1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 The full GNU General Public License is included in this distribution in
17 the file called "COPYING".
19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
21 Documentation available at:
22 http://www.stlinux.com
24 https://bugzilla.stlinux.com/
25 *******************************************************************************/
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
57 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
60 /* Module parameters */
62 static int watchdog
= TX_TIMEO
;
63 module_param(watchdog
, int, 0644);
64 MODULE_PARM_DESC(watchdog
, "Transmit timeout in milliseconds (default 5s)");
66 static int debug
= -1;
67 module_param(debug
, int, 0644);
68 MODULE_PARM_DESC(debug
, "Message Level (-1: default, 0: no output, 16: all)");
70 static int phyaddr
= -1;
71 module_param(phyaddr
, int, 0444);
72 MODULE_PARM_DESC(phyaddr
, "Physical device address");
74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77 static int flow_ctrl
= FLOW_OFF
;
78 module_param(flow_ctrl
, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl
, "Flow control ability [on/off]");
81 static int pause
= PAUSE_TIME
;
82 module_param(pause
, int, 0644);
83 MODULE_PARM_DESC(pause
, "Flow Control Pause Time");
86 static int tc
= TC_DEFAULT
;
87 module_param(tc
, int, 0644);
88 MODULE_PARM_DESC(tc
, "DMA threshold control value");
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz
= DEFAULT_BUFSIZE
;
92 module_param(buf_sz
, int, 0644);
93 MODULE_PARM_DESC(buf_sz
, "DMA buffer size");
95 #define STMMAC_RX_COPYBREAK 256
97 static const u32 default_msg_level
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
98 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
99 NETIF_MSG_IFDOWN
| NETIF_MSG_TIMER
);
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer
= STMMAC_DEFAULT_LPI_TIMER
;
103 module_param(eee_timer
, int, 0644);
104 MODULE_PARM_DESC(eee_timer
, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
110 static unsigned int chain_mode
;
111 module_param(chain_mode
, int, 0444);
112 MODULE_PARM_DESC(chain_mode
, "To use chain instead of ring mode");
114 static irqreturn_t
stmmac_interrupt(int irq
, void *dev_id
);
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device
*dev
);
118 static void stmmac_exit_fs(struct net_device
*dev
);
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 * stmmac_verify_args - verify the driver parameters.
125 * Description: it checks the driver parameters and set a default in case of
128 static void stmmac_verify_args(void)
130 if (unlikely(watchdog
< 0))
132 if (unlikely((buf_sz
< DEFAULT_BUFSIZE
) || (buf_sz
> BUF_SIZE_16KiB
)))
133 buf_sz
= DEFAULT_BUFSIZE
;
134 if (unlikely(flow_ctrl
> 1))
135 flow_ctrl
= FLOW_AUTO
;
136 else if (likely(flow_ctrl
< 0))
137 flow_ctrl
= FLOW_OFF
;
138 if (unlikely((pause
< 0) || (pause
> 0xffff)))
141 eee_timer
= STMMAC_DEFAULT_LPI_TIMER
;
145 * stmmac_disable_all_queues - Disable all queues
146 * @priv: driver private structure
148 static void stmmac_disable_all_queues(struct stmmac_priv
*priv
)
150 u32 rx_queues_cnt
= priv
->plat
->rx_queues_to_use
;
151 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
152 u32 maxq
= max(rx_queues_cnt
, tx_queues_cnt
);
155 for (queue
= 0; queue
< maxq
; queue
++) {
156 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
158 napi_disable(&ch
->napi
);
163 * stmmac_enable_all_queues - Enable all queues
164 * @priv: driver private structure
166 static void stmmac_enable_all_queues(struct stmmac_priv
*priv
)
168 u32 rx_queues_cnt
= priv
->plat
->rx_queues_to_use
;
169 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
170 u32 maxq
= max(rx_queues_cnt
, tx_queues_cnt
);
173 for (queue
= 0; queue
< maxq
; queue
++) {
174 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
176 napi_enable(&ch
->napi
);
181 * stmmac_stop_all_queues - Stop all queues
182 * @priv: driver private structure
184 static void stmmac_stop_all_queues(struct stmmac_priv
*priv
)
186 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
189 for (queue
= 0; queue
< tx_queues_cnt
; queue
++)
190 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, queue
));
194 * stmmac_start_all_queues - Start all queues
195 * @priv: driver private structure
197 static void stmmac_start_all_queues(struct stmmac_priv
*priv
)
199 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
202 for (queue
= 0; queue
< tx_queues_cnt
; queue
++)
203 netif_tx_start_queue(netdev_get_tx_queue(priv
->dev
, queue
));
206 static void stmmac_service_event_schedule(struct stmmac_priv
*priv
)
208 if (!test_bit(STMMAC_DOWN
, &priv
->state
) &&
209 !test_and_set_bit(STMMAC_SERVICE_SCHED
, &priv
->state
))
210 queue_work(priv
->wq
, &priv
->service_task
);
213 static void stmmac_global_err(struct stmmac_priv
*priv
)
215 netif_carrier_off(priv
->dev
);
216 set_bit(STMMAC_RESET_REQUESTED
, &priv
->state
);
217 stmmac_service_event_schedule(priv
);
221 * stmmac_clk_csr_set - dynamically set the MDC clock
222 * @priv: driver private structure
223 * Description: this is to dynamically set the MDC clock according to the csr
226 * If a specific clk_csr value is passed from the platform
227 * this means that the CSR Clock Range selection cannot be
228 * changed at run-time and it is fixed (as reported in the driver
229 * documentation). Viceversa the driver will try to set the MDC
230 * clock dynamically according to the actual clock input.
232 static void stmmac_clk_csr_set(struct stmmac_priv
*priv
)
236 clk_rate
= clk_get_rate(priv
->plat
->stmmac_clk
);
238 /* Platform provided default clk_csr would be assumed valid
239 * for all other cases except for the below mentioned ones.
240 * For values higher than the IEEE 802.3 specified frequency
241 * we can not estimate the proper divider as it is not known
242 * the frequency of clk_csr_i. So we do not change the default
245 if (!(priv
->clk_csr
& MAC_CSR_H_FRQ_MASK
)) {
246 if (clk_rate
< CSR_F_35M
)
247 priv
->clk_csr
= STMMAC_CSR_20_35M
;
248 else if ((clk_rate
>= CSR_F_35M
) && (clk_rate
< CSR_F_60M
))
249 priv
->clk_csr
= STMMAC_CSR_35_60M
;
250 else if ((clk_rate
>= CSR_F_60M
) && (clk_rate
< CSR_F_100M
))
251 priv
->clk_csr
= STMMAC_CSR_60_100M
;
252 else if ((clk_rate
>= CSR_F_100M
) && (clk_rate
< CSR_F_150M
))
253 priv
->clk_csr
= STMMAC_CSR_100_150M
;
254 else if ((clk_rate
>= CSR_F_150M
) && (clk_rate
< CSR_F_250M
))
255 priv
->clk_csr
= STMMAC_CSR_150_250M
;
256 else if ((clk_rate
>= CSR_F_250M
) && (clk_rate
< CSR_F_300M
))
257 priv
->clk_csr
= STMMAC_CSR_250_300M
;
260 if (priv
->plat
->has_sun8i
) {
261 if (clk_rate
> 160000000)
262 priv
->clk_csr
= 0x03;
263 else if (clk_rate
> 80000000)
264 priv
->clk_csr
= 0x02;
265 else if (clk_rate
> 40000000)
266 priv
->clk_csr
= 0x01;
271 if (priv
->plat
->has_xgmac
) {
272 if (clk_rate
> 400000000)
274 else if (clk_rate
> 350000000)
276 else if (clk_rate
> 300000000)
278 else if (clk_rate
> 250000000)
280 else if (clk_rate
> 150000000)
287 static void print_pkt(unsigned char *buf
, int len
)
289 pr_debug("len = %d byte, buf addr: 0x%p\n", len
, buf
);
290 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET
, buf
, len
);
293 static inline u32
stmmac_tx_avail(struct stmmac_priv
*priv
, u32 queue
)
295 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
298 if (tx_q
->dirty_tx
> tx_q
->cur_tx
)
299 avail
= tx_q
->dirty_tx
- tx_q
->cur_tx
- 1;
301 avail
= DMA_TX_SIZE
- tx_q
->cur_tx
+ tx_q
->dirty_tx
- 1;
307 * stmmac_rx_dirty - Get RX queue dirty
308 * @priv: driver private structure
309 * @queue: RX queue index
311 static inline u32
stmmac_rx_dirty(struct stmmac_priv
*priv
, u32 queue
)
313 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
316 if (rx_q
->dirty_rx
<= rx_q
->cur_rx
)
317 dirty
= rx_q
->cur_rx
- rx_q
->dirty_rx
;
319 dirty
= DMA_RX_SIZE
- rx_q
->dirty_rx
+ rx_q
->cur_rx
;
325 * stmmac_hw_fix_mac_speed - callback for speed selection
326 * @priv: driver private structure
327 * Description: on some platforms (e.g. ST), some HW system configuration
328 * registers have to be set according to the link speed negotiated.
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv
*priv
)
332 struct net_device
*ndev
= priv
->dev
;
333 struct phy_device
*phydev
= ndev
->phydev
;
335 if (likely(priv
->plat
->fix_mac_speed
))
336 priv
->plat
->fix_mac_speed(priv
->plat
->bsp_priv
, phydev
->speed
);
340 * stmmac_enable_eee_mode - check and enter in LPI mode
341 * @priv: driver private structure
342 * Description: this function is to verify and enter in LPI mode in case of
345 static void stmmac_enable_eee_mode(struct stmmac_priv
*priv
)
347 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
350 /* check if all TX queues have the work finished */
351 for (queue
= 0; queue
< tx_cnt
; queue
++) {
352 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
354 if (tx_q
->dirty_tx
!= tx_q
->cur_tx
)
355 return; /* still unfinished work */
358 /* Check and enter in LPI mode */
359 if (!priv
->tx_path_in_lpi_mode
)
360 stmmac_set_eee_mode(priv
, priv
->hw
,
361 priv
->plat
->en_tx_lpi_clockgating
);
365 * stmmac_disable_eee_mode - disable and exit from LPI mode
366 * @priv: driver private structure
367 * Description: this function is to exit and disable EEE in case of
368 * LPI state is true. This is called by the xmit.
370 void stmmac_disable_eee_mode(struct stmmac_priv
*priv
)
372 stmmac_reset_eee_mode(priv
, priv
->hw
);
373 del_timer_sync(&priv
->eee_ctrl_timer
);
374 priv
->tx_path_in_lpi_mode
= false;
378 * stmmac_eee_ctrl_timer - EEE TX SW timer.
381 * if there is no data transfer and if we are not in LPI state,
382 * then MAC Transmitter can be moved to LPI state.
384 static void stmmac_eee_ctrl_timer(struct timer_list
*t
)
386 struct stmmac_priv
*priv
= from_timer(priv
, t
, eee_ctrl_timer
);
388 stmmac_enable_eee_mode(priv
);
389 mod_timer(&priv
->eee_ctrl_timer
, STMMAC_LPI_T(eee_timer
));
393 * stmmac_eee_init - init EEE
394 * @priv: driver private structure
396 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
397 * can also manage EEE, this function enable the LPI state and start related
400 bool stmmac_eee_init(struct stmmac_priv
*priv
)
402 struct net_device
*ndev
= priv
->dev
;
403 int interface
= priv
->plat
->interface
;
406 if ((interface
!= PHY_INTERFACE_MODE_MII
) &&
407 (interface
!= PHY_INTERFACE_MODE_GMII
) &&
408 !phy_interface_mode_is_rgmii(interface
))
411 /* Using PCS we cannot dial with the phy registers at this stage
412 * so we do not support extra feature like EEE.
414 if ((priv
->hw
->pcs
== STMMAC_PCS_RGMII
) ||
415 (priv
->hw
->pcs
== STMMAC_PCS_TBI
) ||
416 (priv
->hw
->pcs
== STMMAC_PCS_RTBI
))
419 /* MAC core supports the EEE feature. */
420 if (priv
->dma_cap
.eee
) {
421 int tx_lpi_timer
= priv
->tx_lpi_timer
;
423 /* Check if the PHY supports EEE */
424 if (phy_init_eee(ndev
->phydev
, 1)) {
425 /* To manage at run-time if the EEE cannot be supported
426 * anymore (for example because the lp caps have been
428 * In that case the driver disable own timers.
430 mutex_lock(&priv
->lock
);
431 if (priv
->eee_active
) {
432 netdev_dbg(priv
->dev
, "disable EEE\n");
433 del_timer_sync(&priv
->eee_ctrl_timer
);
434 stmmac_set_eee_timer(priv
, priv
->hw
, 0,
437 priv
->eee_active
= 0;
438 mutex_unlock(&priv
->lock
);
441 /* Activate the EEE and start timers */
442 mutex_lock(&priv
->lock
);
443 if (!priv
->eee_active
) {
444 priv
->eee_active
= 1;
445 timer_setup(&priv
->eee_ctrl_timer
,
446 stmmac_eee_ctrl_timer
, 0);
447 mod_timer(&priv
->eee_ctrl_timer
,
448 STMMAC_LPI_T(eee_timer
));
450 stmmac_set_eee_timer(priv
, priv
->hw
,
451 STMMAC_DEFAULT_LIT_LS
, tx_lpi_timer
);
453 /* Set HW EEE according to the speed */
454 stmmac_set_eee_pls(priv
, priv
->hw
, ndev
->phydev
->link
);
457 mutex_unlock(&priv
->lock
);
459 netdev_dbg(priv
->dev
, "Energy-Efficient Ethernet initialized\n");
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466 * @priv: driver private structure
467 * @p : descriptor pointer
468 * @skb : the socket buffer
470 * This function will read timestamp from the descriptor & pass it to stack.
471 * and also perform some sanity checks.
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv
*priv
,
474 struct dma_desc
*p
, struct sk_buff
*skb
)
476 struct skb_shared_hwtstamps shhwtstamp
;
479 if (!priv
->hwts_tx_en
)
482 /* exit if skb doesn't support hw tstamp */
483 if (likely(!skb
|| !(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)))
486 /* check tx tstamp status */
487 if (stmmac_get_tx_timestamp_status(priv
, p
)) {
488 /* get the valid tstamp */
489 stmmac_get_timestamp(priv
, p
, priv
->adv_ts
, &ns
);
491 memset(&shhwtstamp
, 0, sizeof(struct skb_shared_hwtstamps
));
492 shhwtstamp
.hwtstamp
= ns_to_ktime(ns
);
494 netdev_dbg(priv
->dev
, "get valid TX hw timestamp %llu\n", ns
);
495 /* pass tstamp to stack */
496 skb_tstamp_tx(skb
, &shhwtstamp
);
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503 * @priv: driver private structure
504 * @p : descriptor pointer
505 * @np : next descriptor pointer
506 * @skb : the socket buffer
508 * This function will read received packet's timestamp from the descriptor
509 * and pass it to stack. It also perform some sanity checks.
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv
*priv
, struct dma_desc
*p
,
512 struct dma_desc
*np
, struct sk_buff
*skb
)
514 struct skb_shared_hwtstamps
*shhwtstamp
= NULL
;
515 struct dma_desc
*desc
= p
;
518 if (!priv
->hwts_rx_en
)
520 /* For GMAC4, the valid timestamp is from CTX next desc. */
521 if (priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
)
524 /* Check if timestamp is available */
525 if (stmmac_get_rx_timestamp_status(priv
, p
, np
, priv
->adv_ts
)) {
526 stmmac_get_timestamp(priv
, desc
, priv
->adv_ts
, &ns
);
527 netdev_dbg(priv
->dev
, "get valid RX hw timestamp %llu\n", ns
);
528 shhwtstamp
= skb_hwtstamps(skb
);
529 memset(shhwtstamp
, 0, sizeof(struct skb_shared_hwtstamps
));
530 shhwtstamp
->hwtstamp
= ns_to_ktime(ns
);
532 netdev_dbg(priv
->dev
, "cannot get RX hw timestamp\n");
537 * stmmac_hwtstamp_ioctl - control hardware timestamping.
538 * @dev: device pointer.
539 * @ifr: An IOCTL specific structure, that can contain a pointer to
540 * a proprietary structure used to pass information to the driver.
542 * This function configures the MAC to enable/disable both outgoing(TX)
543 * and incoming(RX) packets time stamping based on user input.
545 * 0 on success and an appropriate -ve integer on failure.
547 static int stmmac_hwtstamp_ioctl(struct net_device
*dev
, struct ifreq
*ifr
)
549 struct stmmac_priv
*priv
= netdev_priv(dev
);
550 struct hwtstamp_config config
;
551 struct timespec64 now
;
555 u32 ptp_over_ipv4_udp
= 0;
556 u32 ptp_over_ipv6_udp
= 0;
557 u32 ptp_over_ethernet
= 0;
558 u32 snap_type_sel
= 0;
559 u32 ts_master_en
= 0;
565 xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
567 if (!(priv
->dma_cap
.time_stamp
|| priv
->adv_ts
)) {
568 netdev_alert(priv
->dev
, "No support for HW time stamping\n");
569 priv
->hwts_tx_en
= 0;
570 priv
->hwts_rx_en
= 0;
575 if (copy_from_user(&config
, ifr
->ifr_data
,
576 sizeof(struct hwtstamp_config
)))
579 netdev_dbg(priv
->dev
, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 __func__
, config
.flags
, config
.tx_type
, config
.rx_filter
);
582 /* reserved for future extensions */
586 if (config
.tx_type
!= HWTSTAMP_TX_OFF
&&
587 config
.tx_type
!= HWTSTAMP_TX_ON
)
591 switch (config
.rx_filter
) {
592 case HWTSTAMP_FILTER_NONE
:
593 /* time stamp no incoming packet at all */
594 config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
597 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
598 /* PTP v1, UDP, any kind of event packet */
599 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
600 /* take time stamp for all event messages */
602 snap_type_sel
= PTP_GMAC4_TCR_SNAPTYPSEL_1
;
604 snap_type_sel
= PTP_TCR_SNAPTYPSEL_1
;
606 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
607 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
610 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
611 /* PTP v1, UDP, Sync packet */
612 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_SYNC
;
613 /* take time stamp for SYNC messages only */
614 ts_event_en
= PTP_TCR_TSEVNTENA
;
616 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
617 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
620 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
621 /* PTP v1, UDP, Delay_req packet */
622 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
;
623 /* take time stamp for Delay_Req messages only */
624 ts_master_en
= PTP_TCR_TSMSTRENA
;
625 ts_event_en
= PTP_TCR_TSEVNTENA
;
627 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
628 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
631 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
632 /* PTP v2, UDP, any kind of event packet */
633 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_EVENT
;
634 ptp_v2
= PTP_TCR_TSVER2ENA
;
635 /* take time stamp for all event messages */
637 snap_type_sel
= PTP_GMAC4_TCR_SNAPTYPSEL_1
;
639 snap_type_sel
= PTP_TCR_SNAPTYPSEL_1
;
641 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
642 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
645 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
646 /* PTP v2, UDP, Sync packet */
647 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_SYNC
;
648 ptp_v2
= PTP_TCR_TSVER2ENA
;
649 /* take time stamp for SYNC messages only */
650 ts_event_en
= PTP_TCR_TSEVNTENA
;
652 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
653 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
656 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
657 /* PTP v2, UDP, Delay_req packet */
658 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
;
659 ptp_v2
= PTP_TCR_TSVER2ENA
;
660 /* take time stamp for Delay_Req messages only */
661 ts_master_en
= PTP_TCR_TSMSTRENA
;
662 ts_event_en
= PTP_TCR_TSEVNTENA
;
664 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
665 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
668 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
669 /* PTP v2/802.AS1 any layer, any kind of event packet */
670 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
671 ptp_v2
= PTP_TCR_TSVER2ENA
;
672 /* take time stamp for all event messages */
674 snap_type_sel
= PTP_GMAC4_TCR_SNAPTYPSEL_1
;
676 snap_type_sel
= PTP_TCR_SNAPTYPSEL_1
;
678 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
679 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
680 ptp_over_ethernet
= PTP_TCR_TSIPENA
;
683 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
684 /* PTP v2/802.AS1, any layer, Sync packet */
685 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_SYNC
;
686 ptp_v2
= PTP_TCR_TSVER2ENA
;
687 /* take time stamp for SYNC messages only */
688 ts_event_en
= PTP_TCR_TSEVNTENA
;
690 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
691 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
692 ptp_over_ethernet
= PTP_TCR_TSIPENA
;
695 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
696 /* PTP v2/802.AS1, any layer, Delay_req packet */
697 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
;
698 ptp_v2
= PTP_TCR_TSVER2ENA
;
699 /* take time stamp for Delay_Req messages only */
700 ts_master_en
= PTP_TCR_TSMSTRENA
;
701 ts_event_en
= PTP_TCR_TSEVNTENA
;
703 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
704 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
705 ptp_over_ethernet
= PTP_TCR_TSIPENA
;
708 case HWTSTAMP_FILTER_NTP_ALL
:
709 case HWTSTAMP_FILTER_ALL
:
710 /* time stamp any incoming packet */
711 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
712 tstamp_all
= PTP_TCR_TSENALL
;
719 switch (config
.rx_filter
) {
720 case HWTSTAMP_FILTER_NONE
:
721 config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
724 /* PTP v1, UDP, any kind of event packet */
725 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
729 priv
->hwts_rx_en
= ((config
.rx_filter
== HWTSTAMP_FILTER_NONE
) ? 0 : 1);
730 priv
->hwts_tx_en
= config
.tx_type
== HWTSTAMP_TX_ON
;
732 if (!priv
->hwts_tx_en
&& !priv
->hwts_rx_en
)
733 stmmac_config_hw_tstamping(priv
, priv
->ptpaddr
, 0);
735 value
= (PTP_TCR_TSENA
| PTP_TCR_TSCFUPDT
| PTP_TCR_TSCTRLSSR
|
736 tstamp_all
| ptp_v2
| ptp_over_ethernet
|
737 ptp_over_ipv6_udp
| ptp_over_ipv4_udp
| ts_event_en
|
738 ts_master_en
| snap_type_sel
);
739 stmmac_config_hw_tstamping(priv
, priv
->ptpaddr
, value
);
741 /* program Sub Second Increment reg */
742 stmmac_config_sub_second_increment(priv
,
743 priv
->ptpaddr
, priv
->plat
->clk_ptp_rate
,
745 temp
= div_u64(1000000000ULL, sec_inc
);
747 /* Store sub second increment and flags for later use */
748 priv
->sub_second_inc
= sec_inc
;
749 priv
->systime_flags
= value
;
751 /* calculate default added value:
753 * addend = (2^32)/freq_div_ratio;
754 * where, freq_div_ratio = 1e9ns/sec_inc
756 temp
= (u64
)(temp
<< 32);
757 priv
->default_addend
= div_u64(temp
, priv
->plat
->clk_ptp_rate
);
758 stmmac_config_addend(priv
, priv
->ptpaddr
, priv
->default_addend
);
760 /* initialize system time */
761 ktime_get_real_ts64(&now
);
763 /* lower 32 bits of tv_sec are safe until y2106 */
764 stmmac_init_systime(priv
, priv
->ptpaddr
,
765 (u32
)now
.tv_sec
, now
.tv_nsec
);
768 return copy_to_user(ifr
->ifr_data
, &config
,
769 sizeof(struct hwtstamp_config
)) ? -EFAULT
: 0;
773 * stmmac_init_ptp - init PTP
774 * @priv: driver private structure
775 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776 * This is done by looking at the HW cap. register.
777 * This function also registers the ptp driver.
779 static int stmmac_init_ptp(struct stmmac_priv
*priv
)
781 bool xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
783 if (!(priv
->dma_cap
.time_stamp
|| priv
->dma_cap
.atime_stamp
))
787 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 if (xmac
&& priv
->dma_cap
.atime_stamp
)
790 /* Dwmac 3.x core with extend_desc can support adv_ts */
791 else if (priv
->extend_desc
&& priv
->dma_cap
.atime_stamp
)
794 if (priv
->dma_cap
.time_stamp
)
795 netdev_info(priv
->dev
, "IEEE 1588-2002 Timestamp supported\n");
798 netdev_info(priv
->dev
,
799 "IEEE 1588-2008 Advanced Timestamp supported\n");
801 priv
->hwts_tx_en
= 0;
802 priv
->hwts_rx_en
= 0;
804 stmmac_ptp_register(priv
);
809 static void stmmac_release_ptp(struct stmmac_priv
*priv
)
811 if (priv
->plat
->clk_ptp_ref
)
812 clk_disable_unprepare(priv
->plat
->clk_ptp_ref
);
813 stmmac_ptp_unregister(priv
);
817 * stmmac_mac_flow_ctrl - Configure flow control in all queues
818 * @priv: driver private structure
819 * Description: It is used for configuring the flow control in all queues
821 static void stmmac_mac_flow_ctrl(struct stmmac_priv
*priv
, u32 duplex
)
823 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
825 stmmac_flow_ctrl(priv
, priv
->hw
, duplex
, priv
->flow_ctrl
,
826 priv
->pause
, tx_cnt
);
830 * stmmac_adjust_link - adjusts the link parameters
831 * @dev: net device structure
832 * Description: this is the helper called by the physical abstraction layer
833 * drivers to communicate the phy link status. According the speed and duplex
834 * this driver can invoke registered glue-logic as well.
835 * It also invoke the eee initialization because it could happen when switch
836 * on different networks (that are eee capable).
838 static void stmmac_adjust_link(struct net_device
*dev
)
840 struct stmmac_priv
*priv
= netdev_priv(dev
);
841 struct phy_device
*phydev
= dev
->phydev
;
842 bool new_state
= false;
847 mutex_lock(&priv
->lock
);
850 u32 ctrl
= readl(priv
->ioaddr
+ MAC_CTRL_REG
);
852 /* Now we make sure that we can be in full duplex mode.
853 * If not, we operate in half-duplex mode. */
854 if (phydev
->duplex
!= priv
->oldduplex
) {
857 ctrl
&= ~priv
->hw
->link
.duplex
;
859 ctrl
|= priv
->hw
->link
.duplex
;
860 priv
->oldduplex
= phydev
->duplex
;
862 /* Flow Control operation */
864 stmmac_mac_flow_ctrl(priv
, phydev
->duplex
);
866 if (phydev
->speed
!= priv
->speed
) {
868 ctrl
&= ~priv
->hw
->link
.speed_mask
;
869 switch (phydev
->speed
) {
871 ctrl
|= priv
->hw
->link
.speed1000
;
874 ctrl
|= priv
->hw
->link
.speed100
;
877 ctrl
|= priv
->hw
->link
.speed10
;
880 netif_warn(priv
, link
, priv
->dev
,
881 "broken speed: %d\n", phydev
->speed
);
882 phydev
->speed
= SPEED_UNKNOWN
;
885 if (phydev
->speed
!= SPEED_UNKNOWN
)
886 stmmac_hw_fix_mac_speed(priv
);
887 priv
->speed
= phydev
->speed
;
890 writel(ctrl
, priv
->ioaddr
+ MAC_CTRL_REG
);
892 if (!priv
->oldlink
) {
894 priv
->oldlink
= true;
896 } else if (priv
->oldlink
) {
898 priv
->oldlink
= false;
899 priv
->speed
= SPEED_UNKNOWN
;
900 priv
->oldduplex
= DUPLEX_UNKNOWN
;
903 if (new_state
&& netif_msg_link(priv
))
904 phy_print_status(phydev
);
906 mutex_unlock(&priv
->lock
);
908 if (phydev
->is_pseudo_fixed_link
)
909 /* Stop PHY layer to call the hook to adjust the link in case
910 * of a switch is attached to the stmmac driver.
912 phydev
->irq
= PHY_IGNORE_INTERRUPT
;
914 /* At this stage, init the EEE if supported.
915 * Never called in case of fixed_link.
917 priv
->eee_enabled
= stmmac_eee_init(priv
);
921 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922 * @priv: driver private structure
923 * Description: this is to verify if the HW supports the PCS.
924 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925 * configured for the TBI, RTBI, or SGMII PHY interface.
927 static void stmmac_check_pcs_mode(struct stmmac_priv
*priv
)
929 int interface
= priv
->plat
->interface
;
931 if (priv
->dma_cap
.pcs
) {
932 if ((interface
== PHY_INTERFACE_MODE_RGMII
) ||
933 (interface
== PHY_INTERFACE_MODE_RGMII_ID
) ||
934 (interface
== PHY_INTERFACE_MODE_RGMII_RXID
) ||
935 (interface
== PHY_INTERFACE_MODE_RGMII_TXID
)) {
936 netdev_dbg(priv
->dev
, "PCS RGMII support enabled\n");
937 priv
->hw
->pcs
= STMMAC_PCS_RGMII
;
938 } else if (interface
== PHY_INTERFACE_MODE_SGMII
) {
939 netdev_dbg(priv
->dev
, "PCS SGMII support enabled\n");
940 priv
->hw
->pcs
= STMMAC_PCS_SGMII
;
946 * stmmac_init_phy - PHY initialization
947 * @dev: net device structure
948 * Description: it initializes the driver's PHY state, and attaches the PHY
953 static int stmmac_init_phy(struct net_device
*dev
)
955 struct stmmac_priv
*priv
= netdev_priv(dev
);
956 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
957 struct phy_device
*phydev
;
958 char phy_id_fmt
[MII_BUS_ID_SIZE
+ 3];
959 char bus_id
[MII_BUS_ID_SIZE
];
960 int interface
= priv
->plat
->interface
;
961 int max_speed
= priv
->plat
->max_speed
;
962 priv
->oldlink
= false;
963 priv
->speed
= SPEED_UNKNOWN
;
964 priv
->oldduplex
= DUPLEX_UNKNOWN
;
966 if (priv
->plat
->phy_node
) {
967 phydev
= of_phy_connect(dev
, priv
->plat
->phy_node
,
968 &stmmac_adjust_link
, 0, interface
);
970 snprintf(bus_id
, MII_BUS_ID_SIZE
, "stmmac-%x",
973 snprintf(phy_id_fmt
, MII_BUS_ID_SIZE
+ 3, PHY_ID_FMT
, bus_id
,
974 priv
->plat
->phy_addr
);
975 netdev_dbg(priv
->dev
, "%s: trying to attach to %s\n", __func__
,
978 phydev
= phy_connect(dev
, phy_id_fmt
, &stmmac_adjust_link
,
982 if (IS_ERR_OR_NULL(phydev
)) {
983 netdev_err(priv
->dev
, "Could not attach to PHY\n");
987 return PTR_ERR(phydev
);
990 /* Stop Advertising 1000BASE Capability if interface is not GMII */
991 if ((interface
== PHY_INTERFACE_MODE_MII
) ||
992 (interface
== PHY_INTERFACE_MODE_RMII
) ||
993 (max_speed
< 1000 && max_speed
> 0))
994 phy_set_max_speed(phydev
, SPEED_100
);
997 * Half-duplex mode not supported with multiqueue
998 * half-duplex can only works with single queue
1001 phy_remove_link_mode(phydev
,
1002 ETHTOOL_LINK_MODE_10baseT_Half_BIT
);
1003 phy_remove_link_mode(phydev
,
1004 ETHTOOL_LINK_MODE_100baseT_Half_BIT
);
1005 phy_remove_link_mode(phydev
,
1006 ETHTOOL_LINK_MODE_1000baseT_Half_BIT
);
1010 * Broken HW is sometimes missing the pull-up resistor on the
1011 * MDIO line, which results in reads to non-existent devices returning
1012 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1014 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1016 if (!priv
->plat
->phy_node
&& phydev
->phy_id
== 0) {
1017 phy_disconnect(phydev
);
1021 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1022 * subsequent PHY polling, make sure we force a link transition if
1023 * we have a UP/DOWN/UP transition
1025 if (phydev
->is_pseudo_fixed_link
)
1026 phydev
->irq
= PHY_POLL
;
1028 phy_attached_info(phydev
);
1032 static void stmmac_display_rx_rings(struct stmmac_priv
*priv
)
1034 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
1038 /* Display RX rings */
1039 for (queue
= 0; queue
< rx_cnt
; queue
++) {
1040 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1042 pr_info("\tRX Queue %u rings\n", queue
);
1044 if (priv
->extend_desc
)
1045 head_rx
= (void *)rx_q
->dma_erx
;
1047 head_rx
= (void *)rx_q
->dma_rx
;
1049 /* Display RX ring */
1050 stmmac_display_ring(priv
, head_rx
, DMA_RX_SIZE
, true);
1054 static void stmmac_display_tx_rings(struct stmmac_priv
*priv
)
1056 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
1060 /* Display TX rings */
1061 for (queue
= 0; queue
< tx_cnt
; queue
++) {
1062 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1064 pr_info("\tTX Queue %d rings\n", queue
);
1066 if (priv
->extend_desc
)
1067 head_tx
= (void *)tx_q
->dma_etx
;
1069 head_tx
= (void *)tx_q
->dma_tx
;
1071 stmmac_display_ring(priv
, head_tx
, DMA_TX_SIZE
, false);
1075 static void stmmac_display_rings(struct stmmac_priv
*priv
)
1077 /* Display RX ring */
1078 stmmac_display_rx_rings(priv
);
1080 /* Display TX ring */
1081 stmmac_display_tx_rings(priv
);
1084 static int stmmac_set_bfsize(int mtu
, int bufsize
)
1088 if (mtu
>= BUF_SIZE_4KiB
)
1089 ret
= BUF_SIZE_8KiB
;
1090 else if (mtu
>= BUF_SIZE_2KiB
)
1091 ret
= BUF_SIZE_4KiB
;
1092 else if (mtu
> DEFAULT_BUFSIZE
)
1093 ret
= BUF_SIZE_2KiB
;
1095 ret
= DEFAULT_BUFSIZE
;
1101 * stmmac_clear_rx_descriptors - clear RX descriptors
1102 * @priv: driver private structure
1103 * @queue: RX queue index
1104 * Description: this function is called to clear the RX descriptors
1105 * in case of both basic and extended descriptors are used.
1107 static void stmmac_clear_rx_descriptors(struct stmmac_priv
*priv
, u32 queue
)
1109 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1112 /* Clear the RX descriptors */
1113 for (i
= 0; i
< DMA_RX_SIZE
; i
++)
1114 if (priv
->extend_desc
)
1115 stmmac_init_rx_desc(priv
, &rx_q
->dma_erx
[i
].basic
,
1116 priv
->use_riwt
, priv
->mode
,
1117 (i
== DMA_RX_SIZE
- 1));
1119 stmmac_init_rx_desc(priv
, &rx_q
->dma_rx
[i
],
1120 priv
->use_riwt
, priv
->mode
,
1121 (i
== DMA_RX_SIZE
- 1));
1125 * stmmac_clear_tx_descriptors - clear tx descriptors
1126 * @priv: driver private structure
1127 * @queue: TX queue index.
1128 * Description: this function is called to clear the TX descriptors
1129 * in case of both basic and extended descriptors are used.
1131 static void stmmac_clear_tx_descriptors(struct stmmac_priv
*priv
, u32 queue
)
1133 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1136 /* Clear the TX descriptors */
1137 for (i
= 0; i
< DMA_TX_SIZE
; i
++)
1138 if (priv
->extend_desc
)
1139 stmmac_init_tx_desc(priv
, &tx_q
->dma_etx
[i
].basic
,
1140 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1142 stmmac_init_tx_desc(priv
, &tx_q
->dma_tx
[i
],
1143 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1147 * stmmac_clear_descriptors - clear descriptors
1148 * @priv: driver private structure
1149 * Description: this function is called to clear the TX and RX descriptors
1150 * in case of both basic and extended descriptors are used.
1152 static void stmmac_clear_descriptors(struct stmmac_priv
*priv
)
1154 u32 rx_queue_cnt
= priv
->plat
->rx_queues_to_use
;
1155 u32 tx_queue_cnt
= priv
->plat
->tx_queues_to_use
;
1158 /* Clear the RX descriptors */
1159 for (queue
= 0; queue
< rx_queue_cnt
; queue
++)
1160 stmmac_clear_rx_descriptors(priv
, queue
);
1162 /* Clear the TX descriptors */
1163 for (queue
= 0; queue
< tx_queue_cnt
; queue
++)
1164 stmmac_clear_tx_descriptors(priv
, queue
);
1168 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1169 * @priv: driver private structure
1170 * @p: descriptor pointer
1171 * @i: descriptor index
1173 * @queue: RX queue index
1174 * Description: this function is called to allocate a receive buffer, perform
1175 * the DMA mapping and init the descriptor.
1177 static int stmmac_init_rx_buffers(struct stmmac_priv
*priv
, struct dma_desc
*p
,
1178 int i
, gfp_t flags
, u32 queue
)
1180 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1181 struct sk_buff
*skb
;
1183 skb
= __netdev_alloc_skb_ip_align(priv
->dev
, priv
->dma_buf_sz
, flags
);
1185 netdev_err(priv
->dev
,
1186 "%s: Rx init fails; skb is NULL\n", __func__
);
1189 rx_q
->rx_skbuff
[i
] = skb
;
1190 rx_q
->rx_skbuff_dma
[i
] = dma_map_single(priv
->device
, skb
->data
,
1193 if (dma_mapping_error(priv
->device
, rx_q
->rx_skbuff_dma
[i
])) {
1194 netdev_err(priv
->dev
, "%s: DMA mapping error\n", __func__
);
1195 dev_kfree_skb_any(skb
);
1199 stmmac_set_desc_addr(priv
, p
, rx_q
->rx_skbuff_dma
[i
]);
1201 if (priv
->dma_buf_sz
== BUF_SIZE_16KiB
)
1202 stmmac_init_desc3(priv
, p
);
1208 * stmmac_free_rx_buffer - free RX dma buffers
1209 * @priv: private structure
1210 * @queue: RX queue index
1213 static void stmmac_free_rx_buffer(struct stmmac_priv
*priv
, u32 queue
, int i
)
1215 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1217 if (rx_q
->rx_skbuff
[i
]) {
1218 dma_unmap_single(priv
->device
, rx_q
->rx_skbuff_dma
[i
],
1219 priv
->dma_buf_sz
, DMA_FROM_DEVICE
);
1220 dev_kfree_skb_any(rx_q
->rx_skbuff
[i
]);
1222 rx_q
->rx_skbuff
[i
] = NULL
;
1226 * stmmac_free_tx_buffer - free RX dma buffers
1227 * @priv: private structure
1228 * @queue: RX queue index
1231 static void stmmac_free_tx_buffer(struct stmmac_priv
*priv
, u32 queue
, int i
)
1233 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1235 if (tx_q
->tx_skbuff_dma
[i
].buf
) {
1236 if (tx_q
->tx_skbuff_dma
[i
].map_as_page
)
1237 dma_unmap_page(priv
->device
,
1238 tx_q
->tx_skbuff_dma
[i
].buf
,
1239 tx_q
->tx_skbuff_dma
[i
].len
,
1242 dma_unmap_single(priv
->device
,
1243 tx_q
->tx_skbuff_dma
[i
].buf
,
1244 tx_q
->tx_skbuff_dma
[i
].len
,
1248 if (tx_q
->tx_skbuff
[i
]) {
1249 dev_kfree_skb_any(tx_q
->tx_skbuff
[i
]);
1250 tx_q
->tx_skbuff
[i
] = NULL
;
1251 tx_q
->tx_skbuff_dma
[i
].buf
= 0;
1252 tx_q
->tx_skbuff_dma
[i
].map_as_page
= false;
1257 * init_dma_rx_desc_rings - init the RX descriptor rings
1258 * @dev: net device structure
1260 * Description: this function initializes the DMA RX descriptors
1261 * and allocates the socket buffers. It supports the chained and ring
1264 static int init_dma_rx_desc_rings(struct net_device
*dev
, gfp_t flags
)
1266 struct stmmac_priv
*priv
= netdev_priv(dev
);
1267 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
1273 bfsize
= stmmac_set_16kib_bfsize(priv
, dev
->mtu
);
1277 if (bfsize
< BUF_SIZE_16KiB
)
1278 bfsize
= stmmac_set_bfsize(dev
->mtu
, priv
->dma_buf_sz
);
1280 priv
->dma_buf_sz
= bfsize
;
1282 /* RX INITIALIZATION */
1283 netif_dbg(priv
, probe
, priv
->dev
,
1284 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1286 for (queue
= 0; queue
< rx_count
; queue
++) {
1287 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1289 netif_dbg(priv
, probe
, priv
->dev
,
1290 "(%s) dma_rx_phy=0x%08x\n", __func__
,
1291 (u32
)rx_q
->dma_rx_phy
);
1293 for (i
= 0; i
< DMA_RX_SIZE
; i
++) {
1296 if (priv
->extend_desc
)
1297 p
= &((rx_q
->dma_erx
+ i
)->basic
);
1299 p
= rx_q
->dma_rx
+ i
;
1301 ret
= stmmac_init_rx_buffers(priv
, p
, i
, flags
,
1304 goto err_init_rx_buffers
;
1306 netif_dbg(priv
, probe
, priv
->dev
, "[%p]\t[%p]\t[%x]\n",
1307 rx_q
->rx_skbuff
[i
], rx_q
->rx_skbuff
[i
]->data
,
1308 (unsigned int)rx_q
->rx_skbuff_dma
[i
]);
1312 rx_q
->dirty_rx
= (unsigned int)(i
- DMA_RX_SIZE
);
1314 stmmac_clear_rx_descriptors(priv
, queue
);
1316 /* Setup the chained descriptor addresses */
1317 if (priv
->mode
== STMMAC_CHAIN_MODE
) {
1318 if (priv
->extend_desc
)
1319 stmmac_mode_init(priv
, rx_q
->dma_erx
,
1320 rx_q
->dma_rx_phy
, DMA_RX_SIZE
, 1);
1322 stmmac_mode_init(priv
, rx_q
->dma_rx
,
1323 rx_q
->dma_rx_phy
, DMA_RX_SIZE
, 0);
1331 err_init_rx_buffers
:
1332 while (queue
>= 0) {
1334 stmmac_free_rx_buffer(priv
, queue
, i
);
1347 * init_dma_tx_desc_rings - init the TX descriptor rings
1348 * @dev: net device structure.
1349 * Description: this function initializes the DMA TX descriptors
1350 * and allocates the socket buffers. It supports the chained and ring
1353 static int init_dma_tx_desc_rings(struct net_device
*dev
)
1355 struct stmmac_priv
*priv
= netdev_priv(dev
);
1356 u32 tx_queue_cnt
= priv
->plat
->tx_queues_to_use
;
1360 for (queue
= 0; queue
< tx_queue_cnt
; queue
++) {
1361 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1363 netif_dbg(priv
, probe
, priv
->dev
,
1364 "(%s) dma_tx_phy=0x%08x\n", __func__
,
1365 (u32
)tx_q
->dma_tx_phy
);
1367 /* Setup the chained descriptor addresses */
1368 if (priv
->mode
== STMMAC_CHAIN_MODE
) {
1369 if (priv
->extend_desc
)
1370 stmmac_mode_init(priv
, tx_q
->dma_etx
,
1371 tx_q
->dma_tx_phy
, DMA_TX_SIZE
, 1);
1373 stmmac_mode_init(priv
, tx_q
->dma_tx
,
1374 tx_q
->dma_tx_phy
, DMA_TX_SIZE
, 0);
1377 for (i
= 0; i
< DMA_TX_SIZE
; i
++) {
1379 if (priv
->extend_desc
)
1380 p
= &((tx_q
->dma_etx
+ i
)->basic
);
1382 p
= tx_q
->dma_tx
+ i
;
1384 stmmac_clear_desc(priv
, p
);
1386 tx_q
->tx_skbuff_dma
[i
].buf
= 0;
1387 tx_q
->tx_skbuff_dma
[i
].map_as_page
= false;
1388 tx_q
->tx_skbuff_dma
[i
].len
= 0;
1389 tx_q
->tx_skbuff_dma
[i
].last_segment
= false;
1390 tx_q
->tx_skbuff
[i
] = NULL
;
1397 netdev_tx_reset_queue(netdev_get_tx_queue(priv
->dev
, queue
));
1404 * init_dma_desc_rings - init the RX/TX descriptor rings
1405 * @dev: net device structure
1407 * Description: this function initializes the DMA RX/TX descriptors
1408 * and allocates the socket buffers. It supports the chained and ring
1411 static int init_dma_desc_rings(struct net_device
*dev
, gfp_t flags
)
1413 struct stmmac_priv
*priv
= netdev_priv(dev
);
1416 ret
= init_dma_rx_desc_rings(dev
, flags
);
1420 ret
= init_dma_tx_desc_rings(dev
);
1422 stmmac_clear_descriptors(priv
);
1424 if (netif_msg_hw(priv
))
1425 stmmac_display_rings(priv
);
1431 * dma_free_rx_skbufs - free RX dma buffers
1432 * @priv: private structure
1433 * @queue: RX queue index
1435 static void dma_free_rx_skbufs(struct stmmac_priv
*priv
, u32 queue
)
1439 for (i
= 0; i
< DMA_RX_SIZE
; i
++)
1440 stmmac_free_rx_buffer(priv
, queue
, i
);
1444 * dma_free_tx_skbufs - free TX dma buffers
1445 * @priv: private structure
1446 * @queue: TX queue index
1448 static void dma_free_tx_skbufs(struct stmmac_priv
*priv
, u32 queue
)
1452 for (i
= 0; i
< DMA_TX_SIZE
; i
++)
1453 stmmac_free_tx_buffer(priv
, queue
, i
);
1457 * free_dma_rx_desc_resources - free RX dma desc resources
1458 * @priv: private structure
1460 static void free_dma_rx_desc_resources(struct stmmac_priv
*priv
)
1462 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
1465 /* Free RX queue resources */
1466 for (queue
= 0; queue
< rx_count
; queue
++) {
1467 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1469 /* Release the DMA RX socket buffers */
1470 dma_free_rx_skbufs(priv
, queue
);
1472 /* Free DMA regions of consistent memory previously allocated */
1473 if (!priv
->extend_desc
)
1474 dma_free_coherent(priv
->device
,
1475 DMA_RX_SIZE
* sizeof(struct dma_desc
),
1476 rx_q
->dma_rx
, rx_q
->dma_rx_phy
);
1478 dma_free_coherent(priv
->device
, DMA_RX_SIZE
*
1479 sizeof(struct dma_extended_desc
),
1480 rx_q
->dma_erx
, rx_q
->dma_rx_phy
);
1482 kfree(rx_q
->rx_skbuff_dma
);
1483 kfree(rx_q
->rx_skbuff
);
1488 * free_dma_tx_desc_resources - free TX dma desc resources
1489 * @priv: private structure
1491 static void free_dma_tx_desc_resources(struct stmmac_priv
*priv
)
1493 u32 tx_count
= priv
->plat
->tx_queues_to_use
;
1496 /* Free TX queue resources */
1497 for (queue
= 0; queue
< tx_count
; queue
++) {
1498 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1500 /* Release the DMA TX socket buffers */
1501 dma_free_tx_skbufs(priv
, queue
);
1503 /* Free DMA regions of consistent memory previously allocated */
1504 if (!priv
->extend_desc
)
1505 dma_free_coherent(priv
->device
,
1506 DMA_TX_SIZE
* sizeof(struct dma_desc
),
1507 tx_q
->dma_tx
, tx_q
->dma_tx_phy
);
1509 dma_free_coherent(priv
->device
, DMA_TX_SIZE
*
1510 sizeof(struct dma_extended_desc
),
1511 tx_q
->dma_etx
, tx_q
->dma_tx_phy
);
1513 kfree(tx_q
->tx_skbuff_dma
);
1514 kfree(tx_q
->tx_skbuff
);
1519 * alloc_dma_rx_desc_resources - alloc RX resources.
1520 * @priv: private structure
1521 * Description: according to which descriptor can be used (extend or basic)
1522 * this function allocates the resources for TX and RX paths. In case of
1523 * reception, for example, it pre-allocated the RX socket buffer in order to
1524 * allow zero-copy mechanism.
1526 static int alloc_dma_rx_desc_resources(struct stmmac_priv
*priv
)
1528 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
1532 /* RX queues buffers and DMA */
1533 for (queue
= 0; queue
< rx_count
; queue
++) {
1534 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1536 rx_q
->queue_index
= queue
;
1537 rx_q
->priv_data
= priv
;
1539 rx_q
->rx_skbuff_dma
= kmalloc_array(DMA_RX_SIZE
,
1542 if (!rx_q
->rx_skbuff_dma
)
1545 rx_q
->rx_skbuff
= kmalloc_array(DMA_RX_SIZE
,
1546 sizeof(struct sk_buff
*),
1548 if (!rx_q
->rx_skbuff
)
1551 if (priv
->extend_desc
) {
1552 rx_q
->dma_erx
= dma_zalloc_coherent(priv
->device
,
1562 rx_q
->dma_rx
= dma_zalloc_coherent(priv
->device
,
1576 free_dma_rx_desc_resources(priv
);
1582 * alloc_dma_tx_desc_resources - alloc TX resources.
1583 * @priv: private structure
1584 * Description: according to which descriptor can be used (extend or basic)
1585 * this function allocates the resources for TX and RX paths. In case of
1586 * reception, for example, it pre-allocated the RX socket buffer in order to
1587 * allow zero-copy mechanism.
1589 static int alloc_dma_tx_desc_resources(struct stmmac_priv
*priv
)
1591 u32 tx_count
= priv
->plat
->tx_queues_to_use
;
1595 /* TX queues buffers and DMA */
1596 for (queue
= 0; queue
< tx_count
; queue
++) {
1597 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1599 tx_q
->queue_index
= queue
;
1600 tx_q
->priv_data
= priv
;
1602 tx_q
->tx_skbuff_dma
= kmalloc_array(DMA_TX_SIZE
,
1603 sizeof(*tx_q
->tx_skbuff_dma
),
1605 if (!tx_q
->tx_skbuff_dma
)
1608 tx_q
->tx_skbuff
= kmalloc_array(DMA_TX_SIZE
,
1609 sizeof(struct sk_buff
*),
1611 if (!tx_q
->tx_skbuff
)
1614 if (priv
->extend_desc
) {
1615 tx_q
->dma_etx
= dma_zalloc_coherent(priv
->device
,
1624 tx_q
->dma_tx
= dma_zalloc_coherent(priv
->device
,
1638 free_dma_tx_desc_resources(priv
);
1644 * alloc_dma_desc_resources - alloc TX/RX resources.
1645 * @priv: private structure
1646 * Description: according to which descriptor can be used (extend or basic)
1647 * this function allocates the resources for TX and RX paths. In case of
1648 * reception, for example, it pre-allocated the RX socket buffer in order to
1649 * allow zero-copy mechanism.
1651 static int alloc_dma_desc_resources(struct stmmac_priv
*priv
)
1654 int ret
= alloc_dma_rx_desc_resources(priv
);
1659 ret
= alloc_dma_tx_desc_resources(priv
);
1665 * free_dma_desc_resources - free dma desc resources
1666 * @priv: private structure
1668 static void free_dma_desc_resources(struct stmmac_priv
*priv
)
1670 /* Release the DMA RX socket buffers */
1671 free_dma_rx_desc_resources(priv
);
1673 /* Release the DMA TX socket buffers */
1674 free_dma_tx_desc_resources(priv
);
1678 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1679 * @priv: driver private structure
1680 * Description: It is used for enabling the rx queues in the MAC
1682 static void stmmac_mac_enable_rx_queues(struct stmmac_priv
*priv
)
1684 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
1688 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
1689 mode
= priv
->plat
->rx_queues_cfg
[queue
].mode_to_use
;
1690 stmmac_rx_queue_enable(priv
, priv
->hw
, mode
, queue
);
1695 * stmmac_start_rx_dma - start RX DMA channel
1696 * @priv: driver private structure
1697 * @chan: RX channel index
1699 * This starts a RX DMA channel
1701 static void stmmac_start_rx_dma(struct stmmac_priv
*priv
, u32 chan
)
1703 netdev_dbg(priv
->dev
, "DMA RX processes started in channel %d\n", chan
);
1704 stmmac_start_rx(priv
, priv
->ioaddr
, chan
);
1708 * stmmac_start_tx_dma - start TX DMA channel
1709 * @priv: driver private structure
1710 * @chan: TX channel index
1712 * This starts a TX DMA channel
1714 static void stmmac_start_tx_dma(struct stmmac_priv
*priv
, u32 chan
)
1716 netdev_dbg(priv
->dev
, "DMA TX processes started in channel %d\n", chan
);
1717 stmmac_start_tx(priv
, priv
->ioaddr
, chan
);
1721 * stmmac_stop_rx_dma - stop RX DMA channel
1722 * @priv: driver private structure
1723 * @chan: RX channel index
1725 * This stops a RX DMA channel
1727 static void stmmac_stop_rx_dma(struct stmmac_priv
*priv
, u32 chan
)
1729 netdev_dbg(priv
->dev
, "DMA RX processes stopped in channel %d\n", chan
);
1730 stmmac_stop_rx(priv
, priv
->ioaddr
, chan
);
1734 * stmmac_stop_tx_dma - stop TX DMA channel
1735 * @priv: driver private structure
1736 * @chan: TX channel index
1738 * This stops a TX DMA channel
1740 static void stmmac_stop_tx_dma(struct stmmac_priv
*priv
, u32 chan
)
1742 netdev_dbg(priv
->dev
, "DMA TX processes stopped in channel %d\n", chan
);
1743 stmmac_stop_tx(priv
, priv
->ioaddr
, chan
);
1747 * stmmac_start_all_dma - start all RX and TX DMA channels
1748 * @priv: driver private structure
1750 * This starts all the RX and TX DMA channels
1752 static void stmmac_start_all_dma(struct stmmac_priv
*priv
)
1754 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
1755 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
1758 for (chan
= 0; chan
< rx_channels_count
; chan
++)
1759 stmmac_start_rx_dma(priv
, chan
);
1761 for (chan
= 0; chan
< tx_channels_count
; chan
++)
1762 stmmac_start_tx_dma(priv
, chan
);
1766 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1767 * @priv: driver private structure
1769 * This stops the RX and TX DMA channels
1771 static void stmmac_stop_all_dma(struct stmmac_priv
*priv
)
1773 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
1774 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
1777 for (chan
= 0; chan
< rx_channels_count
; chan
++)
1778 stmmac_stop_rx_dma(priv
, chan
);
1780 for (chan
= 0; chan
< tx_channels_count
; chan
++)
1781 stmmac_stop_tx_dma(priv
, chan
);
1785 * stmmac_dma_operation_mode - HW DMA operation mode
1786 * @priv: driver private structure
1787 * Description: it is used for configuring the DMA operation mode register in
1788 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1790 static void stmmac_dma_operation_mode(struct stmmac_priv
*priv
)
1792 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
1793 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
1794 int rxfifosz
= priv
->plat
->rx_fifo_size
;
1795 int txfifosz
= priv
->plat
->tx_fifo_size
;
1802 rxfifosz
= priv
->dma_cap
.rx_fifo_size
;
1804 txfifosz
= priv
->dma_cap
.tx_fifo_size
;
1806 /* Adjust for real per queue fifo size */
1807 rxfifosz
/= rx_channels_count
;
1808 txfifosz
/= tx_channels_count
;
1810 if (priv
->plat
->force_thresh_dma_mode
) {
1813 } else if (priv
->plat
->force_sf_dma_mode
|| priv
->plat
->tx_coe
) {
1815 * In case of GMAC, SF mode can be enabled
1816 * to perform the TX COE in HW. This depends on:
1817 * 1) TX COE if actually supported
1818 * 2) There is no bugged Jumbo frame support
1819 * that needs to not insert csum in the TDES.
1821 txmode
= SF_DMA_MODE
;
1822 rxmode
= SF_DMA_MODE
;
1823 priv
->xstats
.threshold
= SF_DMA_MODE
;
1826 rxmode
= SF_DMA_MODE
;
1829 /* configure all channels */
1830 for (chan
= 0; chan
< rx_channels_count
; chan
++) {
1831 qmode
= priv
->plat
->rx_queues_cfg
[chan
].mode_to_use
;
1833 stmmac_dma_rx_mode(priv
, priv
->ioaddr
, rxmode
, chan
,
1835 stmmac_set_dma_bfsize(priv
, priv
->ioaddr
, priv
->dma_buf_sz
,
1839 for (chan
= 0; chan
< tx_channels_count
; chan
++) {
1840 qmode
= priv
->plat
->tx_queues_cfg
[chan
].mode_to_use
;
1842 stmmac_dma_tx_mode(priv
, priv
->ioaddr
, txmode
, chan
,
1848 * stmmac_tx_clean - to manage the transmission completion
1849 * @priv: driver private structure
1850 * @queue: TX queue index
1851 * Description: it reclaims the transmit resources after transmission completes.
1853 static int stmmac_tx_clean(struct stmmac_priv
*priv
, int budget
, u32 queue
)
1855 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1856 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1857 unsigned int entry
, count
= 0;
1859 __netif_tx_lock_bh(netdev_get_tx_queue(priv
->dev
, queue
));
1861 priv
->xstats
.tx_clean
++;
1863 entry
= tx_q
->dirty_tx
;
1864 while ((entry
!= tx_q
->cur_tx
) && (count
< budget
)) {
1865 struct sk_buff
*skb
= tx_q
->tx_skbuff
[entry
];
1869 if (priv
->extend_desc
)
1870 p
= (struct dma_desc
*)(tx_q
->dma_etx
+ entry
);
1872 p
= tx_q
->dma_tx
+ entry
;
1874 status
= stmmac_tx_status(priv
, &priv
->dev
->stats
,
1875 &priv
->xstats
, p
, priv
->ioaddr
);
1876 /* Check if the descriptor is owned by the DMA */
1877 if (unlikely(status
& tx_dma_own
))
1882 /* Make sure descriptor fields are read after reading
1887 /* Just consider the last segment and ...*/
1888 if (likely(!(status
& tx_not_ls
))) {
1889 /* ... verify the status error condition */
1890 if (unlikely(status
& tx_err
)) {
1891 priv
->dev
->stats
.tx_errors
++;
1893 priv
->dev
->stats
.tx_packets
++;
1894 priv
->xstats
.tx_pkt_n
++;
1896 stmmac_get_tx_hwtstamp(priv
, p
, skb
);
1899 if (likely(tx_q
->tx_skbuff_dma
[entry
].buf
)) {
1900 if (tx_q
->tx_skbuff_dma
[entry
].map_as_page
)
1901 dma_unmap_page(priv
->device
,
1902 tx_q
->tx_skbuff_dma
[entry
].buf
,
1903 tx_q
->tx_skbuff_dma
[entry
].len
,
1906 dma_unmap_single(priv
->device
,
1907 tx_q
->tx_skbuff_dma
[entry
].buf
,
1908 tx_q
->tx_skbuff_dma
[entry
].len
,
1910 tx_q
->tx_skbuff_dma
[entry
].buf
= 0;
1911 tx_q
->tx_skbuff_dma
[entry
].len
= 0;
1912 tx_q
->tx_skbuff_dma
[entry
].map_as_page
= false;
1915 stmmac_clean_desc3(priv
, tx_q
, p
);
1917 tx_q
->tx_skbuff_dma
[entry
].last_segment
= false;
1918 tx_q
->tx_skbuff_dma
[entry
].is_jumbo
= false;
1920 if (likely(skb
!= NULL
)) {
1922 bytes_compl
+= skb
->len
;
1923 dev_consume_skb_any(skb
);
1924 tx_q
->tx_skbuff
[entry
] = NULL
;
1927 stmmac_release_tx_desc(priv
, p
, priv
->mode
);
1929 entry
= STMMAC_GET_ENTRY(entry
, DMA_TX_SIZE
);
1931 tx_q
->dirty_tx
= entry
;
1933 netdev_tx_completed_queue(netdev_get_tx_queue(priv
->dev
, queue
),
1934 pkts_compl
, bytes_compl
);
1936 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv
->dev
,
1938 stmmac_tx_avail(priv
, queue
) > STMMAC_TX_THRESH
) {
1940 netif_dbg(priv
, tx_done
, priv
->dev
,
1941 "%s: restart transmit\n", __func__
);
1942 netif_tx_wake_queue(netdev_get_tx_queue(priv
->dev
, queue
));
1945 if ((priv
->eee_enabled
) && (!priv
->tx_path_in_lpi_mode
)) {
1946 stmmac_enable_eee_mode(priv
);
1947 mod_timer(&priv
->eee_ctrl_timer
, STMMAC_LPI_T(eee_timer
));
1950 __netif_tx_unlock_bh(netdev_get_tx_queue(priv
->dev
, queue
));
1956 * stmmac_tx_err - to manage the tx error
1957 * @priv: driver private structure
1958 * @chan: channel index
1959 * Description: it cleans the descriptors and restarts the transmission
1960 * in case of transmission errors.
1962 static void stmmac_tx_err(struct stmmac_priv
*priv
, u32 chan
)
1964 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[chan
];
1967 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, chan
));
1969 stmmac_stop_tx_dma(priv
, chan
);
1970 dma_free_tx_skbufs(priv
, chan
);
1971 for (i
= 0; i
< DMA_TX_SIZE
; i
++)
1972 if (priv
->extend_desc
)
1973 stmmac_init_tx_desc(priv
, &tx_q
->dma_etx
[i
].basic
,
1974 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1976 stmmac_init_tx_desc(priv
, &tx_q
->dma_tx
[i
],
1977 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1981 netdev_tx_reset_queue(netdev_get_tx_queue(priv
->dev
, chan
));
1982 stmmac_start_tx_dma(priv
, chan
);
1984 priv
->dev
->stats
.tx_errors
++;
1985 netif_tx_wake_queue(netdev_get_tx_queue(priv
->dev
, chan
));
1989 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1990 * @priv: driver private structure
1991 * @txmode: TX operating mode
1992 * @rxmode: RX operating mode
1993 * @chan: channel index
1994 * Description: it is used for configuring of the DMA operation mode in
1995 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1998 static void stmmac_set_dma_operation_mode(struct stmmac_priv
*priv
, u32 txmode
,
1999 u32 rxmode
, u32 chan
)
2001 u8 rxqmode
= priv
->plat
->rx_queues_cfg
[chan
].mode_to_use
;
2002 u8 txqmode
= priv
->plat
->tx_queues_cfg
[chan
].mode_to_use
;
2003 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
2004 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
2005 int rxfifosz
= priv
->plat
->rx_fifo_size
;
2006 int txfifosz
= priv
->plat
->tx_fifo_size
;
2009 rxfifosz
= priv
->dma_cap
.rx_fifo_size
;
2011 txfifosz
= priv
->dma_cap
.tx_fifo_size
;
2013 /* Adjust for real per queue fifo size */
2014 rxfifosz
/= rx_channels_count
;
2015 txfifosz
/= tx_channels_count
;
2017 stmmac_dma_rx_mode(priv
, priv
->ioaddr
, rxmode
, chan
, rxfifosz
, rxqmode
);
2018 stmmac_dma_tx_mode(priv
, priv
->ioaddr
, txmode
, chan
, txfifosz
, txqmode
);
2021 static bool stmmac_safety_feat_interrupt(struct stmmac_priv
*priv
)
2025 ret
= stmmac_safety_feat_irq_status(priv
, priv
->dev
,
2026 priv
->ioaddr
, priv
->dma_cap
.asp
, &priv
->sstats
);
2027 if (ret
&& (ret
!= -EINVAL
)) {
2028 stmmac_global_err(priv
);
2035 static int stmmac_napi_check(struct stmmac_priv
*priv
, u32 chan
)
2037 int status
= stmmac_dma_interrupt_status(priv
, priv
->ioaddr
,
2038 &priv
->xstats
, chan
);
2039 struct stmmac_channel
*ch
= &priv
->channel
[chan
];
2040 bool needs_work
= false;
2042 if ((status
& handle_rx
) && ch
->has_rx
) {
2045 status
&= ~handle_rx
;
2048 if ((status
& handle_tx
) && ch
->has_tx
) {
2051 status
&= ~handle_tx
;
2054 if (needs_work
&& napi_schedule_prep(&ch
->napi
)) {
2055 stmmac_disable_dma_irq(priv
, priv
->ioaddr
, chan
);
2056 __napi_schedule(&ch
->napi
);
2063 * stmmac_dma_interrupt - DMA ISR
2064 * @priv: driver private structure
2065 * Description: this is the DMA ISR. It is called by the main ISR.
2066 * It calls the dwmac dma routine and schedule poll method in case of some
2069 static void stmmac_dma_interrupt(struct stmmac_priv
*priv
)
2071 u32 tx_channel_count
= priv
->plat
->tx_queues_to_use
;
2072 u32 rx_channel_count
= priv
->plat
->rx_queues_to_use
;
2073 u32 channels_to_check
= tx_channel_count
> rx_channel_count
?
2074 tx_channel_count
: rx_channel_count
;
2076 int status
[max_t(u32
, MTL_MAX_TX_QUEUES
, MTL_MAX_RX_QUEUES
)];
2078 /* Make sure we never check beyond our status buffer. */
2079 if (WARN_ON_ONCE(channels_to_check
> ARRAY_SIZE(status
)))
2080 channels_to_check
= ARRAY_SIZE(status
);
2082 for (chan
= 0; chan
< channels_to_check
; chan
++)
2083 status
[chan
] = stmmac_napi_check(priv
, chan
);
2085 for (chan
= 0; chan
< tx_channel_count
; chan
++) {
2086 if (unlikely(status
[chan
] & tx_hard_error_bump_tc
)) {
2087 /* Try to bump up the dma threshold on this failure */
2088 if (unlikely(priv
->xstats
.threshold
!= SF_DMA_MODE
) &&
2091 if (priv
->plat
->force_thresh_dma_mode
)
2092 stmmac_set_dma_operation_mode(priv
,
2097 stmmac_set_dma_operation_mode(priv
,
2101 priv
->xstats
.threshold
= tc
;
2103 } else if (unlikely(status
[chan
] == tx_hard_error
)) {
2104 stmmac_tx_err(priv
, chan
);
2110 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2111 * @priv: driver private structure
2112 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2114 static void stmmac_mmc_setup(struct stmmac_priv
*priv
)
2116 unsigned int mode
= MMC_CNTRL_RESET_ON_READ
| MMC_CNTRL_COUNTER_RESET
|
2117 MMC_CNTRL_PRESET
| MMC_CNTRL_FULL_HALF_PRESET
;
2119 dwmac_mmc_intr_all_mask(priv
->mmcaddr
);
2121 if (priv
->dma_cap
.rmon
) {
2122 dwmac_mmc_ctrl(priv
->mmcaddr
, mode
);
2123 memset(&priv
->mmc
, 0, sizeof(struct stmmac_counters
));
2125 netdev_info(priv
->dev
, "No MAC Management Counters available\n");
2129 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2130 * @priv: driver private structure
2132 * new GMAC chip generations have a new register to indicate the
2133 * presence of the optional feature/functions.
2134 * This can be also used to override the value passed through the
2135 * platform and necessary for old MAC10/100 and GMAC chips.
2137 static int stmmac_get_hw_features(struct stmmac_priv
*priv
)
2139 return stmmac_get_hw_feature(priv
, priv
->ioaddr
, &priv
->dma_cap
) == 0;
2143 * stmmac_check_ether_addr - check if the MAC addr is valid
2144 * @priv: driver private structure
2146 * it is to verify if the MAC address is valid, in case of failures it
2147 * generates a random MAC address
2149 static void stmmac_check_ether_addr(struct stmmac_priv
*priv
)
2151 if (!is_valid_ether_addr(priv
->dev
->dev_addr
)) {
2152 stmmac_get_umac_addr(priv
, priv
->hw
, priv
->dev
->dev_addr
, 0);
2153 if (!is_valid_ether_addr(priv
->dev
->dev_addr
))
2154 eth_hw_addr_random(priv
->dev
);
2155 netdev_info(priv
->dev
, "device MAC address %pM\n",
2156 priv
->dev
->dev_addr
);
2161 * stmmac_init_dma_engine - DMA init.
2162 * @priv: driver private structure
2164 * It inits the DMA invoking the specific MAC/GMAC callback.
2165 * Some DMA parameters can be passed from the platform;
2166 * in case of these are not passed a default is kept for the MAC or GMAC.
2168 static int stmmac_init_dma_engine(struct stmmac_priv
*priv
)
2170 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
2171 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
2172 u32 dma_csr_ch
= max(rx_channels_count
, tx_channels_count
);
2173 struct stmmac_rx_queue
*rx_q
;
2174 struct stmmac_tx_queue
*tx_q
;
2179 if (!priv
->plat
->dma_cfg
|| !priv
->plat
->dma_cfg
->pbl
) {
2180 dev_err(priv
->device
, "Invalid DMA configuration\n");
2184 if (priv
->extend_desc
&& (priv
->mode
== STMMAC_RING_MODE
))
2187 ret
= stmmac_reset(priv
, priv
->ioaddr
);
2189 dev_err(priv
->device
, "Failed to reset the dma\n");
2193 /* DMA Configuration */
2194 stmmac_dma_init(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
, atds
);
2196 if (priv
->plat
->axi
)
2197 stmmac_axi(priv
, priv
->ioaddr
, priv
->plat
->axi
);
2199 /* DMA RX Channel Configuration */
2200 for (chan
= 0; chan
< rx_channels_count
; chan
++) {
2201 rx_q
= &priv
->rx_queue
[chan
];
2203 stmmac_init_rx_chan(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
,
2204 rx_q
->dma_rx_phy
, chan
);
2206 rx_q
->rx_tail_addr
= rx_q
->dma_rx_phy
+
2207 (DMA_RX_SIZE
* sizeof(struct dma_desc
));
2208 stmmac_set_rx_tail_ptr(priv
, priv
->ioaddr
,
2209 rx_q
->rx_tail_addr
, chan
);
2212 /* DMA TX Channel Configuration */
2213 for (chan
= 0; chan
< tx_channels_count
; chan
++) {
2214 tx_q
= &priv
->tx_queue
[chan
];
2216 stmmac_init_tx_chan(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
,
2217 tx_q
->dma_tx_phy
, chan
);
2219 tx_q
->tx_tail_addr
= tx_q
->dma_tx_phy
;
2220 stmmac_set_tx_tail_ptr(priv
, priv
->ioaddr
,
2221 tx_q
->tx_tail_addr
, chan
);
2224 /* DMA CSR Channel configuration */
2225 for (chan
= 0; chan
< dma_csr_ch
; chan
++)
2226 stmmac_init_chan(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
, chan
);
2231 static void stmmac_tx_timer_arm(struct stmmac_priv
*priv
, u32 queue
)
2233 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
2235 mod_timer(&tx_q
->txtimer
, STMMAC_COAL_TIMER(priv
->tx_coal_timer
));
2239 * stmmac_tx_timer - mitigation sw timer for tx.
2240 * @data: data pointer
2242 * This is the timer handler to directly invoke the stmmac_tx_clean.
2244 static void stmmac_tx_timer(struct timer_list
*t
)
2246 struct stmmac_tx_queue
*tx_q
= from_timer(tx_q
, t
, txtimer
);
2247 struct stmmac_priv
*priv
= tx_q
->priv_data
;
2248 struct stmmac_channel
*ch
;
2250 ch
= &priv
->channel
[tx_q
->queue_index
];
2252 if (likely(napi_schedule_prep(&ch
->napi
)))
2253 __napi_schedule(&ch
->napi
);
2257 * stmmac_init_tx_coalesce - init tx mitigation options.
2258 * @priv: driver private structure
2260 * This inits the transmit coalesce parameters: i.e. timer rate,
2261 * timer handler and default threshold used for enabling the
2262 * interrupt on completion bit.
2264 static void stmmac_init_tx_coalesce(struct stmmac_priv
*priv
)
2266 u32 tx_channel_count
= priv
->plat
->tx_queues_to_use
;
2269 priv
->tx_coal_frames
= STMMAC_TX_FRAMES
;
2270 priv
->tx_coal_timer
= STMMAC_COAL_TX_TIMER
;
2272 for (chan
= 0; chan
< tx_channel_count
; chan
++) {
2273 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[chan
];
2275 timer_setup(&tx_q
->txtimer
, stmmac_tx_timer
, 0);
2279 static void stmmac_set_rings_length(struct stmmac_priv
*priv
)
2281 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
2282 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
2285 /* set TX ring length */
2286 for (chan
= 0; chan
< tx_channels_count
; chan
++)
2287 stmmac_set_tx_ring_len(priv
, priv
->ioaddr
,
2288 (DMA_TX_SIZE
- 1), chan
);
2290 /* set RX ring length */
2291 for (chan
= 0; chan
< rx_channels_count
; chan
++)
2292 stmmac_set_rx_ring_len(priv
, priv
->ioaddr
,
2293 (DMA_RX_SIZE
- 1), chan
);
2297 * stmmac_set_tx_queue_weight - Set TX queue weight
2298 * @priv: driver private structure
2299 * Description: It is used for setting TX queues weight
2301 static void stmmac_set_tx_queue_weight(struct stmmac_priv
*priv
)
2303 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2307 for (queue
= 0; queue
< tx_queues_count
; queue
++) {
2308 weight
= priv
->plat
->tx_queues_cfg
[queue
].weight
;
2309 stmmac_set_mtl_tx_queue_weight(priv
, priv
->hw
, weight
, queue
);
2314 * stmmac_configure_cbs - Configure CBS in TX queue
2315 * @priv: driver private structure
2316 * Description: It is used for configuring CBS in AVB TX queues
2318 static void stmmac_configure_cbs(struct stmmac_priv
*priv
)
2320 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2324 /* queue 0 is reserved for legacy traffic */
2325 for (queue
= 1; queue
< tx_queues_count
; queue
++) {
2326 mode_to_use
= priv
->plat
->tx_queues_cfg
[queue
].mode_to_use
;
2327 if (mode_to_use
== MTL_QUEUE_DCB
)
2330 stmmac_config_cbs(priv
, priv
->hw
,
2331 priv
->plat
->tx_queues_cfg
[queue
].send_slope
,
2332 priv
->plat
->tx_queues_cfg
[queue
].idle_slope
,
2333 priv
->plat
->tx_queues_cfg
[queue
].high_credit
,
2334 priv
->plat
->tx_queues_cfg
[queue
].low_credit
,
2340 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2341 * @priv: driver private structure
2342 * Description: It is used for mapping RX queues to RX dma channels
2344 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv
*priv
)
2346 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2350 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
2351 chan
= priv
->plat
->rx_queues_cfg
[queue
].chan
;
2352 stmmac_map_mtl_to_dma(priv
, priv
->hw
, queue
, chan
);
2357 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2358 * @priv: driver private structure
2359 * Description: It is used for configuring the RX Queue Priority
2361 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv
*priv
)
2363 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2367 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
2368 if (!priv
->plat
->rx_queues_cfg
[queue
].use_prio
)
2371 prio
= priv
->plat
->rx_queues_cfg
[queue
].prio
;
2372 stmmac_rx_queue_prio(priv
, priv
->hw
, prio
, queue
);
2377 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2378 * @priv: driver private structure
2379 * Description: It is used for configuring the TX Queue Priority
2381 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv
*priv
)
2383 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2387 for (queue
= 0; queue
< tx_queues_count
; queue
++) {
2388 if (!priv
->plat
->tx_queues_cfg
[queue
].use_prio
)
2391 prio
= priv
->plat
->tx_queues_cfg
[queue
].prio
;
2392 stmmac_tx_queue_prio(priv
, priv
->hw
, prio
, queue
);
2397 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2398 * @priv: driver private structure
2399 * Description: It is used for configuring the RX queue routing
2401 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv
*priv
)
2403 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2407 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
2408 /* no specific packet type routing specified for the queue */
2409 if (priv
->plat
->rx_queues_cfg
[queue
].pkt_route
== 0x0)
2412 packet
= priv
->plat
->rx_queues_cfg
[queue
].pkt_route
;
2413 stmmac_rx_queue_routing(priv
, priv
->hw
, packet
, queue
);
2418 * stmmac_mtl_configuration - Configure MTL
2419 * @priv: driver private structure
2420 * Description: It is used for configurring MTL
2422 static void stmmac_mtl_configuration(struct stmmac_priv
*priv
)
2424 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2425 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2427 if (tx_queues_count
> 1)
2428 stmmac_set_tx_queue_weight(priv
);
2430 /* Configure MTL RX algorithms */
2431 if (rx_queues_count
> 1)
2432 stmmac_prog_mtl_rx_algorithms(priv
, priv
->hw
,
2433 priv
->plat
->rx_sched_algorithm
);
2435 /* Configure MTL TX algorithms */
2436 if (tx_queues_count
> 1)
2437 stmmac_prog_mtl_tx_algorithms(priv
, priv
->hw
,
2438 priv
->plat
->tx_sched_algorithm
);
2440 /* Configure CBS in AVB TX queues */
2441 if (tx_queues_count
> 1)
2442 stmmac_configure_cbs(priv
);
2444 /* Map RX MTL to DMA channels */
2445 stmmac_rx_queue_dma_chan_map(priv
);
2447 /* Enable MAC RX Queues */
2448 stmmac_mac_enable_rx_queues(priv
);
2450 /* Set RX priorities */
2451 if (rx_queues_count
> 1)
2452 stmmac_mac_config_rx_queues_prio(priv
);
2454 /* Set TX priorities */
2455 if (tx_queues_count
> 1)
2456 stmmac_mac_config_tx_queues_prio(priv
);
2458 /* Set RX routing */
2459 if (rx_queues_count
> 1)
2460 stmmac_mac_config_rx_queues_routing(priv
);
2463 static void stmmac_safety_feat_configuration(struct stmmac_priv
*priv
)
2465 if (priv
->dma_cap
.asp
) {
2466 netdev_info(priv
->dev
, "Enabling Safety Features\n");
2467 stmmac_safety_feat_config(priv
, priv
->ioaddr
, priv
->dma_cap
.asp
);
2469 netdev_info(priv
->dev
, "No Safety Features support found\n");
2474 * stmmac_hw_setup - setup mac in a usable state.
2475 * @dev : pointer to the device structure.
2477 * this is the main function to setup the HW in a usable state because the
2478 * dma engine is reset, the core registers are configured (e.g. AXI,
2479 * Checksum features, timers). The DMA is ready to start receiving and
2482 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2485 static int stmmac_hw_setup(struct net_device
*dev
, bool init_ptp
)
2487 struct stmmac_priv
*priv
= netdev_priv(dev
);
2488 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
2489 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
2493 /* DMA initialization and SW reset */
2494 ret
= stmmac_init_dma_engine(priv
);
2496 netdev_err(priv
->dev
, "%s: DMA engine initialization failed\n",
2501 /* Copy the MAC addr into the HW */
2502 stmmac_set_umac_addr(priv
, priv
->hw
, dev
->dev_addr
, 0);
2504 /* PS and related bits will be programmed according to the speed */
2505 if (priv
->hw
->pcs
) {
2506 int speed
= priv
->plat
->mac_port_sel_speed
;
2508 if ((speed
== SPEED_10
) || (speed
== SPEED_100
) ||
2509 (speed
== SPEED_1000
)) {
2510 priv
->hw
->ps
= speed
;
2512 dev_warn(priv
->device
, "invalid port speed\n");
2517 /* Initialize the MAC Core */
2518 stmmac_core_init(priv
, priv
->hw
, dev
);
2521 stmmac_mtl_configuration(priv
);
2523 /* Initialize Safety Features */
2524 stmmac_safety_feat_configuration(priv
);
2526 ret
= stmmac_rx_ipc(priv
, priv
->hw
);
2528 netdev_warn(priv
->dev
, "RX IPC Checksum Offload disabled\n");
2529 priv
->plat
->rx_coe
= STMMAC_RX_COE_NONE
;
2530 priv
->hw
->rx_csum
= 0;
2533 /* Enable the MAC Rx/Tx */
2534 stmmac_mac_set(priv
, priv
->ioaddr
, true);
2536 /* Set the HW DMA mode and the COE */
2537 stmmac_dma_operation_mode(priv
);
2539 stmmac_mmc_setup(priv
);
2542 ret
= clk_prepare_enable(priv
->plat
->clk_ptp_ref
);
2544 netdev_warn(priv
->dev
, "failed to enable PTP reference clock: %d\n", ret
);
2546 ret
= stmmac_init_ptp(priv
);
2547 if (ret
== -EOPNOTSUPP
)
2548 netdev_warn(priv
->dev
, "PTP not supported by HW\n");
2550 netdev_warn(priv
->dev
, "PTP init failed\n");
2553 #ifdef CONFIG_DEBUG_FS
2554 ret
= stmmac_init_fs(dev
);
2556 netdev_warn(priv
->dev
, "%s: failed debugFS registration\n",
2559 priv
->tx_lpi_timer
= STMMAC_DEFAULT_TWT_LS
;
2561 if (priv
->use_riwt
) {
2562 ret
= stmmac_rx_watchdog(priv
, priv
->ioaddr
, MAX_DMA_RIWT
, rx_cnt
);
2564 priv
->rx_riwt
= MAX_DMA_RIWT
;
2568 stmmac_pcs_ctrl_ane(priv
, priv
->hw
, 1, priv
->hw
->ps
, 0);
2570 /* set TX and RX rings length */
2571 stmmac_set_rings_length(priv
);
2575 for (chan
= 0; chan
< tx_cnt
; chan
++)
2576 stmmac_enable_tso(priv
, priv
->ioaddr
, 1, chan
);
2579 /* Start the ball rolling... */
2580 stmmac_start_all_dma(priv
);
2585 static void stmmac_hw_teardown(struct net_device
*dev
)
2587 struct stmmac_priv
*priv
= netdev_priv(dev
);
2589 clk_disable_unprepare(priv
->plat
->clk_ptp_ref
);
2593 * stmmac_open - open entry point of the driver
2594 * @dev : pointer to the device structure.
2596 * This function is the open entry point of the driver.
2598 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2601 static int stmmac_open(struct net_device
*dev
)
2603 struct stmmac_priv
*priv
= netdev_priv(dev
);
2607 stmmac_check_ether_addr(priv
);
2609 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
2610 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
2611 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
) {
2612 ret
= stmmac_init_phy(dev
);
2614 netdev_err(priv
->dev
,
2615 "%s: Cannot attach to PHY (error: %d)\n",
2621 /* Extra statistics */
2622 memset(&priv
->xstats
, 0, sizeof(struct stmmac_extra_stats
));
2623 priv
->xstats
.threshold
= tc
;
2625 priv
->dma_buf_sz
= STMMAC_ALIGN(buf_sz
);
2626 priv
->rx_copybreak
= STMMAC_RX_COPYBREAK
;
2628 ret
= alloc_dma_desc_resources(priv
);
2630 netdev_err(priv
->dev
, "%s: DMA descriptors allocation failed\n",
2632 goto dma_desc_error
;
2635 ret
= init_dma_desc_rings(dev
, GFP_KERNEL
);
2637 netdev_err(priv
->dev
, "%s: DMA descriptors initialization failed\n",
2642 ret
= stmmac_hw_setup(dev
, true);
2644 netdev_err(priv
->dev
, "%s: Hw setup failed\n", __func__
);
2648 stmmac_init_tx_coalesce(priv
);
2651 phy_start(dev
->phydev
);
2653 /* Request the IRQ lines */
2654 ret
= request_irq(dev
->irq
, stmmac_interrupt
,
2655 IRQF_SHARED
, dev
->name
, dev
);
2656 if (unlikely(ret
< 0)) {
2657 netdev_err(priv
->dev
,
2658 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2659 __func__
, dev
->irq
, ret
);
2663 /* Request the Wake IRQ in case of another line is used for WoL */
2664 if (priv
->wol_irq
!= dev
->irq
) {
2665 ret
= request_irq(priv
->wol_irq
, stmmac_interrupt
,
2666 IRQF_SHARED
, dev
->name
, dev
);
2667 if (unlikely(ret
< 0)) {
2668 netdev_err(priv
->dev
,
2669 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2670 __func__
, priv
->wol_irq
, ret
);
2675 /* Request the IRQ lines */
2676 if (priv
->lpi_irq
> 0) {
2677 ret
= request_irq(priv
->lpi_irq
, stmmac_interrupt
, IRQF_SHARED
,
2679 if (unlikely(ret
< 0)) {
2680 netdev_err(priv
->dev
,
2681 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2682 __func__
, priv
->lpi_irq
, ret
);
2687 stmmac_enable_all_queues(priv
);
2688 stmmac_start_all_queues(priv
);
2693 if (priv
->wol_irq
!= dev
->irq
)
2694 free_irq(priv
->wol_irq
, dev
);
2696 free_irq(dev
->irq
, dev
);
2699 phy_stop(dev
->phydev
);
2701 for (chan
= 0; chan
< priv
->plat
->tx_queues_to_use
; chan
++)
2702 del_timer_sync(&priv
->tx_queue
[chan
].txtimer
);
2704 stmmac_hw_teardown(dev
);
2706 free_dma_desc_resources(priv
);
2709 phy_disconnect(dev
->phydev
);
2715 * stmmac_release - close entry point of the driver
2716 * @dev : device pointer.
2718 * This is the stop entry point of the driver.
2720 static int stmmac_release(struct net_device
*dev
)
2722 struct stmmac_priv
*priv
= netdev_priv(dev
);
2725 if (priv
->eee_enabled
)
2726 del_timer_sync(&priv
->eee_ctrl_timer
);
2728 /* Stop and disconnect the PHY */
2730 phy_stop(dev
->phydev
);
2731 phy_disconnect(dev
->phydev
);
2734 stmmac_stop_all_queues(priv
);
2736 stmmac_disable_all_queues(priv
);
2738 for (chan
= 0; chan
< priv
->plat
->tx_queues_to_use
; chan
++)
2739 del_timer_sync(&priv
->tx_queue
[chan
].txtimer
);
2741 /* Free the IRQ lines */
2742 free_irq(dev
->irq
, dev
);
2743 if (priv
->wol_irq
!= dev
->irq
)
2744 free_irq(priv
->wol_irq
, dev
);
2745 if (priv
->lpi_irq
> 0)
2746 free_irq(priv
->lpi_irq
, dev
);
2748 /* Stop TX/RX DMA and clear the descriptors */
2749 stmmac_stop_all_dma(priv
);
2751 /* Release and free the Rx/Tx resources */
2752 free_dma_desc_resources(priv
);
2754 /* Disable the MAC Rx/Tx */
2755 stmmac_mac_set(priv
, priv
->ioaddr
, false);
2757 netif_carrier_off(dev
);
2759 #ifdef CONFIG_DEBUG_FS
2760 stmmac_exit_fs(dev
);
2763 stmmac_release_ptp(priv
);
2769 * stmmac_tso_allocator - close entry point of the driver
2770 * @priv: driver private structure
2771 * @des: buffer start address
2772 * @total_len: total length to fill in descriptors
2773 * @last_segmant: condition for the last descriptor
2774 * @queue: TX queue index
2776 * This function fills descriptor and request new descriptors according to
2777 * buffer length to fill
2779 static void stmmac_tso_allocator(struct stmmac_priv
*priv
, unsigned int des
,
2780 int total_len
, bool last_segment
, u32 queue
)
2782 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
2783 struct dma_desc
*desc
;
2787 tmp_len
= total_len
;
2789 while (tmp_len
> 0) {
2790 tx_q
->cur_tx
= STMMAC_GET_ENTRY(tx_q
->cur_tx
, DMA_TX_SIZE
);
2791 WARN_ON(tx_q
->tx_skbuff
[tx_q
->cur_tx
]);
2792 desc
= tx_q
->dma_tx
+ tx_q
->cur_tx
;
2794 desc
->des0
= cpu_to_le32(des
+ (total_len
- tmp_len
));
2795 buff_size
= tmp_len
>= TSO_MAX_BUFF_SIZE
?
2796 TSO_MAX_BUFF_SIZE
: tmp_len
;
2798 stmmac_prepare_tso_tx_desc(priv
, desc
, 0, buff_size
,
2800 (last_segment
) && (tmp_len
<= TSO_MAX_BUFF_SIZE
),
2803 tmp_len
-= TSO_MAX_BUFF_SIZE
;
2808 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2809 * @skb : the socket buffer
2810 * @dev : device pointer
2811 * Description: this is the transmit function that is called on TSO frames
2812 * (support available on GMAC4 and newer chips).
2813 * Diagram below show the ring programming in case of TSO frames:
2817 * | DES0 |---> buffer1 = L2/L3/L4 header
2818 * | DES1 |---> TCP Payload (can continue on next descr...)
2819 * | DES2 |---> buffer 1 and 2 len
2820 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2826 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
2828 * | DES2 | --> buffer 1 and 2 len
2832 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2834 static netdev_tx_t
stmmac_tso_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2836 struct dma_desc
*desc
, *first
, *mss_desc
= NULL
;
2837 struct stmmac_priv
*priv
= netdev_priv(dev
);
2838 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2839 u32 queue
= skb_get_queue_mapping(skb
);
2840 unsigned int first_entry
, des
;
2841 struct stmmac_tx_queue
*tx_q
;
2842 int tmp_pay_len
= 0;
2847 tx_q
= &priv
->tx_queue
[queue
];
2849 /* Compute header lengths */
2850 proto_hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2852 /* Desc availability based on threshold should be enough safe */
2853 if (unlikely(stmmac_tx_avail(priv
, queue
) <
2854 (((skb
->len
- proto_hdr_len
) / TSO_MAX_BUFF_SIZE
+ 1)))) {
2855 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev
, queue
))) {
2856 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
,
2858 /* This is a hard error, log it. */
2859 netdev_err(priv
->dev
,
2860 "%s: Tx Ring full when queue awake\n",
2863 return NETDEV_TX_BUSY
;
2866 pay_len
= skb_headlen(skb
) - proto_hdr_len
; /* no frags */
2868 mss
= skb_shinfo(skb
)->gso_size
;
2870 /* set new MSS value if needed */
2871 if (mss
!= tx_q
->mss
) {
2872 mss_desc
= tx_q
->dma_tx
+ tx_q
->cur_tx
;
2873 stmmac_set_mss(priv
, mss_desc
, mss
);
2875 tx_q
->cur_tx
= STMMAC_GET_ENTRY(tx_q
->cur_tx
, DMA_TX_SIZE
);
2876 WARN_ON(tx_q
->tx_skbuff
[tx_q
->cur_tx
]);
2879 if (netif_msg_tx_queued(priv
)) {
2880 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2881 __func__
, tcp_hdrlen(skb
), proto_hdr_len
, pay_len
, mss
);
2882 pr_info("\tskb->len %d, skb->data_len %d\n", skb
->len
,
2886 first_entry
= tx_q
->cur_tx
;
2887 WARN_ON(tx_q
->tx_skbuff
[first_entry
]);
2889 desc
= tx_q
->dma_tx
+ first_entry
;
2892 /* first descriptor: fill Headers on Buf1 */
2893 des
= dma_map_single(priv
->device
, skb
->data
, skb_headlen(skb
),
2895 if (dma_mapping_error(priv
->device
, des
))
2898 tx_q
->tx_skbuff_dma
[first_entry
].buf
= des
;
2899 tx_q
->tx_skbuff_dma
[first_entry
].len
= skb_headlen(skb
);
2901 first
->des0
= cpu_to_le32(des
);
2903 /* Fill start of payload in buff2 of first descriptor */
2905 first
->des1
= cpu_to_le32(des
+ proto_hdr_len
);
2907 /* If needed take extra descriptors to fill the remaining payload */
2908 tmp_pay_len
= pay_len
- TSO_MAX_BUFF_SIZE
;
2910 stmmac_tso_allocator(priv
, des
, tmp_pay_len
, (nfrags
== 0), queue
);
2912 /* Prepare fragments */
2913 for (i
= 0; i
< nfrags
; i
++) {
2914 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2916 des
= skb_frag_dma_map(priv
->device
, frag
, 0,
2917 skb_frag_size(frag
),
2919 if (dma_mapping_error(priv
->device
, des
))
2922 stmmac_tso_allocator(priv
, des
, skb_frag_size(frag
),
2923 (i
== nfrags
- 1), queue
);
2925 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].buf
= des
;
2926 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].len
= skb_frag_size(frag
);
2927 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].map_as_page
= true;
2930 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].last_segment
= true;
2932 /* Only the last descriptor gets to point to the skb. */
2933 tx_q
->tx_skbuff
[tx_q
->cur_tx
] = skb
;
2935 /* We've used all descriptors we need for this skb, however,
2936 * advance cur_tx so that it references a fresh descriptor.
2937 * ndo_start_xmit will fill this descriptor the next time it's
2938 * called and stmmac_tx_clean may clean up to this descriptor.
2940 tx_q
->cur_tx
= STMMAC_GET_ENTRY(tx_q
->cur_tx
, DMA_TX_SIZE
);
2942 if (unlikely(stmmac_tx_avail(priv
, queue
) <= (MAX_SKB_FRAGS
+ 1))) {
2943 netif_dbg(priv
, hw
, priv
->dev
, "%s: stop transmitted packets\n",
2945 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, queue
));
2948 dev
->stats
.tx_bytes
+= skb
->len
;
2949 priv
->xstats
.tx_tso_frames
++;
2950 priv
->xstats
.tx_tso_nfrags
+= nfrags
;
2952 /* Manage tx mitigation */
2953 tx_q
->tx_count_frames
+= nfrags
+ 1;
2954 if (priv
->tx_coal_frames
<= tx_q
->tx_count_frames
) {
2955 stmmac_set_tx_ic(priv
, desc
);
2956 priv
->xstats
.tx_set_ic_bit
++;
2957 tx_q
->tx_count_frames
= 0;
2959 stmmac_tx_timer_arm(priv
, queue
);
2962 skb_tx_timestamp(skb
);
2964 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
2965 priv
->hwts_tx_en
)) {
2966 /* declare that device is doing timestamping */
2967 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2968 stmmac_enable_tx_timestamp(priv
, first
);
2971 /* Complete the first descriptor before granting the DMA */
2972 stmmac_prepare_tso_tx_desc(priv
, first
, 1,
2975 1, tx_q
->tx_skbuff_dma
[first_entry
].last_segment
,
2976 tcp_hdrlen(skb
) / 4, (skb
->len
- proto_hdr_len
));
2978 /* If context desc is used to change MSS */
2980 /* Make sure that first descriptor has been completely
2981 * written, including its own bit. This is because MSS is
2982 * actually before first descriptor, so we need to make
2983 * sure that MSS's own bit is the last thing written.
2986 stmmac_set_tx_owner(priv
, mss_desc
);
2989 /* The own bit must be the latest setting done when prepare the
2990 * descriptor and then barrier is needed to make sure that
2991 * all is coherent before granting the DMA engine.
2995 if (netif_msg_pktdata(priv
)) {
2996 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2997 __func__
, tx_q
->cur_tx
, tx_q
->dirty_tx
, first_entry
,
2998 tx_q
->cur_tx
, first
, nfrags
);
3000 stmmac_display_ring(priv
, (void *)tx_q
->dma_tx
, DMA_TX_SIZE
, 0);
3002 pr_info(">>> frame to be transmitted: ");
3003 print_pkt(skb
->data
, skb_headlen(skb
));
3006 netdev_tx_sent_queue(netdev_get_tx_queue(dev
, queue
), skb
->len
);
3008 tx_q
->tx_tail_addr
= tx_q
->dma_tx_phy
+ (tx_q
->cur_tx
* sizeof(*desc
));
3009 stmmac_set_tx_tail_ptr(priv
, priv
->ioaddr
, tx_q
->tx_tail_addr
, queue
);
3011 return NETDEV_TX_OK
;
3014 dev_err(priv
->device
, "Tx dma map failed\n");
3016 priv
->dev
->stats
.tx_dropped
++;
3017 return NETDEV_TX_OK
;
3021 * stmmac_xmit - Tx entry point of the driver
3022 * @skb : the socket buffer
3023 * @dev : device pointer
3024 * Description : this is the tx entry point of the driver.
3025 * It programs the chain or the ring and supports oversized frames
3028 static netdev_tx_t
stmmac_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3030 struct stmmac_priv
*priv
= netdev_priv(dev
);
3031 unsigned int nopaged_len
= skb_headlen(skb
);
3032 int i
, csum_insertion
= 0, is_jumbo
= 0;
3033 u32 queue
= skb_get_queue_mapping(skb
);
3034 int nfrags
= skb_shinfo(skb
)->nr_frags
;
3036 unsigned int first_entry
;
3037 struct dma_desc
*desc
, *first
;
3038 struct stmmac_tx_queue
*tx_q
;
3039 unsigned int enh_desc
;
3042 tx_q
= &priv
->tx_queue
[queue
];
3044 /* Manage oversized TCP frames for GMAC4 device */
3045 if (skb_is_gso(skb
) && priv
->tso
) {
3046 if (skb_shinfo(skb
)->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))
3047 return stmmac_tso_xmit(skb
, dev
);
3050 if (unlikely(stmmac_tx_avail(priv
, queue
) < nfrags
+ 1)) {
3051 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev
, queue
))) {
3052 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
,
3054 /* This is a hard error, log it. */
3055 netdev_err(priv
->dev
,
3056 "%s: Tx Ring full when queue awake\n",
3059 return NETDEV_TX_BUSY
;
3062 if (priv
->tx_path_in_lpi_mode
)
3063 stmmac_disable_eee_mode(priv
);
3065 entry
= tx_q
->cur_tx
;
3066 first_entry
= entry
;
3067 WARN_ON(tx_q
->tx_skbuff
[first_entry
]);
3069 csum_insertion
= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
3071 if (likely(priv
->extend_desc
))
3072 desc
= (struct dma_desc
*)(tx_q
->dma_etx
+ entry
);
3074 desc
= tx_q
->dma_tx
+ entry
;
3078 enh_desc
= priv
->plat
->enh_desc
;
3079 /* To program the descriptors according to the size of the frame */
3081 is_jumbo
= stmmac_is_jumbo_frm(priv
, skb
->len
, enh_desc
);
3083 if (unlikely(is_jumbo
)) {
3084 entry
= stmmac_jumbo_frm(priv
, tx_q
, skb
, csum_insertion
);
3085 if (unlikely(entry
< 0) && (entry
!= -EINVAL
))
3089 for (i
= 0; i
< nfrags
; i
++) {
3090 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3091 int len
= skb_frag_size(frag
);
3092 bool last_segment
= (i
== (nfrags
- 1));
3094 entry
= STMMAC_GET_ENTRY(entry
, DMA_TX_SIZE
);
3095 WARN_ON(tx_q
->tx_skbuff
[entry
]);
3097 if (likely(priv
->extend_desc
))
3098 desc
= (struct dma_desc
*)(tx_q
->dma_etx
+ entry
);
3100 desc
= tx_q
->dma_tx
+ entry
;
3102 des
= skb_frag_dma_map(priv
->device
, frag
, 0, len
,
3104 if (dma_mapping_error(priv
->device
, des
))
3105 goto dma_map_err
; /* should reuse desc w/o issues */
3107 tx_q
->tx_skbuff_dma
[entry
].buf
= des
;
3109 stmmac_set_desc_addr(priv
, desc
, des
);
3111 tx_q
->tx_skbuff_dma
[entry
].map_as_page
= true;
3112 tx_q
->tx_skbuff_dma
[entry
].len
= len
;
3113 tx_q
->tx_skbuff_dma
[entry
].last_segment
= last_segment
;
3115 /* Prepare the descriptor and set the own bit too */
3116 stmmac_prepare_tx_desc(priv
, desc
, 0, len
, csum_insertion
,
3117 priv
->mode
, 1, last_segment
, skb
->len
);
3120 /* Only the last descriptor gets to point to the skb. */
3121 tx_q
->tx_skbuff
[entry
] = skb
;
3123 /* We've used all descriptors we need for this skb, however,
3124 * advance cur_tx so that it references a fresh descriptor.
3125 * ndo_start_xmit will fill this descriptor the next time it's
3126 * called and stmmac_tx_clean may clean up to this descriptor.
3128 entry
= STMMAC_GET_ENTRY(entry
, DMA_TX_SIZE
);
3129 tx_q
->cur_tx
= entry
;
3131 if (netif_msg_pktdata(priv
)) {
3134 netdev_dbg(priv
->dev
,
3135 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3136 __func__
, tx_q
->cur_tx
, tx_q
->dirty_tx
, first_entry
,
3137 entry
, first
, nfrags
);
3139 if (priv
->extend_desc
)
3140 tx_head
= (void *)tx_q
->dma_etx
;
3142 tx_head
= (void *)tx_q
->dma_tx
;
3144 stmmac_display_ring(priv
, tx_head
, DMA_TX_SIZE
, false);
3146 netdev_dbg(priv
->dev
, ">>> frame to be transmitted: ");
3147 print_pkt(skb
->data
, skb
->len
);
3150 if (unlikely(stmmac_tx_avail(priv
, queue
) <= (MAX_SKB_FRAGS
+ 1))) {
3151 netif_dbg(priv
, hw
, priv
->dev
, "%s: stop transmitted packets\n",
3153 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, queue
));
3156 dev
->stats
.tx_bytes
+= skb
->len
;
3158 /* According to the coalesce parameter the IC bit for the latest
3159 * segment is reset and the timer re-started to clean the tx status.
3160 * This approach takes care about the fragments: desc is the first
3161 * element in case of no SG.
3163 tx_q
->tx_count_frames
+= nfrags
+ 1;
3164 if (priv
->tx_coal_frames
<= tx_q
->tx_count_frames
) {
3165 stmmac_set_tx_ic(priv
, desc
);
3166 priv
->xstats
.tx_set_ic_bit
++;
3167 tx_q
->tx_count_frames
= 0;
3169 stmmac_tx_timer_arm(priv
, queue
);
3172 skb_tx_timestamp(skb
);
3174 /* Ready to fill the first descriptor and set the OWN bit w/o any
3175 * problems because all the descriptors are actually ready to be
3176 * passed to the DMA engine.
3178 if (likely(!is_jumbo
)) {
3179 bool last_segment
= (nfrags
== 0);
3181 des
= dma_map_single(priv
->device
, skb
->data
,
3182 nopaged_len
, DMA_TO_DEVICE
);
3183 if (dma_mapping_error(priv
->device
, des
))
3186 tx_q
->tx_skbuff_dma
[first_entry
].buf
= des
;
3188 stmmac_set_desc_addr(priv
, first
, des
);
3190 tx_q
->tx_skbuff_dma
[first_entry
].len
= nopaged_len
;
3191 tx_q
->tx_skbuff_dma
[first_entry
].last_segment
= last_segment
;
3193 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
3194 priv
->hwts_tx_en
)) {
3195 /* declare that device is doing timestamping */
3196 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3197 stmmac_enable_tx_timestamp(priv
, first
);
3200 /* Prepare the first descriptor setting the OWN bit too */
3201 stmmac_prepare_tx_desc(priv
, first
, 1, nopaged_len
,
3202 csum_insertion
, priv
->mode
, 1, last_segment
,
3205 /* The own bit must be the latest setting done when prepare the
3206 * descriptor and then barrier is needed to make sure that
3207 * all is coherent before granting the DMA engine.
3212 netdev_tx_sent_queue(netdev_get_tx_queue(dev
, queue
), skb
->len
);
3214 stmmac_enable_dma_transmission(priv
, priv
->ioaddr
);
3216 tx_q
->tx_tail_addr
= tx_q
->dma_tx_phy
+ (tx_q
->cur_tx
* sizeof(*desc
));
3217 stmmac_set_tx_tail_ptr(priv
, priv
->ioaddr
, tx_q
->tx_tail_addr
, queue
);
3219 return NETDEV_TX_OK
;
3222 netdev_err(priv
->dev
, "Tx DMA map failed\n");
3224 priv
->dev
->stats
.tx_dropped
++;
3225 return NETDEV_TX_OK
;
3228 static void stmmac_rx_vlan(struct net_device
*dev
, struct sk_buff
*skb
)
3230 struct vlan_ethhdr
*veth
;
3234 veth
= (struct vlan_ethhdr
*)skb
->data
;
3235 vlan_proto
= veth
->h_vlan_proto
;
3237 if ((vlan_proto
== htons(ETH_P_8021Q
) &&
3238 dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) ||
3239 (vlan_proto
== htons(ETH_P_8021AD
) &&
3240 dev
->features
& NETIF_F_HW_VLAN_STAG_RX
)) {
3241 /* pop the vlan tag */
3242 vlanid
= ntohs(veth
->h_vlan_TCI
);
3243 memmove(skb
->data
+ VLAN_HLEN
, veth
, ETH_ALEN
* 2);
3244 skb_pull(skb
, VLAN_HLEN
);
3245 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlanid
);
3250 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue
*rx_q
)
3252 if (rx_q
->rx_zeroc_thresh
< STMMAC_RX_THRESH
)
3259 * stmmac_rx_refill - refill used skb preallocated buffers
3260 * @priv: driver private structure
3261 * @queue: RX queue index
3262 * Description : this is to reallocate the skb for the reception process
3263 * that is based on zero-copy.
3265 static inline void stmmac_rx_refill(struct stmmac_priv
*priv
, u32 queue
)
3267 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3268 int dirty
= stmmac_rx_dirty(priv
, queue
);
3269 unsigned int entry
= rx_q
->dirty_rx
;
3271 int bfsize
= priv
->dma_buf_sz
;
3273 while (dirty
-- > 0) {
3276 if (priv
->extend_desc
)
3277 p
= (struct dma_desc
*)(rx_q
->dma_erx
+ entry
);
3279 p
= rx_q
->dma_rx
+ entry
;
3281 if (likely(!rx_q
->rx_skbuff
[entry
])) {
3282 struct sk_buff
*skb
;
3284 skb
= netdev_alloc_skb_ip_align(priv
->dev
, bfsize
);
3285 if (unlikely(!skb
)) {
3286 /* so for a while no zero-copy! */
3287 rx_q
->rx_zeroc_thresh
= STMMAC_RX_THRESH
;
3288 if (unlikely(net_ratelimit()))
3289 dev_err(priv
->device
,
3290 "fail to alloc skb entry %d\n",
3295 rx_q
->rx_skbuff
[entry
] = skb
;
3296 rx_q
->rx_skbuff_dma
[entry
] =
3297 dma_map_single(priv
->device
, skb
->data
, bfsize
,
3299 if (dma_mapping_error(priv
->device
,
3300 rx_q
->rx_skbuff_dma
[entry
])) {
3301 netdev_err(priv
->dev
, "Rx DMA map failed\n");
3306 stmmac_set_desc_addr(priv
, p
, rx_q
->rx_skbuff_dma
[entry
]);
3307 stmmac_refill_desc3(priv
, rx_q
, p
);
3309 if (rx_q
->rx_zeroc_thresh
> 0)
3310 rx_q
->rx_zeroc_thresh
--;
3312 netif_dbg(priv
, rx_status
, priv
->dev
,
3313 "refill entry #%d\n", entry
);
3317 stmmac_set_rx_owner(priv
, p
, priv
->use_riwt
);
3321 entry
= STMMAC_GET_ENTRY(entry
, DMA_RX_SIZE
);
3323 rx_q
->dirty_rx
= entry
;
3327 * stmmac_rx - manage the receive process
3328 * @priv: driver private structure
3329 * @limit: napi bugget
3330 * @queue: RX queue index.
3331 * Description : this the function called by the napi poll method.
3332 * It gets all the frames inside the ring.
3334 static int stmmac_rx(struct stmmac_priv
*priv
, int limit
, u32 queue
)
3336 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3337 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
3338 unsigned int entry
= rx_q
->cur_rx
;
3339 int coe
= priv
->hw
->rx_csum
;
3340 unsigned int next_entry
;
3341 unsigned int count
= 0;
3344 xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
3346 if (netif_msg_rx_status(priv
)) {
3349 netdev_dbg(priv
->dev
, "%s: descriptor ring:\n", __func__
);
3350 if (priv
->extend_desc
)
3351 rx_head
= (void *)rx_q
->dma_erx
;
3353 rx_head
= (void *)rx_q
->dma_rx
;
3355 stmmac_display_ring(priv
, rx_head
, DMA_RX_SIZE
, true);
3357 while (count
< limit
) {
3360 struct dma_desc
*np
;
3362 if (priv
->extend_desc
)
3363 p
= (struct dma_desc
*)(rx_q
->dma_erx
+ entry
);
3365 p
= rx_q
->dma_rx
+ entry
;
3367 /* read the status of the incoming frame */
3368 status
= stmmac_rx_status(priv
, &priv
->dev
->stats
,
3370 /* check if managed by the DMA otherwise go ahead */
3371 if (unlikely(status
& dma_own
))
3376 rx_q
->cur_rx
= STMMAC_GET_ENTRY(rx_q
->cur_rx
, DMA_RX_SIZE
);
3377 next_entry
= rx_q
->cur_rx
;
3379 if (priv
->extend_desc
)
3380 np
= (struct dma_desc
*)(rx_q
->dma_erx
+ next_entry
);
3382 np
= rx_q
->dma_rx
+ next_entry
;
3386 if (priv
->extend_desc
)
3387 stmmac_rx_extended_status(priv
, &priv
->dev
->stats
,
3388 &priv
->xstats
, rx_q
->dma_erx
+ entry
);
3389 if (unlikely(status
== discard_frame
)) {
3390 priv
->dev
->stats
.rx_errors
++;
3391 if (priv
->hwts_rx_en
&& !priv
->extend_desc
) {
3392 /* DESC2 & DESC3 will be overwritten by device
3393 * with timestamp value, hence reinitialize
3394 * them in stmmac_rx_refill() function so that
3395 * device can reuse it.
3397 dev_kfree_skb_any(rx_q
->rx_skbuff
[entry
]);
3398 rx_q
->rx_skbuff
[entry
] = NULL
;
3399 dma_unmap_single(priv
->device
,
3400 rx_q
->rx_skbuff_dma
[entry
],
3405 struct sk_buff
*skb
;
3409 stmmac_get_desc_addr(priv
, p
, &des
);
3410 frame_len
= stmmac_get_rx_frame_len(priv
, p
, coe
);
3412 /* If frame length is greater than skb buffer size
3413 * (preallocated during init) then the packet is
3416 if (frame_len
> priv
->dma_buf_sz
) {
3417 netdev_err(priv
->dev
,
3418 "len %d larger than size (%d)\n",
3419 frame_len
, priv
->dma_buf_sz
);
3420 priv
->dev
->stats
.rx_length_errors
++;
3424 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3425 * Type frames (LLC/LLC-SNAP)
3427 * llc_snap is never checked in GMAC >= 4, so this ACS
3428 * feature is always disabled and packets need to be
3429 * stripped manually.
3431 if (unlikely(priv
->synopsys_id
>= DWMAC_CORE_4_00
) ||
3432 unlikely(status
!= llc_snap
))
3433 frame_len
-= ETH_FCS_LEN
;
3435 if (netif_msg_rx_status(priv
)) {
3436 netdev_dbg(priv
->dev
, "\tdesc: %p [entry %d] buff=0x%x\n",
3438 netdev_dbg(priv
->dev
, "frame size %d, COE: %d\n",
3442 /* The zero-copy is always used for all the sizes
3443 * in case of GMAC4 because it needs
3444 * to refill the used descriptors, always.
3446 if (unlikely(!xmac
&&
3447 ((frame_len
< priv
->rx_copybreak
) ||
3448 stmmac_rx_threshold_count(rx_q
)))) {
3449 skb
= netdev_alloc_skb_ip_align(priv
->dev
,
3451 if (unlikely(!skb
)) {
3452 if (net_ratelimit())
3453 dev_warn(priv
->device
,
3454 "packet dropped\n");
3455 priv
->dev
->stats
.rx_dropped
++;
3459 dma_sync_single_for_cpu(priv
->device
,
3463 skb_copy_to_linear_data(skb
,
3465 rx_skbuff
[entry
]->data
,
3468 skb_put(skb
, frame_len
);
3469 dma_sync_single_for_device(priv
->device
,
3474 skb
= rx_q
->rx_skbuff
[entry
];
3475 if (unlikely(!skb
)) {
3476 netdev_err(priv
->dev
,
3477 "%s: Inconsistent Rx chain\n",
3479 priv
->dev
->stats
.rx_dropped
++;
3482 prefetch(skb
->data
- NET_IP_ALIGN
);
3483 rx_q
->rx_skbuff
[entry
] = NULL
;
3484 rx_q
->rx_zeroc_thresh
++;
3486 skb_put(skb
, frame_len
);
3487 dma_unmap_single(priv
->device
,
3488 rx_q
->rx_skbuff_dma
[entry
],
3493 if (netif_msg_pktdata(priv
)) {
3494 netdev_dbg(priv
->dev
, "frame received (%dbytes)",
3496 print_pkt(skb
->data
, frame_len
);
3499 stmmac_get_rx_hwtstamp(priv
, p
, np
, skb
);
3501 stmmac_rx_vlan(priv
->dev
, skb
);
3503 skb
->protocol
= eth_type_trans(skb
, priv
->dev
);
3506 skb_checksum_none_assert(skb
);
3508 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3510 napi_gro_receive(&ch
->napi
, skb
);
3512 priv
->dev
->stats
.rx_packets
++;
3513 priv
->dev
->stats
.rx_bytes
+= frame_len
;
3518 stmmac_rx_refill(priv
, queue
);
3520 priv
->xstats
.rx_pkt_n
+= count
;
3526 * stmmac_poll - stmmac poll method (NAPI)
3527 * @napi : pointer to the napi structure.
3528 * @budget : maximum number of packets that the current CPU can receive from
3531 * To look at the incoming frames and clear the tx resources.
3533 static int stmmac_napi_poll(struct napi_struct
*napi
, int budget
)
3535 struct stmmac_channel
*ch
=
3536 container_of(napi
, struct stmmac_channel
, napi
);
3537 struct stmmac_priv
*priv
= ch
->priv_data
;
3538 int work_done
= 0, work_rem
= budget
;
3539 u32 chan
= ch
->index
;
3541 priv
->xstats
.napi_poll
++;
3544 int done
= stmmac_tx_clean(priv
, work_rem
, chan
);
3551 int done
= stmmac_rx(priv
, work_rem
, chan
);
3557 if (work_done
< budget
&& napi_complete_done(napi
, work_done
))
3558 stmmac_enable_dma_irq(priv
, priv
->ioaddr
, chan
);
3565 * @dev : Pointer to net device structure
3566 * Description: this function is called when a packet transmission fails to
3567 * complete within a reasonable time. The driver will mark the error in the
3568 * netdev structure and arrange for the device to be reset to a sane state
3569 * in order to transmit a new packet.
3571 static void stmmac_tx_timeout(struct net_device
*dev
)
3573 struct stmmac_priv
*priv
= netdev_priv(dev
);
3575 stmmac_global_err(priv
);
3579 * stmmac_set_rx_mode - entry point for multicast addressing
3580 * @dev : pointer to the device structure
3582 * This function is a driver entry point which gets called by the kernel
3583 * whenever multicast addresses must be enabled/disabled.
3587 static void stmmac_set_rx_mode(struct net_device
*dev
)
3589 struct stmmac_priv
*priv
= netdev_priv(dev
);
3591 stmmac_set_filter(priv
, priv
->hw
, dev
);
3595 * stmmac_change_mtu - entry point to change MTU size for the device.
3596 * @dev : device pointer.
3597 * @new_mtu : the new MTU size for the device.
3598 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3599 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3600 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3602 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3605 static int stmmac_change_mtu(struct net_device
*dev
, int new_mtu
)
3607 struct stmmac_priv
*priv
= netdev_priv(dev
);
3609 if (netif_running(dev
)) {
3610 netdev_err(priv
->dev
, "must be stopped to change its MTU\n");
3616 netdev_update_features(dev
);
3621 static netdev_features_t
stmmac_fix_features(struct net_device
*dev
,
3622 netdev_features_t features
)
3624 struct stmmac_priv
*priv
= netdev_priv(dev
);
3626 if (priv
->plat
->rx_coe
== STMMAC_RX_COE_NONE
)
3627 features
&= ~NETIF_F_RXCSUM
;
3629 if (!priv
->plat
->tx_coe
)
3630 features
&= ~NETIF_F_CSUM_MASK
;
3632 /* Some GMAC devices have a bugged Jumbo frame support that
3633 * needs to have the Tx COE disabled for oversized frames
3634 * (due to limited buffer sizes). In this case we disable
3635 * the TX csum insertion in the TDES and not use SF.
3637 if (priv
->plat
->bugged_jumbo
&& (dev
->mtu
> ETH_DATA_LEN
))
3638 features
&= ~NETIF_F_CSUM_MASK
;
3640 /* Disable tso if asked by ethtool */
3641 if ((priv
->plat
->tso_en
) && (priv
->dma_cap
.tsoen
)) {
3642 if (features
& NETIF_F_TSO
)
3651 static int stmmac_set_features(struct net_device
*netdev
,
3652 netdev_features_t features
)
3654 struct stmmac_priv
*priv
= netdev_priv(netdev
);
3656 /* Keep the COE Type in case of csum is supporting */
3657 if (features
& NETIF_F_RXCSUM
)
3658 priv
->hw
->rx_csum
= priv
->plat
->rx_coe
;
3660 priv
->hw
->rx_csum
= 0;
3661 /* No check needed because rx_coe has been set before and it will be
3662 * fixed in case of issue.
3664 stmmac_rx_ipc(priv
, priv
->hw
);
3670 * stmmac_interrupt - main ISR
3671 * @irq: interrupt number.
3672 * @dev_id: to pass the net device pointer.
3673 * Description: this is the main driver interrupt service routine.
3675 * o DMA service routine (to manage incoming frame reception and transmission
3677 * o Core interrupts to manage: remote wake-up, management counter, LPI
3680 static irqreturn_t
stmmac_interrupt(int irq
, void *dev_id
)
3682 struct net_device
*dev
= (struct net_device
*)dev_id
;
3683 struct stmmac_priv
*priv
= netdev_priv(dev
);
3684 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
3685 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
3690 xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
3691 queues_count
= (rx_cnt
> tx_cnt
) ? rx_cnt
: tx_cnt
;
3694 pm_wakeup_event(priv
->device
, 0);
3696 if (unlikely(!dev
)) {
3697 netdev_err(priv
->dev
, "%s: invalid dev pointer\n", __func__
);
3701 /* Check if adapter is up */
3702 if (test_bit(STMMAC_DOWN
, &priv
->state
))
3704 /* Check if a fatal error happened */
3705 if (stmmac_safety_feat_interrupt(priv
))
3708 /* To handle GMAC own interrupts */
3709 if ((priv
->plat
->has_gmac
) || xmac
) {
3710 int status
= stmmac_host_irq_status(priv
, priv
->hw
, &priv
->xstats
);
3713 if (unlikely(status
)) {
3714 /* For LPI we need to save the tx status */
3715 if (status
& CORE_IRQ_TX_PATH_IN_LPI_MODE
)
3716 priv
->tx_path_in_lpi_mode
= true;
3717 if (status
& CORE_IRQ_TX_PATH_EXIT_LPI_MODE
)
3718 priv
->tx_path_in_lpi_mode
= false;
3721 for (queue
= 0; queue
< queues_count
; queue
++) {
3722 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3724 mtl_status
= stmmac_host_mtl_irq_status(priv
, priv
->hw
,
3726 if (mtl_status
!= -EINVAL
)
3727 status
|= mtl_status
;
3729 if (status
& CORE_IRQ_MTL_RX_OVERFLOW
)
3730 stmmac_set_rx_tail_ptr(priv
, priv
->ioaddr
,
3735 /* PCS link status */
3736 if (priv
->hw
->pcs
) {
3737 if (priv
->xstats
.pcs_link
)
3738 netif_carrier_on(dev
);
3740 netif_carrier_off(dev
);
3744 /* To handle DMA interrupts */
3745 stmmac_dma_interrupt(priv
);
3750 #ifdef CONFIG_NET_POLL_CONTROLLER
3751 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3752 * to allow network I/O with interrupts disabled.
3754 static void stmmac_poll_controller(struct net_device
*dev
)
3756 disable_irq(dev
->irq
);
3757 stmmac_interrupt(dev
->irq
, dev
);
3758 enable_irq(dev
->irq
);
3763 * stmmac_ioctl - Entry point for the Ioctl
3764 * @dev: Device pointer.
3765 * @rq: An IOCTL specefic structure, that can contain a pointer to
3766 * a proprietary structure used to pass information to the driver.
3767 * @cmd: IOCTL command
3769 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3771 static int stmmac_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
3773 int ret
= -EOPNOTSUPP
;
3775 if (!netif_running(dev
))
3784 ret
= phy_mii_ioctl(dev
->phydev
, rq
, cmd
);
3787 ret
= stmmac_hwtstamp_ioctl(dev
, rq
);
3796 static int stmmac_setup_tc_block_cb(enum tc_setup_type type
, void *type_data
,
3799 struct stmmac_priv
*priv
= cb_priv
;
3800 int ret
= -EOPNOTSUPP
;
3802 stmmac_disable_all_queues(priv
);
3805 case TC_SETUP_CLSU32
:
3806 if (tc_cls_can_offload_and_chain0(priv
->dev
, type_data
))
3807 ret
= stmmac_tc_setup_cls_u32(priv
, priv
, type_data
);
3813 stmmac_enable_all_queues(priv
);
3817 static int stmmac_setup_tc_block(struct stmmac_priv
*priv
,
3818 struct tc_block_offload
*f
)
3820 if (f
->binder_type
!= TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS
)
3823 switch (f
->command
) {
3825 return tcf_block_cb_register(f
->block
, stmmac_setup_tc_block_cb
,
3826 priv
, priv
, f
->extack
);
3827 case TC_BLOCK_UNBIND
:
3828 tcf_block_cb_unregister(f
->block
, stmmac_setup_tc_block_cb
, priv
);
3835 static int stmmac_setup_tc(struct net_device
*ndev
, enum tc_setup_type type
,
3838 struct stmmac_priv
*priv
= netdev_priv(ndev
);
3841 case TC_SETUP_BLOCK
:
3842 return stmmac_setup_tc_block(priv
, type_data
);
3843 case TC_SETUP_QDISC_CBS
:
3844 return stmmac_tc_setup_cbs(priv
, priv
, type_data
);
3850 static int stmmac_set_mac_address(struct net_device
*ndev
, void *addr
)
3852 struct stmmac_priv
*priv
= netdev_priv(ndev
);
3855 ret
= eth_mac_addr(ndev
, addr
);
3859 stmmac_set_umac_addr(priv
, priv
->hw
, ndev
->dev_addr
, 0);
3864 #ifdef CONFIG_DEBUG_FS
3865 static struct dentry
*stmmac_fs_dir
;
3867 static void sysfs_display_ring(void *head
, int size
, int extend_desc
,
3868 struct seq_file
*seq
)
3871 struct dma_extended_desc
*ep
= (struct dma_extended_desc
*)head
;
3872 struct dma_desc
*p
= (struct dma_desc
*)head
;
3874 for (i
= 0; i
< size
; i
++) {
3876 seq_printf(seq
, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3877 i
, (unsigned int)virt_to_phys(ep
),
3878 le32_to_cpu(ep
->basic
.des0
),
3879 le32_to_cpu(ep
->basic
.des1
),
3880 le32_to_cpu(ep
->basic
.des2
),
3881 le32_to_cpu(ep
->basic
.des3
));
3884 seq_printf(seq
, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3885 i
, (unsigned int)virt_to_phys(p
),
3886 le32_to_cpu(p
->des0
), le32_to_cpu(p
->des1
),
3887 le32_to_cpu(p
->des2
), le32_to_cpu(p
->des3
));
3890 seq_printf(seq
, "\n");
3894 static int stmmac_sysfs_ring_read(struct seq_file
*seq
, void *v
)
3896 struct net_device
*dev
= seq
->private;
3897 struct stmmac_priv
*priv
= netdev_priv(dev
);
3898 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
3899 u32 tx_count
= priv
->plat
->tx_queues_to_use
;
3902 for (queue
= 0; queue
< rx_count
; queue
++) {
3903 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3905 seq_printf(seq
, "RX Queue %d:\n", queue
);
3907 if (priv
->extend_desc
) {
3908 seq_printf(seq
, "Extended descriptor ring:\n");
3909 sysfs_display_ring((void *)rx_q
->dma_erx
,
3910 DMA_RX_SIZE
, 1, seq
);
3912 seq_printf(seq
, "Descriptor ring:\n");
3913 sysfs_display_ring((void *)rx_q
->dma_rx
,
3914 DMA_RX_SIZE
, 0, seq
);
3918 for (queue
= 0; queue
< tx_count
; queue
++) {
3919 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
3921 seq_printf(seq
, "TX Queue %d:\n", queue
);
3923 if (priv
->extend_desc
) {
3924 seq_printf(seq
, "Extended descriptor ring:\n");
3925 sysfs_display_ring((void *)tx_q
->dma_etx
,
3926 DMA_TX_SIZE
, 1, seq
);
3928 seq_printf(seq
, "Descriptor ring:\n");
3929 sysfs_display_ring((void *)tx_q
->dma_tx
,
3930 DMA_TX_SIZE
, 0, seq
);
3937 static int stmmac_sysfs_ring_open(struct inode
*inode
, struct file
*file
)
3939 return single_open(file
, stmmac_sysfs_ring_read
, inode
->i_private
);
3942 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3944 static const struct file_operations stmmac_rings_status_fops
= {
3945 .owner
= THIS_MODULE
,
3946 .open
= stmmac_sysfs_ring_open
,
3948 .llseek
= seq_lseek
,
3949 .release
= single_release
,
3952 static int stmmac_sysfs_dma_cap_read(struct seq_file
*seq
, void *v
)
3954 struct net_device
*dev
= seq
->private;
3955 struct stmmac_priv
*priv
= netdev_priv(dev
);
3957 if (!priv
->hw_cap_support
) {
3958 seq_printf(seq
, "DMA HW features not supported\n");
3962 seq_printf(seq
, "==============================\n");
3963 seq_printf(seq
, "\tDMA HW features\n");
3964 seq_printf(seq
, "==============================\n");
3966 seq_printf(seq
, "\t10/100 Mbps: %s\n",
3967 (priv
->dma_cap
.mbps_10_100
) ? "Y" : "N");
3968 seq_printf(seq
, "\t1000 Mbps: %s\n",
3969 (priv
->dma_cap
.mbps_1000
) ? "Y" : "N");
3970 seq_printf(seq
, "\tHalf duplex: %s\n",
3971 (priv
->dma_cap
.half_duplex
) ? "Y" : "N");
3972 seq_printf(seq
, "\tHash Filter: %s\n",
3973 (priv
->dma_cap
.hash_filter
) ? "Y" : "N");
3974 seq_printf(seq
, "\tMultiple MAC address registers: %s\n",
3975 (priv
->dma_cap
.multi_addr
) ? "Y" : "N");
3976 seq_printf(seq
, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3977 (priv
->dma_cap
.pcs
) ? "Y" : "N");
3978 seq_printf(seq
, "\tSMA (MDIO) Interface: %s\n",
3979 (priv
->dma_cap
.sma_mdio
) ? "Y" : "N");
3980 seq_printf(seq
, "\tPMT Remote wake up: %s\n",
3981 (priv
->dma_cap
.pmt_remote_wake_up
) ? "Y" : "N");
3982 seq_printf(seq
, "\tPMT Magic Frame: %s\n",
3983 (priv
->dma_cap
.pmt_magic_frame
) ? "Y" : "N");
3984 seq_printf(seq
, "\tRMON module: %s\n",
3985 (priv
->dma_cap
.rmon
) ? "Y" : "N");
3986 seq_printf(seq
, "\tIEEE 1588-2002 Time Stamp: %s\n",
3987 (priv
->dma_cap
.time_stamp
) ? "Y" : "N");
3988 seq_printf(seq
, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3989 (priv
->dma_cap
.atime_stamp
) ? "Y" : "N");
3990 seq_printf(seq
, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3991 (priv
->dma_cap
.eee
) ? "Y" : "N");
3992 seq_printf(seq
, "\tAV features: %s\n", (priv
->dma_cap
.av
) ? "Y" : "N");
3993 seq_printf(seq
, "\tChecksum Offload in TX: %s\n",
3994 (priv
->dma_cap
.tx_coe
) ? "Y" : "N");
3995 if (priv
->synopsys_id
>= DWMAC_CORE_4_00
) {
3996 seq_printf(seq
, "\tIP Checksum Offload in RX: %s\n",
3997 (priv
->dma_cap
.rx_coe
) ? "Y" : "N");
3999 seq_printf(seq
, "\tIP Checksum Offload (type1) in RX: %s\n",
4000 (priv
->dma_cap
.rx_coe_type1
) ? "Y" : "N");
4001 seq_printf(seq
, "\tIP Checksum Offload (type2) in RX: %s\n",
4002 (priv
->dma_cap
.rx_coe_type2
) ? "Y" : "N");
4004 seq_printf(seq
, "\tRXFIFO > 2048bytes: %s\n",
4005 (priv
->dma_cap
.rxfifo_over_2048
) ? "Y" : "N");
4006 seq_printf(seq
, "\tNumber of Additional RX channel: %d\n",
4007 priv
->dma_cap
.number_rx_channel
);
4008 seq_printf(seq
, "\tNumber of Additional TX channel: %d\n",
4009 priv
->dma_cap
.number_tx_channel
);
4010 seq_printf(seq
, "\tEnhanced descriptors: %s\n",
4011 (priv
->dma_cap
.enh_desc
) ? "Y" : "N");
4016 static int stmmac_sysfs_dma_cap_open(struct inode
*inode
, struct file
*file
)
4018 return single_open(file
, stmmac_sysfs_dma_cap_read
, inode
->i_private
);
4021 static const struct file_operations stmmac_dma_cap_fops
= {
4022 .owner
= THIS_MODULE
,
4023 .open
= stmmac_sysfs_dma_cap_open
,
4025 .llseek
= seq_lseek
,
4026 .release
= single_release
,
4029 static int stmmac_init_fs(struct net_device
*dev
)
4031 struct stmmac_priv
*priv
= netdev_priv(dev
);
4033 /* Create per netdev entries */
4034 priv
->dbgfs_dir
= debugfs_create_dir(dev
->name
, stmmac_fs_dir
);
4036 if (!priv
->dbgfs_dir
|| IS_ERR(priv
->dbgfs_dir
)) {
4037 netdev_err(priv
->dev
, "ERROR failed to create debugfs directory\n");
4042 /* Entry to report DMA RX/TX rings */
4043 priv
->dbgfs_rings_status
=
4044 debugfs_create_file("descriptors_status", 0444,
4045 priv
->dbgfs_dir
, dev
,
4046 &stmmac_rings_status_fops
);
4048 if (!priv
->dbgfs_rings_status
|| IS_ERR(priv
->dbgfs_rings_status
)) {
4049 netdev_err(priv
->dev
, "ERROR creating stmmac ring debugfs file\n");
4050 debugfs_remove_recursive(priv
->dbgfs_dir
);
4055 /* Entry to report the DMA HW features */
4056 priv
->dbgfs_dma_cap
= debugfs_create_file("dma_cap", 0444,
4058 dev
, &stmmac_dma_cap_fops
);
4060 if (!priv
->dbgfs_dma_cap
|| IS_ERR(priv
->dbgfs_dma_cap
)) {
4061 netdev_err(priv
->dev
, "ERROR creating stmmac MMC debugfs file\n");
4062 debugfs_remove_recursive(priv
->dbgfs_dir
);
4070 static void stmmac_exit_fs(struct net_device
*dev
)
4072 struct stmmac_priv
*priv
= netdev_priv(dev
);
4074 debugfs_remove_recursive(priv
->dbgfs_dir
);
4076 #endif /* CONFIG_DEBUG_FS */
4078 static const struct net_device_ops stmmac_netdev_ops
= {
4079 .ndo_open
= stmmac_open
,
4080 .ndo_start_xmit
= stmmac_xmit
,
4081 .ndo_stop
= stmmac_release
,
4082 .ndo_change_mtu
= stmmac_change_mtu
,
4083 .ndo_fix_features
= stmmac_fix_features
,
4084 .ndo_set_features
= stmmac_set_features
,
4085 .ndo_set_rx_mode
= stmmac_set_rx_mode
,
4086 .ndo_tx_timeout
= stmmac_tx_timeout
,
4087 .ndo_do_ioctl
= stmmac_ioctl
,
4088 .ndo_setup_tc
= stmmac_setup_tc
,
4089 #ifdef CONFIG_NET_POLL_CONTROLLER
4090 .ndo_poll_controller
= stmmac_poll_controller
,
4092 .ndo_set_mac_address
= stmmac_set_mac_address
,
4095 static void stmmac_reset_subtask(struct stmmac_priv
*priv
)
4097 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED
, &priv
->state
))
4099 if (test_bit(STMMAC_DOWN
, &priv
->state
))
4102 netdev_err(priv
->dev
, "Reset adapter.\n");
4105 netif_trans_update(priv
->dev
);
4106 while (test_and_set_bit(STMMAC_RESETING
, &priv
->state
))
4107 usleep_range(1000, 2000);
4109 set_bit(STMMAC_DOWN
, &priv
->state
);
4110 dev_close(priv
->dev
);
4111 dev_open(priv
->dev
);
4112 clear_bit(STMMAC_DOWN
, &priv
->state
);
4113 clear_bit(STMMAC_RESETING
, &priv
->state
);
4117 static void stmmac_service_task(struct work_struct
*work
)
4119 struct stmmac_priv
*priv
= container_of(work
, struct stmmac_priv
,
4122 stmmac_reset_subtask(priv
);
4123 clear_bit(STMMAC_SERVICE_SCHED
, &priv
->state
);
4127 * stmmac_hw_init - Init the MAC device
4128 * @priv: driver private structure
4129 * Description: this function is to configure the MAC device according to
4130 * some platform parameters or the HW capability register. It prepares the
4131 * driver to use either ring or chain modes and to setup either enhanced or
4132 * normal descriptors.
4134 static int stmmac_hw_init(struct stmmac_priv
*priv
)
4138 /* dwmac-sun8i only work in chain mode */
4139 if (priv
->plat
->has_sun8i
)
4141 priv
->chain_mode
= chain_mode
;
4143 /* Initialize HW Interface */
4144 ret
= stmmac_hwif_init(priv
);
4148 /* Get the HW capability (new GMAC newer than 3.50a) */
4149 priv
->hw_cap_support
= stmmac_get_hw_features(priv
);
4150 if (priv
->hw_cap_support
) {
4151 dev_info(priv
->device
, "DMA HW capability register supported\n");
4153 /* We can override some gmac/dma configuration fields: e.g.
4154 * enh_desc, tx_coe (e.g. that are passed through the
4155 * platform) with the values from the HW capability
4156 * register (if supported).
4158 priv
->plat
->enh_desc
= priv
->dma_cap
.enh_desc
;
4159 priv
->plat
->pmt
= priv
->dma_cap
.pmt_remote_wake_up
;
4160 priv
->hw
->pmt
= priv
->plat
->pmt
;
4162 /* TXCOE doesn't work in thresh DMA mode */
4163 if (priv
->plat
->force_thresh_dma_mode
)
4164 priv
->plat
->tx_coe
= 0;
4166 priv
->plat
->tx_coe
= priv
->dma_cap
.tx_coe
;
4168 /* In case of GMAC4 rx_coe is from HW cap register. */
4169 priv
->plat
->rx_coe
= priv
->dma_cap
.rx_coe
;
4171 if (priv
->dma_cap
.rx_coe_type2
)
4172 priv
->plat
->rx_coe
= STMMAC_RX_COE_TYPE2
;
4173 else if (priv
->dma_cap
.rx_coe_type1
)
4174 priv
->plat
->rx_coe
= STMMAC_RX_COE_TYPE1
;
4177 dev_info(priv
->device
, "No HW DMA feature register supported\n");
4180 if (priv
->plat
->rx_coe
) {
4181 priv
->hw
->rx_csum
= priv
->plat
->rx_coe
;
4182 dev_info(priv
->device
, "RX Checksum Offload Engine supported\n");
4183 if (priv
->synopsys_id
< DWMAC_CORE_4_00
)
4184 dev_info(priv
->device
, "COE Type %d\n", priv
->hw
->rx_csum
);
4186 if (priv
->plat
->tx_coe
)
4187 dev_info(priv
->device
, "TX Checksum insertion supported\n");
4189 if (priv
->plat
->pmt
) {
4190 dev_info(priv
->device
, "Wake-Up On Lan supported\n");
4191 device_set_wakeup_capable(priv
->device
, 1);
4194 if (priv
->dma_cap
.tsoen
)
4195 dev_info(priv
->device
, "TSO supported\n");
4197 /* Run HW quirks, if any */
4198 if (priv
->hwif_quirks
) {
4199 ret
= priv
->hwif_quirks(priv
);
4209 * @device: device pointer
4210 * @plat_dat: platform data pointer
4211 * @res: stmmac resource pointer
4212 * Description: this is the main probe function used to
4213 * call the alloc_etherdev, allocate the priv structure.
4215 * returns 0 on success, otherwise errno.
4217 int stmmac_dvr_probe(struct device
*device
,
4218 struct plat_stmmacenet_data
*plat_dat
,
4219 struct stmmac_resources
*res
)
4221 struct net_device
*ndev
= NULL
;
4222 struct stmmac_priv
*priv
;
4226 ndev
= alloc_etherdev_mqs(sizeof(struct stmmac_priv
),
4232 SET_NETDEV_DEV(ndev
, device
);
4234 priv
= netdev_priv(ndev
);
4235 priv
->device
= device
;
4238 stmmac_set_ethtool_ops(ndev
);
4239 priv
->pause
= pause
;
4240 priv
->plat
= plat_dat
;
4241 priv
->ioaddr
= res
->addr
;
4242 priv
->dev
->base_addr
= (unsigned long)res
->addr
;
4244 priv
->dev
->irq
= res
->irq
;
4245 priv
->wol_irq
= res
->wol_irq
;
4246 priv
->lpi_irq
= res
->lpi_irq
;
4249 memcpy(priv
->dev
->dev_addr
, res
->mac
, ETH_ALEN
);
4251 dev_set_drvdata(device
, priv
->dev
);
4253 /* Verify driver arguments */
4254 stmmac_verify_args();
4256 /* Allocate workqueue */
4257 priv
->wq
= create_singlethread_workqueue("stmmac_wq");
4259 dev_err(priv
->device
, "failed to create workqueue\n");
4263 INIT_WORK(&priv
->service_task
, stmmac_service_task
);
4265 /* Override with kernel parameters if supplied XXX CRS XXX
4266 * this needs to have multiple instances
4268 if ((phyaddr
>= 0) && (phyaddr
<= 31))
4269 priv
->plat
->phy_addr
= phyaddr
;
4271 if (priv
->plat
->stmmac_rst
) {
4272 ret
= reset_control_assert(priv
->plat
->stmmac_rst
);
4273 reset_control_deassert(priv
->plat
->stmmac_rst
);
4274 /* Some reset controllers have only reset callback instead of
4275 * assert + deassert callbacks pair.
4277 if (ret
== -ENOTSUPP
)
4278 reset_control_reset(priv
->plat
->stmmac_rst
);
4281 /* Init MAC and get the capabilities */
4282 ret
= stmmac_hw_init(priv
);
4286 /* Configure real RX and TX queues */
4287 netif_set_real_num_rx_queues(ndev
, priv
->plat
->rx_queues_to_use
);
4288 netif_set_real_num_tx_queues(ndev
, priv
->plat
->tx_queues_to_use
);
4290 ndev
->netdev_ops
= &stmmac_netdev_ops
;
4292 ndev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4295 ret
= stmmac_tc_init(priv
, priv
);
4297 ndev
->hw_features
|= NETIF_F_HW_TC
;
4300 if ((priv
->plat
->tso_en
) && (priv
->dma_cap
.tsoen
)) {
4301 ndev
->hw_features
|= NETIF_F_TSO
| NETIF_F_TSO6
;
4303 dev_info(priv
->device
, "TSO feature enabled\n");
4305 ndev
->features
|= ndev
->hw_features
| NETIF_F_HIGHDMA
;
4306 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
4307 #ifdef STMMAC_VLAN_TAG_USED
4308 /* Both mac100 and gmac support receive VLAN tag detection */
4309 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_STAG_RX
;
4311 priv
->msg_enable
= netif_msg_init(debug
, default_msg_level
);
4313 /* MTU range: 46 - hw-specific max */
4314 ndev
->min_mtu
= ETH_ZLEN
- ETH_HLEN
;
4315 if ((priv
->plat
->enh_desc
) || (priv
->synopsys_id
>= DWMAC_CORE_4_00
))
4316 ndev
->max_mtu
= JUMBO_LEN
;
4317 else if (priv
->plat
->has_xgmac
)
4318 ndev
->max_mtu
= XGMAC_JUMBO_LEN
;
4320 ndev
->max_mtu
= SKB_MAX_HEAD(NET_SKB_PAD
+ NET_IP_ALIGN
);
4321 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4322 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4324 if ((priv
->plat
->maxmtu
< ndev
->max_mtu
) &&
4325 (priv
->plat
->maxmtu
>= ndev
->min_mtu
))
4326 ndev
->max_mtu
= priv
->plat
->maxmtu
;
4327 else if (priv
->plat
->maxmtu
< ndev
->min_mtu
)
4328 dev_warn(priv
->device
,
4329 "%s: warning: maxmtu having invalid value (%d)\n",
4330 __func__
, priv
->plat
->maxmtu
);
4333 priv
->flow_ctrl
= FLOW_AUTO
; /* RX/TX pause on */
4335 /* Rx Watchdog is available in the COREs newer than the 3.40.
4336 * In some case, for example on bugged HW this feature
4337 * has to be disable and this can be done by passing the
4338 * riwt_off field from the platform.
4340 if (((priv
->synopsys_id
>= DWMAC_CORE_3_50
) ||
4341 (priv
->plat
->has_xgmac
)) && (!priv
->plat
->riwt_off
)) {
4343 dev_info(priv
->device
,
4344 "Enable RX Mitigation via HW Watchdog Timer\n");
4347 /* Setup channels NAPI */
4348 maxq
= max(priv
->plat
->rx_queues_to_use
, priv
->plat
->tx_queues_to_use
);
4350 for (queue
= 0; queue
< maxq
; queue
++) {
4351 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
4353 ch
->priv_data
= priv
;
4356 if (queue
< priv
->plat
->rx_queues_to_use
)
4358 if (queue
< priv
->plat
->tx_queues_to_use
)
4361 netif_napi_add(ndev
, &ch
->napi
, stmmac_napi_poll
,
4365 mutex_init(&priv
->lock
);
4367 /* If a specific clk_csr value is passed from the platform
4368 * this means that the CSR Clock Range selection cannot be
4369 * changed at run-time and it is fixed. Viceversa the driver'll try to
4370 * set the MDC clock dynamically according to the csr actual
4373 if (!priv
->plat
->clk_csr
)
4374 stmmac_clk_csr_set(priv
);
4376 priv
->clk_csr
= priv
->plat
->clk_csr
;
4378 stmmac_check_pcs_mode(priv
);
4380 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
4381 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
4382 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
) {
4383 /* MDIO bus Registration */
4384 ret
= stmmac_mdio_register(ndev
);
4386 dev_err(priv
->device
,
4387 "%s: MDIO bus (id: %d) registration failed",
4388 __func__
, priv
->plat
->bus_id
);
4389 goto error_mdio_register
;
4393 ret
= register_netdev(ndev
);
4395 dev_err(priv
->device
, "%s: ERROR %i registering the device\n",
4397 goto error_netdev_register
;
4402 error_netdev_register
:
4403 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
4404 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
4405 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
)
4406 stmmac_mdio_unregister(ndev
);
4407 error_mdio_register
:
4408 for (queue
= 0; queue
< maxq
; queue
++) {
4409 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
4411 netif_napi_del(&ch
->napi
);
4414 destroy_workqueue(priv
->wq
);
4420 EXPORT_SYMBOL_GPL(stmmac_dvr_probe
);
4424 * @dev: device pointer
4425 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4426 * changes the link status, releases the DMA descriptor rings.
4428 int stmmac_dvr_remove(struct device
*dev
)
4430 struct net_device
*ndev
= dev_get_drvdata(dev
);
4431 struct stmmac_priv
*priv
= netdev_priv(ndev
);
4433 netdev_info(priv
->dev
, "%s: removing driver", __func__
);
4435 stmmac_stop_all_dma(priv
);
4437 stmmac_mac_set(priv
, priv
->ioaddr
, false);
4438 netif_carrier_off(ndev
);
4439 unregister_netdev(ndev
);
4440 if (priv
->plat
->stmmac_rst
)
4441 reset_control_assert(priv
->plat
->stmmac_rst
);
4442 clk_disable_unprepare(priv
->plat
->pclk
);
4443 clk_disable_unprepare(priv
->plat
->stmmac_clk
);
4444 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
4445 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
4446 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
)
4447 stmmac_mdio_unregister(ndev
);
4448 destroy_workqueue(priv
->wq
);
4449 mutex_destroy(&priv
->lock
);
4454 EXPORT_SYMBOL_GPL(stmmac_dvr_remove
);
4457 * stmmac_suspend - suspend callback
4458 * @dev: device pointer
4459 * Description: this is the function to suspend the device and it is called
4460 * by the platform driver to stop the network queue, release the resources,
4461 * program the PMT register (for WoL), clean and release driver resources.
4463 int stmmac_suspend(struct device
*dev
)
4465 struct net_device
*ndev
= dev_get_drvdata(dev
);
4466 struct stmmac_priv
*priv
= netdev_priv(ndev
);
4468 if (!ndev
|| !netif_running(ndev
))
4472 phy_stop(ndev
->phydev
);
4474 mutex_lock(&priv
->lock
);
4476 netif_device_detach(ndev
);
4477 stmmac_stop_all_queues(priv
);
4479 stmmac_disable_all_queues(priv
);
4481 /* Stop TX/RX DMA */
4482 stmmac_stop_all_dma(priv
);
4484 /* Enable Power down mode by programming the PMT regs */
4485 if (device_may_wakeup(priv
->device
)) {
4486 stmmac_pmt(priv
, priv
->hw
, priv
->wolopts
);
4489 stmmac_mac_set(priv
, priv
->ioaddr
, false);
4490 pinctrl_pm_select_sleep_state(priv
->device
);
4491 /* Disable clock in case of PWM is off */
4492 clk_disable(priv
->plat
->pclk
);
4493 clk_disable(priv
->plat
->stmmac_clk
);
4495 mutex_unlock(&priv
->lock
);
4497 priv
->oldlink
= false;
4498 priv
->speed
= SPEED_UNKNOWN
;
4499 priv
->oldduplex
= DUPLEX_UNKNOWN
;
4502 EXPORT_SYMBOL_GPL(stmmac_suspend
);
4505 * stmmac_reset_queues_param - reset queue parameters
4506 * @dev: device pointer
4508 static void stmmac_reset_queues_param(struct stmmac_priv
*priv
)
4510 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
4511 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
4514 for (queue
= 0; queue
< rx_cnt
; queue
++) {
4515 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
4521 for (queue
= 0; queue
< tx_cnt
; queue
++) {
4522 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
4531 * stmmac_resume - resume callback
4532 * @dev: device pointer
4533 * Description: when resume this function is invoked to setup the DMA and CORE
4534 * in a usable state.
4536 int stmmac_resume(struct device
*dev
)
4538 struct net_device
*ndev
= dev_get_drvdata(dev
);
4539 struct stmmac_priv
*priv
= netdev_priv(ndev
);
4541 if (!netif_running(ndev
))
4544 /* Power Down bit, into the PM register, is cleared
4545 * automatically as soon as a magic packet or a Wake-up frame
4546 * is received. Anyway, it's better to manually clear
4547 * this bit because it can generate problems while resuming
4548 * from another devices (e.g. serial console).
4550 if (device_may_wakeup(priv
->device
)) {
4551 mutex_lock(&priv
->lock
);
4552 stmmac_pmt(priv
, priv
->hw
, 0);
4553 mutex_unlock(&priv
->lock
);
4556 pinctrl_pm_select_default_state(priv
->device
);
4557 /* enable the clk previously disabled */
4558 clk_enable(priv
->plat
->stmmac_clk
);
4559 clk_enable(priv
->plat
->pclk
);
4560 /* reset the phy so that it's ready */
4562 stmmac_mdio_reset(priv
->mii
);
4565 netif_device_attach(ndev
);
4567 mutex_lock(&priv
->lock
);
4569 stmmac_reset_queues_param(priv
);
4571 stmmac_clear_descriptors(priv
);
4573 stmmac_hw_setup(ndev
, false);
4574 stmmac_init_tx_coalesce(priv
);
4575 stmmac_set_rx_mode(ndev
);
4577 stmmac_enable_all_queues(priv
);
4579 stmmac_start_all_queues(priv
);
4581 mutex_unlock(&priv
->lock
);
4584 phy_start(ndev
->phydev
);
4588 EXPORT_SYMBOL_GPL(stmmac_resume
);
4591 static int __init
stmmac_cmdline_opt(char *str
)
4597 while ((opt
= strsep(&str
, ",")) != NULL
) {
4598 if (!strncmp(opt
, "debug:", 6)) {
4599 if (kstrtoint(opt
+ 6, 0, &debug
))
4601 } else if (!strncmp(opt
, "phyaddr:", 8)) {
4602 if (kstrtoint(opt
+ 8, 0, &phyaddr
))
4604 } else if (!strncmp(opt
, "buf_sz:", 7)) {
4605 if (kstrtoint(opt
+ 7, 0, &buf_sz
))
4607 } else if (!strncmp(opt
, "tc:", 3)) {
4608 if (kstrtoint(opt
+ 3, 0, &tc
))
4610 } else if (!strncmp(opt
, "watchdog:", 9)) {
4611 if (kstrtoint(opt
+ 9, 0, &watchdog
))
4613 } else if (!strncmp(opt
, "flow_ctrl:", 10)) {
4614 if (kstrtoint(opt
+ 10, 0, &flow_ctrl
))
4616 } else if (!strncmp(opt
, "pause:", 6)) {
4617 if (kstrtoint(opt
+ 6, 0, &pause
))
4619 } else if (!strncmp(opt
, "eee_timer:", 10)) {
4620 if (kstrtoint(opt
+ 10, 0, &eee_timer
))
4622 } else if (!strncmp(opt
, "chain_mode:", 11)) {
4623 if (kstrtoint(opt
+ 11, 0, &chain_mode
))
4630 pr_err("%s: ERROR broken module parameter conversion", __func__
);
4634 __setup("stmmaceth=", stmmac_cmdline_opt
);
4637 static int __init
stmmac_init(void)
4639 #ifdef CONFIG_DEBUG_FS
4640 /* Create debugfs main directory if it doesn't exist yet */
4641 if (!stmmac_fs_dir
) {
4642 stmmac_fs_dir
= debugfs_create_dir(STMMAC_RESOURCE_NAME
, NULL
);
4644 if (!stmmac_fs_dir
|| IS_ERR(stmmac_fs_dir
)) {
4645 pr_err("ERROR %s, debugfs create directory failed\n",
4646 STMMAC_RESOURCE_NAME
);
4656 static void __exit
stmmac_exit(void)
4658 #ifdef CONFIG_DEBUG_FS
4659 debugfs_remove_recursive(stmmac_fs_dir
);
4663 module_init(stmmac_init
)
4664 module_exit(stmmac_exit
)
4666 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4667 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4668 MODULE_LICENSE("GPL");