perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / net / ethernet / micrel / ks8851_mll.c
blob35f8c9ef204d91cd4c17591d84ebab597cff33b4
1 /**
2 * drivers/net/ethernet/micrel/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 /* Supports:
20 * KS8851 16bit MLL chip from Micrel Inc.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/cache.h>
32 #include <linux/crc32.h>
33 #include <linux/crc32poly.h>
34 #include <linux/mii.h>
35 #include <linux/platform_device.h>
36 #include <linux/delay.h>
37 #include <linux/slab.h>
38 #include <linux/ks8851_mll.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/of_net.h>
43 #define DRV_NAME "ks8851_mll"
45 static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
46 #define MAX_RECV_FRAMES 255
47 #define MAX_BUF_SIZE 2048
48 #define TX_BUF_SIZE 2000
49 #define RX_BUF_SIZE 2000
51 #define KS_CCR 0x08
52 #define CCR_EEPROM (1 << 9)
53 #define CCR_SPI (1 << 8)
54 #define CCR_8BIT (1 << 7)
55 #define CCR_16BIT (1 << 6)
56 #define CCR_32BIT (1 << 5)
57 #define CCR_SHARED (1 << 4)
58 #define CCR_32PIN (1 << 0)
60 /* MAC address registers */
61 #define KS_MARL 0x10
62 #define KS_MARM 0x12
63 #define KS_MARH 0x14
65 #define KS_OBCR 0x20
66 #define OBCR_ODS_16MA (1 << 6)
68 #define KS_EEPCR 0x22
69 #define EEPCR_EESA (1 << 4)
70 #define EEPCR_EESB (1 << 3)
71 #define EEPCR_EEDO (1 << 2)
72 #define EEPCR_EESCK (1 << 1)
73 #define EEPCR_EECS (1 << 0)
75 #define KS_MBIR 0x24
76 #define MBIR_TXMBF (1 << 12)
77 #define MBIR_TXMBFA (1 << 11)
78 #define MBIR_RXMBF (1 << 4)
79 #define MBIR_RXMBFA (1 << 3)
81 #define KS_GRR 0x26
82 #define GRR_QMU (1 << 1)
83 #define GRR_GSR (1 << 0)
85 #define KS_WFCR 0x2A
86 #define WFCR_MPRXE (1 << 7)
87 #define WFCR_WF3E (1 << 3)
88 #define WFCR_WF2E (1 << 2)
89 #define WFCR_WF1E (1 << 1)
90 #define WFCR_WF0E (1 << 0)
92 #define KS_WF0CRC0 0x30
93 #define KS_WF0CRC1 0x32
94 #define KS_WF0BM0 0x34
95 #define KS_WF0BM1 0x36
96 #define KS_WF0BM2 0x38
97 #define KS_WF0BM3 0x3A
99 #define KS_WF1CRC0 0x40
100 #define KS_WF1CRC1 0x42
101 #define KS_WF1BM0 0x44
102 #define KS_WF1BM1 0x46
103 #define KS_WF1BM2 0x48
104 #define KS_WF1BM3 0x4A
106 #define KS_WF2CRC0 0x50
107 #define KS_WF2CRC1 0x52
108 #define KS_WF2BM0 0x54
109 #define KS_WF2BM1 0x56
110 #define KS_WF2BM2 0x58
111 #define KS_WF2BM3 0x5A
113 #define KS_WF3CRC0 0x60
114 #define KS_WF3CRC1 0x62
115 #define KS_WF3BM0 0x64
116 #define KS_WF3BM1 0x66
117 #define KS_WF3BM2 0x68
118 #define KS_WF3BM3 0x6A
120 #define KS_TXCR 0x70
121 #define TXCR_TCGICMP (1 << 8)
122 #define TXCR_TCGUDP (1 << 7)
123 #define TXCR_TCGTCP (1 << 6)
124 #define TXCR_TCGIP (1 << 5)
125 #define TXCR_FTXQ (1 << 4)
126 #define TXCR_TXFCE (1 << 3)
127 #define TXCR_TXPE (1 << 2)
128 #define TXCR_TXCRC (1 << 1)
129 #define TXCR_TXE (1 << 0)
131 #define KS_TXSR 0x72
132 #define TXSR_TXLC (1 << 13)
133 #define TXSR_TXMC (1 << 12)
134 #define TXSR_TXFID_MASK (0x3f << 0)
135 #define TXSR_TXFID_SHIFT (0)
136 #define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
139 #define KS_RXCR1 0x74
140 #define RXCR1_FRXQ (1 << 15)
141 #define RXCR1_RXUDPFCC (1 << 14)
142 #define RXCR1_RXTCPFCC (1 << 13)
143 #define RXCR1_RXIPFCC (1 << 12)
144 #define RXCR1_RXPAFMA (1 << 11)
145 #define RXCR1_RXFCE (1 << 10)
146 #define RXCR1_RXEFE (1 << 9)
147 #define RXCR1_RXMAFMA (1 << 8)
148 #define RXCR1_RXBE (1 << 7)
149 #define RXCR1_RXME (1 << 6)
150 #define RXCR1_RXUE (1 << 5)
151 #define RXCR1_RXAE (1 << 4)
152 #define RXCR1_RXINVF (1 << 1)
153 #define RXCR1_RXE (1 << 0)
154 #define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
155 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
157 #define KS_RXCR2 0x76
158 #define RXCR2_SRDBL_MASK (0x7 << 5)
159 #define RXCR2_SRDBL_SHIFT (5)
160 #define RXCR2_SRDBL_4B (0x0 << 5)
161 #define RXCR2_SRDBL_8B (0x1 << 5)
162 #define RXCR2_SRDBL_16B (0x2 << 5)
163 #define RXCR2_SRDBL_32B (0x3 << 5)
164 /* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
165 #define RXCR2_IUFFP (1 << 4)
166 #define RXCR2_RXIUFCEZ (1 << 3)
167 #define RXCR2_UDPLFE (1 << 2)
168 #define RXCR2_RXICMPFCC (1 << 1)
169 #define RXCR2_RXSAF (1 << 0)
171 #define KS_TXMIR 0x78
173 #define KS_RXFHSR 0x7C
174 #define RXFSHR_RXFV (1 << 15)
175 #define RXFSHR_RXICMPFCS (1 << 13)
176 #define RXFSHR_RXIPFCS (1 << 12)
177 #define RXFSHR_RXTCPFCS (1 << 11)
178 #define RXFSHR_RXUDPFCS (1 << 10)
179 #define RXFSHR_RXBF (1 << 7)
180 #define RXFSHR_RXMF (1 << 6)
181 #define RXFSHR_RXUF (1 << 5)
182 #define RXFSHR_RXMR (1 << 4)
183 #define RXFSHR_RXFT (1 << 3)
184 #define RXFSHR_RXFTL (1 << 2)
185 #define RXFSHR_RXRF (1 << 1)
186 #define RXFSHR_RXCE (1 << 0)
187 #define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
188 RXFSHR_RXFTL | RXFSHR_RXMR |\
189 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
190 RXFSHR_RXTCPFCS)
191 #define KS_RXFHBCR 0x7E
192 #define RXFHBCR_CNT_MASK 0x0FFF
194 #define KS_TXQCR 0x80
195 #define TXQCR_AETFE (1 << 2)
196 #define TXQCR_TXQMAM (1 << 1)
197 #define TXQCR_METFE (1 << 0)
199 #define KS_RXQCR 0x82
200 #define RXQCR_RXDTTS (1 << 12)
201 #define RXQCR_RXDBCTS (1 << 11)
202 #define RXQCR_RXFCTS (1 << 10)
203 #define RXQCR_RXIPHTOE (1 << 9)
204 #define RXQCR_RXDTTE (1 << 7)
205 #define RXQCR_RXDBCTE (1 << 6)
206 #define RXQCR_RXFCTE (1 << 5)
207 #define RXQCR_ADRFE (1 << 4)
208 #define RXQCR_SDA (1 << 3)
209 #define RXQCR_RRXEF (1 << 0)
210 #define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
212 #define KS_TXFDPR 0x84
213 #define TXFDPR_TXFPAI (1 << 14)
214 #define TXFDPR_TXFP_MASK (0x7ff << 0)
215 #define TXFDPR_TXFP_SHIFT (0)
217 #define KS_RXFDPR 0x86
218 #define RXFDPR_RXFPAI (1 << 14)
220 #define KS_RXDTTR 0x8C
221 #define KS_RXDBCTR 0x8E
223 #define KS_IER 0x90
224 #define KS_ISR 0x92
225 #define IRQ_LCI (1 << 15)
226 #define IRQ_TXI (1 << 14)
227 #define IRQ_RXI (1 << 13)
228 #define IRQ_RXOI (1 << 11)
229 #define IRQ_TXPSI (1 << 9)
230 #define IRQ_RXPSI (1 << 8)
231 #define IRQ_TXSAI (1 << 6)
232 #define IRQ_RXWFDI (1 << 5)
233 #define IRQ_RXMPDI (1 << 4)
234 #define IRQ_LDI (1 << 3)
235 #define IRQ_EDI (1 << 2)
236 #define IRQ_SPIBEI (1 << 1)
237 #define IRQ_DEDI (1 << 0)
239 #define KS_RXFCTR 0x9C
240 #define RXFCTR_THRESHOLD_MASK 0x00FF
242 #define KS_RXFC 0x9D
243 #define RXFCTR_RXFC_MASK (0xff << 8)
244 #define RXFCTR_RXFC_SHIFT (8)
245 #define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
246 #define RXFCTR_RXFCT_MASK (0xff << 0)
247 #define RXFCTR_RXFCT_SHIFT (0)
249 #define KS_TXNTFSR 0x9E
251 #define KS_MAHTR0 0xA0
252 #define KS_MAHTR1 0xA2
253 #define KS_MAHTR2 0xA4
254 #define KS_MAHTR3 0xA6
256 #define KS_FCLWR 0xB0
257 #define KS_FCHWR 0xB2
258 #define KS_FCOWR 0xB4
260 #define KS_CIDER 0xC0
261 #define CIDER_ID 0x8870
262 #define CIDER_REV_MASK (0x7 << 1)
263 #define CIDER_REV_SHIFT (1)
264 #define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
266 #define KS_CGCR 0xC6
267 #define KS_IACR 0xC8
268 #define IACR_RDEN (1 << 12)
269 #define IACR_TSEL_MASK (0x3 << 10)
270 #define IACR_TSEL_SHIFT (10)
271 #define IACR_TSEL_MIB (0x3 << 10)
272 #define IACR_ADDR_MASK (0x1f << 0)
273 #define IACR_ADDR_SHIFT (0)
275 #define KS_IADLR 0xD0
276 #define KS_IAHDR 0xD2
278 #define KS_PMECR 0xD4
279 #define PMECR_PME_DELAY (1 << 14)
280 #define PMECR_PME_POL (1 << 12)
281 #define PMECR_WOL_WAKEUP (1 << 11)
282 #define PMECR_WOL_MAGICPKT (1 << 10)
283 #define PMECR_WOL_LINKUP (1 << 9)
284 #define PMECR_WOL_ENERGY (1 << 8)
285 #define PMECR_AUTO_WAKE_EN (1 << 7)
286 #define PMECR_WAKEUP_NORMAL (1 << 6)
287 #define PMECR_WKEVT_MASK (0xf << 2)
288 #define PMECR_WKEVT_SHIFT (2)
289 #define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
290 #define PMECR_WKEVT_ENERGY (0x1 << 2)
291 #define PMECR_WKEVT_LINK (0x2 << 2)
292 #define PMECR_WKEVT_MAGICPKT (0x4 << 2)
293 #define PMECR_WKEVT_FRAME (0x8 << 2)
294 #define PMECR_PM_MASK (0x3 << 0)
295 #define PMECR_PM_SHIFT (0)
296 #define PMECR_PM_NORMAL (0x0 << 0)
297 #define PMECR_PM_ENERGY (0x1 << 0)
298 #define PMECR_PM_SOFTDOWN (0x2 << 0)
299 #define PMECR_PM_POWERSAVE (0x3 << 0)
301 /* Standard MII PHY data */
302 #define KS_P1MBCR 0xE4
303 #define P1MBCR_FORCE_FDX (1 << 8)
305 #define KS_P1MBSR 0xE6
306 #define P1MBSR_AN_COMPLETE (1 << 5)
307 #define P1MBSR_AN_CAPABLE (1 << 3)
308 #define P1MBSR_LINK_UP (1 << 2)
310 #define KS_PHY1ILR 0xE8
311 #define KS_PHY1IHR 0xEA
312 #define KS_P1ANAR 0xEC
313 #define KS_P1ANLPR 0xEE
315 #define KS_P1SCLMD 0xF4
316 #define P1SCLMD_LEDOFF (1 << 15)
317 #define P1SCLMD_TXIDS (1 << 14)
318 #define P1SCLMD_RESTARTAN (1 << 13)
319 #define P1SCLMD_DISAUTOMDIX (1 << 10)
320 #define P1SCLMD_FORCEMDIX (1 << 9)
321 #define P1SCLMD_AUTONEGEN (1 << 7)
322 #define P1SCLMD_FORCE100 (1 << 6)
323 #define P1SCLMD_FORCEFDX (1 << 5)
324 #define P1SCLMD_ADV_FLOW (1 << 4)
325 #define P1SCLMD_ADV_100BT_FDX (1 << 3)
326 #define P1SCLMD_ADV_100BT_HDX (1 << 2)
327 #define P1SCLMD_ADV_10BT_FDX (1 << 1)
328 #define P1SCLMD_ADV_10BT_HDX (1 << 0)
330 #define KS_P1CR 0xF6
331 #define P1CR_HP_MDIX (1 << 15)
332 #define P1CR_REV_POL (1 << 13)
333 #define P1CR_OP_100M (1 << 10)
334 #define P1CR_OP_FDX (1 << 9)
335 #define P1CR_OP_MDI (1 << 7)
336 #define P1CR_AN_DONE (1 << 6)
337 #define P1CR_LINK_GOOD (1 << 5)
338 #define P1CR_PNTR_FLOW (1 << 4)
339 #define P1CR_PNTR_100BT_FDX (1 << 3)
340 #define P1CR_PNTR_100BT_HDX (1 << 2)
341 #define P1CR_PNTR_10BT_FDX (1 << 1)
342 #define P1CR_PNTR_10BT_HDX (1 << 0)
344 /* TX Frame control */
346 #define TXFR_TXIC (1 << 15)
347 #define TXFR_TXFID_MASK (0x3f << 0)
348 #define TXFR_TXFID_SHIFT (0)
350 #define KS_P1SR 0xF8
351 #define P1SR_HP_MDIX (1 << 15)
352 #define P1SR_REV_POL (1 << 13)
353 #define P1SR_OP_100M (1 << 10)
354 #define P1SR_OP_FDX (1 << 9)
355 #define P1SR_OP_MDI (1 << 7)
356 #define P1SR_AN_DONE (1 << 6)
357 #define P1SR_LINK_GOOD (1 << 5)
358 #define P1SR_PNTR_FLOW (1 << 4)
359 #define P1SR_PNTR_100BT_FDX (1 << 3)
360 #define P1SR_PNTR_100BT_HDX (1 << 2)
361 #define P1SR_PNTR_10BT_FDX (1 << 1)
362 #define P1SR_PNTR_10BT_HDX (1 << 0)
364 #define ENUM_BUS_NONE 0
365 #define ENUM_BUS_8BIT 1
366 #define ENUM_BUS_16BIT 2
367 #define ENUM_BUS_32BIT 3
369 #define MAX_MCAST_LST 32
370 #define HW_MCAST_SIZE 8
373 * union ks_tx_hdr - tx header data
374 * @txb: The header as bytes
375 * @txw: The header as 16bit, little-endian words
377 * A dual representation of the tx header data to allow
378 * access to individual bytes, and to allow 16bit accesses
379 * with 16bit alignment.
381 union ks_tx_hdr {
382 u8 txb[4];
383 __le16 txw[2];
387 * struct ks_net - KS8851 driver private data
388 * @net_device : The network device we're bound to
389 * @hw_addr : start address of data register.
390 * @hw_addr_cmd : start address of command register.
391 * @txh : temporaly buffer to save status/length.
392 * @lock : Lock to ensure that the device is not accessed when busy.
393 * @pdev : Pointer to platform device.
394 * @mii : The MII state information for the mii calls.
395 * @frame_head_info : frame header information for multi-pkt rx.
396 * @statelock : Lock on this structure for tx list.
397 * @msg_enable : The message flags controlling driver output (see ethtool).
398 * @frame_cnt : number of frames received.
399 * @bus_width : i/o bus width.
400 * @rc_rxqcr : Cached copy of KS_RXQCR.
401 * @rc_txcr : Cached copy of KS_TXCR.
402 * @rc_ier : Cached copy of KS_IER.
403 * @sharedbus : Multipex(addr and data bus) mode indicator.
404 * @cmd_reg_cache : command register cached.
405 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
406 * @promiscuous : promiscuous mode indicator.
407 * @all_mcast : mutlicast indicator.
408 * @mcast_lst_size : size of multicast list.
409 * @mcast_lst : multicast list.
410 * @mcast_bits : multicast enabed.
411 * @mac_addr : MAC address assigned to this device.
412 * @fid : frame id.
413 * @extra_byte : number of extra byte prepended rx pkt.
414 * @enabled : indicator this device works.
416 * The @lock ensures that the chip is protected when certain operations are
417 * in progress. When the read or write packet transfer is in progress, most
418 * of the chip registers are not accessible until the transfer is finished and
419 * the DMA has been de-asserted.
421 * The @statelock is used to protect information in the structure which may
422 * need to be accessed via several sources, such as the network driver layer
423 * or one of the work queues.
427 /* Receive multiplex framer header info */
428 struct type_frame_head {
429 u16 sts; /* Frame status */
430 u16 len; /* Byte count */
433 struct ks_net {
434 struct net_device *netdev;
435 void __iomem *hw_addr;
436 void __iomem *hw_addr_cmd;
437 union ks_tx_hdr txh ____cacheline_aligned;
438 struct mutex lock; /* spinlock to be interrupt safe */
439 struct platform_device *pdev;
440 struct mii_if_info mii;
441 struct type_frame_head *frame_head_info;
442 spinlock_t statelock;
443 u32 msg_enable;
444 u32 frame_cnt;
445 int bus_width;
447 u16 rc_rxqcr;
448 u16 rc_txcr;
449 u16 rc_ier;
450 u16 sharedbus;
451 u16 cmd_reg_cache;
452 u16 cmd_reg_cache_int;
453 u16 promiscuous;
454 u16 all_mcast;
455 u16 mcast_lst_size;
456 u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
457 u8 mcast_bits[HW_MCAST_SIZE];
458 u8 mac_addr[6];
459 u8 fid;
460 u8 extra_byte;
461 u8 enabled;
464 static int msg_enable;
466 #define BE3 0x8000 /* Byte Enable 3 */
467 #define BE2 0x4000 /* Byte Enable 2 */
468 #define BE1 0x2000 /* Byte Enable 1 */
469 #define BE0 0x1000 /* Byte Enable 0 */
471 /* register read/write calls.
473 * All these calls issue transactions to access the chip's registers. They
474 * all require that the necessary lock is held to prevent accesses when the
475 * chip is busy transferring packet data (RX/TX FIFO accesses).
479 * ks_rdreg8 - read 8 bit register from device
480 * @ks : The chip information
481 * @offset: The register address
483 * Read a 8bit register from the chip, returning the result
485 static u8 ks_rdreg8(struct ks_net *ks, int offset)
487 u16 data;
488 u8 shift_bit = offset & 0x03;
489 u8 shift_data = (offset & 1) << 3;
490 ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
491 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
492 data = ioread16(ks->hw_addr);
493 return (u8)(data >> shift_data);
497 * ks_rdreg16 - read 16 bit register from device
498 * @ks : The chip information
499 * @offset: The register address
501 * Read a 16bit register from the chip, returning the result
504 static u16 ks_rdreg16(struct ks_net *ks, int offset)
506 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
507 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
508 return ioread16(ks->hw_addr);
512 * ks_wrreg8 - write 8bit register value to chip
513 * @ks: The chip information
514 * @offset: The register address
515 * @value: The value to write
518 static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
520 u8 shift_bit = (offset & 0x03);
521 u16 value_write = (u16)(value << ((offset & 1) << 3));
522 ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
523 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
524 iowrite16(value_write, ks->hw_addr);
528 * ks_wrreg16 - write 16bit register value to chip
529 * @ks: The chip information
530 * @offset: The register address
531 * @value: The value to write
535 static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
537 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
538 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
539 iowrite16(value, ks->hw_addr);
543 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
544 * @ks: The chip state
545 * @wptr: buffer address to save data
546 * @len: length in byte to read
549 static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
551 len >>= 1;
552 while (len--)
553 *wptr++ = (u16)ioread16(ks->hw_addr);
557 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
558 * @ks: The chip information
559 * @wptr: buffer address
560 * @len: length in byte to write
563 static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
565 len >>= 1;
566 while (len--)
567 iowrite16(*wptr++, ks->hw_addr);
570 static void ks_disable_int(struct ks_net *ks)
572 ks_wrreg16(ks, KS_IER, 0x0000);
573 } /* ks_disable_int */
575 static void ks_enable_int(struct ks_net *ks)
577 ks_wrreg16(ks, KS_IER, ks->rc_ier);
578 } /* ks_enable_int */
581 * ks_tx_fifo_space - return the available hardware buffer size.
582 * @ks: The chip information
585 static inline u16 ks_tx_fifo_space(struct ks_net *ks)
587 return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
591 * ks_save_cmd_reg - save the command register from the cache.
592 * @ks: The chip information
595 static inline void ks_save_cmd_reg(struct ks_net *ks)
597 /*ks8851 MLL has a bug to read back the command register.
598 * So rely on software to save the content of command register.
600 ks->cmd_reg_cache_int = ks->cmd_reg_cache;
604 * ks_restore_cmd_reg - restore the command register from the cache and
605 * write to hardware register.
606 * @ks: The chip information
609 static inline void ks_restore_cmd_reg(struct ks_net *ks)
611 ks->cmd_reg_cache = ks->cmd_reg_cache_int;
612 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
616 * ks_set_powermode - set power mode of the device
617 * @ks: The chip information
618 * @pwrmode: The power mode value to write to KS_PMECR.
620 * Change the power mode of the chip.
622 static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
624 unsigned pmecr;
626 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
628 ks_rdreg16(ks, KS_GRR);
629 pmecr = ks_rdreg16(ks, KS_PMECR);
630 pmecr &= ~PMECR_PM_MASK;
631 pmecr |= pwrmode;
633 ks_wrreg16(ks, KS_PMECR, pmecr);
637 * ks_read_config - read chip configuration of bus width.
638 * @ks: The chip information
641 static void ks_read_config(struct ks_net *ks)
643 u16 reg_data = 0;
645 /* Regardless of bus width, 8 bit read should always work.*/
646 reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
647 reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
649 /* addr/data bus are multiplexed */
650 ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
652 /* There are garbage data when reading data from QMU,
653 depending on bus-width.
656 if (reg_data & CCR_8BIT) {
657 ks->bus_width = ENUM_BUS_8BIT;
658 ks->extra_byte = 1;
659 } else if (reg_data & CCR_16BIT) {
660 ks->bus_width = ENUM_BUS_16BIT;
661 ks->extra_byte = 2;
662 } else {
663 ks->bus_width = ENUM_BUS_32BIT;
664 ks->extra_byte = 4;
669 * ks_soft_reset - issue one of the soft reset to the device
670 * @ks: The device state.
671 * @op: The bit(s) to set in the GRR
673 * Issue the relevant soft-reset command to the device's GRR register
674 * specified by @op.
676 * Note, the delays are in there as a caution to ensure that the reset
677 * has time to take effect and then complete. Since the datasheet does
678 * not currently specify the exact sequence, we have chosen something
679 * that seems to work with our device.
681 static void ks_soft_reset(struct ks_net *ks, unsigned op)
683 /* Disable interrupt first */
684 ks_wrreg16(ks, KS_IER, 0x0000);
685 ks_wrreg16(ks, KS_GRR, op);
686 mdelay(10); /* wait a short time to effect reset */
687 ks_wrreg16(ks, KS_GRR, 0);
688 mdelay(1); /* wait for condition to clear */
692 static void ks_enable_qmu(struct ks_net *ks)
694 u16 w;
696 w = ks_rdreg16(ks, KS_TXCR);
697 /* Enables QMU Transmit (TXCR). */
698 ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
701 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
702 * Enable
705 w = ks_rdreg16(ks, KS_RXQCR);
706 ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
708 /* Enables QMU Receive (RXCR1). */
709 w = ks_rdreg16(ks, KS_RXCR1);
710 ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
711 ks->enabled = true;
712 } /* ks_enable_qmu */
714 static void ks_disable_qmu(struct ks_net *ks)
716 u16 w;
718 w = ks_rdreg16(ks, KS_TXCR);
720 /* Disables QMU Transmit (TXCR). */
721 w &= ~TXCR_TXE;
722 ks_wrreg16(ks, KS_TXCR, w);
724 /* Disables QMU Receive (RXCR1). */
725 w = ks_rdreg16(ks, KS_RXCR1);
726 w &= ~RXCR1_RXE ;
727 ks_wrreg16(ks, KS_RXCR1, w);
729 ks->enabled = false;
731 } /* ks_disable_qmu */
734 * ks_read_qmu - read 1 pkt data from the QMU.
735 * @ks: The chip information
736 * @buf: buffer address to save 1 pkt
737 * @len: Pkt length
738 * Here is the sequence to read 1 pkt:
739 * 1. set sudo DMA mode
740 * 2. read prepend data
741 * 3. read pkt data
742 * 4. reset sudo DMA Mode
744 static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
746 u32 r = ks->extra_byte & 0x1 ;
747 u32 w = ks->extra_byte - r;
749 /* 1. set sudo DMA mode */
750 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
751 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
753 /* 2. read prepend data */
755 * read 4 + extra bytes and discard them.
756 * extra bytes for dummy, 2 for status, 2 for len
759 /* use likely(r) for 8 bit access for performance */
760 if (unlikely(r))
761 ioread8(ks->hw_addr);
762 ks_inblk(ks, buf, w + 2 + 2);
764 /* 3. read pkt data */
765 ks_inblk(ks, buf, ALIGN(len, 4));
767 /* 4. reset sudo DMA Mode */
768 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
772 * ks_rcv - read multiple pkts data from the QMU.
773 * @ks: The chip information
774 * @netdev: The network device being opened.
776 * Read all of header information before reading pkt content.
777 * It is not allowed only port of pkts in QMU after issuing
778 * interrupt ack.
780 static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
782 u32 i;
783 struct type_frame_head *frame_hdr = ks->frame_head_info;
784 struct sk_buff *skb;
786 ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
788 /* read all header information */
789 for (i = 0; i < ks->frame_cnt; i++) {
790 /* Checking Received packet status */
791 frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
792 /* Get packet len from hardware */
793 frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
794 frame_hdr++;
797 frame_hdr = ks->frame_head_info;
798 while (ks->frame_cnt--) {
799 if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
800 frame_hdr->len >= RX_BUF_SIZE ||
801 frame_hdr->len <= 0)) {
803 /* discard an invalid packet */
804 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
805 netdev->stats.rx_dropped++;
806 if (!(frame_hdr->sts & RXFSHR_RXFV))
807 netdev->stats.rx_frame_errors++;
808 else
809 netdev->stats.rx_length_errors++;
810 frame_hdr++;
811 continue;
814 skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
815 if (likely(skb)) {
816 skb_reserve(skb, 2);
817 /* read data block including CRC 4 bytes */
818 ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
819 skb_put(skb, frame_hdr->len - 4);
820 skb->protocol = eth_type_trans(skb, netdev);
821 netif_rx(skb);
822 /* exclude CRC size */
823 netdev->stats.rx_bytes += frame_hdr->len - 4;
824 netdev->stats.rx_packets++;
825 } else {
826 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
827 netdev->stats.rx_dropped++;
829 frame_hdr++;
834 * ks_update_link_status - link status update.
835 * @netdev: The network device being opened.
836 * @ks: The chip information
840 static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
842 /* check the status of the link */
843 u32 link_up_status;
844 if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
845 netif_carrier_on(netdev);
846 link_up_status = true;
847 } else {
848 netif_carrier_off(netdev);
849 link_up_status = false;
851 netif_dbg(ks, link, ks->netdev,
852 "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
856 * ks_irq - device interrupt handler
857 * @irq: Interrupt number passed from the IRQ handler.
858 * @pw: The private word passed to register_irq(), our struct ks_net.
860 * This is the handler invoked to find out what happened
862 * Read the interrupt status, work out what needs to be done and then clear
863 * any of the interrupts that are not needed.
866 static irqreturn_t ks_irq(int irq, void *pw)
868 struct net_device *netdev = pw;
869 struct ks_net *ks = netdev_priv(netdev);
870 u16 status;
872 /*this should be the first in IRQ handler */
873 ks_save_cmd_reg(ks);
875 status = ks_rdreg16(ks, KS_ISR);
876 if (unlikely(!status)) {
877 ks_restore_cmd_reg(ks);
878 return IRQ_NONE;
881 ks_wrreg16(ks, KS_ISR, status);
883 if (likely(status & IRQ_RXI))
884 ks_rcv(ks, netdev);
886 if (unlikely(status & IRQ_LCI))
887 ks_update_link_status(netdev, ks);
889 if (unlikely(status & IRQ_TXI))
890 netif_wake_queue(netdev);
892 if (unlikely(status & IRQ_LDI)) {
894 u16 pmecr = ks_rdreg16(ks, KS_PMECR);
895 pmecr &= ~PMECR_WKEVT_MASK;
896 ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
899 if (unlikely(status & IRQ_RXOI))
900 ks->netdev->stats.rx_over_errors++;
901 /* this should be the last in IRQ handler*/
902 ks_restore_cmd_reg(ks);
903 return IRQ_HANDLED;
908 * ks_net_open - open network device
909 * @netdev: The network device being opened.
911 * Called when the network device is marked active, such as a user executing
912 * 'ifconfig up' on the device.
914 static int ks_net_open(struct net_device *netdev)
916 struct ks_net *ks = netdev_priv(netdev);
917 int err;
919 #define KS_INT_FLAGS IRQF_TRIGGER_LOW
920 /* lock the card, even if we may not actually do anything
921 * else at the moment.
924 netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
926 /* reset the HW */
927 err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
929 if (err) {
930 pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
931 return err;
934 /* wake up powermode to normal mode */
935 ks_set_powermode(ks, PMECR_PM_NORMAL);
936 mdelay(1); /* wait for normal mode to take effect */
938 ks_wrreg16(ks, KS_ISR, 0xffff);
939 ks_enable_int(ks);
940 ks_enable_qmu(ks);
941 netif_start_queue(ks->netdev);
943 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
945 return 0;
949 * ks_net_stop - close network device
950 * @netdev: The device being closed.
952 * Called to close down a network device which has been active. Cancell any
953 * work, shutdown the RX and TX process and then place the chip into a low
954 * power state whilst it is not being used.
956 static int ks_net_stop(struct net_device *netdev)
958 struct ks_net *ks = netdev_priv(netdev);
960 netif_info(ks, ifdown, netdev, "shutting down\n");
962 netif_stop_queue(netdev);
964 mutex_lock(&ks->lock);
966 /* turn off the IRQs and ack any outstanding */
967 ks_wrreg16(ks, KS_IER, 0x0000);
968 ks_wrreg16(ks, KS_ISR, 0xffff);
970 /* shutdown RX/TX QMU */
971 ks_disable_qmu(ks);
973 /* set powermode to soft power down to save power */
974 ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
975 free_irq(netdev->irq, netdev);
976 mutex_unlock(&ks->lock);
977 return 0;
982 * ks_write_qmu - write 1 pkt data to the QMU.
983 * @ks: The chip information
984 * @pdata: buffer address to save 1 pkt
985 * @len: Pkt length in byte
986 * Here is the sequence to write 1 pkt:
987 * 1. set sudo DMA mode
988 * 2. write status/length
989 * 3. write pkt data
990 * 4. reset sudo DMA Mode
991 * 5. reset sudo DMA mode
992 * 6. Wait until pkt is out
994 static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
996 /* start header at txb[0] to align txw entries */
997 ks->txh.txw[0] = 0;
998 ks->txh.txw[1] = cpu_to_le16(len);
1000 /* 1. set sudo-DMA mode */
1001 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
1002 /* 2. write status/lenth info */
1003 ks_outblk(ks, ks->txh.txw, 4);
1004 /* 3. write pkt data */
1005 ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
1006 /* 4. reset sudo-DMA mode */
1007 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
1008 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1009 ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
1010 /* 6. wait until TXQCR_METFE is auto-cleared */
1011 while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
1016 * ks_start_xmit - transmit packet
1017 * @skb : The buffer to transmit
1018 * @netdev : The device used to transmit the packet.
1020 * Called by the network layer to transmit the @skb.
1021 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1022 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1024 static netdev_tx_t ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1026 netdev_tx_t retv = NETDEV_TX_OK;
1027 struct ks_net *ks = netdev_priv(netdev);
1029 disable_irq(netdev->irq);
1030 ks_disable_int(ks);
1031 spin_lock(&ks->statelock);
1033 /* Extra space are required:
1034 * 4 byte for alignment, 4 for status/length, 4 for CRC
1037 if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1038 ks_write_qmu(ks, skb->data, skb->len);
1039 /* add tx statistics */
1040 netdev->stats.tx_bytes += skb->len;
1041 netdev->stats.tx_packets++;
1042 dev_kfree_skb(skb);
1043 } else
1044 retv = NETDEV_TX_BUSY;
1045 spin_unlock(&ks->statelock);
1046 ks_enable_int(ks);
1047 enable_irq(netdev->irq);
1048 return retv;
1052 * ks_start_rx - ready to serve pkts
1053 * @ks : The chip information
1056 static void ks_start_rx(struct ks_net *ks)
1058 u16 cntl;
1060 /* Enables QMU Receive (RXCR1). */
1061 cntl = ks_rdreg16(ks, KS_RXCR1);
1062 cntl |= RXCR1_RXE ;
1063 ks_wrreg16(ks, KS_RXCR1, cntl);
1064 } /* ks_start_rx */
1067 * ks_stop_rx - stop to serve pkts
1068 * @ks : The chip information
1071 static void ks_stop_rx(struct ks_net *ks)
1073 u16 cntl;
1075 /* Disables QMU Receive (RXCR1). */
1076 cntl = ks_rdreg16(ks, KS_RXCR1);
1077 cntl &= ~RXCR1_RXE ;
1078 ks_wrreg16(ks, KS_RXCR1, cntl);
1080 } /* ks_stop_rx */
1082 static unsigned long const ethernet_polynomial = CRC32_POLY_BE;
1084 static unsigned long ether_gen_crc(int length, u8 *data)
1086 long crc = -1;
1087 while (--length >= 0) {
1088 u8 current_octet = *data++;
1089 int bit;
1091 for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1092 crc = (crc << 1) ^
1093 ((crc < 0) ^ (current_octet & 1) ?
1094 ethernet_polynomial : 0);
1097 return (unsigned long)crc;
1098 } /* ether_gen_crc */
1101 * ks_set_grpaddr - set multicast information
1102 * @ks : The chip information
1105 static void ks_set_grpaddr(struct ks_net *ks)
1107 u8 i;
1108 u32 index, position, value;
1110 memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1112 for (i = 0; i < ks->mcast_lst_size; i++) {
1113 position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1114 index = position >> 3;
1115 value = 1 << (position & 7);
1116 ks->mcast_bits[index] |= (u8)value;
1119 for (i = 0; i < HW_MCAST_SIZE; i++) {
1120 if (i & 1) {
1121 ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1122 (ks->mcast_bits[i] << 8) |
1123 ks->mcast_bits[i - 1]);
1126 } /* ks_set_grpaddr */
1129 * ks_clear_mcast - clear multicast information
1131 * @ks : The chip information
1132 * This routine removes all mcast addresses set in the hardware.
1135 static void ks_clear_mcast(struct ks_net *ks)
1137 u16 i, mcast_size;
1138 for (i = 0; i < HW_MCAST_SIZE; i++)
1139 ks->mcast_bits[i] = 0;
1141 mcast_size = HW_MCAST_SIZE >> 2;
1142 for (i = 0; i < mcast_size; i++)
1143 ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1146 static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1148 u16 cntl;
1149 ks->promiscuous = promiscuous_mode;
1150 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1151 cntl = ks_rdreg16(ks, KS_RXCR1);
1153 cntl &= ~RXCR1_FILTER_MASK;
1154 if (promiscuous_mode)
1155 /* Enable Promiscuous mode */
1156 cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1157 else
1158 /* Disable Promiscuous mode (default normal mode) */
1159 cntl |= RXCR1_RXPAFMA;
1161 ks_wrreg16(ks, KS_RXCR1, cntl);
1163 if (ks->enabled)
1164 ks_start_rx(ks);
1166 } /* ks_set_promis */
1168 static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1170 u16 cntl;
1172 ks->all_mcast = mcast;
1173 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1174 cntl = ks_rdreg16(ks, KS_RXCR1);
1175 cntl &= ~RXCR1_FILTER_MASK;
1176 if (mcast)
1177 /* Enable "Perfect with Multicast address passed mode" */
1178 cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1179 else
1181 * Disable "Perfect with Multicast address passed
1182 * mode" (normal mode).
1184 cntl |= RXCR1_RXPAFMA;
1186 ks_wrreg16(ks, KS_RXCR1, cntl);
1188 if (ks->enabled)
1189 ks_start_rx(ks);
1190 } /* ks_set_mcast */
1192 static void ks_set_rx_mode(struct net_device *netdev)
1194 struct ks_net *ks = netdev_priv(netdev);
1195 struct netdev_hw_addr *ha;
1197 /* Turn on/off promiscuous mode. */
1198 if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1199 ks_set_promis(ks,
1200 (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1201 /* Turn on/off all mcast mode. */
1202 else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1203 ks_set_mcast(ks,
1204 (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1205 else
1206 ks_set_promis(ks, false);
1208 if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1209 if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1210 int i = 0;
1212 netdev_for_each_mc_addr(ha, netdev) {
1213 if (i >= MAX_MCAST_LST)
1214 break;
1215 memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1217 ks->mcast_lst_size = (u8)i;
1218 ks_set_grpaddr(ks);
1219 } else {
1221 * List too big to support so
1222 * turn on all mcast mode.
1224 ks->mcast_lst_size = MAX_MCAST_LST;
1225 ks_set_mcast(ks, true);
1227 } else {
1228 ks->mcast_lst_size = 0;
1229 ks_clear_mcast(ks);
1231 } /* ks_set_rx_mode */
1233 static void ks_set_mac(struct ks_net *ks, u8 *data)
1235 u16 *pw = (u16 *)data;
1236 u16 w, u;
1238 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1240 u = *pw++;
1241 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1242 ks_wrreg16(ks, KS_MARH, w);
1244 u = *pw++;
1245 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1246 ks_wrreg16(ks, KS_MARM, w);
1248 u = *pw;
1249 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1250 ks_wrreg16(ks, KS_MARL, w);
1252 memcpy(ks->mac_addr, data, ETH_ALEN);
1254 if (ks->enabled)
1255 ks_start_rx(ks);
1258 static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1260 struct ks_net *ks = netdev_priv(netdev);
1261 struct sockaddr *addr = paddr;
1262 u8 *da;
1264 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1266 da = (u8 *)netdev->dev_addr;
1268 ks_set_mac(ks, da);
1269 return 0;
1272 static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1274 struct ks_net *ks = netdev_priv(netdev);
1276 if (!netif_running(netdev))
1277 return -EINVAL;
1279 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1282 static const struct net_device_ops ks_netdev_ops = {
1283 .ndo_open = ks_net_open,
1284 .ndo_stop = ks_net_stop,
1285 .ndo_do_ioctl = ks_net_ioctl,
1286 .ndo_start_xmit = ks_start_xmit,
1287 .ndo_set_mac_address = ks_set_mac_address,
1288 .ndo_set_rx_mode = ks_set_rx_mode,
1289 .ndo_validate_addr = eth_validate_addr,
1292 /* ethtool support */
1294 static void ks_get_drvinfo(struct net_device *netdev,
1295 struct ethtool_drvinfo *di)
1297 strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1298 strlcpy(di->version, "1.00", sizeof(di->version));
1299 strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1300 sizeof(di->bus_info));
1303 static u32 ks_get_msglevel(struct net_device *netdev)
1305 struct ks_net *ks = netdev_priv(netdev);
1306 return ks->msg_enable;
1309 static void ks_set_msglevel(struct net_device *netdev, u32 to)
1311 struct ks_net *ks = netdev_priv(netdev);
1312 ks->msg_enable = to;
1315 static int ks_get_link_ksettings(struct net_device *netdev,
1316 struct ethtool_link_ksettings *cmd)
1318 struct ks_net *ks = netdev_priv(netdev);
1320 mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1322 return 0;
1325 static int ks_set_link_ksettings(struct net_device *netdev,
1326 const struct ethtool_link_ksettings *cmd)
1328 struct ks_net *ks = netdev_priv(netdev);
1329 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1332 static u32 ks_get_link(struct net_device *netdev)
1334 struct ks_net *ks = netdev_priv(netdev);
1335 return mii_link_ok(&ks->mii);
1338 static int ks_nway_reset(struct net_device *netdev)
1340 struct ks_net *ks = netdev_priv(netdev);
1341 return mii_nway_restart(&ks->mii);
1344 static const struct ethtool_ops ks_ethtool_ops = {
1345 .get_drvinfo = ks_get_drvinfo,
1346 .get_msglevel = ks_get_msglevel,
1347 .set_msglevel = ks_set_msglevel,
1348 .get_link = ks_get_link,
1349 .nway_reset = ks_nway_reset,
1350 .get_link_ksettings = ks_get_link_ksettings,
1351 .set_link_ksettings = ks_set_link_ksettings,
1354 /* MII interface controls */
1357 * ks_phy_reg - convert MII register into a KS8851 register
1358 * @reg: MII register number.
1360 * Return the KS8851 register number for the corresponding MII PHY register
1361 * if possible. Return zero if the MII register has no direct mapping to the
1362 * KS8851 register set.
1364 static int ks_phy_reg(int reg)
1366 switch (reg) {
1367 case MII_BMCR:
1368 return KS_P1MBCR;
1369 case MII_BMSR:
1370 return KS_P1MBSR;
1371 case MII_PHYSID1:
1372 return KS_PHY1ILR;
1373 case MII_PHYSID2:
1374 return KS_PHY1IHR;
1375 case MII_ADVERTISE:
1376 return KS_P1ANAR;
1377 case MII_LPA:
1378 return KS_P1ANLPR;
1381 return 0x0;
1385 * ks_phy_read - MII interface PHY register read.
1386 * @netdev: The network device the PHY is on.
1387 * @phy_addr: Address of PHY (ignored as we only have one)
1388 * @reg: The register to read.
1390 * This call reads data from the PHY register specified in @reg. Since the
1391 * device does not support all the MII registers, the non-existent values
1392 * are always returned as zero.
1394 * We return zero for unsupported registers as the MII code does not check
1395 * the value returned for any error status, and simply returns it to the
1396 * caller. The mii-tool that the driver was tested with takes any -ve error
1397 * as real PHY capabilities, thus displaying incorrect data to the user.
1399 static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1401 struct ks_net *ks = netdev_priv(netdev);
1402 int ksreg;
1403 int result;
1405 ksreg = ks_phy_reg(reg);
1406 if (!ksreg)
1407 return 0x0; /* no error return allowed, so use zero */
1409 mutex_lock(&ks->lock);
1410 result = ks_rdreg16(ks, ksreg);
1411 mutex_unlock(&ks->lock);
1413 return result;
1416 static void ks_phy_write(struct net_device *netdev,
1417 int phy, int reg, int value)
1419 struct ks_net *ks = netdev_priv(netdev);
1420 int ksreg;
1422 ksreg = ks_phy_reg(reg);
1423 if (ksreg) {
1424 mutex_lock(&ks->lock);
1425 ks_wrreg16(ks, ksreg, value);
1426 mutex_unlock(&ks->lock);
1431 * ks_read_selftest - read the selftest memory info.
1432 * @ks: The device state
1434 * Read and check the TX/RX memory selftest information.
1436 static int ks_read_selftest(struct ks_net *ks)
1438 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1439 int ret = 0;
1440 unsigned rd;
1442 rd = ks_rdreg16(ks, KS_MBIR);
1444 if ((rd & both_done) != both_done) {
1445 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1446 return 0;
1449 if (rd & MBIR_TXMBFA) {
1450 netdev_err(ks->netdev, "TX memory selftest fails\n");
1451 ret |= 1;
1454 if (rd & MBIR_RXMBFA) {
1455 netdev_err(ks->netdev, "RX memory selftest fails\n");
1456 ret |= 2;
1459 netdev_info(ks->netdev, "the selftest passes\n");
1460 return ret;
1463 static void ks_setup(struct ks_net *ks)
1465 u16 w;
1468 * Configure QMU Transmit
1471 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1472 ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1474 /* Setup Receive Frame Data Pointer Auto-Increment */
1475 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1477 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1478 ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1480 /* Setup RxQ Command Control (RXQCR) */
1481 ks->rc_rxqcr = RXQCR_CMD_CNTL;
1482 ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1485 * set the force mode to half duplex, default is full duplex
1486 * because if the auto-negotiation fails, most switch uses
1487 * half-duplex.
1490 w = ks_rdreg16(ks, KS_P1MBCR);
1491 w &= ~P1MBCR_FORCE_FDX;
1492 ks_wrreg16(ks, KS_P1MBCR, w);
1494 w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1495 ks_wrreg16(ks, KS_TXCR, w);
1497 w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1499 if (ks->promiscuous) /* bPromiscuous */
1500 w |= (RXCR1_RXAE | RXCR1_RXINVF);
1501 else if (ks->all_mcast) /* Multicast address passed mode */
1502 w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1503 else /* Normal mode */
1504 w |= RXCR1_RXPAFMA;
1506 ks_wrreg16(ks, KS_RXCR1, w);
1507 } /*ks_setup */
1510 static void ks_setup_int(struct ks_net *ks)
1512 ks->rc_ier = 0x00;
1513 /* Clear the interrupts status of the hardware. */
1514 ks_wrreg16(ks, KS_ISR, 0xffff);
1516 /* Enables the interrupts of the hardware. */
1517 ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1518 } /* ks_setup_int */
1520 static int ks_hw_init(struct ks_net *ks)
1522 #define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1523 ks->promiscuous = 0;
1524 ks->all_mcast = 0;
1525 ks->mcast_lst_size = 0;
1527 ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1528 GFP_KERNEL);
1529 if (!ks->frame_head_info)
1530 return false;
1532 ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1533 return true;
1536 #if defined(CONFIG_OF)
1537 static const struct of_device_id ks8851_ml_dt_ids[] = {
1538 { .compatible = "micrel,ks8851-mll" },
1539 { /* sentinel */ }
1541 MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1542 #endif
1544 static int ks8851_probe(struct platform_device *pdev)
1546 int err;
1547 struct resource *io_d, *io_c;
1548 struct net_device *netdev;
1549 struct ks_net *ks;
1550 u16 id, data;
1551 const char *mac;
1553 netdev = alloc_etherdev(sizeof(struct ks_net));
1554 if (!netdev)
1555 return -ENOMEM;
1557 SET_NETDEV_DEV(netdev, &pdev->dev);
1559 ks = netdev_priv(netdev);
1560 ks->netdev = netdev;
1562 io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1563 ks->hw_addr = devm_ioremap_resource(&pdev->dev, io_d);
1564 if (IS_ERR(ks->hw_addr)) {
1565 err = PTR_ERR(ks->hw_addr);
1566 goto err_free;
1569 io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1570 ks->hw_addr_cmd = devm_ioremap_resource(&pdev->dev, io_c);
1571 if (IS_ERR(ks->hw_addr_cmd)) {
1572 err = PTR_ERR(ks->hw_addr_cmd);
1573 goto err_free;
1576 netdev->irq = platform_get_irq(pdev, 0);
1578 if ((int)netdev->irq < 0) {
1579 err = netdev->irq;
1580 goto err_free;
1583 ks->pdev = pdev;
1585 mutex_init(&ks->lock);
1586 spin_lock_init(&ks->statelock);
1588 netdev->netdev_ops = &ks_netdev_ops;
1589 netdev->ethtool_ops = &ks_ethtool_ops;
1591 /* setup mii state */
1592 ks->mii.dev = netdev;
1593 ks->mii.phy_id = 1,
1594 ks->mii.phy_id_mask = 1;
1595 ks->mii.reg_num_mask = 0xf;
1596 ks->mii.mdio_read = ks_phy_read;
1597 ks->mii.mdio_write = ks_phy_write;
1599 netdev_info(netdev, "message enable is %d\n", msg_enable);
1600 /* set the default message enable */
1601 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1602 NETIF_MSG_PROBE |
1603 NETIF_MSG_LINK));
1604 ks_read_config(ks);
1606 /* simple check for a valid chip being connected to the bus */
1607 if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1608 netdev_err(netdev, "failed to read device ID\n");
1609 err = -ENODEV;
1610 goto err_free;
1613 if (ks_read_selftest(ks)) {
1614 netdev_err(netdev, "failed to read device ID\n");
1615 err = -ENODEV;
1616 goto err_free;
1619 err = register_netdev(netdev);
1620 if (err)
1621 goto err_free;
1623 platform_set_drvdata(pdev, netdev);
1625 ks_soft_reset(ks, GRR_GSR);
1626 ks_hw_init(ks);
1627 ks_disable_qmu(ks);
1628 ks_setup(ks);
1629 ks_setup_int(ks);
1631 data = ks_rdreg16(ks, KS_OBCR);
1632 ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1634 /* overwriting the default MAC address */
1635 if (pdev->dev.of_node) {
1636 mac = of_get_mac_address(pdev->dev.of_node);
1637 if (mac)
1638 memcpy(ks->mac_addr, mac, ETH_ALEN);
1639 } else {
1640 struct ks8851_mll_platform_data *pdata;
1642 pdata = dev_get_platdata(&pdev->dev);
1643 if (!pdata) {
1644 netdev_err(netdev, "No platform data\n");
1645 err = -ENODEV;
1646 goto err_pdata;
1648 memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1650 if (!is_valid_ether_addr(ks->mac_addr)) {
1651 /* Use random MAC address if none passed */
1652 eth_random_addr(ks->mac_addr);
1653 netdev_info(netdev, "Using random mac address\n");
1655 netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1657 memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1659 ks_set_mac(ks, netdev->dev_addr);
1661 id = ks_rdreg16(ks, KS_CIDER);
1663 netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1664 (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1665 return 0;
1667 err_pdata:
1668 unregister_netdev(netdev);
1669 err_free:
1670 free_netdev(netdev);
1671 return err;
1674 static int ks8851_remove(struct platform_device *pdev)
1676 struct net_device *netdev = platform_get_drvdata(pdev);
1678 unregister_netdev(netdev);
1679 free_netdev(netdev);
1680 return 0;
1684 static struct platform_driver ks8851_platform_driver = {
1685 .driver = {
1686 .name = DRV_NAME,
1687 .of_match_table = of_match_ptr(ks8851_ml_dt_ids),
1689 .probe = ks8851_probe,
1690 .remove = ks8851_remove,
1693 module_platform_driver(ks8851_platform_driver);
1695 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1696 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1697 MODULE_LICENSE("GPL");
1698 module_param_named(message, msg_enable, int, 0);
1699 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");