mtd_info *mtd = dev_get_drvdata(dev);
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 static ssize_t mtd_oobavail_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
220 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
222 static ssize_t mtd_numeraseregions_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
225 struct mtd_info *mtd = dev_get_drvdata(dev);
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
230 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
231 NULL);
233 static ssize_t mtd_name_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
236 struct mtd_info *mtd = dev_get_drvdata(dev);
238 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
241 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
243 static ssize_t mtd_ecc_strength_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
246 struct mtd_info *mtd = dev_get_drvdata(dev);
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
250 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
252 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
253 struct device_attribute *attr,
254 char *buf)
256 struct mtd_info *mtd = dev_get_drvdata(dev);
258 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
261 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
262 struct device_attribute *attr,
263 const char *buf, size_t count)
265 struct mtd_info *mtd = dev_get_drvdata(dev);
266 unsigned int bitflip_threshold;
267 int retval;
269 retval = kstrtouint(buf, 0, &bitflip_threshold);
270 if (retval)
271 return retval;
273 mtd->bitflip_threshold = bitflip_threshold;
274 return count;
276 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
277 mtd_bitflip_threshold_show,
278 mtd_bitflip_threshold_store);
280 static ssize_t mtd_ecc_step_size_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
283 struct mtd_info *mtd = dev_get_drvdata(dev);
285 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
288 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
290 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
298 static DEVICE_ATTR(corrected_bits, S_IRUGO,
299 mtd_ecc_stats_corrected_show, NULL);
301 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
309 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
311 static ssize_t mtd_badblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
319 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
321 static ssize_t mtd_bbtblocks_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
324 struct mtd_info *mtd = dev_get_drvdata(dev);
325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
329 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
331 static struct attribute *mtd_attrs[] = {
332 &dev_attr_type.attr,
333 &dev_attr_flags.attr,
334 &dev_attr_size.attr,
335 &dev_attr_erasesize.attr,
336 &dev_attr_writesize.attr,
337 &dev_attr_subpagesize.attr,
338 &dev_attr_oobsize.attr,
339 &dev_attr_oobavail.attr,
340 &dev_attr_numeraseregions.attr,
341 &dev_attr_name.attr,
342 &dev_attr_ecc_strength.attr,
343 &dev_attr_ecc_step_size.attr,
344 &dev_attr_corrected_bits.attr,
345 &dev_attr_ecc_failures.attr,
346 &dev_attr_bad_blocks.attr,
347 &dev_attr_bbt_blocks.attr,
348 &dev_attr_bitflip_threshold.attr,
349 NULL,
351 ATTRIBUTE_GROUPS(mtd);
353 static const struct device_type mtd_devtype = {
354 .name = "mtd",
355 .groups = mtd_groups,
356 .release = mtd_release,
359 #ifndef CONFIG_MMU
360 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
362 switch (mtd->type) {
363 case MTD_RAM:
364 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
365 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
366 case MTD_ROM:
367 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
368 NOMMU_MAP_READ;
369 default:
370 return NOMMU_MAP_COPY;
373 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
374 #endif
376 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
377 void *cmd)
379 struct mtd_info *mtd;
381 mtd = container_of(n, struct mtd_info, reboot_notifier);
382 mtd->_reboot(mtd);
384 return NOTIFY_DONE;
388 * mtd_wunit_to_pairing_info - get pairing information of a wunit
389 * @mtd: pointer to new MTD device info structure
390 * @wunit: write unit we are interested in
391 * @info: returned pairing information
393 * Retrieve pairing information associated to the wunit.
394 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
395 * paired together, and where programming a page may influence the page it is
396 * paired with.
397 * The notion of page is replaced by the term wunit (write-unit) to stay
398 * consistent with the ->writesize field.
400 * The @wunit argument can be extracted from an absolute offset using
401 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
402 * to @wunit.
404 * From the pairing info the MTD user can find all the wunits paired with
405 * @wunit using the following loop:
407 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
408 * info.pair = i;
409 * mtd_pairing_info_to_wunit(mtd, &info);
410 * ...
413 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
414 struct mtd_pairing_info *info)
416 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
418 if (wunit < 0 || wunit >= npairs)
419 return -EINVAL;
421 if (mtd->pairing && mtd->pairing->get_info)
422 return mtd->pairing->get_info(mtd, wunit, info);
424 info->group = 0;
425 info->pair = wunit;
427 return 0;
429 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
432 * mtd_pairing_info_to_wunit - get wunit from pairing information
433 * @mtd: pointer to new MTD device info structure
434 * @info: pairing information struct
436 * Returns a positive number representing the wunit associated to the info
437 * struct, or a negative error code.
439 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
440 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
441 * doc).
443 * It can also be used to only program the first page of each pair (i.e.
444 * page attached to group 0), which allows one to use an MLC NAND in
445 * software-emulated SLC mode:
447 * info.group = 0;
448 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
449 * for (info.pair = 0; info.pair < npairs; info.pair++) {
450 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
451 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
452 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
455 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
456 const struct mtd_pairing_info *info)
458 int ngroups = mtd_pairing_groups(mtd);
459 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
461 if (!info || info->pair < 0 || info->pair >= npairs ||
462 info->group < 0 || info->group >= ngroups)
463 return -EINVAL;
465 if (mtd->pairing && mtd->pairing->get_wunit)
466 return mtd->pairing->get_wunit(mtd, info);
468 return info->pair;
470 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
473 * mtd_pairing_groups - get the number of pairing groups
474 * @mtd: pointer to new MTD device info structure
476 * Returns the number of pairing groups.
478 * This number is usually equal to the number of bits exposed by a single
479 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
480 * to iterate over all pages of a given pair.
482 int mtd_pairing_groups(struct mtd_info *mtd)
484 if (!mtd->pairing || !mtd->pairing->ngroups)
485 return 1;
487 return mtd->pairing->ngroups;
489 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
491 static struct dentry *dfs_dir_mtd;
494 * add_mtd_device - register an MTD device
495 * @mtd: pointer to new MTD device info structure
497 * Add a device to the list of MTD devices present in the system, and
498 * notify each currently active MTD 'user' of its arrival. Returns
499 * zero on success or non-zero on failure.
502 int add_mtd_device(struct mtd_info *mtd)
504 struct mtd_notifier *not;
505 int i, error;
508 * May occur, for instance, on buggy drivers which call
509 * mtd_device_parse_register() multiple times on the same master MTD,
510 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
512 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
513 return -EEXIST;
515 BUG_ON(mtd->writesize == 0);
517 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
518 !(mtd->flags & MTD_NO_ERASE)))
519 return -EINVAL;
521 mutex_lock(&mtd_table_mutex);
523 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
524 if (i < 0) {
525 error = i;
526 goto fail_locked;
529 mtd->index = i;
530 mtd->usecount = 0;
532 /* default value if not set by driver */
533 if (mtd->bitflip_threshold == 0)
534 mtd->bitflip_threshold = mtd->ecc_strength;
536 if (is_power_of_2(mtd->erasesize))
537 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
538 else
539 mtd->erasesize_shift = 0;
541 if (is_power_of_2(mtd->writesize))
542 mtd->writesize_shift = ffs(mtd->writesize) - 1;
543 else
544 mtd->writesize_shift = 0;
546 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
547 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
549 /* Some chips always power up locked. Unlock them now */
550 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
551 error = mtd_unlock(mtd, 0, mtd->size);
552 if (error && error != -EOPNOTSUPP)
553 printk(KERN_WARNING
554 "%s: unlock failed, writes may not work\n",
555 mtd->name);
556 /* Ignore unlock failures? */
557 error = 0;
560 /* Caller should have set dev.parent to match the
561 * physical device, if appropriate.
563 mtd->dev.type = &mtd_devtype;
564 mtd->dev.class = &mtd_class;
565 mtd->dev.devt = MTD_DEVT(i);
566 dev_set_name(&mtd->dev, "mtd%d", i);
567 dev_set_drvdata(&mtd->dev, mtd);
568 of_node_get(mtd_get_of_node(mtd));
569 error = device_register(&mtd->dev);
570 if (error)
571 goto fail_added;
573 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
574 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
575 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
576 pr_debug("mtd device %s won't show data in debugfs\n",
577 dev_name(&mtd->dev));
581 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
582 "mtd%dro", i);
584 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
585 /* No need to get a refcount on the module containing
586 the notifier, since we hold the mtd_table_mutex */
587 list_for_each_entry(not, &mtd_notifiers, list)
588 not->add(mtd);
590 mutex_unlock(&mtd_table_mutex);
591 /* We _know_ we aren't being removed, because
592 our caller is still holding us here. So none
593 of this try_ nonsense, and no bitching about it
594 either. :) */
595 __module_get(THIS_MODULE);
596 return 0;
598 fail_added:
599 of_node_put(mtd_get_of_node(mtd));
600 idr_remove(&mtd_idr, i);
601 fail_locked:
602 mutex_unlock(&mtd_table_mutex);
603 return error;
607 * del_mtd_device - unregister an MTD device
608 * @mtd: pointer to MTD device info structure
610 * Remove a device from the list of MTD devices present in the system,
611 * and notify each currently active MTD 'user' of its departure.
612 * Returns zero on success or 1 on failure, which currently will happen
613 * if the requested device does not appear to be present in the list.
616 int del_mtd_device(struct mtd_info *mtd)
618 int ret;
619 struct mtd_notifier *not;
621 mutex_lock(&mtd_table_mutex);
623 debugfs_remove_recursive(mtd->dbg.dfs_dir);
625 if (idr_find(&mtd_idr, mtd->index) != mtd) {
626 ret = -ENODEV;
627 goto out_error;
630 /* No need to get a refcount on the module containing
631 the notifier, since we hold the mtd_table_mutex */
632 list_for_each_entry(not, &mtd_notifiers, list)
633 not->remove(mtd);
635 if (mtd->usecount) {
636 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
637 mtd->index, mtd->name, mtd->usecount);
638 ret = -EBUSY;
639 } else {
640 device_unregister(&mtd->dev);
642 idr_remove(&mtd_idr, mtd->index);
643 of_node_put(mtd_get_of_node(mtd));
645 module_put(THIS_MODULE);
646 ret = 0;
649 out_error:
650 mutex_unlock(&mtd_table_mutex);
651 return ret;
655 * Set a few defaults based on the parent devices, if not provided by the
656 * driver
658 static void mtd_set_dev_defaults(struct mtd_info *mtd)
660 if (mtd->dev.parent) {
661 if (!mtd->owner && mtd->dev.parent->driver)
662 mtd->owner = mtd->dev.parent->driver->owner;
663 if (!mtd->name)
664 mtd->name = dev_name(mtd->dev.parent);
665 } else {
666 pr_debug("mtd device won't show a device symlink in sysfs\n");
671 * mtd_device_parse_register - parse partitions and register an MTD device.
673 * @mtd: the MTD device to register
674 * @types: the list of MTD partition probes to try, see
675 * 'parse_mtd_partitions()' for more information
676 * @parser_data: MTD partition parser-specific data
677 * @parts: fallback partition information to register, if parsing fails;
678 * only valid if %nr_parts > %0
679 * @nr_parts: the number of partitions in parts, if zero then the full
680 * MTD device is registered if no partition info is found
682 * This function aggregates MTD partitions parsing (done by
683 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
684 * basically follows the most common pattern found in many MTD drivers:
686 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
687 * registered first.
688 * * Then It tries to probe partitions on MTD device @mtd using parsers
689 * specified in @types (if @types is %NULL, then the default list of parsers
690 * is used, see 'parse_mtd_partitions()' for more information). If none are
691 * found this functions tries to fallback to information specified in
692 * @parts/@nr_parts.
693 * * If no partitions were found this function just registers the MTD device
694 * @mtd and exits.
696 * Returns zero in case of success and a negative error code in case of failure.
698 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
699 struct mtd_part_parser_data *parser_data,
700 const struct mtd_partition *parts,
701 int nr_parts)
703 int ret;
705 mtd_set_dev_defaults(mtd);
707 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
708 ret = add_mtd_device(mtd);
709 if (ret)
710 return ret;
713 /* Prefer parsed partitions over driver-provided fallback */
714 ret = parse_mtd_partitions(mtd, types, parser_data);
715 if (ret > 0)
716 ret = 0;
717 else if (nr_parts)
718 ret = add_mtd_partitions(mtd, parts, nr_parts);
719 else if (!device_is_registered(&mtd->dev))
720 ret = add_mtd_device(mtd);
721 else
722 ret = 0;
724 if (ret)
725 goto out;
728 * FIXME: some drivers unfortunately call this function more than once.
729 * So we have to check if we've already assigned the reboot notifier.
731 * Generally, we can make multiple calls work for most cases, but it
732 * does cause problems with parse_mtd_partitions() above (e.g.,
733 * cmdlineparts will register partitions more than once).
735 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
736 "MTD already registered\n");
737 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
738 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
739 register_reboot_notifier(&mtd->reboot_notifier);
742 out:
743 if (ret && device_is_registered(&mtd->dev))
744 del_mtd_device(mtd);
746 return ret;
748 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
751 * mtd_device_unregister - unregister an existing MTD device.
753 * @master: the MTD device to unregister. This will unregister both the master
754 * and any partitions if registered.
756 int mtd_device_unregister(struct mtd_info *master)
758 int err;
760 if (master->_reboot)
761 unregister_reboot_notifier(&master->reboot_notifier);
763 err = del_mtd_partitions(master);
764 if (err)
765 return err;
767 if (!device_is_registered(&master->dev))
768 return 0;
770 return del_mtd_device(master);
772 EXPORT_SYMBOL_GPL(mtd_device_unregister);
775 * register_mtd_user - register a 'user' of MTD devices.
776 * @new: pointer to notifier info structure
778 * Registers a pair of callbacks function to be called upon addition
779 * or removal of MTD devices. Causes the 'add' callback to be immediately
780 * invoked for each MTD device currently present in the system.
782 void register_mtd_user (struct mtd_notifier *new)
784 struct mtd_info *mtd;
786 mutex_lock(&mtd_table_mutex);
788 list_add(&new->list, &mtd_notifiers);
790 __module_get(THIS_MODULE);
792 mtd_for_each_device(mtd)
793 new->add(mtd);
795 mutex_unlock(&mtd_table_mutex);
797 EXPORT_SYMBOL_GPL(register_mtd_user);
800 * unregister_mtd_user - unregister a 'user' of MTD devices.
801 * @old: pointer to notifier info structure
803 * Removes a callback function pair from the list of 'users' to be
804 * notified upon addition or removal of MTD devices. Causes the
805 * 'remove' callback to be immediately invoked for each MTD device
806 * currently present in the system.
808 int unregister_mtd_user (struct mtd_notifier *old)
810 struct mtd_info *mtd;
812 mutex_lock(&mtd_table_mutex);
814 module_put(THIS_MODULE);
816 mtd_for_each_device(mtd)
817 old->remove(mtd);
819 list_del(&old->list);
820 mutex_unlock(&mtd_table_mutex);
821 return 0;
823 EXPORT_SYMBOL_GPL(unregister_mtd_user);
826 * get_mtd_device - obtain a validated handle for an MTD device
827 * @mtd: last known address of the required MTD device
828 * @num: internal device number of the required MTD device
830 * Given a number and NULL address, return the num'th entry in the device
831 * table, if any. Given an address and num == -1, search the device table
832 * for a device with that address and return if it's still present. Given
833 * both, return the num'th driver only if its address matches. Return
834 * error code if not.
836 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
838 struct mtd_info *ret = NULL, *other;
839 int err = -ENODEV;
841 mutex_lock(&mtd_table_mutex);
843 if (num == -1) {
844 mtd_for_each_device(other) {
845 if (other == mtd) {
846 ret = mtd;
847 break;
850 } else if (num >= 0) {
851 ret = idr_find(&mtd_idr, num);
852 if (mtd && mtd != ret)
853 ret = NULL;
856 if (!ret) {
857 ret = ERR_PTR(err);
858 goto out;
861 err = __get_mtd_device(ret);
862 if (err)
863 ret = ERR_PTR(err);
864 out:
865 mutex_unlock(&mtd_table_mutex);
866 return ret;
868 EXPORT_SYMBOL_GPL(get_mtd_device);
871 int __get_mtd_device(struct mtd_info *mtd)
873 int err;
875 if (!try_module_get(mtd->owner))
876 return -ENODEV;
878 if (mtd->_get_device) {
879 err = mtd->_get_device(mtd);
881 if (err) {
882 module_put(mtd->owner);
883 return err;
886 mtd->usecount++;
887 return 0;
889 EXPORT_SYMBOL_GPL(__get_mtd_device);
892 * get_mtd_device_nm - obtain a validated handle for an MTD device by
893 * device name
894 * @name: MTD device name to open
896 * This function returns MTD device description structure in case of
897 * success and an error code in case of failure.
899 struct mtd_info *get_mtd_device_nm(const char *name)
901 int err = -ENODEV;
902 struct mtd_info *mtd = NULL, *other;
904 mutex_lock(&mtd_table_mutex);
906 mtd_for_each_device(other) {
907 if (!strcmp(name, other->name)) {
908 mtd = other;
909 break;
913 if (!mtd)
914 goto out_unlock;
916 err = __get_mtd_device(mtd);
917 if (err)
918 goto out_unlock;
920 mutex_unlock(&mtd_table_mutex);
921 return mtd;
923 out_unlock:
924 mutex_unlock(&mtd_table_mutex);
925 return ERR_PTR(err);
927 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
929 void put_mtd_device(struct mtd_info *mtd)
931 mutex_lock(&mtd_table_mutex);
932 __put_mtd_device(mtd);
933 mutex_unlock(&mtd_table_mutex);
936 EXPORT_SYMBOL_GPL(put_mtd_device);
938 void __put_mtd_device(struct mtd_info *mtd)
940 --mtd->usecount;
941 BUG_ON(mtd->usecount < 0);
943 if (mtd->_put_device)
944 mtd->_put_device(mtd);
946 module_put(mtd->owner);
948 EXPORT_SYMBOL_GPL(__put_mtd_device);
951 * Erase is an synchronous operation. Device drivers are epected to return a
952 * negative error code if the operation failed and update instr->fail_addr
953 * to point the portion that was not properly erased.
955 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
957 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
959 if (!mtd->erasesize || !mtd->_erase)
960 return -ENOTSUPP;
962 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
963 return -EINVAL;
964 if (!(mtd->flags & MTD_WRITEABLE))
965 return -EROFS;
967 if (!instr->len)
968 return 0;
970 ledtrig_mtd_activity();
971 return mtd->_erase(mtd, instr);
973 EXPORT_SYMBOL_GPL(mtd_erase);
976 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
978 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
979 void **virt, resource_size_t *phys)
981 *retlen = 0;
982 *virt = NULL;
983 if (phys)
984 *phys = 0;
985 if (!mtd->_point)
986 return -EOPNOTSUPP;
987 if (from < 0 || from >= mtd->size || len > mtd->size - from)
988 return -EINVAL;
989 if (!len)
990 return 0;
991 return mtd->_point(mtd, from, len, retlen, virt, phys);
993 EXPORT_SYMBOL_GPL(mtd_point);
995 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
996 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
998 if (!mtd->_unpoint)
999 return -EOPNOTSUPP;
1000 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1001 return -EINVAL;
1002 if (!len)
1003 return 0;
1004 return mtd->_unpoint(mtd, from, len);
1006 EXPORT_SYMBOL_GPL(mtd_unpoint);
1009 * Allow NOMMU mmap() to directly map the device (if not NULL)
1010 * - return the address to which the offset maps
1011 * - return -ENOSYS to indicate refusal to do the mapping
1013 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1014 unsigned long offset, unsigned long flags)
1016 size_t retlen;
1017 void *virt;
1018 int ret;
1020 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1021 if (ret)
1022 return ret;
1023 if (retlen != len) {
1024 mtd_unpoint(mtd, offset, retlen);
1025 return -ENOSYS;
1027 return (unsigned long)virt;
1029 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1031 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1032 u_char *buf)
1034 int ret_code;
1035 *retlen = 0;
1036 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1037 return -EINVAL;
1038 if (!len)
1039 return 0;
1041 ledtrig_mtd_activity();
1043 * In the absence of an error, drivers return a non-negative integer
1044 * representing the maximum number of bitflips that were corrected on
1045 * any one ecc region (if applicable; zero otherwise).
1047 if (mtd->_read) {
1048 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1049 } else if (mtd->_read_oob) {
1050 struct mtd_oob_ops ops = {
1051 .len = len,
1052 .datbuf = buf,
1055 ret_code = mtd->_read_oob(mtd, from, &ops);
1056 *retlen = ops.retlen;
1057 } else {
1058 return -ENOTSUPP;
1061 if (unlikely(ret_code < 0))
1062 return ret_code;
1063 if (mtd->ecc_strength == 0)
1064 return 0; /* device lacks ecc */
1065 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1067 EXPORT_SYMBOL_GPL(mtd_read);
1069 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1070 const u_char *buf)
1072 *retlen = 0;
1073 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1074 return -EINVAL;
1075 if ((!mtd->_write && !mtd->_write_oob) ||
1076 !(mtd->flags & MTD_WRITEABLE))
1077 return -EROFS;
1078 if (!len)
1079 return 0;
1080 ledtrig_mtd_activity();
1082 if (!mtd->_write) {
1083 struct mtd_oob_ops ops = {
1084 .len = len,
1085 .datbuf = (u8 *)buf,
1087 int ret;
1089 ret = mtd->_write_oob(mtd, to, &ops);
1090 *retlen = ops.retlen;
1091 return ret;
1094 return mtd->_write(mtd, to, len, retlen, buf);
1096 EXPORT_SYMBOL_GPL(mtd_write);
1099 * In blackbox flight recorder like scenarios we want to make successful writes
1100 * in interrupt context. panic_write() is only intended to be called when its
1101 * known the kernel is about to panic and we need the write to succeed. Since
1102 * the kernel is not going to be running for much longer, this function can
1103 * break locks and delay to ensure the write succeeds (but not sleep).
1105 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1106 const u_char *buf)
1108 *retlen = 0;
1109 if (!mtd->_panic_write)
1110 return -EOPNOTSUPP;
1111 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1112 return -EINVAL;
1113 if (!(mtd->flags & MTD_WRITEABLE))
1114 return -EROFS;
1115 if (!len)
1116 return 0;
1117 return mtd->_panic_write(mtd, to, len, retlen, buf);
1119 EXPORT_SYMBOL_GPL(mtd_panic_write);
1121 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1122 struct mtd_oob_ops *ops)
1125 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1126 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1127 * this case.
1129 if (!ops->datbuf)
1130 ops->len = 0;
1132 if (!ops->oobbuf)
1133 ops->ooblen = 0;
1135 if (offs < 0 || offs + ops->len > mtd->size)
1136 return -EINVAL;
1138 if (ops->ooblen) {
1139 u64 maxooblen;
1141 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1142 return -EINVAL;
1144 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1145 mtd_div_by_ws(offs, mtd)) *
1146 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1147 if (ops->ooblen > maxooblen)
1148 return -EINVAL;
1151 return 0;
1154 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1156 int ret_code;
1157 ops->retlen = ops->oobretlen = 0;
1159 ret_code = mtd_check_oob_ops(mtd, from, ops);
1160 if (ret_code)
1161 return ret_code;
1163 ledtrig_mtd_activity();
1165 /* Check the validity of a potential fallback on mtd->_read */
1166 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1167 return -EOPNOTSUPP;
1169 if (mtd->_read_oob)
1170 ret_code = mtd->_read_oob(mtd, from, ops);
1171 else
1172 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1173 ops->datbuf);
1176 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1177 * similar to mtd->_read(), returning a non-negative integer
1178 * representing max bitflips. In other cases, mtd->_read_oob() may
1179 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1181 if (unlikely(ret_code < 0))
1182 return ret_code;
1183 if (mtd->ecc_strength == 0)
1184 return 0; /* device lacks ecc */
1185 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1187 EXPORT_SYMBOL_GPL(mtd_read_oob);
1189 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1190 struct mtd_oob_ops *ops)
1192 int ret;
1194 ops->retlen = ops->oobretlen = 0;
1196 if (!(mtd->flags & MTD_WRITEABLE))
1197 return -EROFS;
1199 ret = mtd_check_oob_ops(mtd, to, ops);
1200 if (ret)
1201 return ret;
1203 ledtrig_mtd_activity();
1205 /* Check the validity of a potential fallback on mtd->_write */
1206 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1207 return -EOPNOTSUPP;
1209 if (mtd->_write_oob)
1210 return mtd->_write_oob(mtd, to, ops);
1211 else
1212 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1213 ops->datbuf);
1215 EXPORT_SYMBOL_GPL(mtd_write_oob);
1218 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1219 * @mtd: MTD device structure
1220 * @section: ECC section. Depending on the layout you may have all the ECC
1221 * bytes stored in a single contiguous section, or one section
1222 * per ECC chunk (and sometime several sections for a single ECC
1223 * ECC chunk)
1224 * @oobecc: OOB region struct filled with the appropriate ECC position
1225 * information
1227 * This function returns ECC section information in the OOB area. If you want
1228 * to get all the ECC bytes information, then you should call
1229 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1231 * Returns zero on success, a negative error code otherwise.
1233 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1234 struct mtd_oob_region *oobecc)
1236 memset(oobecc, 0, sizeof(*oobecc));
1238 if (!mtd || section < 0)
1239 return -EINVAL;
1241 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1242 return -ENOTSUPP;
1244 return mtd->ooblayout->ecc(mtd, section, oobecc);
1246 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1249 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1250 * section
1251 * @mtd: MTD device structure
1252 * @section: Free section you are interested in. Depending on the layout
1253 * you may have all the free bytes stored in a single contiguous
1254 * section, or one section per ECC chunk plus an extra section
1255 * for the remaining bytes (or other funky layout).
1256 * @oobfree: OOB region struct filled with the appropriate free position
1257 * information
1259 * This function returns free bytes position in the OOB area. If you want
1260 * to get all the free bytes information, then you should call
1261 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1263 * Returns zero on success, a negative error code otherwise.
1265 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1266 struct mtd_oob_region *oobfree)
1268 memset(oobfree, 0, sizeof(*oobfree));
1270 if (!mtd || section < 0)
1271 return -EINVAL;
1273 if (!mtd->ooblayout || !mtd->ooblayout->free)
1274 return -ENOTSUPP;
1276 return mtd->ooblayout->free(mtd, section, oobfree);
1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1281 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1282 * @mtd: mtd info structure
1283 * @byte: the byte we are searching for
1284 * @sectionp: pointer where the section id will be stored
1285 * @oobregion: used to retrieve the ECC position
1286 * @iter: iterator function. Should be either mtd_ooblayout_free or
1287 * mtd_ooblayout_ecc depending on the region type you're searching for
1289 * This function returns the section id and oobregion information of a
1290 * specific byte. For example, say you want to know where the 4th ECC byte is
1291 * stored, you'll use:
1293 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1295 * Returns zero on success, a negative error code otherwise.
1297 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1298 int *sectionp, struct mtd_oob_region *oobregion,
1299 int (*iter)(struct mtd_info *,
1300 int section,
1301 struct mtd_oob_region *oobregion))
1303 int pos = 0, ret, section = 0;
1305 memset(oobregion, 0, sizeof(*oobregion));
1307 while (1) {
1308 ret = iter(mtd, section, oobregion);
1309 if (ret)
1310 return ret;
1312 if (pos + oobregion->length > byte)
1313 break;
1315 pos += oobregion->length;
1316 section++;
1320 * Adjust region info to make it start at the beginning at the
1321 * 'start' ECC byte.
1323 oobregion->offset += byte - pos;
1324 oobregion->length -= byte - pos;
1325 *sectionp = section;
1327 return 0;
1331 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1332 * ECC byte
1333 * @mtd: mtd info structure
1334 * @eccbyte: the byte we are searching for
1335 * @sectionp: pointer where the section id will be stored
1336 * @oobregion: OOB region information
1338 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1339 * byte.
1341 * Returns zero on success, a negative error code otherwise.
1343 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1344 int *section,
1345 struct mtd_oob_region *oobregion)
1347 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1348 mtd_ooblayout_ecc);
1350 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1353 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1354 * @mtd: mtd info structure
1355 * @buf: destination buffer to store OOB bytes
1356 * @oobbuf: OOB buffer
1357 * @start: first byte to retrieve
1358 * @nbytes: number of bytes to retrieve
1359 * @iter: section iterator
1361 * Extract bytes attached to a specific category (ECC or free)
1362 * from the OOB buffer and copy them into buf.
1364 * Returns zero on success, a negative error code otherwise.
1366 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1367 const u8 *oobbuf, int start, int nbytes,
1368 int (*iter)(struct mtd_info *,
1369 int section,
1370 struct mtd_oob_region *oobregion))
1372 struct mtd_oob_region oobregion;
1373 int section, ret;
1375 ret = mtd_ooblayout_find_region(mtd, start, &section,
1376 &oobregion, iter);
1378 while (!ret) {
1379 int cnt;
1381 cnt = min_t(int, nbytes, oobregion.length);
1382 memcpy(buf, oobbuf + oobregion.offset, cnt);
1383 buf += cnt;
1384 nbytes -= cnt;
1386 if (!nbytes)
1387 break;
1389 ret = iter(mtd, ++section, &oobregion);
1392 return ret;
1396 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1397 * @mtd: mtd info structure
1398 * @buf: source buffer to get OOB bytes from
1399 * @oobbuf: OOB buffer
1400 * @start: first OOB byte to set
1401 * @nbytes: number of OOB bytes to set
1402 * @iter: section iterator
1404 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1405 * is selected by passing the appropriate iterator.
1407 * Returns zero on success, a negative error code otherwise.
1409 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1410 u8 *oobbuf, int start, int nbytes,
1411 int (*iter)(struct mtd_info *,
1412 int section,
1413 struct mtd_oob_region *oobregion))
1415 struct mtd_oob_region oobregion;
1416 int section, ret;
1418 ret = mtd_ooblayout_find_region(mtd, start, &section,
1419 &oobregion, iter);
1421 while (!ret) {
1422 int cnt;
1424 cnt = min_t(int, nbytes, oobregion.length);
1425 memcpy(oobbuf + oobregion.offset, buf, cnt);
1426 buf += cnt;
1427 nbytes -= cnt;
1429 if (!nbytes)
1430 break;
1432 ret = iter(mtd, ++section, &oobregion);
1435 return ret;
1439 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1440 * @mtd: mtd info structure
1441 * @iter: category iterator
1443 * Count the number of bytes in a given category.
1445 * Returns a positive value on success, a negative error code otherwise.
1447 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1448 int (*iter)(struct mtd_info *,
1449 int section,
1450 struct mtd_oob_region *oobregion))
1452 struct mtd_oob_region oobregion;
1453 int section = 0, ret, nbytes = 0;
1455 while (1) {
1456 ret = iter(mtd, section++, &oobregion);
1457 if (ret) {
1458 if (ret == -ERANGE)
1459 ret = nbytes;
1460 break;
1463 nbytes += oobregion.length;
1466 return ret;
1470 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1471 * @mtd: mtd info structure
1472 * @eccbuf: destination buffer to store ECC bytes
1473 * @oobbuf: OOB buffer
1474 * @start: first ECC byte to retrieve
1475 * @nbytes: number of ECC bytes to retrieve
1477 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1479 * Returns zero on success, a negative error code otherwise.
1481 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1482 const u8 *oobbuf, int start, int nbytes)
1484 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1485 mtd_ooblayout_ecc);
1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1490 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1491 * @mtd: mtd info structure
1492 * @eccbuf: source buffer to get ECC bytes from
1493 * @oobbuf: OOB buffer
1494 * @start: first ECC byte to set
1495 * @nbytes: number of ECC bytes to set
1497 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1499 * Returns zero on success, a negative error code otherwise.
1501 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1502 u8 *oobbuf, int start, int nbytes)
1504 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1505 mtd_ooblayout_ecc);
1507 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1510 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1511 * @mtd: mtd info structure
1512 * @databuf: destination buffer to store ECC bytes
1513 * @oobbuf: OOB buffer
1514 * @start: first ECC byte to retrieve
1515 * @nbytes: number of ECC bytes to retrieve
1517 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1519 * Returns zero on success, a negative error code otherwise.
1521 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1522 const u8 *oobbuf, int start, int nbytes)
1524 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1525 mtd_ooblayout_free);
1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1530 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1531 * @mtd: mtd info structure
1532 * @databuf: source buffer to get data bytes from
1533 * @oobbuf: OOB buffer
1534 * @start: first ECC byte to set
1535 * @nbytes: number of ECC bytes to set
1537 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1539 * Returns zero on success, a negative error code otherwise.
1541 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1542 u8 *oobbuf, int start, int nbytes)
1544 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1545 mtd_ooblayout_free);
1547 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1550 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1551 * @mtd: mtd info structure
1553 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1555 * Returns zero on success, a negative error code otherwise.
1557 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1559 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1561 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1564 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1565 * @mtd: mtd info structure
1567 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1569 * Returns zero on success, a negative error code otherwise.
1571 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1573 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1575 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1578 * Method to access the protection register area, present in some flash
1579 * devices. The user data is one time programmable but the factory data is read
1580 * only.
1582 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1583 struct otp_info *buf)
1585 if (!mtd->_get_fact_prot_info)
1586 return -EOPNOTSUPP;
1587 if (!len)
1588 return 0;
1589 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1591 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1593 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1594 size_t *retlen, u_char *buf)
1596 *retlen = 0;
1597 if (!mtd->_read_fact_prot_reg)
1598 return -EOPNOTSUPP;
1599 if (!len)
1600 return 0;
1601 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1603 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1605 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1606 struct otp_info *buf)
1608 if (!mtd->_get_user_prot_info)
1609 return -EOPNOTSUPP;
1610 if (!len)
1611 return 0;
1612 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1614 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1616 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1617 size_t *retlen, u_char *buf)
1619 *retlen = 0;
1620 if (!mtd->_read_user_prot_reg)
1621 return -EOPNOTSUPP;
1622 if (!len)
1623 return 0;
1624 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1626 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1628 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1629 size_t *retlen, u_char *buf)
1631 int ret;
1633 *retlen = 0;
1634 if (!mtd->_write_user_prot_reg)
1635 return -EOPNOTSUPP;
1636 if (!len)
1637 return 0;
1638 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1639 if (ret)
1640 return ret;
1643 * If no data could be written at all, we are out of memory and
1644 * must return -ENOSPC.
1646 return (*retlen) ? 0 : -ENOSPC;
1648 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1650 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1652 if (!mtd->_lock_user_prot_reg)
1653 return -EOPNOTSUPP;
1654 if (!len)
1655 return 0;
1656 return mtd->_lock_user_prot_reg(mtd, from, len);
1658 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1660 /* Chip-supported device locking */
1661 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1663 if (!mtd->_lock)
1664 return -EOPNOTSUPP;
1665 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1666 return -EINVAL;
1667 if (!len)
1668 return 0;
1669 return mtd->_lock(mtd, ofs, len);
1671 EXPORT_SYMBOL_GPL(mtd_lock);
1673 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1675 if (!mtd->_unlock)
1676 return -EOPNOTSUPP;
1677 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1678 return -EINVAL;
1679 if (!len)
1680 return 0;
1681 return mtd->_unlock(mtd, ofs, len);
1683 EXPORT_SYMBOL_GPL(mtd_unlock);
1685 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1687 if (!mtd->_is_locked)
1688 return -EOPNOTSUPP;
1689 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1690 return -EINVAL;
1691 if (!len)
1692 return 0;
1693 return mtd->_is_locked(mtd, ofs, len);
1695 EXPORT_SYMBOL_GPL(mtd_is_locked);
1697 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1699 if (ofs < 0 || ofs >= mtd->size)
1700 return -EINVAL;
1701 if (!mtd->_block_isreserved)
1702 return 0;
1703 return mtd->_block_isreserved(mtd, ofs);
1705 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1707 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1709 if (ofs < 0 || ofs >= mtd->size)
1710 return -EINVAL;
1711 if (!mtd->_block_isbad)
1712 return 0;
1713 return mtd->_block_isbad(mtd, ofs);
1715 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1717 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1719 if (!mtd->_block_markbad)
1720 return -EOPNOTSUPP;
1721 if (ofs < 0 || ofs >= mtd->size)
1722 return -EINVAL;
1723 if (!(mtd->flags & MTD_WRITEABLE))
1724 return -EROFS;
1725 return mtd->_block_markbad(mtd, ofs);
1727 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1730 * default_mtd_writev - the default writev method
1731 * @mtd: mtd device description object pointer
1732 * @vecs: the vectors to write
1733 * @count: count of vectors in @vecs
1734 * @to: the MTD device offset to write to
1735 * @retlen: on exit contains the count of bytes written to the MTD device.
1737 * This function returns zero in case of success and a negative error code in
1738 * case of failure.
1740 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1741 unsigned long count, loff_t to, size_t *retlen)
1743 unsigned long i;
1744 size_t totlen = 0, thislen;
1745 int ret = 0;
1747 for (i = 0; i < count; i++) {
1748 if (!vecs[i].iov_len)
1749 continue;
1750 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1751 vecs[i].iov_base);
1752 totlen += thislen;
1753 if (ret || thislen != vecs[i].iov_len)
1754 break;
1755 to += vecs[i].iov_len;
1757 *retlen = totlen;
1758 return ret;
1762 * mtd_writev - the vector-based MTD write method
1763 * @mtd: mtd device description object pointer
1764 * @vecs: the vectors to write
1765 * @count: count of vectors in @vecs
1766 * @to: the MTD device offset to write to
1767 * @retlen: on exit contains the count of bytes written to the MTD device.
1769 * This function returns zero in case of success and a negative error code in
1770 * case of failure.
1772 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1773 unsigned long count, loff_t to, size_t *retlen)
1775 *retlen = 0;
1776 if (!(mtd->flags & MTD_WRITEABLE))
1777 return -EROFS;
1778 if (!mtd->_writev)
1779 return default_mtd_writev(mtd, vecs, count, to, retlen);
1780 return mtd->_writev(mtd, vecs, count, to, retlen);
1782 EXPORT_SYMBOL_GPL(mtd_writev);
1785 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1786 * @mtd: mtd device description object pointer
1787 * @size: a pointer to the ideal or maximum size of the allocation, points
1788 * to the actual allocation size on success.
1790 * This routine attempts to allocate a contiguous kernel buffer up to
1791 * the specified size, backing off the size of the request exponentially
1792 * until the request succeeds or until the allocation size falls below
1793 * the system page size. This attempts to make sure it does not adversely
1794 * impact system performance, so when allocating more than one page, we
1795 * ask the memory allocator to avoid re-trying, swapping, writing back
1796 * or performing I/O.
1798 * Note, this function also makes sure that the allocated buffer is aligned to
1799 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1801 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1802 * to handle smaller (i.e. degraded) buffer allocations under low- or
1803 * fragmented-memory situations where such reduced allocations, from a
1804 * requested ideal, are allowed.
1806 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1808 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1810 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1811 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1812 void *kbuf;
1814 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1816 while (*size > min_alloc) {
1817 kbuf = kmalloc(*size, flags);
1818 if (kbuf)
1819 return kbuf;
1821 *size >>= 1;
1822 *size = ALIGN(*size, mtd->writesize);
1826 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1827 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1829 return kmalloc(*size, GFP_KERNEL);
1831 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1833 #ifdef CONFIG_PROC_FS
1835 /*====================================================================*/
1836 /* Support for /proc/mtd */
1838 static int mtd_proc_show(struct seq_file *m, void *v)
1840 struct mtd_info *mtd;
1842 seq_puts(m, "dev: size erasesize name\n");
1843 mutex_lock(&mtd_table_mutex);
1844 mtd_for_each_device(mtd) {
1845 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1846 mtd->index, (unsigned long long)mtd->size,
1847 mtd->erasesize, mtd->name);
1849 mutex_unlock(&mtd_table_mutex);
1850 return 0;
1852 #endif /* CONFIG_PROC_FS */
1854 /*====================================================================*/
1855 /* Init code */
1857 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1859 struct backing_dev_info *bdi;
1860 int ret;
1862 bdi = bdi_alloc(GFP_KERNEL);
1863 if (!bdi)
1864 return ERR_PTR(-ENOMEM);
1866 bdi->name = name;
1868 * We put '-0' suffix to the name to get the same name format as we
1869 * used to get. Since this is called only once, we get a unique name.
1871 ret = bdi_register(bdi, "%.28s-0", name);
1872 if (ret)
1873 bdi_put(bdi);
1875 return ret ? ERR_PTR(ret) : bdi;
1878 static struct proc_dir_entry *proc_mtd;
1880 static int __init init_mtd(void)
1882 int ret;
1884 ret = class_register(&mtd_class);
1885 if (ret)
1886 goto err_reg;
1888 mtd_bdi = mtd_bdi_init("mtd");
1889 if (IS_ERR(mtd_bdi)) {
1890 ret = PTR_ERR(mtd_bdi);
1891 goto err_bdi;
1894 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1896 ret = init_mtdchar();
1897 if (ret)
1898 goto out_procfs;
1900 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1902 return 0;
1904 out_procfs:
1905 if (proc_mtd)
1906 remove_proc_entry("mtd", NULL);
1907 bdi_put(mtd_bdi);
1908 err_bdi:
1909 class_unregister(&mtd_class);
1910 err_reg:
1911 pr_err("Error registering mtd class or bdi: %d\n", ret);
1912 return ret;
1915 static void __exit cleanup_mtd(void)
1917 debugfs_remove_recursive(dfs_dir_mtd);
1918 cleanup_mtdchar();
1919 if (proc_mtd)
1920 remove_proc_entry("mtd", NULL);
1921 class_unregister(&mtd_class);
1922 bdi_put(mtd_bdi);
1923 idr_destroy(&mtd_idr);
1926 module_init(init_mtd);
1927 module_exit(cleanup_mtd);
1929 MODULE_LICENSE("GPL");
1930 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1931 MODULE_DESCRIPTION("Core MTD registration and access routines");