perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
blob076a8be18d6754c489ecaf031fb65db79f58c29b
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 The full GNU General Public License is included in this distribution in
17 the file called "COPYING".
19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
21 Documentation available at:
22 http://www.stlinux.com
23 Support available at:
24 https://bugzilla.stlinux.com/
25 *******************************************************************************/
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
57 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95 #define STMMAC_RX_COPYBREAK 256
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 * stmmac_verify_args - verify the driver parameters.
125 * Description: it checks the driver parameters and set a default in case of
126 * errors.
128 static void stmmac_verify_args(void)
130 if (unlikely(watchdog < 0))
131 watchdog = TX_TIMEO;
132 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 buf_sz = DEFAULT_BUFSIZE;
134 if (unlikely(flow_ctrl > 1))
135 flow_ctrl = FLOW_AUTO;
136 else if (likely(flow_ctrl < 0))
137 flow_ctrl = FLOW_OFF;
138 if (unlikely((pause < 0) || (pause > 0xffff)))
139 pause = PAUSE_TIME;
140 if (eee_timer < 0)
141 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
145 * stmmac_disable_all_queues - Disable all queues
146 * @priv: driver private structure
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
150 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 u32 queue;
155 for (queue = 0; queue < maxq; queue++) {
156 struct stmmac_channel *ch = &priv->channel[queue];
158 napi_disable(&ch->napi);
163 * stmmac_enable_all_queues - Enable all queues
164 * @priv: driver private structure
166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
168 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 u32 queue;
173 for (queue = 0; queue < maxq; queue++) {
174 struct stmmac_channel *ch = &priv->channel[queue];
176 napi_enable(&ch->napi);
181 * stmmac_stop_all_queues - Stop all queues
182 * @priv: driver private structure
184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
186 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 u32 queue;
189 for (queue = 0; queue < tx_queues_cnt; queue++)
190 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
194 * stmmac_start_all_queues - Start all queues
195 * @priv: driver private structure
197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
199 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 u32 queue;
202 for (queue = 0; queue < tx_queues_cnt; queue++)
203 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
208 if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 queue_work(priv->wq, &priv->service_task);
213 static void stmmac_global_err(struct stmmac_priv *priv)
215 netif_carrier_off(priv->dev);
216 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 stmmac_service_event_schedule(priv);
221 * stmmac_clk_csr_set - dynamically set the MDC clock
222 * @priv: driver private structure
223 * Description: this is to dynamically set the MDC clock according to the csr
224 * clock input.
225 * Note:
226 * If a specific clk_csr value is passed from the platform
227 * this means that the CSR Clock Range selection cannot be
228 * changed at run-time and it is fixed (as reported in the driver
229 * documentation). Viceversa the driver will try to set the MDC
230 * clock dynamically according to the actual clock input.
232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
234 u32 clk_rate;
236 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
238 /* Platform provided default clk_csr would be assumed valid
239 * for all other cases except for the below mentioned ones.
240 * For values higher than the IEEE 802.3 specified frequency
241 * we can not estimate the proper divider as it is not known
242 * the frequency of clk_csr_i. So we do not change the default
243 * divider.
245 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 if (clk_rate < CSR_F_35M)
247 priv->clk_csr = STMMAC_CSR_20_35M;
248 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 priv->clk_csr = STMMAC_CSR_35_60M;
250 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 priv->clk_csr = STMMAC_CSR_60_100M;
252 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 priv->clk_csr = STMMAC_CSR_100_150M;
254 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 priv->clk_csr = STMMAC_CSR_150_250M;
256 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 priv->clk_csr = STMMAC_CSR_250_300M;
260 if (priv->plat->has_sun8i) {
261 if (clk_rate > 160000000)
262 priv->clk_csr = 0x03;
263 else if (clk_rate > 80000000)
264 priv->clk_csr = 0x02;
265 else if (clk_rate > 40000000)
266 priv->clk_csr = 0x01;
267 else
268 priv->clk_csr = 0;
271 if (priv->plat->has_xgmac) {
272 if (clk_rate > 400000000)
273 priv->clk_csr = 0x5;
274 else if (clk_rate > 350000000)
275 priv->clk_csr = 0x4;
276 else if (clk_rate > 300000000)
277 priv->clk_csr = 0x3;
278 else if (clk_rate > 250000000)
279 priv->clk_csr = 0x2;
280 else if (clk_rate > 150000000)
281 priv->clk_csr = 0x1;
282 else
283 priv->clk_csr = 0x0;
287 static void print_pkt(unsigned char *buf, int len)
289 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
295 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 u32 avail;
298 if (tx_q->dirty_tx > tx_q->cur_tx)
299 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 else
301 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
303 return avail;
307 * stmmac_rx_dirty - Get RX queue dirty
308 * @priv: driver private structure
309 * @queue: RX queue index
311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
313 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 u32 dirty;
316 if (rx_q->dirty_rx <= rx_q->cur_rx)
317 dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 else
319 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
321 return dirty;
325 * stmmac_hw_fix_mac_speed - callback for speed selection
326 * @priv: driver private structure
327 * Description: on some platforms (e.g. ST), some HW system configuration
328 * registers have to be set according to the link speed negotiated.
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
332 struct net_device *ndev = priv->dev;
333 struct phy_device *phydev = ndev->phydev;
335 if (likely(priv->plat->fix_mac_speed))
336 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
340 * stmmac_enable_eee_mode - check and enter in LPI mode
341 * @priv: driver private structure
342 * Description: this function is to verify and enter in LPI mode in case of
343 * EEE.
345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
347 u32 tx_cnt = priv->plat->tx_queues_to_use;
348 u32 queue;
350 /* check if all TX queues have the work finished */
351 for (queue = 0; queue < tx_cnt; queue++) {
352 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
354 if (tx_q->dirty_tx != tx_q->cur_tx)
355 return; /* still unfinished work */
358 /* Check and enter in LPI mode */
359 if (!priv->tx_path_in_lpi_mode)
360 stmmac_set_eee_mode(priv, priv->hw,
361 priv->plat->en_tx_lpi_clockgating);
365 * stmmac_disable_eee_mode - disable and exit from LPI mode
366 * @priv: driver private structure
367 * Description: this function is to exit and disable EEE in case of
368 * LPI state is true. This is called by the xmit.
370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
372 stmmac_reset_eee_mode(priv, priv->hw);
373 del_timer_sync(&priv->eee_ctrl_timer);
374 priv->tx_path_in_lpi_mode = false;
378 * stmmac_eee_ctrl_timer - EEE TX SW timer.
379 * @arg : data hook
380 * Description:
381 * if there is no data transfer and if we are not in LPI state,
382 * then MAC Transmitter can be moved to LPI state.
384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
386 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
388 stmmac_enable_eee_mode(priv);
389 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
393 * stmmac_eee_init - init EEE
394 * @priv: driver private structure
395 * Description:
396 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
397 * can also manage EEE, this function enable the LPI state and start related
398 * timer.
400 bool stmmac_eee_init(struct stmmac_priv *priv)
402 struct net_device *ndev = priv->dev;
403 int interface = priv->plat->interface;
404 bool ret = false;
406 if ((interface != PHY_INTERFACE_MODE_MII) &&
407 (interface != PHY_INTERFACE_MODE_GMII) &&
408 !phy_interface_mode_is_rgmii(interface))
409 goto out;
411 /* Using PCS we cannot dial with the phy registers at this stage
412 * so we do not support extra feature like EEE.
414 if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 (priv->hw->pcs == STMMAC_PCS_RTBI))
417 goto out;
419 /* MAC core supports the EEE feature. */
420 if (priv->dma_cap.eee) {
421 int tx_lpi_timer = priv->tx_lpi_timer;
423 /* Check if the PHY supports EEE */
424 if (phy_init_eee(ndev->phydev, 1)) {
425 /* To manage at run-time if the EEE cannot be supported
426 * anymore (for example because the lp caps have been
427 * changed).
428 * In that case the driver disable own timers.
430 mutex_lock(&priv->lock);
431 if (priv->eee_active) {
432 netdev_dbg(priv->dev, "disable EEE\n");
433 del_timer_sync(&priv->eee_ctrl_timer);
434 stmmac_set_eee_timer(priv, priv->hw, 0,
435 tx_lpi_timer);
437 priv->eee_active = 0;
438 mutex_unlock(&priv->lock);
439 goto out;
441 /* Activate the EEE and start timers */
442 mutex_lock(&priv->lock);
443 if (!priv->eee_active) {
444 priv->eee_active = 1;
445 timer_setup(&priv->eee_ctrl_timer,
446 stmmac_eee_ctrl_timer, 0);
447 mod_timer(&priv->eee_ctrl_timer,
448 STMMAC_LPI_T(eee_timer));
450 stmmac_set_eee_timer(priv, priv->hw,
451 STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
453 /* Set HW EEE according to the speed */
454 stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
456 ret = true;
457 mutex_unlock(&priv->lock);
459 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
461 out:
462 return ret;
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466 * @priv: driver private structure
467 * @p : descriptor pointer
468 * @skb : the socket buffer
469 * Description :
470 * This function will read timestamp from the descriptor & pass it to stack.
471 * and also perform some sanity checks.
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 struct dma_desc *p, struct sk_buff *skb)
476 struct skb_shared_hwtstamps shhwtstamp;
477 u64 ns;
479 if (!priv->hwts_tx_en)
480 return;
482 /* exit if skb doesn't support hw tstamp */
483 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 return;
486 /* check tx tstamp status */
487 if (stmmac_get_tx_timestamp_status(priv, p)) {
488 /* get the valid tstamp */
489 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
491 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 shhwtstamp.hwtstamp = ns_to_ktime(ns);
494 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 /* pass tstamp to stack */
496 skb_tstamp_tx(skb, &shhwtstamp);
499 return;
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503 * @priv: driver private structure
504 * @p : descriptor pointer
505 * @np : next descriptor pointer
506 * @skb : the socket buffer
507 * Description :
508 * This function will read received packet's timestamp from the descriptor
509 * and pass it to stack. It also perform some sanity checks.
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 struct dma_desc *np, struct sk_buff *skb)
514 struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 struct dma_desc *desc = p;
516 u64 ns;
518 if (!priv->hwts_rx_en)
519 return;
520 /* For GMAC4, the valid timestamp is from CTX next desc. */
521 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 desc = np;
524 /* Check if timestamp is available */
525 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 shhwtstamp = skb_hwtstamps(skb);
529 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 } else {
532 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
537 * stmmac_hwtstamp_ioctl - control hardware timestamping.
538 * @dev: device pointer.
539 * @ifr: An IOCTL specific structure, that can contain a pointer to
540 * a proprietary structure used to pass information to the driver.
541 * Description:
542 * This function configures the MAC to enable/disable both outgoing(TX)
543 * and incoming(RX) packets time stamping based on user input.
544 * Return Value:
545 * 0 on success and an appropriate -ve integer on failure.
547 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
549 struct stmmac_priv *priv = netdev_priv(dev);
550 struct hwtstamp_config config;
551 struct timespec64 now;
552 u64 temp = 0;
553 u32 ptp_v2 = 0;
554 u32 tstamp_all = 0;
555 u32 ptp_over_ipv4_udp = 0;
556 u32 ptp_over_ipv6_udp = 0;
557 u32 ptp_over_ethernet = 0;
558 u32 snap_type_sel = 0;
559 u32 ts_master_en = 0;
560 u32 ts_event_en = 0;
561 u32 value = 0;
562 u32 sec_inc;
563 bool xmac;
565 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
567 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 netdev_alert(priv->dev, "No support for HW time stamping\n");
569 priv->hwts_tx_en = 0;
570 priv->hwts_rx_en = 0;
572 return -EOPNOTSUPP;
575 if (copy_from_user(&config, ifr->ifr_data,
576 sizeof(struct hwtstamp_config)))
577 return -EFAULT;
579 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 __func__, config.flags, config.tx_type, config.rx_filter);
582 /* reserved for future extensions */
583 if (config.flags)
584 return -EINVAL;
586 if (config.tx_type != HWTSTAMP_TX_OFF &&
587 config.tx_type != HWTSTAMP_TX_ON)
588 return -ERANGE;
590 if (priv->adv_ts) {
591 switch (config.rx_filter) {
592 case HWTSTAMP_FILTER_NONE:
593 /* time stamp no incoming packet at all */
594 config.rx_filter = HWTSTAMP_FILTER_NONE;
595 break;
597 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 /* PTP v1, UDP, any kind of event packet */
599 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 /* take time stamp for all event messages */
601 if (xmac)
602 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
603 else
604 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
606 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
607 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
608 break;
610 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
611 /* PTP v1, UDP, Sync packet */
612 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
613 /* take time stamp for SYNC messages only */
614 ts_event_en = PTP_TCR_TSEVNTENA;
616 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
617 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
618 break;
620 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
621 /* PTP v1, UDP, Delay_req packet */
622 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
623 /* take time stamp for Delay_Req messages only */
624 ts_master_en = PTP_TCR_TSMSTRENA;
625 ts_event_en = PTP_TCR_TSEVNTENA;
627 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629 break;
631 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
632 /* PTP v2, UDP, any kind of event packet */
633 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
634 ptp_v2 = PTP_TCR_TSVER2ENA;
635 /* take time stamp for all event messages */
636 if (xmac)
637 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
638 else
639 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
641 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 break;
645 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646 /* PTP v2, UDP, Sync packet */
647 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
648 ptp_v2 = PTP_TCR_TSVER2ENA;
649 /* take time stamp for SYNC messages only */
650 ts_event_en = PTP_TCR_TSEVNTENA;
652 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
653 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
654 break;
656 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 /* PTP v2, UDP, Delay_req packet */
658 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
659 ptp_v2 = PTP_TCR_TSVER2ENA;
660 /* take time stamp for Delay_Req messages only */
661 ts_master_en = PTP_TCR_TSMSTRENA;
662 ts_event_en = PTP_TCR_TSEVNTENA;
664 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
665 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
666 break;
668 case HWTSTAMP_FILTER_PTP_V2_EVENT:
669 /* PTP v2/802.AS1 any layer, any kind of event packet */
670 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
671 ptp_v2 = PTP_TCR_TSVER2ENA;
672 /* take time stamp for all event messages */
673 if (xmac)
674 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
675 else
676 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
678 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
679 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 ptp_over_ethernet = PTP_TCR_TSIPENA;
681 break;
683 case HWTSTAMP_FILTER_PTP_V2_SYNC:
684 /* PTP v2/802.AS1, any layer, Sync packet */
685 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
686 ptp_v2 = PTP_TCR_TSVER2ENA;
687 /* take time stamp for SYNC messages only */
688 ts_event_en = PTP_TCR_TSEVNTENA;
690 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
691 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
692 ptp_over_ethernet = PTP_TCR_TSIPENA;
693 break;
695 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
696 /* PTP v2/802.AS1, any layer, Delay_req packet */
697 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
698 ptp_v2 = PTP_TCR_TSVER2ENA;
699 /* take time stamp for Delay_Req messages only */
700 ts_master_en = PTP_TCR_TSMSTRENA;
701 ts_event_en = PTP_TCR_TSEVNTENA;
703 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
704 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
705 ptp_over_ethernet = PTP_TCR_TSIPENA;
706 break;
708 case HWTSTAMP_FILTER_NTP_ALL:
709 case HWTSTAMP_FILTER_ALL:
710 /* time stamp any incoming packet */
711 config.rx_filter = HWTSTAMP_FILTER_ALL;
712 tstamp_all = PTP_TCR_TSENALL;
713 break;
715 default:
716 return -ERANGE;
718 } else {
719 switch (config.rx_filter) {
720 case HWTSTAMP_FILTER_NONE:
721 config.rx_filter = HWTSTAMP_FILTER_NONE;
722 break;
723 default:
724 /* PTP v1, UDP, any kind of event packet */
725 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
726 break;
729 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
730 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
732 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
733 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
734 else {
735 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
736 tstamp_all | ptp_v2 | ptp_over_ethernet |
737 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
738 ts_master_en | snap_type_sel);
739 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
741 /* program Sub Second Increment reg */
742 stmmac_config_sub_second_increment(priv,
743 priv->ptpaddr, priv->plat->clk_ptp_rate,
744 xmac, &sec_inc);
745 temp = div_u64(1000000000ULL, sec_inc);
747 /* Store sub second increment and flags for later use */
748 priv->sub_second_inc = sec_inc;
749 priv->systime_flags = value;
751 /* calculate default added value:
752 * formula is :
753 * addend = (2^32)/freq_div_ratio;
754 * where, freq_div_ratio = 1e9ns/sec_inc
756 temp = (u64)(temp << 32);
757 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
758 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
760 /* initialize system time */
761 ktime_get_real_ts64(&now);
763 /* lower 32 bits of tv_sec are safe until y2106 */
764 stmmac_init_systime(priv, priv->ptpaddr,
765 (u32)now.tv_sec, now.tv_nsec);
768 return copy_to_user(ifr->ifr_data, &config,
769 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
773 * stmmac_init_ptp - init PTP
774 * @priv: driver private structure
775 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776 * This is done by looking at the HW cap. register.
777 * This function also registers the ptp driver.
779 static int stmmac_init_ptp(struct stmmac_priv *priv)
781 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
783 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
784 return -EOPNOTSUPP;
786 priv->adv_ts = 0;
787 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 if (xmac && priv->dma_cap.atime_stamp)
789 priv->adv_ts = 1;
790 /* Dwmac 3.x core with extend_desc can support adv_ts */
791 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
792 priv->adv_ts = 1;
794 if (priv->dma_cap.time_stamp)
795 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
797 if (priv->adv_ts)
798 netdev_info(priv->dev,
799 "IEEE 1588-2008 Advanced Timestamp supported\n");
801 priv->hwts_tx_en = 0;
802 priv->hwts_rx_en = 0;
804 stmmac_ptp_register(priv);
806 return 0;
809 static void stmmac_release_ptp(struct stmmac_priv *priv)
811 if (priv->plat->clk_ptp_ref)
812 clk_disable_unprepare(priv->plat->clk_ptp_ref);
813 stmmac_ptp_unregister(priv);
817 * stmmac_mac_flow_ctrl - Configure flow control in all queues
818 * @priv: driver private structure
819 * Description: It is used for configuring the flow control in all queues
821 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
823 u32 tx_cnt = priv->plat->tx_queues_to_use;
825 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
826 priv->pause, tx_cnt);
830 * stmmac_adjust_link - adjusts the link parameters
831 * @dev: net device structure
832 * Description: this is the helper called by the physical abstraction layer
833 * drivers to communicate the phy link status. According the speed and duplex
834 * this driver can invoke registered glue-logic as well.
835 * It also invoke the eee initialization because it could happen when switch
836 * on different networks (that are eee capable).
838 static void stmmac_adjust_link(struct net_device *dev)
840 struct stmmac_priv *priv = netdev_priv(dev);
841 struct phy_device *phydev = dev->phydev;
842 bool new_state = false;
844 if (!phydev)
845 return;
847 mutex_lock(&priv->lock);
849 if (phydev->link) {
850 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
852 /* Now we make sure that we can be in full duplex mode.
853 * If not, we operate in half-duplex mode. */
854 if (phydev->duplex != priv->oldduplex) {
855 new_state = true;
856 if (!phydev->duplex)
857 ctrl &= ~priv->hw->link.duplex;
858 else
859 ctrl |= priv->hw->link.duplex;
860 priv->oldduplex = phydev->duplex;
862 /* Flow Control operation */
863 if (phydev->pause)
864 stmmac_mac_flow_ctrl(priv, phydev->duplex);
866 if (phydev->speed != priv->speed) {
867 new_state = true;
868 ctrl &= ~priv->hw->link.speed_mask;
869 switch (phydev->speed) {
870 case SPEED_1000:
871 ctrl |= priv->hw->link.speed1000;
872 break;
873 case SPEED_100:
874 ctrl |= priv->hw->link.speed100;
875 break;
876 case SPEED_10:
877 ctrl |= priv->hw->link.speed10;
878 break;
879 default:
880 netif_warn(priv, link, priv->dev,
881 "broken speed: %d\n", phydev->speed);
882 phydev->speed = SPEED_UNKNOWN;
883 break;
885 if (phydev->speed != SPEED_UNKNOWN)
886 stmmac_hw_fix_mac_speed(priv);
887 priv->speed = phydev->speed;
890 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
892 if (!priv->oldlink) {
893 new_state = true;
894 priv->oldlink = true;
896 } else if (priv->oldlink) {
897 new_state = true;
898 priv->oldlink = false;
899 priv->speed = SPEED_UNKNOWN;
900 priv->oldduplex = DUPLEX_UNKNOWN;
903 if (new_state && netif_msg_link(priv))
904 phy_print_status(phydev);
906 mutex_unlock(&priv->lock);
908 if (phydev->is_pseudo_fixed_link)
909 /* Stop PHY layer to call the hook to adjust the link in case
910 * of a switch is attached to the stmmac driver.
912 phydev->irq = PHY_IGNORE_INTERRUPT;
913 else
914 /* At this stage, init the EEE if supported.
915 * Never called in case of fixed_link.
917 priv->eee_enabled = stmmac_eee_init(priv);
921 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922 * @priv: driver private structure
923 * Description: this is to verify if the HW supports the PCS.
924 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925 * configured for the TBI, RTBI, or SGMII PHY interface.
927 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
929 int interface = priv->plat->interface;
931 if (priv->dma_cap.pcs) {
932 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
933 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
934 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
935 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
936 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
937 priv->hw->pcs = STMMAC_PCS_RGMII;
938 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
939 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
940 priv->hw->pcs = STMMAC_PCS_SGMII;
946 * stmmac_init_phy - PHY initialization
947 * @dev: net device structure
948 * Description: it initializes the driver's PHY state, and attaches the PHY
949 * to the mac driver.
950 * Return value:
951 * 0 on success
953 static int stmmac_init_phy(struct net_device *dev)
955 struct stmmac_priv *priv = netdev_priv(dev);
956 u32 tx_cnt = priv->plat->tx_queues_to_use;
957 struct phy_device *phydev;
958 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
959 char bus_id[MII_BUS_ID_SIZE];
960 int interface = priv->plat->interface;
961 int max_speed = priv->plat->max_speed;
962 priv->oldlink = false;
963 priv->speed = SPEED_UNKNOWN;
964 priv->oldduplex = DUPLEX_UNKNOWN;
966 if (priv->plat->phy_node) {
967 phydev = of_phy_connect(dev, priv->plat->phy_node,
968 &stmmac_adjust_link, 0, interface);
969 } else {
970 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
971 priv->plat->bus_id);
973 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
974 priv->plat->phy_addr);
975 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
976 phy_id_fmt);
978 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
979 interface);
982 if (IS_ERR_OR_NULL(phydev)) {
983 netdev_err(priv->dev, "Could not attach to PHY\n");
984 if (!phydev)
985 return -ENODEV;
987 return PTR_ERR(phydev);
990 /* Stop Advertising 1000BASE Capability if interface is not GMII */
991 if ((interface == PHY_INTERFACE_MODE_MII) ||
992 (interface == PHY_INTERFACE_MODE_RMII) ||
993 (max_speed < 1000 && max_speed > 0))
994 phy_set_max_speed(phydev, SPEED_100);
997 * Half-duplex mode not supported with multiqueue
998 * half-duplex can only works with single queue
1000 if (tx_cnt > 1) {
1001 phy_remove_link_mode(phydev,
1002 ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1003 phy_remove_link_mode(phydev,
1004 ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1005 phy_remove_link_mode(phydev,
1006 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1010 * Broken HW is sometimes missing the pull-up resistor on the
1011 * MDIO line, which results in reads to non-existent devices returning
1012 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1013 * device as well.
1014 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1016 if (!priv->plat->phy_node && phydev->phy_id == 0) {
1017 phy_disconnect(phydev);
1018 return -ENODEV;
1021 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1022 * subsequent PHY polling, make sure we force a link transition if
1023 * we have a UP/DOWN/UP transition
1025 if (phydev->is_pseudo_fixed_link)
1026 phydev->irq = PHY_POLL;
1028 phy_attached_info(phydev);
1029 return 0;
1032 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1034 u32 rx_cnt = priv->plat->rx_queues_to_use;
1035 void *head_rx;
1036 u32 queue;
1038 /* Display RX rings */
1039 for (queue = 0; queue < rx_cnt; queue++) {
1040 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1042 pr_info("\tRX Queue %u rings\n", queue);
1044 if (priv->extend_desc)
1045 head_rx = (void *)rx_q->dma_erx;
1046 else
1047 head_rx = (void *)rx_q->dma_rx;
1049 /* Display RX ring */
1050 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1054 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1056 u32 tx_cnt = priv->plat->tx_queues_to_use;
1057 void *head_tx;
1058 u32 queue;
1060 /* Display TX rings */
1061 for (queue = 0; queue < tx_cnt; queue++) {
1062 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1064 pr_info("\tTX Queue %d rings\n", queue);
1066 if (priv->extend_desc)
1067 head_tx = (void *)tx_q->dma_etx;
1068 else
1069 head_tx = (void *)tx_q->dma_tx;
1071 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1075 static void stmmac_display_rings(struct stmmac_priv *priv)
1077 /* Display RX ring */
1078 stmmac_display_rx_rings(priv);
1080 /* Display TX ring */
1081 stmmac_display_tx_rings(priv);
1084 static int stmmac_set_bfsize(int mtu, int bufsize)
1086 int ret = bufsize;
1088 if (mtu >= BUF_SIZE_4KiB)
1089 ret = BUF_SIZE_8KiB;
1090 else if (mtu >= BUF_SIZE_2KiB)
1091 ret = BUF_SIZE_4KiB;
1092 else if (mtu > DEFAULT_BUFSIZE)
1093 ret = BUF_SIZE_2KiB;
1094 else
1095 ret = DEFAULT_BUFSIZE;
1097 return ret;
1101 * stmmac_clear_rx_descriptors - clear RX descriptors
1102 * @priv: driver private structure
1103 * @queue: RX queue index
1104 * Description: this function is called to clear the RX descriptors
1105 * in case of both basic and extended descriptors are used.
1107 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1109 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1110 int i;
1112 /* Clear the RX descriptors */
1113 for (i = 0; i < DMA_RX_SIZE; i++)
1114 if (priv->extend_desc)
1115 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1116 priv->use_riwt, priv->mode,
1117 (i == DMA_RX_SIZE - 1));
1118 else
1119 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1120 priv->use_riwt, priv->mode,
1121 (i == DMA_RX_SIZE - 1));
1125 * stmmac_clear_tx_descriptors - clear tx descriptors
1126 * @priv: driver private structure
1127 * @queue: TX queue index.
1128 * Description: this function is called to clear the TX descriptors
1129 * in case of both basic and extended descriptors are used.
1131 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1133 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1134 int i;
1136 /* Clear the TX descriptors */
1137 for (i = 0; i < DMA_TX_SIZE; i++)
1138 if (priv->extend_desc)
1139 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1140 priv->mode, (i == DMA_TX_SIZE - 1));
1141 else
1142 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1143 priv->mode, (i == DMA_TX_SIZE - 1));
1147 * stmmac_clear_descriptors - clear descriptors
1148 * @priv: driver private structure
1149 * Description: this function is called to clear the TX and RX descriptors
1150 * in case of both basic and extended descriptors are used.
1152 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1154 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1155 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1156 u32 queue;
1158 /* Clear the RX descriptors */
1159 for (queue = 0; queue < rx_queue_cnt; queue++)
1160 stmmac_clear_rx_descriptors(priv, queue);
1162 /* Clear the TX descriptors */
1163 for (queue = 0; queue < tx_queue_cnt; queue++)
1164 stmmac_clear_tx_descriptors(priv, queue);
1168 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1169 * @priv: driver private structure
1170 * @p: descriptor pointer
1171 * @i: descriptor index
1172 * @flags: gfp flag
1173 * @queue: RX queue index
1174 * Description: this function is called to allocate a receive buffer, perform
1175 * the DMA mapping and init the descriptor.
1177 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1178 int i, gfp_t flags, u32 queue)
1180 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1181 struct sk_buff *skb;
1183 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1184 if (!skb) {
1185 netdev_err(priv->dev,
1186 "%s: Rx init fails; skb is NULL\n", __func__);
1187 return -ENOMEM;
1189 rx_q->rx_skbuff[i] = skb;
1190 rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1191 priv->dma_buf_sz,
1192 DMA_FROM_DEVICE);
1193 if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1194 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1195 dev_kfree_skb_any(skb);
1196 return -EINVAL;
1199 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1201 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1202 stmmac_init_desc3(priv, p);
1204 return 0;
1208 * stmmac_free_rx_buffer - free RX dma buffers
1209 * @priv: private structure
1210 * @queue: RX queue index
1211 * @i: buffer index.
1213 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1215 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1217 if (rx_q->rx_skbuff[i]) {
1218 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1219 priv->dma_buf_sz, DMA_FROM_DEVICE);
1220 dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1222 rx_q->rx_skbuff[i] = NULL;
1226 * stmmac_free_tx_buffer - free RX dma buffers
1227 * @priv: private structure
1228 * @queue: RX queue index
1229 * @i: buffer index.
1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1233 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1235 if (tx_q->tx_skbuff_dma[i].buf) {
1236 if (tx_q->tx_skbuff_dma[i].map_as_page)
1237 dma_unmap_page(priv->device,
1238 tx_q->tx_skbuff_dma[i].buf,
1239 tx_q->tx_skbuff_dma[i].len,
1240 DMA_TO_DEVICE);
1241 else
1242 dma_unmap_single(priv->device,
1243 tx_q->tx_skbuff_dma[i].buf,
1244 tx_q->tx_skbuff_dma[i].len,
1245 DMA_TO_DEVICE);
1248 if (tx_q->tx_skbuff[i]) {
1249 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1250 tx_q->tx_skbuff[i] = NULL;
1251 tx_q->tx_skbuff_dma[i].buf = 0;
1252 tx_q->tx_skbuff_dma[i].map_as_page = false;
1257 * init_dma_rx_desc_rings - init the RX descriptor rings
1258 * @dev: net device structure
1259 * @flags: gfp flag.
1260 * Description: this function initializes the DMA RX descriptors
1261 * and allocates the socket buffers. It supports the chained and ring
1262 * modes.
1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1266 struct stmmac_priv *priv = netdev_priv(dev);
1267 u32 rx_count = priv->plat->rx_queues_to_use;
1268 int ret = -ENOMEM;
1269 int bfsize = 0;
1270 int queue;
1271 int i;
1273 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1274 if (bfsize < 0)
1275 bfsize = 0;
1277 if (bfsize < BUF_SIZE_16KiB)
1278 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1280 priv->dma_buf_sz = bfsize;
1282 /* RX INITIALIZATION */
1283 netif_dbg(priv, probe, priv->dev,
1284 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1286 for (queue = 0; queue < rx_count; queue++) {
1287 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1289 netif_dbg(priv, probe, priv->dev,
1290 "(%s) dma_rx_phy=0x%08x\n", __func__,
1291 (u32)rx_q->dma_rx_phy);
1293 for (i = 0; i < DMA_RX_SIZE; i++) {
1294 struct dma_desc *p;
1296 if (priv->extend_desc)
1297 p = &((rx_q->dma_erx + i)->basic);
1298 else
1299 p = rx_q->dma_rx + i;
1301 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1302 queue);
1303 if (ret)
1304 goto err_init_rx_buffers;
1306 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1307 rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1308 (unsigned int)rx_q->rx_skbuff_dma[i]);
1311 rx_q->cur_rx = 0;
1312 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1314 stmmac_clear_rx_descriptors(priv, queue);
1316 /* Setup the chained descriptor addresses */
1317 if (priv->mode == STMMAC_CHAIN_MODE) {
1318 if (priv->extend_desc)
1319 stmmac_mode_init(priv, rx_q->dma_erx,
1320 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1321 else
1322 stmmac_mode_init(priv, rx_q->dma_rx,
1323 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1327 buf_sz = bfsize;
1329 return 0;
1331 err_init_rx_buffers:
1332 while (queue >= 0) {
1333 while (--i >= 0)
1334 stmmac_free_rx_buffer(priv, queue, i);
1336 if (queue == 0)
1337 break;
1339 i = DMA_RX_SIZE;
1340 queue--;
1343 return ret;
1347 * init_dma_tx_desc_rings - init the TX descriptor rings
1348 * @dev: net device structure.
1349 * Description: this function initializes the DMA TX descriptors
1350 * and allocates the socket buffers. It supports the chained and ring
1351 * modes.
1353 static int init_dma_tx_desc_rings(struct net_device *dev)
1355 struct stmmac_priv *priv = netdev_priv(dev);
1356 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1357 u32 queue;
1358 int i;
1360 for (queue = 0; queue < tx_queue_cnt; queue++) {
1361 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1363 netif_dbg(priv, probe, priv->dev,
1364 "(%s) dma_tx_phy=0x%08x\n", __func__,
1365 (u32)tx_q->dma_tx_phy);
1367 /* Setup the chained descriptor addresses */
1368 if (priv->mode == STMMAC_CHAIN_MODE) {
1369 if (priv->extend_desc)
1370 stmmac_mode_init(priv, tx_q->dma_etx,
1371 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1372 else
1373 stmmac_mode_init(priv, tx_q->dma_tx,
1374 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1377 for (i = 0; i < DMA_TX_SIZE; i++) {
1378 struct dma_desc *p;
1379 if (priv->extend_desc)
1380 p = &((tx_q->dma_etx + i)->basic);
1381 else
1382 p = tx_q->dma_tx + i;
1384 stmmac_clear_desc(priv, p);
1386 tx_q->tx_skbuff_dma[i].buf = 0;
1387 tx_q->tx_skbuff_dma[i].map_as_page = false;
1388 tx_q->tx_skbuff_dma[i].len = 0;
1389 tx_q->tx_skbuff_dma[i].last_segment = false;
1390 tx_q->tx_skbuff[i] = NULL;
1393 tx_q->dirty_tx = 0;
1394 tx_q->cur_tx = 0;
1395 tx_q->mss = 0;
1397 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1400 return 0;
1404 * init_dma_desc_rings - init the RX/TX descriptor rings
1405 * @dev: net device structure
1406 * @flags: gfp flag.
1407 * Description: this function initializes the DMA RX/TX descriptors
1408 * and allocates the socket buffers. It supports the chained and ring
1409 * modes.
1411 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1413 struct stmmac_priv *priv = netdev_priv(dev);
1414 int ret;
1416 ret = init_dma_rx_desc_rings(dev, flags);
1417 if (ret)
1418 return ret;
1420 ret = init_dma_tx_desc_rings(dev);
1422 stmmac_clear_descriptors(priv);
1424 if (netif_msg_hw(priv))
1425 stmmac_display_rings(priv);
1427 return ret;
1431 * dma_free_rx_skbufs - free RX dma buffers
1432 * @priv: private structure
1433 * @queue: RX queue index
1435 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1437 int i;
1439 for (i = 0; i < DMA_RX_SIZE; i++)
1440 stmmac_free_rx_buffer(priv, queue, i);
1444 * dma_free_tx_skbufs - free TX dma buffers
1445 * @priv: private structure
1446 * @queue: TX queue index
1448 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 int i;
1452 for (i = 0; i < DMA_TX_SIZE; i++)
1453 stmmac_free_tx_buffer(priv, queue, i);
1457 * free_dma_rx_desc_resources - free RX dma desc resources
1458 * @priv: private structure
1460 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1462 u32 rx_count = priv->plat->rx_queues_to_use;
1463 u32 queue;
1465 /* Free RX queue resources */
1466 for (queue = 0; queue < rx_count; queue++) {
1467 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1469 /* Release the DMA RX socket buffers */
1470 dma_free_rx_skbufs(priv, queue);
1472 /* Free DMA regions of consistent memory previously allocated */
1473 if (!priv->extend_desc)
1474 dma_free_coherent(priv->device,
1475 DMA_RX_SIZE * sizeof(struct dma_desc),
1476 rx_q->dma_rx, rx_q->dma_rx_phy);
1477 else
1478 dma_free_coherent(priv->device, DMA_RX_SIZE *
1479 sizeof(struct dma_extended_desc),
1480 rx_q->dma_erx, rx_q->dma_rx_phy);
1482 kfree(rx_q->rx_skbuff_dma);
1483 kfree(rx_q->rx_skbuff);
1488 * free_dma_tx_desc_resources - free TX dma desc resources
1489 * @priv: private structure
1491 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1493 u32 tx_count = priv->plat->tx_queues_to_use;
1494 u32 queue;
1496 /* Free TX queue resources */
1497 for (queue = 0; queue < tx_count; queue++) {
1498 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1500 /* Release the DMA TX socket buffers */
1501 dma_free_tx_skbufs(priv, queue);
1503 /* Free DMA regions of consistent memory previously allocated */
1504 if (!priv->extend_desc)
1505 dma_free_coherent(priv->device,
1506 DMA_TX_SIZE * sizeof(struct dma_desc),
1507 tx_q->dma_tx, tx_q->dma_tx_phy);
1508 else
1509 dma_free_coherent(priv->device, DMA_TX_SIZE *
1510 sizeof(struct dma_extended_desc),
1511 tx_q->dma_etx, tx_q->dma_tx_phy);
1513 kfree(tx_q->tx_skbuff_dma);
1514 kfree(tx_q->tx_skbuff);
1519 * alloc_dma_rx_desc_resources - alloc RX resources.
1520 * @priv: private structure
1521 * Description: according to which descriptor can be used (extend or basic)
1522 * this function allocates the resources for TX and RX paths. In case of
1523 * reception, for example, it pre-allocated the RX socket buffer in order to
1524 * allow zero-copy mechanism.
1526 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1528 u32 rx_count = priv->plat->rx_queues_to_use;
1529 int ret = -ENOMEM;
1530 u32 queue;
1532 /* RX queues buffers and DMA */
1533 for (queue = 0; queue < rx_count; queue++) {
1534 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1536 rx_q->queue_index = queue;
1537 rx_q->priv_data = priv;
1539 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1540 sizeof(dma_addr_t),
1541 GFP_KERNEL);
1542 if (!rx_q->rx_skbuff_dma)
1543 goto err_dma;
1545 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1546 sizeof(struct sk_buff *),
1547 GFP_KERNEL);
1548 if (!rx_q->rx_skbuff)
1549 goto err_dma;
1551 if (priv->extend_desc) {
1552 rx_q->dma_erx = dma_zalloc_coherent(priv->device,
1553 DMA_RX_SIZE *
1554 sizeof(struct
1555 dma_extended_desc),
1556 &rx_q->dma_rx_phy,
1557 GFP_KERNEL);
1558 if (!rx_q->dma_erx)
1559 goto err_dma;
1561 } else {
1562 rx_q->dma_rx = dma_zalloc_coherent(priv->device,
1563 DMA_RX_SIZE *
1564 sizeof(struct
1565 dma_desc),
1566 &rx_q->dma_rx_phy,
1567 GFP_KERNEL);
1568 if (!rx_q->dma_rx)
1569 goto err_dma;
1573 return 0;
1575 err_dma:
1576 free_dma_rx_desc_resources(priv);
1578 return ret;
1582 * alloc_dma_tx_desc_resources - alloc TX resources.
1583 * @priv: private structure
1584 * Description: according to which descriptor can be used (extend or basic)
1585 * this function allocates the resources for TX and RX paths. In case of
1586 * reception, for example, it pre-allocated the RX socket buffer in order to
1587 * allow zero-copy mechanism.
1589 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1591 u32 tx_count = priv->plat->tx_queues_to_use;
1592 int ret = -ENOMEM;
1593 u32 queue;
1595 /* TX queues buffers and DMA */
1596 for (queue = 0; queue < tx_count; queue++) {
1597 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1599 tx_q->queue_index = queue;
1600 tx_q->priv_data = priv;
1602 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1603 sizeof(*tx_q->tx_skbuff_dma),
1604 GFP_KERNEL);
1605 if (!tx_q->tx_skbuff_dma)
1606 goto err_dma;
1608 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1609 sizeof(struct sk_buff *),
1610 GFP_KERNEL);
1611 if (!tx_q->tx_skbuff)
1612 goto err_dma;
1614 if (priv->extend_desc) {
1615 tx_q->dma_etx = dma_zalloc_coherent(priv->device,
1616 DMA_TX_SIZE *
1617 sizeof(struct
1618 dma_extended_desc),
1619 &tx_q->dma_tx_phy,
1620 GFP_KERNEL);
1621 if (!tx_q->dma_etx)
1622 goto err_dma;
1623 } else {
1624 tx_q->dma_tx = dma_zalloc_coherent(priv->device,
1625 DMA_TX_SIZE *
1626 sizeof(struct
1627 dma_desc),
1628 &tx_q->dma_tx_phy,
1629 GFP_KERNEL);
1630 if (!tx_q->dma_tx)
1631 goto err_dma;
1635 return 0;
1637 err_dma:
1638 free_dma_tx_desc_resources(priv);
1640 return ret;
1644 * alloc_dma_desc_resources - alloc TX/RX resources.
1645 * @priv: private structure
1646 * Description: according to which descriptor can be used (extend or basic)
1647 * this function allocates the resources for TX and RX paths. In case of
1648 * reception, for example, it pre-allocated the RX socket buffer in order to
1649 * allow zero-copy mechanism.
1651 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1653 /* RX Allocation */
1654 int ret = alloc_dma_rx_desc_resources(priv);
1656 if (ret)
1657 return ret;
1659 ret = alloc_dma_tx_desc_resources(priv);
1661 return ret;
1665 * free_dma_desc_resources - free dma desc resources
1666 * @priv: private structure
1668 static void free_dma_desc_resources(struct stmmac_priv *priv)
1670 /* Release the DMA RX socket buffers */
1671 free_dma_rx_desc_resources(priv);
1673 /* Release the DMA TX socket buffers */
1674 free_dma_tx_desc_resources(priv);
1678 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1679 * @priv: driver private structure
1680 * Description: It is used for enabling the rx queues in the MAC
1682 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1684 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1685 int queue;
1686 u8 mode;
1688 for (queue = 0; queue < rx_queues_count; queue++) {
1689 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1690 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1695 * stmmac_start_rx_dma - start RX DMA channel
1696 * @priv: driver private structure
1697 * @chan: RX channel index
1698 * Description:
1699 * This starts a RX DMA channel
1701 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1703 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1704 stmmac_start_rx(priv, priv->ioaddr, chan);
1708 * stmmac_start_tx_dma - start TX DMA channel
1709 * @priv: driver private structure
1710 * @chan: TX channel index
1711 * Description:
1712 * This starts a TX DMA channel
1714 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1716 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1717 stmmac_start_tx(priv, priv->ioaddr, chan);
1721 * stmmac_stop_rx_dma - stop RX DMA channel
1722 * @priv: driver private structure
1723 * @chan: RX channel index
1724 * Description:
1725 * This stops a RX DMA channel
1727 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1729 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1730 stmmac_stop_rx(priv, priv->ioaddr, chan);
1734 * stmmac_stop_tx_dma - stop TX DMA channel
1735 * @priv: driver private structure
1736 * @chan: TX channel index
1737 * Description:
1738 * This stops a TX DMA channel
1740 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1742 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1743 stmmac_stop_tx(priv, priv->ioaddr, chan);
1747 * stmmac_start_all_dma - start all RX and TX DMA channels
1748 * @priv: driver private structure
1749 * Description:
1750 * This starts all the RX and TX DMA channels
1752 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1754 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1755 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1756 u32 chan = 0;
1758 for (chan = 0; chan < rx_channels_count; chan++)
1759 stmmac_start_rx_dma(priv, chan);
1761 for (chan = 0; chan < tx_channels_count; chan++)
1762 stmmac_start_tx_dma(priv, chan);
1766 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1767 * @priv: driver private structure
1768 * Description:
1769 * This stops the RX and TX DMA channels
1771 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1773 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1774 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1775 u32 chan = 0;
1777 for (chan = 0; chan < rx_channels_count; chan++)
1778 stmmac_stop_rx_dma(priv, chan);
1780 for (chan = 0; chan < tx_channels_count; chan++)
1781 stmmac_stop_tx_dma(priv, chan);
1785 * stmmac_dma_operation_mode - HW DMA operation mode
1786 * @priv: driver private structure
1787 * Description: it is used for configuring the DMA operation mode register in
1788 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1790 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1792 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1793 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1794 int rxfifosz = priv->plat->rx_fifo_size;
1795 int txfifosz = priv->plat->tx_fifo_size;
1796 u32 txmode = 0;
1797 u32 rxmode = 0;
1798 u32 chan = 0;
1799 u8 qmode = 0;
1801 if (rxfifosz == 0)
1802 rxfifosz = priv->dma_cap.rx_fifo_size;
1803 if (txfifosz == 0)
1804 txfifosz = priv->dma_cap.tx_fifo_size;
1806 /* Adjust for real per queue fifo size */
1807 rxfifosz /= rx_channels_count;
1808 txfifosz /= tx_channels_count;
1810 if (priv->plat->force_thresh_dma_mode) {
1811 txmode = tc;
1812 rxmode = tc;
1813 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1815 * In case of GMAC, SF mode can be enabled
1816 * to perform the TX COE in HW. This depends on:
1817 * 1) TX COE if actually supported
1818 * 2) There is no bugged Jumbo frame support
1819 * that needs to not insert csum in the TDES.
1821 txmode = SF_DMA_MODE;
1822 rxmode = SF_DMA_MODE;
1823 priv->xstats.threshold = SF_DMA_MODE;
1824 } else {
1825 txmode = tc;
1826 rxmode = SF_DMA_MODE;
1829 /* configure all channels */
1830 for (chan = 0; chan < rx_channels_count; chan++) {
1831 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1833 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1834 rxfifosz, qmode);
1835 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1836 chan);
1839 for (chan = 0; chan < tx_channels_count; chan++) {
1840 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1842 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1843 txfifosz, qmode);
1848 * stmmac_tx_clean - to manage the transmission completion
1849 * @priv: driver private structure
1850 * @queue: TX queue index
1851 * Description: it reclaims the transmit resources after transmission completes.
1853 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1855 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1856 unsigned int bytes_compl = 0, pkts_compl = 0;
1857 unsigned int entry, count = 0;
1859 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1861 priv->xstats.tx_clean++;
1863 entry = tx_q->dirty_tx;
1864 while ((entry != tx_q->cur_tx) && (count < budget)) {
1865 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1866 struct dma_desc *p;
1867 int status;
1869 if (priv->extend_desc)
1870 p = (struct dma_desc *)(tx_q->dma_etx + entry);
1871 else
1872 p = tx_q->dma_tx + entry;
1874 status = stmmac_tx_status(priv, &priv->dev->stats,
1875 &priv->xstats, p, priv->ioaddr);
1876 /* Check if the descriptor is owned by the DMA */
1877 if (unlikely(status & tx_dma_own))
1878 break;
1880 count++;
1882 /* Make sure descriptor fields are read after reading
1883 * the own bit.
1885 dma_rmb();
1887 /* Just consider the last segment and ...*/
1888 if (likely(!(status & tx_not_ls))) {
1889 /* ... verify the status error condition */
1890 if (unlikely(status & tx_err)) {
1891 priv->dev->stats.tx_errors++;
1892 } else {
1893 priv->dev->stats.tx_packets++;
1894 priv->xstats.tx_pkt_n++;
1896 stmmac_get_tx_hwtstamp(priv, p, skb);
1899 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1900 if (tx_q->tx_skbuff_dma[entry].map_as_page)
1901 dma_unmap_page(priv->device,
1902 tx_q->tx_skbuff_dma[entry].buf,
1903 tx_q->tx_skbuff_dma[entry].len,
1904 DMA_TO_DEVICE);
1905 else
1906 dma_unmap_single(priv->device,
1907 tx_q->tx_skbuff_dma[entry].buf,
1908 tx_q->tx_skbuff_dma[entry].len,
1909 DMA_TO_DEVICE);
1910 tx_q->tx_skbuff_dma[entry].buf = 0;
1911 tx_q->tx_skbuff_dma[entry].len = 0;
1912 tx_q->tx_skbuff_dma[entry].map_as_page = false;
1915 stmmac_clean_desc3(priv, tx_q, p);
1917 tx_q->tx_skbuff_dma[entry].last_segment = false;
1918 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1920 if (likely(skb != NULL)) {
1921 pkts_compl++;
1922 bytes_compl += skb->len;
1923 dev_consume_skb_any(skb);
1924 tx_q->tx_skbuff[entry] = NULL;
1927 stmmac_release_tx_desc(priv, p, priv->mode);
1929 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1931 tx_q->dirty_tx = entry;
1933 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1934 pkts_compl, bytes_compl);
1936 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1937 queue))) &&
1938 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1940 netif_dbg(priv, tx_done, priv->dev,
1941 "%s: restart transmit\n", __func__);
1942 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1945 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1946 stmmac_enable_eee_mode(priv);
1947 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1950 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1952 return count;
1956 * stmmac_tx_err - to manage the tx error
1957 * @priv: driver private structure
1958 * @chan: channel index
1959 * Description: it cleans the descriptors and restarts the transmission
1960 * in case of transmission errors.
1962 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1964 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1965 int i;
1967 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1969 stmmac_stop_tx_dma(priv, chan);
1970 dma_free_tx_skbufs(priv, chan);
1971 for (i = 0; i < DMA_TX_SIZE; i++)
1972 if (priv->extend_desc)
1973 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1974 priv->mode, (i == DMA_TX_SIZE - 1));
1975 else
1976 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1977 priv->mode, (i == DMA_TX_SIZE - 1));
1978 tx_q->dirty_tx = 0;
1979 tx_q->cur_tx = 0;
1980 tx_q->mss = 0;
1981 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1982 stmmac_start_tx_dma(priv, chan);
1984 priv->dev->stats.tx_errors++;
1985 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1989 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1990 * @priv: driver private structure
1991 * @txmode: TX operating mode
1992 * @rxmode: RX operating mode
1993 * @chan: channel index
1994 * Description: it is used for configuring of the DMA operation mode in
1995 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1996 * mode.
1998 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1999 u32 rxmode, u32 chan)
2001 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2002 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2003 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2004 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2005 int rxfifosz = priv->plat->rx_fifo_size;
2006 int txfifosz = priv->plat->tx_fifo_size;
2008 if (rxfifosz == 0)
2009 rxfifosz = priv->dma_cap.rx_fifo_size;
2010 if (txfifosz == 0)
2011 txfifosz = priv->dma_cap.tx_fifo_size;
2013 /* Adjust for real per queue fifo size */
2014 rxfifosz /= rx_channels_count;
2015 txfifosz /= tx_channels_count;
2017 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2018 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2021 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2023 int ret;
2025 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2026 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2027 if (ret && (ret != -EINVAL)) {
2028 stmmac_global_err(priv);
2029 return true;
2032 return false;
2035 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2037 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2038 &priv->xstats, chan);
2039 struct stmmac_channel *ch = &priv->channel[chan];
2040 bool needs_work = false;
2042 if ((status & handle_rx) && ch->has_rx) {
2043 needs_work = true;
2044 } else {
2045 status &= ~handle_rx;
2048 if ((status & handle_tx) && ch->has_tx) {
2049 needs_work = true;
2050 } else {
2051 status &= ~handle_tx;
2054 if (needs_work && napi_schedule_prep(&ch->napi)) {
2055 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2056 __napi_schedule(&ch->napi);
2059 return status;
2063 * stmmac_dma_interrupt - DMA ISR
2064 * @priv: driver private structure
2065 * Description: this is the DMA ISR. It is called by the main ISR.
2066 * It calls the dwmac dma routine and schedule poll method in case of some
2067 * work can be done.
2069 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2071 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2072 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2073 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2074 tx_channel_count : rx_channel_count;
2075 u32 chan;
2076 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2078 /* Make sure we never check beyond our status buffer. */
2079 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2080 channels_to_check = ARRAY_SIZE(status);
2082 for (chan = 0; chan < channels_to_check; chan++)
2083 status[chan] = stmmac_napi_check(priv, chan);
2085 for (chan = 0; chan < tx_channel_count; chan++) {
2086 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2087 /* Try to bump up the dma threshold on this failure */
2088 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2089 (tc <= 256)) {
2090 tc += 64;
2091 if (priv->plat->force_thresh_dma_mode)
2092 stmmac_set_dma_operation_mode(priv,
2095 chan);
2096 else
2097 stmmac_set_dma_operation_mode(priv,
2099 SF_DMA_MODE,
2100 chan);
2101 priv->xstats.threshold = tc;
2103 } else if (unlikely(status[chan] == tx_hard_error)) {
2104 stmmac_tx_err(priv, chan);
2110 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2111 * @priv: driver private structure
2112 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2114 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2116 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2117 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2119 dwmac_mmc_intr_all_mask(priv->mmcaddr);
2121 if (priv->dma_cap.rmon) {
2122 dwmac_mmc_ctrl(priv->mmcaddr, mode);
2123 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2124 } else
2125 netdev_info(priv->dev, "No MAC Management Counters available\n");
2129 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2130 * @priv: driver private structure
2131 * Description:
2132 * new GMAC chip generations have a new register to indicate the
2133 * presence of the optional feature/functions.
2134 * This can be also used to override the value passed through the
2135 * platform and necessary for old MAC10/100 and GMAC chips.
2137 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2139 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2143 * stmmac_check_ether_addr - check if the MAC addr is valid
2144 * @priv: driver private structure
2145 * Description:
2146 * it is to verify if the MAC address is valid, in case of failures it
2147 * generates a random MAC address
2149 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2151 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2152 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2153 if (!is_valid_ether_addr(priv->dev->dev_addr))
2154 eth_hw_addr_random(priv->dev);
2155 netdev_info(priv->dev, "device MAC address %pM\n",
2156 priv->dev->dev_addr);
2161 * stmmac_init_dma_engine - DMA init.
2162 * @priv: driver private structure
2163 * Description:
2164 * It inits the DMA invoking the specific MAC/GMAC callback.
2165 * Some DMA parameters can be passed from the platform;
2166 * in case of these are not passed a default is kept for the MAC or GMAC.
2168 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2170 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2171 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2172 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2173 struct stmmac_rx_queue *rx_q;
2174 struct stmmac_tx_queue *tx_q;
2175 u32 chan = 0;
2176 int atds = 0;
2177 int ret = 0;
2179 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2180 dev_err(priv->device, "Invalid DMA configuration\n");
2181 return -EINVAL;
2184 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2185 atds = 1;
2187 ret = stmmac_reset(priv, priv->ioaddr);
2188 if (ret) {
2189 dev_err(priv->device, "Failed to reset the dma\n");
2190 return ret;
2193 /* DMA Configuration */
2194 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2196 if (priv->plat->axi)
2197 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2199 /* DMA RX Channel Configuration */
2200 for (chan = 0; chan < rx_channels_count; chan++) {
2201 rx_q = &priv->rx_queue[chan];
2203 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2204 rx_q->dma_rx_phy, chan);
2206 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2207 (DMA_RX_SIZE * sizeof(struct dma_desc));
2208 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2209 rx_q->rx_tail_addr, chan);
2212 /* DMA TX Channel Configuration */
2213 for (chan = 0; chan < tx_channels_count; chan++) {
2214 tx_q = &priv->tx_queue[chan];
2216 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2217 tx_q->dma_tx_phy, chan);
2219 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2220 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2221 tx_q->tx_tail_addr, chan);
2224 /* DMA CSR Channel configuration */
2225 for (chan = 0; chan < dma_csr_ch; chan++)
2226 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2228 return ret;
2231 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2233 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2235 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2239 * stmmac_tx_timer - mitigation sw timer for tx.
2240 * @data: data pointer
2241 * Description:
2242 * This is the timer handler to directly invoke the stmmac_tx_clean.
2244 static void stmmac_tx_timer(struct timer_list *t)
2246 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2247 struct stmmac_priv *priv = tx_q->priv_data;
2248 struct stmmac_channel *ch;
2250 ch = &priv->channel[tx_q->queue_index];
2252 if (likely(napi_schedule_prep(&ch->napi)))
2253 __napi_schedule(&ch->napi);
2257 * stmmac_init_tx_coalesce - init tx mitigation options.
2258 * @priv: driver private structure
2259 * Description:
2260 * This inits the transmit coalesce parameters: i.e. timer rate,
2261 * timer handler and default threshold used for enabling the
2262 * interrupt on completion bit.
2264 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2266 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2267 u32 chan;
2269 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2270 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2272 for (chan = 0; chan < tx_channel_count; chan++) {
2273 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2275 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2279 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2281 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2282 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2283 u32 chan;
2285 /* set TX ring length */
2286 for (chan = 0; chan < tx_channels_count; chan++)
2287 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2288 (DMA_TX_SIZE - 1), chan);
2290 /* set RX ring length */
2291 for (chan = 0; chan < rx_channels_count; chan++)
2292 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2293 (DMA_RX_SIZE - 1), chan);
2297 * stmmac_set_tx_queue_weight - Set TX queue weight
2298 * @priv: driver private structure
2299 * Description: It is used for setting TX queues weight
2301 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2303 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2304 u32 weight;
2305 u32 queue;
2307 for (queue = 0; queue < tx_queues_count; queue++) {
2308 weight = priv->plat->tx_queues_cfg[queue].weight;
2309 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2314 * stmmac_configure_cbs - Configure CBS in TX queue
2315 * @priv: driver private structure
2316 * Description: It is used for configuring CBS in AVB TX queues
2318 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2320 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2321 u32 mode_to_use;
2322 u32 queue;
2324 /* queue 0 is reserved for legacy traffic */
2325 for (queue = 1; queue < tx_queues_count; queue++) {
2326 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2327 if (mode_to_use == MTL_QUEUE_DCB)
2328 continue;
2330 stmmac_config_cbs(priv, priv->hw,
2331 priv->plat->tx_queues_cfg[queue].send_slope,
2332 priv->plat->tx_queues_cfg[queue].idle_slope,
2333 priv->plat->tx_queues_cfg[queue].high_credit,
2334 priv->plat->tx_queues_cfg[queue].low_credit,
2335 queue);
2340 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2341 * @priv: driver private structure
2342 * Description: It is used for mapping RX queues to RX dma channels
2344 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2346 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2347 u32 queue;
2348 u32 chan;
2350 for (queue = 0; queue < rx_queues_count; queue++) {
2351 chan = priv->plat->rx_queues_cfg[queue].chan;
2352 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2357 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2358 * @priv: driver private structure
2359 * Description: It is used for configuring the RX Queue Priority
2361 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2363 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2364 u32 queue;
2365 u32 prio;
2367 for (queue = 0; queue < rx_queues_count; queue++) {
2368 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2369 continue;
2371 prio = priv->plat->rx_queues_cfg[queue].prio;
2372 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2377 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2378 * @priv: driver private structure
2379 * Description: It is used for configuring the TX Queue Priority
2381 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2383 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2384 u32 queue;
2385 u32 prio;
2387 for (queue = 0; queue < tx_queues_count; queue++) {
2388 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2389 continue;
2391 prio = priv->plat->tx_queues_cfg[queue].prio;
2392 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2397 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2398 * @priv: driver private structure
2399 * Description: It is used for configuring the RX queue routing
2401 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2403 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2404 u32 queue;
2405 u8 packet;
2407 for (queue = 0; queue < rx_queues_count; queue++) {
2408 /* no specific packet type routing specified for the queue */
2409 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2410 continue;
2412 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2413 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2418 * stmmac_mtl_configuration - Configure MTL
2419 * @priv: driver private structure
2420 * Description: It is used for configurring MTL
2422 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2424 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2425 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2427 if (tx_queues_count > 1)
2428 stmmac_set_tx_queue_weight(priv);
2430 /* Configure MTL RX algorithms */
2431 if (rx_queues_count > 1)
2432 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2433 priv->plat->rx_sched_algorithm);
2435 /* Configure MTL TX algorithms */
2436 if (tx_queues_count > 1)
2437 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2438 priv->plat->tx_sched_algorithm);
2440 /* Configure CBS in AVB TX queues */
2441 if (tx_queues_count > 1)
2442 stmmac_configure_cbs(priv);
2444 /* Map RX MTL to DMA channels */
2445 stmmac_rx_queue_dma_chan_map(priv);
2447 /* Enable MAC RX Queues */
2448 stmmac_mac_enable_rx_queues(priv);
2450 /* Set RX priorities */
2451 if (rx_queues_count > 1)
2452 stmmac_mac_config_rx_queues_prio(priv);
2454 /* Set TX priorities */
2455 if (tx_queues_count > 1)
2456 stmmac_mac_config_tx_queues_prio(priv);
2458 /* Set RX routing */
2459 if (rx_queues_count > 1)
2460 stmmac_mac_config_rx_queues_routing(priv);
2463 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2465 if (priv->dma_cap.asp) {
2466 netdev_info(priv->dev, "Enabling Safety Features\n");
2467 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2468 } else {
2469 netdev_info(priv->dev, "No Safety Features support found\n");
2474 * stmmac_hw_setup - setup mac in a usable state.
2475 * @dev : pointer to the device structure.
2476 * Description:
2477 * this is the main function to setup the HW in a usable state because the
2478 * dma engine is reset, the core registers are configured (e.g. AXI,
2479 * Checksum features, timers). The DMA is ready to start receiving and
2480 * transmitting.
2481 * Return value:
2482 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2483 * file on failure.
2485 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2487 struct stmmac_priv *priv = netdev_priv(dev);
2488 u32 rx_cnt = priv->plat->rx_queues_to_use;
2489 u32 tx_cnt = priv->plat->tx_queues_to_use;
2490 u32 chan;
2491 int ret;
2493 /* DMA initialization and SW reset */
2494 ret = stmmac_init_dma_engine(priv);
2495 if (ret < 0) {
2496 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2497 __func__);
2498 return ret;
2501 /* Copy the MAC addr into the HW */
2502 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2504 /* PS and related bits will be programmed according to the speed */
2505 if (priv->hw->pcs) {
2506 int speed = priv->plat->mac_port_sel_speed;
2508 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2509 (speed == SPEED_1000)) {
2510 priv->hw->ps = speed;
2511 } else {
2512 dev_warn(priv->device, "invalid port speed\n");
2513 priv->hw->ps = 0;
2517 /* Initialize the MAC Core */
2518 stmmac_core_init(priv, priv->hw, dev);
2520 /* Initialize MTL*/
2521 stmmac_mtl_configuration(priv);
2523 /* Initialize Safety Features */
2524 stmmac_safety_feat_configuration(priv);
2526 ret = stmmac_rx_ipc(priv, priv->hw);
2527 if (!ret) {
2528 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2529 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2530 priv->hw->rx_csum = 0;
2533 /* Enable the MAC Rx/Tx */
2534 stmmac_mac_set(priv, priv->ioaddr, true);
2536 /* Set the HW DMA mode and the COE */
2537 stmmac_dma_operation_mode(priv);
2539 stmmac_mmc_setup(priv);
2541 if (init_ptp) {
2542 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2543 if (ret < 0)
2544 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2546 ret = stmmac_init_ptp(priv);
2547 if (ret == -EOPNOTSUPP)
2548 netdev_warn(priv->dev, "PTP not supported by HW\n");
2549 else if (ret)
2550 netdev_warn(priv->dev, "PTP init failed\n");
2553 #ifdef CONFIG_DEBUG_FS
2554 ret = stmmac_init_fs(dev);
2555 if (ret < 0)
2556 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2557 __func__);
2558 #endif
2559 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2561 if (priv->use_riwt) {
2562 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2563 if (!ret)
2564 priv->rx_riwt = MAX_DMA_RIWT;
2567 if (priv->hw->pcs)
2568 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2570 /* set TX and RX rings length */
2571 stmmac_set_rings_length(priv);
2573 /* Enable TSO */
2574 if (priv->tso) {
2575 for (chan = 0; chan < tx_cnt; chan++)
2576 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2579 /* Start the ball rolling... */
2580 stmmac_start_all_dma(priv);
2582 return 0;
2585 static void stmmac_hw_teardown(struct net_device *dev)
2587 struct stmmac_priv *priv = netdev_priv(dev);
2589 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2593 * stmmac_open - open entry point of the driver
2594 * @dev : pointer to the device structure.
2595 * Description:
2596 * This function is the open entry point of the driver.
2597 * Return value:
2598 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2599 * file on failure.
2601 static int stmmac_open(struct net_device *dev)
2603 struct stmmac_priv *priv = netdev_priv(dev);
2604 u32 chan;
2605 int ret;
2607 stmmac_check_ether_addr(priv);
2609 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2610 priv->hw->pcs != STMMAC_PCS_TBI &&
2611 priv->hw->pcs != STMMAC_PCS_RTBI) {
2612 ret = stmmac_init_phy(dev);
2613 if (ret) {
2614 netdev_err(priv->dev,
2615 "%s: Cannot attach to PHY (error: %d)\n",
2616 __func__, ret);
2617 return ret;
2621 /* Extra statistics */
2622 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2623 priv->xstats.threshold = tc;
2625 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2626 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2628 ret = alloc_dma_desc_resources(priv);
2629 if (ret < 0) {
2630 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2631 __func__);
2632 goto dma_desc_error;
2635 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2636 if (ret < 0) {
2637 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2638 __func__);
2639 goto init_error;
2642 ret = stmmac_hw_setup(dev, true);
2643 if (ret < 0) {
2644 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2645 goto init_error;
2648 stmmac_init_tx_coalesce(priv);
2650 if (dev->phydev)
2651 phy_start(dev->phydev);
2653 /* Request the IRQ lines */
2654 ret = request_irq(dev->irq, stmmac_interrupt,
2655 IRQF_SHARED, dev->name, dev);
2656 if (unlikely(ret < 0)) {
2657 netdev_err(priv->dev,
2658 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2659 __func__, dev->irq, ret);
2660 goto irq_error;
2663 /* Request the Wake IRQ in case of another line is used for WoL */
2664 if (priv->wol_irq != dev->irq) {
2665 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2666 IRQF_SHARED, dev->name, dev);
2667 if (unlikely(ret < 0)) {
2668 netdev_err(priv->dev,
2669 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2670 __func__, priv->wol_irq, ret);
2671 goto wolirq_error;
2675 /* Request the IRQ lines */
2676 if (priv->lpi_irq > 0) {
2677 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2678 dev->name, dev);
2679 if (unlikely(ret < 0)) {
2680 netdev_err(priv->dev,
2681 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2682 __func__, priv->lpi_irq, ret);
2683 goto lpiirq_error;
2687 stmmac_enable_all_queues(priv);
2688 stmmac_start_all_queues(priv);
2690 return 0;
2692 lpiirq_error:
2693 if (priv->wol_irq != dev->irq)
2694 free_irq(priv->wol_irq, dev);
2695 wolirq_error:
2696 free_irq(dev->irq, dev);
2697 irq_error:
2698 if (dev->phydev)
2699 phy_stop(dev->phydev);
2701 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2702 del_timer_sync(&priv->tx_queue[chan].txtimer);
2704 stmmac_hw_teardown(dev);
2705 init_error:
2706 free_dma_desc_resources(priv);
2707 dma_desc_error:
2708 if (dev->phydev)
2709 phy_disconnect(dev->phydev);
2711 return ret;
2715 * stmmac_release - close entry point of the driver
2716 * @dev : device pointer.
2717 * Description:
2718 * This is the stop entry point of the driver.
2720 static int stmmac_release(struct net_device *dev)
2722 struct stmmac_priv *priv = netdev_priv(dev);
2723 u32 chan;
2725 if (priv->eee_enabled)
2726 del_timer_sync(&priv->eee_ctrl_timer);
2728 /* Stop and disconnect the PHY */
2729 if (dev->phydev) {
2730 phy_stop(dev->phydev);
2731 phy_disconnect(dev->phydev);
2734 stmmac_stop_all_queues(priv);
2736 stmmac_disable_all_queues(priv);
2738 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2739 del_timer_sync(&priv->tx_queue[chan].txtimer);
2741 /* Free the IRQ lines */
2742 free_irq(dev->irq, dev);
2743 if (priv->wol_irq != dev->irq)
2744 free_irq(priv->wol_irq, dev);
2745 if (priv->lpi_irq > 0)
2746 free_irq(priv->lpi_irq, dev);
2748 /* Stop TX/RX DMA and clear the descriptors */
2749 stmmac_stop_all_dma(priv);
2751 /* Release and free the Rx/Tx resources */
2752 free_dma_desc_resources(priv);
2754 /* Disable the MAC Rx/Tx */
2755 stmmac_mac_set(priv, priv->ioaddr, false);
2757 netif_carrier_off(dev);
2759 #ifdef CONFIG_DEBUG_FS
2760 stmmac_exit_fs(dev);
2761 #endif
2763 stmmac_release_ptp(priv);
2765 return 0;
2769 * stmmac_tso_allocator - close entry point of the driver
2770 * @priv: driver private structure
2771 * @des: buffer start address
2772 * @total_len: total length to fill in descriptors
2773 * @last_segmant: condition for the last descriptor
2774 * @queue: TX queue index
2775 * Description:
2776 * This function fills descriptor and request new descriptors according to
2777 * buffer length to fill
2779 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2780 int total_len, bool last_segment, u32 queue)
2782 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2783 struct dma_desc *desc;
2784 u32 buff_size;
2785 int tmp_len;
2787 tmp_len = total_len;
2789 while (tmp_len > 0) {
2790 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2791 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2792 desc = tx_q->dma_tx + tx_q->cur_tx;
2794 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2795 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2796 TSO_MAX_BUFF_SIZE : tmp_len;
2798 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2799 0, 1,
2800 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2801 0, 0);
2803 tmp_len -= TSO_MAX_BUFF_SIZE;
2808 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2809 * @skb : the socket buffer
2810 * @dev : device pointer
2811 * Description: this is the transmit function that is called on TSO frames
2812 * (support available on GMAC4 and newer chips).
2813 * Diagram below show the ring programming in case of TSO frames:
2815 * First Descriptor
2816 * --------
2817 * | DES0 |---> buffer1 = L2/L3/L4 header
2818 * | DES1 |---> TCP Payload (can continue on next descr...)
2819 * | DES2 |---> buffer 1 and 2 len
2820 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2821 * --------
2823 * ...
2825 * --------
2826 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
2827 * | DES1 | --|
2828 * | DES2 | --> buffer 1 and 2 len
2829 * | DES3 |
2830 * --------
2832 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2834 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2836 struct dma_desc *desc, *first, *mss_desc = NULL;
2837 struct stmmac_priv *priv = netdev_priv(dev);
2838 int nfrags = skb_shinfo(skb)->nr_frags;
2839 u32 queue = skb_get_queue_mapping(skb);
2840 unsigned int first_entry, des;
2841 struct stmmac_tx_queue *tx_q;
2842 int tmp_pay_len = 0;
2843 u32 pay_len, mss;
2844 u8 proto_hdr_len;
2845 int i;
2847 tx_q = &priv->tx_queue[queue];
2849 /* Compute header lengths */
2850 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2852 /* Desc availability based on threshold should be enough safe */
2853 if (unlikely(stmmac_tx_avail(priv, queue) <
2854 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2855 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2856 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2857 queue));
2858 /* This is a hard error, log it. */
2859 netdev_err(priv->dev,
2860 "%s: Tx Ring full when queue awake\n",
2861 __func__);
2863 return NETDEV_TX_BUSY;
2866 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2868 mss = skb_shinfo(skb)->gso_size;
2870 /* set new MSS value if needed */
2871 if (mss != tx_q->mss) {
2872 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2873 stmmac_set_mss(priv, mss_desc, mss);
2874 tx_q->mss = mss;
2875 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2876 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2879 if (netif_msg_tx_queued(priv)) {
2880 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2881 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2882 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2883 skb->data_len);
2886 first_entry = tx_q->cur_tx;
2887 WARN_ON(tx_q->tx_skbuff[first_entry]);
2889 desc = tx_q->dma_tx + first_entry;
2890 first = desc;
2892 /* first descriptor: fill Headers on Buf1 */
2893 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2894 DMA_TO_DEVICE);
2895 if (dma_mapping_error(priv->device, des))
2896 goto dma_map_err;
2898 tx_q->tx_skbuff_dma[first_entry].buf = des;
2899 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2901 first->des0 = cpu_to_le32(des);
2903 /* Fill start of payload in buff2 of first descriptor */
2904 if (pay_len)
2905 first->des1 = cpu_to_le32(des + proto_hdr_len);
2907 /* If needed take extra descriptors to fill the remaining payload */
2908 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2910 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2912 /* Prepare fragments */
2913 for (i = 0; i < nfrags; i++) {
2914 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2916 des = skb_frag_dma_map(priv->device, frag, 0,
2917 skb_frag_size(frag),
2918 DMA_TO_DEVICE);
2919 if (dma_mapping_error(priv->device, des))
2920 goto dma_map_err;
2922 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2923 (i == nfrags - 1), queue);
2925 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2926 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2927 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2930 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2932 /* Only the last descriptor gets to point to the skb. */
2933 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2935 /* We've used all descriptors we need for this skb, however,
2936 * advance cur_tx so that it references a fresh descriptor.
2937 * ndo_start_xmit will fill this descriptor the next time it's
2938 * called and stmmac_tx_clean may clean up to this descriptor.
2940 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2942 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2943 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2944 __func__);
2945 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2948 dev->stats.tx_bytes += skb->len;
2949 priv->xstats.tx_tso_frames++;
2950 priv->xstats.tx_tso_nfrags += nfrags;
2952 /* Manage tx mitigation */
2953 tx_q->tx_count_frames += nfrags + 1;
2954 if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2955 stmmac_set_tx_ic(priv, desc);
2956 priv->xstats.tx_set_ic_bit++;
2957 tx_q->tx_count_frames = 0;
2958 } else {
2959 stmmac_tx_timer_arm(priv, queue);
2962 skb_tx_timestamp(skb);
2964 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2965 priv->hwts_tx_en)) {
2966 /* declare that device is doing timestamping */
2967 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2968 stmmac_enable_tx_timestamp(priv, first);
2971 /* Complete the first descriptor before granting the DMA */
2972 stmmac_prepare_tso_tx_desc(priv, first, 1,
2973 proto_hdr_len,
2974 pay_len,
2975 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2976 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2978 /* If context desc is used to change MSS */
2979 if (mss_desc) {
2980 /* Make sure that first descriptor has been completely
2981 * written, including its own bit. This is because MSS is
2982 * actually before first descriptor, so we need to make
2983 * sure that MSS's own bit is the last thing written.
2985 dma_wmb();
2986 stmmac_set_tx_owner(priv, mss_desc);
2989 /* The own bit must be the latest setting done when prepare the
2990 * descriptor and then barrier is needed to make sure that
2991 * all is coherent before granting the DMA engine.
2993 wmb();
2995 if (netif_msg_pktdata(priv)) {
2996 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2997 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2998 tx_q->cur_tx, first, nfrags);
3000 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3002 pr_info(">>> frame to be transmitted: ");
3003 print_pkt(skb->data, skb_headlen(skb));
3006 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3008 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3009 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3011 return NETDEV_TX_OK;
3013 dma_map_err:
3014 dev_err(priv->device, "Tx dma map failed\n");
3015 dev_kfree_skb(skb);
3016 priv->dev->stats.tx_dropped++;
3017 return NETDEV_TX_OK;
3021 * stmmac_xmit - Tx entry point of the driver
3022 * @skb : the socket buffer
3023 * @dev : device pointer
3024 * Description : this is the tx entry point of the driver.
3025 * It programs the chain or the ring and supports oversized frames
3026 * and SG feature.
3028 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3030 struct stmmac_priv *priv = netdev_priv(dev);
3031 unsigned int nopaged_len = skb_headlen(skb);
3032 int i, csum_insertion = 0, is_jumbo = 0;
3033 u32 queue = skb_get_queue_mapping(skb);
3034 int nfrags = skb_shinfo(skb)->nr_frags;
3035 int entry;
3036 unsigned int first_entry;
3037 struct dma_desc *desc, *first;
3038 struct stmmac_tx_queue *tx_q;
3039 unsigned int enh_desc;
3040 unsigned int des;
3042 tx_q = &priv->tx_queue[queue];
3044 /* Manage oversized TCP frames for GMAC4 device */
3045 if (skb_is_gso(skb) && priv->tso) {
3046 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3047 return stmmac_tso_xmit(skb, dev);
3050 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3051 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3052 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3053 queue));
3054 /* This is a hard error, log it. */
3055 netdev_err(priv->dev,
3056 "%s: Tx Ring full when queue awake\n",
3057 __func__);
3059 return NETDEV_TX_BUSY;
3062 if (priv->tx_path_in_lpi_mode)
3063 stmmac_disable_eee_mode(priv);
3065 entry = tx_q->cur_tx;
3066 first_entry = entry;
3067 WARN_ON(tx_q->tx_skbuff[first_entry]);
3069 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3071 if (likely(priv->extend_desc))
3072 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3073 else
3074 desc = tx_q->dma_tx + entry;
3076 first = desc;
3078 enh_desc = priv->plat->enh_desc;
3079 /* To program the descriptors according to the size of the frame */
3080 if (enh_desc)
3081 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3083 if (unlikely(is_jumbo)) {
3084 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3085 if (unlikely(entry < 0) && (entry != -EINVAL))
3086 goto dma_map_err;
3089 for (i = 0; i < nfrags; i++) {
3090 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3091 int len = skb_frag_size(frag);
3092 bool last_segment = (i == (nfrags - 1));
3094 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3095 WARN_ON(tx_q->tx_skbuff[entry]);
3097 if (likely(priv->extend_desc))
3098 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3099 else
3100 desc = tx_q->dma_tx + entry;
3102 des = skb_frag_dma_map(priv->device, frag, 0, len,
3103 DMA_TO_DEVICE);
3104 if (dma_mapping_error(priv->device, des))
3105 goto dma_map_err; /* should reuse desc w/o issues */
3107 tx_q->tx_skbuff_dma[entry].buf = des;
3109 stmmac_set_desc_addr(priv, desc, des);
3111 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3112 tx_q->tx_skbuff_dma[entry].len = len;
3113 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3115 /* Prepare the descriptor and set the own bit too */
3116 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3117 priv->mode, 1, last_segment, skb->len);
3120 /* Only the last descriptor gets to point to the skb. */
3121 tx_q->tx_skbuff[entry] = skb;
3123 /* We've used all descriptors we need for this skb, however,
3124 * advance cur_tx so that it references a fresh descriptor.
3125 * ndo_start_xmit will fill this descriptor the next time it's
3126 * called and stmmac_tx_clean may clean up to this descriptor.
3128 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3129 tx_q->cur_tx = entry;
3131 if (netif_msg_pktdata(priv)) {
3132 void *tx_head;
3134 netdev_dbg(priv->dev,
3135 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3136 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3137 entry, first, nfrags);
3139 if (priv->extend_desc)
3140 tx_head = (void *)tx_q->dma_etx;
3141 else
3142 tx_head = (void *)tx_q->dma_tx;
3144 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3146 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3147 print_pkt(skb->data, skb->len);
3150 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3151 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3152 __func__);
3153 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3156 dev->stats.tx_bytes += skb->len;
3158 /* According to the coalesce parameter the IC bit for the latest
3159 * segment is reset and the timer re-started to clean the tx status.
3160 * This approach takes care about the fragments: desc is the first
3161 * element in case of no SG.
3163 tx_q->tx_count_frames += nfrags + 1;
3164 if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3165 stmmac_set_tx_ic(priv, desc);
3166 priv->xstats.tx_set_ic_bit++;
3167 tx_q->tx_count_frames = 0;
3168 } else {
3169 stmmac_tx_timer_arm(priv, queue);
3172 skb_tx_timestamp(skb);
3174 /* Ready to fill the first descriptor and set the OWN bit w/o any
3175 * problems because all the descriptors are actually ready to be
3176 * passed to the DMA engine.
3178 if (likely(!is_jumbo)) {
3179 bool last_segment = (nfrags == 0);
3181 des = dma_map_single(priv->device, skb->data,
3182 nopaged_len, DMA_TO_DEVICE);
3183 if (dma_mapping_error(priv->device, des))
3184 goto dma_map_err;
3186 tx_q->tx_skbuff_dma[first_entry].buf = des;
3188 stmmac_set_desc_addr(priv, first, des);
3190 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3191 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3193 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3194 priv->hwts_tx_en)) {
3195 /* declare that device is doing timestamping */
3196 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3197 stmmac_enable_tx_timestamp(priv, first);
3200 /* Prepare the first descriptor setting the OWN bit too */
3201 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3202 csum_insertion, priv->mode, 1, last_segment,
3203 skb->len);
3205 /* The own bit must be the latest setting done when prepare the
3206 * descriptor and then barrier is needed to make sure that
3207 * all is coherent before granting the DMA engine.
3209 wmb();
3212 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3214 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3216 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3217 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3219 return NETDEV_TX_OK;
3221 dma_map_err:
3222 netdev_err(priv->dev, "Tx DMA map failed\n");
3223 dev_kfree_skb(skb);
3224 priv->dev->stats.tx_dropped++;
3225 return NETDEV_TX_OK;
3228 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3230 struct vlan_ethhdr *veth;
3231 __be16 vlan_proto;
3232 u16 vlanid;
3234 veth = (struct vlan_ethhdr *)skb->data;
3235 vlan_proto = veth->h_vlan_proto;
3237 if ((vlan_proto == htons(ETH_P_8021Q) &&
3238 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3239 (vlan_proto == htons(ETH_P_8021AD) &&
3240 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3241 /* pop the vlan tag */
3242 vlanid = ntohs(veth->h_vlan_TCI);
3243 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3244 skb_pull(skb, VLAN_HLEN);
3245 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3250 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3252 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3253 return 0;
3255 return 1;
3259 * stmmac_rx_refill - refill used skb preallocated buffers
3260 * @priv: driver private structure
3261 * @queue: RX queue index
3262 * Description : this is to reallocate the skb for the reception process
3263 * that is based on zero-copy.
3265 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3267 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3268 int dirty = stmmac_rx_dirty(priv, queue);
3269 unsigned int entry = rx_q->dirty_rx;
3271 int bfsize = priv->dma_buf_sz;
3273 while (dirty-- > 0) {
3274 struct dma_desc *p;
3276 if (priv->extend_desc)
3277 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3278 else
3279 p = rx_q->dma_rx + entry;
3281 if (likely(!rx_q->rx_skbuff[entry])) {
3282 struct sk_buff *skb;
3284 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3285 if (unlikely(!skb)) {
3286 /* so for a while no zero-copy! */
3287 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3288 if (unlikely(net_ratelimit()))
3289 dev_err(priv->device,
3290 "fail to alloc skb entry %d\n",
3291 entry);
3292 break;
3295 rx_q->rx_skbuff[entry] = skb;
3296 rx_q->rx_skbuff_dma[entry] =
3297 dma_map_single(priv->device, skb->data, bfsize,
3298 DMA_FROM_DEVICE);
3299 if (dma_mapping_error(priv->device,
3300 rx_q->rx_skbuff_dma[entry])) {
3301 netdev_err(priv->dev, "Rx DMA map failed\n");
3302 dev_kfree_skb(skb);
3303 break;
3306 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3307 stmmac_refill_desc3(priv, rx_q, p);
3309 if (rx_q->rx_zeroc_thresh > 0)
3310 rx_q->rx_zeroc_thresh--;
3312 netif_dbg(priv, rx_status, priv->dev,
3313 "refill entry #%d\n", entry);
3315 dma_wmb();
3317 stmmac_set_rx_owner(priv, p, priv->use_riwt);
3319 dma_wmb();
3321 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3323 rx_q->dirty_rx = entry;
3327 * stmmac_rx - manage the receive process
3328 * @priv: driver private structure
3329 * @limit: napi bugget
3330 * @queue: RX queue index.
3331 * Description : this the function called by the napi poll method.
3332 * It gets all the frames inside the ring.
3334 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3336 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3337 struct stmmac_channel *ch = &priv->channel[queue];
3338 unsigned int entry = rx_q->cur_rx;
3339 int coe = priv->hw->rx_csum;
3340 unsigned int next_entry;
3341 unsigned int count = 0;
3342 bool xmac;
3344 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3346 if (netif_msg_rx_status(priv)) {
3347 void *rx_head;
3349 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3350 if (priv->extend_desc)
3351 rx_head = (void *)rx_q->dma_erx;
3352 else
3353 rx_head = (void *)rx_q->dma_rx;
3355 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3357 while (count < limit) {
3358 int status;
3359 struct dma_desc *p;
3360 struct dma_desc *np;
3362 if (priv->extend_desc)
3363 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3364 else
3365 p = rx_q->dma_rx + entry;
3367 /* read the status of the incoming frame */
3368 status = stmmac_rx_status(priv, &priv->dev->stats,
3369 &priv->xstats, p);
3370 /* check if managed by the DMA otherwise go ahead */
3371 if (unlikely(status & dma_own))
3372 break;
3374 count++;
3376 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3377 next_entry = rx_q->cur_rx;
3379 if (priv->extend_desc)
3380 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3381 else
3382 np = rx_q->dma_rx + next_entry;
3384 prefetch(np);
3386 if (priv->extend_desc)
3387 stmmac_rx_extended_status(priv, &priv->dev->stats,
3388 &priv->xstats, rx_q->dma_erx + entry);
3389 if (unlikely(status == discard_frame)) {
3390 priv->dev->stats.rx_errors++;
3391 if (priv->hwts_rx_en && !priv->extend_desc) {
3392 /* DESC2 & DESC3 will be overwritten by device
3393 * with timestamp value, hence reinitialize
3394 * them in stmmac_rx_refill() function so that
3395 * device can reuse it.
3397 dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3398 rx_q->rx_skbuff[entry] = NULL;
3399 dma_unmap_single(priv->device,
3400 rx_q->rx_skbuff_dma[entry],
3401 priv->dma_buf_sz,
3402 DMA_FROM_DEVICE);
3404 } else {
3405 struct sk_buff *skb;
3406 int frame_len;
3407 unsigned int des;
3409 stmmac_get_desc_addr(priv, p, &des);
3410 frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3412 /* If frame length is greater than skb buffer size
3413 * (preallocated during init) then the packet is
3414 * ignored
3416 if (frame_len > priv->dma_buf_sz) {
3417 netdev_err(priv->dev,
3418 "len %d larger than size (%d)\n",
3419 frame_len, priv->dma_buf_sz);
3420 priv->dev->stats.rx_length_errors++;
3421 break;
3424 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3425 * Type frames (LLC/LLC-SNAP)
3427 * llc_snap is never checked in GMAC >= 4, so this ACS
3428 * feature is always disabled and packets need to be
3429 * stripped manually.
3431 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3432 unlikely(status != llc_snap))
3433 frame_len -= ETH_FCS_LEN;
3435 if (netif_msg_rx_status(priv)) {
3436 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3437 p, entry, des);
3438 netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3439 frame_len, status);
3442 /* The zero-copy is always used for all the sizes
3443 * in case of GMAC4 because it needs
3444 * to refill the used descriptors, always.
3446 if (unlikely(!xmac &&
3447 ((frame_len < priv->rx_copybreak) ||
3448 stmmac_rx_threshold_count(rx_q)))) {
3449 skb = netdev_alloc_skb_ip_align(priv->dev,
3450 frame_len);
3451 if (unlikely(!skb)) {
3452 if (net_ratelimit())
3453 dev_warn(priv->device,
3454 "packet dropped\n");
3455 priv->dev->stats.rx_dropped++;
3456 break;
3459 dma_sync_single_for_cpu(priv->device,
3460 rx_q->rx_skbuff_dma
3461 [entry], frame_len,
3462 DMA_FROM_DEVICE);
3463 skb_copy_to_linear_data(skb,
3464 rx_q->
3465 rx_skbuff[entry]->data,
3466 frame_len);
3468 skb_put(skb, frame_len);
3469 dma_sync_single_for_device(priv->device,
3470 rx_q->rx_skbuff_dma
3471 [entry], frame_len,
3472 DMA_FROM_DEVICE);
3473 } else {
3474 skb = rx_q->rx_skbuff[entry];
3475 if (unlikely(!skb)) {
3476 netdev_err(priv->dev,
3477 "%s: Inconsistent Rx chain\n",
3478 priv->dev->name);
3479 priv->dev->stats.rx_dropped++;
3480 break;
3482 prefetch(skb->data - NET_IP_ALIGN);
3483 rx_q->rx_skbuff[entry] = NULL;
3484 rx_q->rx_zeroc_thresh++;
3486 skb_put(skb, frame_len);
3487 dma_unmap_single(priv->device,
3488 rx_q->rx_skbuff_dma[entry],
3489 priv->dma_buf_sz,
3490 DMA_FROM_DEVICE);
3493 if (netif_msg_pktdata(priv)) {
3494 netdev_dbg(priv->dev, "frame received (%dbytes)",
3495 frame_len);
3496 print_pkt(skb->data, frame_len);
3499 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3501 stmmac_rx_vlan(priv->dev, skb);
3503 skb->protocol = eth_type_trans(skb, priv->dev);
3505 if (unlikely(!coe))
3506 skb_checksum_none_assert(skb);
3507 else
3508 skb->ip_summed = CHECKSUM_UNNECESSARY;
3510 napi_gro_receive(&ch->napi, skb);
3512 priv->dev->stats.rx_packets++;
3513 priv->dev->stats.rx_bytes += frame_len;
3515 entry = next_entry;
3518 stmmac_rx_refill(priv, queue);
3520 priv->xstats.rx_pkt_n += count;
3522 return count;
3526 * stmmac_poll - stmmac poll method (NAPI)
3527 * @napi : pointer to the napi structure.
3528 * @budget : maximum number of packets that the current CPU can receive from
3529 * all interfaces.
3530 * Description :
3531 * To look at the incoming frames and clear the tx resources.
3533 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3535 struct stmmac_channel *ch =
3536 container_of(napi, struct stmmac_channel, napi);
3537 struct stmmac_priv *priv = ch->priv_data;
3538 int work_done = 0, work_rem = budget;
3539 u32 chan = ch->index;
3541 priv->xstats.napi_poll++;
3543 if (ch->has_tx) {
3544 int done = stmmac_tx_clean(priv, work_rem, chan);
3546 work_done += done;
3547 work_rem -= done;
3550 if (ch->has_rx) {
3551 int done = stmmac_rx(priv, work_rem, chan);
3553 work_done += done;
3554 work_rem -= done;
3557 if (work_done < budget && napi_complete_done(napi, work_done))
3558 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3560 return work_done;
3564 * stmmac_tx_timeout
3565 * @dev : Pointer to net device structure
3566 * Description: this function is called when a packet transmission fails to
3567 * complete within a reasonable time. The driver will mark the error in the
3568 * netdev structure and arrange for the device to be reset to a sane state
3569 * in order to transmit a new packet.
3571 static void stmmac_tx_timeout(struct net_device *dev)
3573 struct stmmac_priv *priv = netdev_priv(dev);
3575 stmmac_global_err(priv);
3579 * stmmac_set_rx_mode - entry point for multicast addressing
3580 * @dev : pointer to the device structure
3581 * Description:
3582 * This function is a driver entry point which gets called by the kernel
3583 * whenever multicast addresses must be enabled/disabled.
3584 * Return value:
3585 * void.
3587 static void stmmac_set_rx_mode(struct net_device *dev)
3589 struct stmmac_priv *priv = netdev_priv(dev);
3591 stmmac_set_filter(priv, priv->hw, dev);
3595 * stmmac_change_mtu - entry point to change MTU size for the device.
3596 * @dev : device pointer.
3597 * @new_mtu : the new MTU size for the device.
3598 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3599 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3600 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3601 * Return value:
3602 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3603 * file on failure.
3605 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3607 struct stmmac_priv *priv = netdev_priv(dev);
3609 if (netif_running(dev)) {
3610 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3611 return -EBUSY;
3614 dev->mtu = new_mtu;
3616 netdev_update_features(dev);
3618 return 0;
3621 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3622 netdev_features_t features)
3624 struct stmmac_priv *priv = netdev_priv(dev);
3626 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3627 features &= ~NETIF_F_RXCSUM;
3629 if (!priv->plat->tx_coe)
3630 features &= ~NETIF_F_CSUM_MASK;
3632 /* Some GMAC devices have a bugged Jumbo frame support that
3633 * needs to have the Tx COE disabled for oversized frames
3634 * (due to limited buffer sizes). In this case we disable
3635 * the TX csum insertion in the TDES and not use SF.
3637 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3638 features &= ~NETIF_F_CSUM_MASK;
3640 /* Disable tso if asked by ethtool */
3641 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3642 if (features & NETIF_F_TSO)
3643 priv->tso = true;
3644 else
3645 priv->tso = false;
3648 return features;
3651 static int stmmac_set_features(struct net_device *netdev,
3652 netdev_features_t features)
3654 struct stmmac_priv *priv = netdev_priv(netdev);
3656 /* Keep the COE Type in case of csum is supporting */
3657 if (features & NETIF_F_RXCSUM)
3658 priv->hw->rx_csum = priv->plat->rx_coe;
3659 else
3660 priv->hw->rx_csum = 0;
3661 /* No check needed because rx_coe has been set before and it will be
3662 * fixed in case of issue.
3664 stmmac_rx_ipc(priv, priv->hw);
3666 return 0;
3670 * stmmac_interrupt - main ISR
3671 * @irq: interrupt number.
3672 * @dev_id: to pass the net device pointer.
3673 * Description: this is the main driver interrupt service routine.
3674 * It can call:
3675 * o DMA service routine (to manage incoming frame reception and transmission
3676 * status)
3677 * o Core interrupts to manage: remote wake-up, management counter, LPI
3678 * interrupts.
3680 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3682 struct net_device *dev = (struct net_device *)dev_id;
3683 struct stmmac_priv *priv = netdev_priv(dev);
3684 u32 rx_cnt = priv->plat->rx_queues_to_use;
3685 u32 tx_cnt = priv->plat->tx_queues_to_use;
3686 u32 queues_count;
3687 u32 queue;
3688 bool xmac;
3690 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3691 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3693 if (priv->irq_wake)
3694 pm_wakeup_event(priv->device, 0);
3696 if (unlikely(!dev)) {
3697 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3698 return IRQ_NONE;
3701 /* Check if adapter is up */
3702 if (test_bit(STMMAC_DOWN, &priv->state))
3703 return IRQ_HANDLED;
3704 /* Check if a fatal error happened */
3705 if (stmmac_safety_feat_interrupt(priv))
3706 return IRQ_HANDLED;
3708 /* To handle GMAC own interrupts */
3709 if ((priv->plat->has_gmac) || xmac) {
3710 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3711 int mtl_status;
3713 if (unlikely(status)) {
3714 /* For LPI we need to save the tx status */
3715 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3716 priv->tx_path_in_lpi_mode = true;
3717 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3718 priv->tx_path_in_lpi_mode = false;
3721 for (queue = 0; queue < queues_count; queue++) {
3722 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3724 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3725 queue);
3726 if (mtl_status != -EINVAL)
3727 status |= mtl_status;
3729 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3730 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3731 rx_q->rx_tail_addr,
3732 queue);
3735 /* PCS link status */
3736 if (priv->hw->pcs) {
3737 if (priv->xstats.pcs_link)
3738 netif_carrier_on(dev);
3739 else
3740 netif_carrier_off(dev);
3744 /* To handle DMA interrupts */
3745 stmmac_dma_interrupt(priv);
3747 return IRQ_HANDLED;
3750 #ifdef CONFIG_NET_POLL_CONTROLLER
3751 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3752 * to allow network I/O with interrupts disabled.
3754 static void stmmac_poll_controller(struct net_device *dev)
3756 disable_irq(dev->irq);
3757 stmmac_interrupt(dev->irq, dev);
3758 enable_irq(dev->irq);
3760 #endif
3763 * stmmac_ioctl - Entry point for the Ioctl
3764 * @dev: Device pointer.
3765 * @rq: An IOCTL specefic structure, that can contain a pointer to
3766 * a proprietary structure used to pass information to the driver.
3767 * @cmd: IOCTL command
3768 * Description:
3769 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3771 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3773 int ret = -EOPNOTSUPP;
3775 if (!netif_running(dev))
3776 return -EINVAL;
3778 switch (cmd) {
3779 case SIOCGMIIPHY:
3780 case SIOCGMIIREG:
3781 case SIOCSMIIREG:
3782 if (!dev->phydev)
3783 return -EINVAL;
3784 ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3785 break;
3786 case SIOCSHWTSTAMP:
3787 ret = stmmac_hwtstamp_ioctl(dev, rq);
3788 break;
3789 default:
3790 break;
3793 return ret;
3796 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3797 void *cb_priv)
3799 struct stmmac_priv *priv = cb_priv;
3800 int ret = -EOPNOTSUPP;
3802 stmmac_disable_all_queues(priv);
3804 switch (type) {
3805 case TC_SETUP_CLSU32:
3806 if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3807 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3808 break;
3809 default:
3810 break;
3813 stmmac_enable_all_queues(priv);
3814 return ret;
3817 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3818 struct tc_block_offload *f)
3820 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3821 return -EOPNOTSUPP;
3823 switch (f->command) {
3824 case TC_BLOCK_BIND:
3825 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3826 priv, priv, f->extack);
3827 case TC_BLOCK_UNBIND:
3828 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3829 return 0;
3830 default:
3831 return -EOPNOTSUPP;
3835 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3836 void *type_data)
3838 struct stmmac_priv *priv = netdev_priv(ndev);
3840 switch (type) {
3841 case TC_SETUP_BLOCK:
3842 return stmmac_setup_tc_block(priv, type_data);
3843 case TC_SETUP_QDISC_CBS:
3844 return stmmac_tc_setup_cbs(priv, priv, type_data);
3845 default:
3846 return -EOPNOTSUPP;
3850 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3852 struct stmmac_priv *priv = netdev_priv(ndev);
3853 int ret = 0;
3855 ret = eth_mac_addr(ndev, addr);
3856 if (ret)
3857 return ret;
3859 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3861 return ret;
3864 #ifdef CONFIG_DEBUG_FS
3865 static struct dentry *stmmac_fs_dir;
3867 static void sysfs_display_ring(void *head, int size, int extend_desc,
3868 struct seq_file *seq)
3870 int i;
3871 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3872 struct dma_desc *p = (struct dma_desc *)head;
3874 for (i = 0; i < size; i++) {
3875 if (extend_desc) {
3876 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3877 i, (unsigned int)virt_to_phys(ep),
3878 le32_to_cpu(ep->basic.des0),
3879 le32_to_cpu(ep->basic.des1),
3880 le32_to_cpu(ep->basic.des2),
3881 le32_to_cpu(ep->basic.des3));
3882 ep++;
3883 } else {
3884 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3885 i, (unsigned int)virt_to_phys(p),
3886 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3887 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3888 p++;
3890 seq_printf(seq, "\n");
3894 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3896 struct net_device *dev = seq->private;
3897 struct stmmac_priv *priv = netdev_priv(dev);
3898 u32 rx_count = priv->plat->rx_queues_to_use;
3899 u32 tx_count = priv->plat->tx_queues_to_use;
3900 u32 queue;
3902 for (queue = 0; queue < rx_count; queue++) {
3903 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3905 seq_printf(seq, "RX Queue %d:\n", queue);
3907 if (priv->extend_desc) {
3908 seq_printf(seq, "Extended descriptor ring:\n");
3909 sysfs_display_ring((void *)rx_q->dma_erx,
3910 DMA_RX_SIZE, 1, seq);
3911 } else {
3912 seq_printf(seq, "Descriptor ring:\n");
3913 sysfs_display_ring((void *)rx_q->dma_rx,
3914 DMA_RX_SIZE, 0, seq);
3918 for (queue = 0; queue < tx_count; queue++) {
3919 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3921 seq_printf(seq, "TX Queue %d:\n", queue);
3923 if (priv->extend_desc) {
3924 seq_printf(seq, "Extended descriptor ring:\n");
3925 sysfs_display_ring((void *)tx_q->dma_etx,
3926 DMA_TX_SIZE, 1, seq);
3927 } else {
3928 seq_printf(seq, "Descriptor ring:\n");
3929 sysfs_display_ring((void *)tx_q->dma_tx,
3930 DMA_TX_SIZE, 0, seq);
3934 return 0;
3937 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3939 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3942 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3944 static const struct file_operations stmmac_rings_status_fops = {
3945 .owner = THIS_MODULE,
3946 .open = stmmac_sysfs_ring_open,
3947 .read = seq_read,
3948 .llseek = seq_lseek,
3949 .release = single_release,
3952 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3954 struct net_device *dev = seq->private;
3955 struct stmmac_priv *priv = netdev_priv(dev);
3957 if (!priv->hw_cap_support) {
3958 seq_printf(seq, "DMA HW features not supported\n");
3959 return 0;
3962 seq_printf(seq, "==============================\n");
3963 seq_printf(seq, "\tDMA HW features\n");
3964 seq_printf(seq, "==============================\n");
3966 seq_printf(seq, "\t10/100 Mbps: %s\n",
3967 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3968 seq_printf(seq, "\t1000 Mbps: %s\n",
3969 (priv->dma_cap.mbps_1000) ? "Y" : "N");
3970 seq_printf(seq, "\tHalf duplex: %s\n",
3971 (priv->dma_cap.half_duplex) ? "Y" : "N");
3972 seq_printf(seq, "\tHash Filter: %s\n",
3973 (priv->dma_cap.hash_filter) ? "Y" : "N");
3974 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3975 (priv->dma_cap.multi_addr) ? "Y" : "N");
3976 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3977 (priv->dma_cap.pcs) ? "Y" : "N");
3978 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3979 (priv->dma_cap.sma_mdio) ? "Y" : "N");
3980 seq_printf(seq, "\tPMT Remote wake up: %s\n",
3981 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3982 seq_printf(seq, "\tPMT Magic Frame: %s\n",
3983 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3984 seq_printf(seq, "\tRMON module: %s\n",
3985 (priv->dma_cap.rmon) ? "Y" : "N");
3986 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3987 (priv->dma_cap.time_stamp) ? "Y" : "N");
3988 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3989 (priv->dma_cap.atime_stamp) ? "Y" : "N");
3990 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3991 (priv->dma_cap.eee) ? "Y" : "N");
3992 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3993 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3994 (priv->dma_cap.tx_coe) ? "Y" : "N");
3995 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3996 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3997 (priv->dma_cap.rx_coe) ? "Y" : "N");
3998 } else {
3999 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4000 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4001 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4002 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4004 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4005 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4006 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4007 priv->dma_cap.number_rx_channel);
4008 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4009 priv->dma_cap.number_tx_channel);
4010 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4011 (priv->dma_cap.enh_desc) ? "Y" : "N");
4013 return 0;
4016 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
4018 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
4021 static const struct file_operations stmmac_dma_cap_fops = {
4022 .owner = THIS_MODULE,
4023 .open = stmmac_sysfs_dma_cap_open,
4024 .read = seq_read,
4025 .llseek = seq_lseek,
4026 .release = single_release,
4029 static int stmmac_init_fs(struct net_device *dev)
4031 struct stmmac_priv *priv = netdev_priv(dev);
4033 /* Create per netdev entries */
4034 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4036 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4037 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4039 return -ENOMEM;
4042 /* Entry to report DMA RX/TX rings */
4043 priv->dbgfs_rings_status =
4044 debugfs_create_file("descriptors_status", 0444,
4045 priv->dbgfs_dir, dev,
4046 &stmmac_rings_status_fops);
4048 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4049 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4050 debugfs_remove_recursive(priv->dbgfs_dir);
4052 return -ENOMEM;
4055 /* Entry to report the DMA HW features */
4056 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4057 priv->dbgfs_dir,
4058 dev, &stmmac_dma_cap_fops);
4060 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4061 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4062 debugfs_remove_recursive(priv->dbgfs_dir);
4064 return -ENOMEM;
4067 return 0;
4070 static void stmmac_exit_fs(struct net_device *dev)
4072 struct stmmac_priv *priv = netdev_priv(dev);
4074 debugfs_remove_recursive(priv->dbgfs_dir);
4076 #endif /* CONFIG_DEBUG_FS */
4078 static const struct net_device_ops stmmac_netdev_ops = {
4079 .ndo_open = stmmac_open,
4080 .ndo_start_xmit = stmmac_xmit,
4081 .ndo_stop = stmmac_release,
4082 .ndo_change_mtu = stmmac_change_mtu,
4083 .ndo_fix_features = stmmac_fix_features,
4084 .ndo_set_features = stmmac_set_features,
4085 .ndo_set_rx_mode = stmmac_set_rx_mode,
4086 .ndo_tx_timeout = stmmac_tx_timeout,
4087 .ndo_do_ioctl = stmmac_ioctl,
4088 .ndo_setup_tc = stmmac_setup_tc,
4089 #ifdef CONFIG_NET_POLL_CONTROLLER
4090 .ndo_poll_controller = stmmac_poll_controller,
4091 #endif
4092 .ndo_set_mac_address = stmmac_set_mac_address,
4095 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4097 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4098 return;
4099 if (test_bit(STMMAC_DOWN, &priv->state))
4100 return;
4102 netdev_err(priv->dev, "Reset adapter.\n");
4104 rtnl_lock();
4105 netif_trans_update(priv->dev);
4106 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4107 usleep_range(1000, 2000);
4109 set_bit(STMMAC_DOWN, &priv->state);
4110 dev_close(priv->dev);
4111 dev_open(priv->dev);
4112 clear_bit(STMMAC_DOWN, &priv->state);
4113 clear_bit(STMMAC_RESETING, &priv->state);
4114 rtnl_unlock();
4117 static void stmmac_service_task(struct work_struct *work)
4119 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4120 service_task);
4122 stmmac_reset_subtask(priv);
4123 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4127 * stmmac_hw_init - Init the MAC device
4128 * @priv: driver private structure
4129 * Description: this function is to configure the MAC device according to
4130 * some platform parameters or the HW capability register. It prepares the
4131 * driver to use either ring or chain modes and to setup either enhanced or
4132 * normal descriptors.
4134 static int stmmac_hw_init(struct stmmac_priv *priv)
4136 int ret;
4138 /* dwmac-sun8i only work in chain mode */
4139 if (priv->plat->has_sun8i)
4140 chain_mode = 1;
4141 priv->chain_mode = chain_mode;
4143 /* Initialize HW Interface */
4144 ret = stmmac_hwif_init(priv);
4145 if (ret)
4146 return ret;
4148 /* Get the HW capability (new GMAC newer than 3.50a) */
4149 priv->hw_cap_support = stmmac_get_hw_features(priv);
4150 if (priv->hw_cap_support) {
4151 dev_info(priv->device, "DMA HW capability register supported\n");
4153 /* We can override some gmac/dma configuration fields: e.g.
4154 * enh_desc, tx_coe (e.g. that are passed through the
4155 * platform) with the values from the HW capability
4156 * register (if supported).
4158 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4159 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4160 priv->hw->pmt = priv->plat->pmt;
4162 /* TXCOE doesn't work in thresh DMA mode */
4163 if (priv->plat->force_thresh_dma_mode)
4164 priv->plat->tx_coe = 0;
4165 else
4166 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4168 /* In case of GMAC4 rx_coe is from HW cap register. */
4169 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4171 if (priv->dma_cap.rx_coe_type2)
4172 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4173 else if (priv->dma_cap.rx_coe_type1)
4174 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4176 } else {
4177 dev_info(priv->device, "No HW DMA feature register supported\n");
4180 if (priv->plat->rx_coe) {
4181 priv->hw->rx_csum = priv->plat->rx_coe;
4182 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4183 if (priv->synopsys_id < DWMAC_CORE_4_00)
4184 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4186 if (priv->plat->tx_coe)
4187 dev_info(priv->device, "TX Checksum insertion supported\n");
4189 if (priv->plat->pmt) {
4190 dev_info(priv->device, "Wake-Up On Lan supported\n");
4191 device_set_wakeup_capable(priv->device, 1);
4194 if (priv->dma_cap.tsoen)
4195 dev_info(priv->device, "TSO supported\n");
4197 /* Run HW quirks, if any */
4198 if (priv->hwif_quirks) {
4199 ret = priv->hwif_quirks(priv);
4200 if (ret)
4201 return ret;
4204 return 0;
4208 * stmmac_dvr_probe
4209 * @device: device pointer
4210 * @plat_dat: platform data pointer
4211 * @res: stmmac resource pointer
4212 * Description: this is the main probe function used to
4213 * call the alloc_etherdev, allocate the priv structure.
4214 * Return:
4215 * returns 0 on success, otherwise errno.
4217 int stmmac_dvr_probe(struct device *device,
4218 struct plat_stmmacenet_data *plat_dat,
4219 struct stmmac_resources *res)
4221 struct net_device *ndev = NULL;
4222 struct stmmac_priv *priv;
4223 u32 queue, maxq;
4224 int ret = 0;
4226 ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4227 MTL_MAX_TX_QUEUES,
4228 MTL_MAX_RX_QUEUES);
4229 if (!ndev)
4230 return -ENOMEM;
4232 SET_NETDEV_DEV(ndev, device);
4234 priv = netdev_priv(ndev);
4235 priv->device = device;
4236 priv->dev = ndev;
4238 stmmac_set_ethtool_ops(ndev);
4239 priv->pause = pause;
4240 priv->plat = plat_dat;
4241 priv->ioaddr = res->addr;
4242 priv->dev->base_addr = (unsigned long)res->addr;
4244 priv->dev->irq = res->irq;
4245 priv->wol_irq = res->wol_irq;
4246 priv->lpi_irq = res->lpi_irq;
4248 if (res->mac)
4249 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4251 dev_set_drvdata(device, priv->dev);
4253 /* Verify driver arguments */
4254 stmmac_verify_args();
4256 /* Allocate workqueue */
4257 priv->wq = create_singlethread_workqueue("stmmac_wq");
4258 if (!priv->wq) {
4259 dev_err(priv->device, "failed to create workqueue\n");
4260 goto error_wq;
4263 INIT_WORK(&priv->service_task, stmmac_service_task);
4265 /* Override with kernel parameters if supplied XXX CRS XXX
4266 * this needs to have multiple instances
4268 if ((phyaddr >= 0) && (phyaddr <= 31))
4269 priv->plat->phy_addr = phyaddr;
4271 if (priv->plat->stmmac_rst) {
4272 ret = reset_control_assert(priv->plat->stmmac_rst);
4273 reset_control_deassert(priv->plat->stmmac_rst);
4274 /* Some reset controllers have only reset callback instead of
4275 * assert + deassert callbacks pair.
4277 if (ret == -ENOTSUPP)
4278 reset_control_reset(priv->plat->stmmac_rst);
4281 /* Init MAC and get the capabilities */
4282 ret = stmmac_hw_init(priv);
4283 if (ret)
4284 goto error_hw_init;
4286 /* Configure real RX and TX queues */
4287 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4288 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4290 ndev->netdev_ops = &stmmac_netdev_ops;
4292 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4293 NETIF_F_RXCSUM;
4295 ret = stmmac_tc_init(priv, priv);
4296 if (!ret) {
4297 ndev->hw_features |= NETIF_F_HW_TC;
4300 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4301 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4302 priv->tso = true;
4303 dev_info(priv->device, "TSO feature enabled\n");
4305 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4306 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4307 #ifdef STMMAC_VLAN_TAG_USED
4308 /* Both mac100 and gmac support receive VLAN tag detection */
4309 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4310 #endif
4311 priv->msg_enable = netif_msg_init(debug, default_msg_level);
4313 /* MTU range: 46 - hw-specific max */
4314 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4315 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4316 ndev->max_mtu = JUMBO_LEN;
4317 else if (priv->plat->has_xgmac)
4318 ndev->max_mtu = XGMAC_JUMBO_LEN;
4319 else
4320 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4321 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4322 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4324 if ((priv->plat->maxmtu < ndev->max_mtu) &&
4325 (priv->plat->maxmtu >= ndev->min_mtu))
4326 ndev->max_mtu = priv->plat->maxmtu;
4327 else if (priv->plat->maxmtu < ndev->min_mtu)
4328 dev_warn(priv->device,
4329 "%s: warning: maxmtu having invalid value (%d)\n",
4330 __func__, priv->plat->maxmtu);
4332 if (flow_ctrl)
4333 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
4335 /* Rx Watchdog is available in the COREs newer than the 3.40.
4336 * In some case, for example on bugged HW this feature
4337 * has to be disable and this can be done by passing the
4338 * riwt_off field from the platform.
4340 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4341 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4342 priv->use_riwt = 1;
4343 dev_info(priv->device,
4344 "Enable RX Mitigation via HW Watchdog Timer\n");
4347 /* Setup channels NAPI */
4348 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4350 for (queue = 0; queue < maxq; queue++) {
4351 struct stmmac_channel *ch = &priv->channel[queue];
4353 ch->priv_data = priv;
4354 ch->index = queue;
4356 if (queue < priv->plat->rx_queues_to_use)
4357 ch->has_rx = true;
4358 if (queue < priv->plat->tx_queues_to_use)
4359 ch->has_tx = true;
4361 netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4362 NAPI_POLL_WEIGHT);
4365 mutex_init(&priv->lock);
4367 /* If a specific clk_csr value is passed from the platform
4368 * this means that the CSR Clock Range selection cannot be
4369 * changed at run-time and it is fixed. Viceversa the driver'll try to
4370 * set the MDC clock dynamically according to the csr actual
4371 * clock input.
4373 if (!priv->plat->clk_csr)
4374 stmmac_clk_csr_set(priv);
4375 else
4376 priv->clk_csr = priv->plat->clk_csr;
4378 stmmac_check_pcs_mode(priv);
4380 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4381 priv->hw->pcs != STMMAC_PCS_TBI &&
4382 priv->hw->pcs != STMMAC_PCS_RTBI) {
4383 /* MDIO bus Registration */
4384 ret = stmmac_mdio_register(ndev);
4385 if (ret < 0) {
4386 dev_err(priv->device,
4387 "%s: MDIO bus (id: %d) registration failed",
4388 __func__, priv->plat->bus_id);
4389 goto error_mdio_register;
4393 ret = register_netdev(ndev);
4394 if (ret) {
4395 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4396 __func__, ret);
4397 goto error_netdev_register;
4400 return ret;
4402 error_netdev_register:
4403 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4404 priv->hw->pcs != STMMAC_PCS_TBI &&
4405 priv->hw->pcs != STMMAC_PCS_RTBI)
4406 stmmac_mdio_unregister(ndev);
4407 error_mdio_register:
4408 for (queue = 0; queue < maxq; queue++) {
4409 struct stmmac_channel *ch = &priv->channel[queue];
4411 netif_napi_del(&ch->napi);
4413 error_hw_init:
4414 destroy_workqueue(priv->wq);
4415 error_wq:
4416 free_netdev(ndev);
4418 return ret;
4420 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4423 * stmmac_dvr_remove
4424 * @dev: device pointer
4425 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4426 * changes the link status, releases the DMA descriptor rings.
4428 int stmmac_dvr_remove(struct device *dev)
4430 struct net_device *ndev = dev_get_drvdata(dev);
4431 struct stmmac_priv *priv = netdev_priv(ndev);
4433 netdev_info(priv->dev, "%s: removing driver", __func__);
4435 stmmac_stop_all_dma(priv);
4437 stmmac_mac_set(priv, priv->ioaddr, false);
4438 netif_carrier_off(ndev);
4439 unregister_netdev(ndev);
4440 if (priv->plat->stmmac_rst)
4441 reset_control_assert(priv->plat->stmmac_rst);
4442 clk_disable_unprepare(priv->plat->pclk);
4443 clk_disable_unprepare(priv->plat->stmmac_clk);
4444 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4445 priv->hw->pcs != STMMAC_PCS_TBI &&
4446 priv->hw->pcs != STMMAC_PCS_RTBI)
4447 stmmac_mdio_unregister(ndev);
4448 destroy_workqueue(priv->wq);
4449 mutex_destroy(&priv->lock);
4450 free_netdev(ndev);
4452 return 0;
4454 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4457 * stmmac_suspend - suspend callback
4458 * @dev: device pointer
4459 * Description: this is the function to suspend the device and it is called
4460 * by the platform driver to stop the network queue, release the resources,
4461 * program the PMT register (for WoL), clean and release driver resources.
4463 int stmmac_suspend(struct device *dev)
4465 struct net_device *ndev = dev_get_drvdata(dev);
4466 struct stmmac_priv *priv = netdev_priv(ndev);
4468 if (!ndev || !netif_running(ndev))
4469 return 0;
4471 if (ndev->phydev)
4472 phy_stop(ndev->phydev);
4474 mutex_lock(&priv->lock);
4476 netif_device_detach(ndev);
4477 stmmac_stop_all_queues(priv);
4479 stmmac_disable_all_queues(priv);
4481 /* Stop TX/RX DMA */
4482 stmmac_stop_all_dma(priv);
4484 /* Enable Power down mode by programming the PMT regs */
4485 if (device_may_wakeup(priv->device)) {
4486 stmmac_pmt(priv, priv->hw, priv->wolopts);
4487 priv->irq_wake = 1;
4488 } else {
4489 stmmac_mac_set(priv, priv->ioaddr, false);
4490 pinctrl_pm_select_sleep_state(priv->device);
4491 /* Disable clock in case of PWM is off */
4492 clk_disable(priv->plat->pclk);
4493 clk_disable(priv->plat->stmmac_clk);
4495 mutex_unlock(&priv->lock);
4497 priv->oldlink = false;
4498 priv->speed = SPEED_UNKNOWN;
4499 priv->oldduplex = DUPLEX_UNKNOWN;
4500 return 0;
4502 EXPORT_SYMBOL_GPL(stmmac_suspend);
4505 * stmmac_reset_queues_param - reset queue parameters
4506 * @dev: device pointer
4508 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4510 u32 rx_cnt = priv->plat->rx_queues_to_use;
4511 u32 tx_cnt = priv->plat->tx_queues_to_use;
4512 u32 queue;
4514 for (queue = 0; queue < rx_cnt; queue++) {
4515 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4517 rx_q->cur_rx = 0;
4518 rx_q->dirty_rx = 0;
4521 for (queue = 0; queue < tx_cnt; queue++) {
4522 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4524 tx_q->cur_tx = 0;
4525 tx_q->dirty_tx = 0;
4526 tx_q->mss = 0;
4531 * stmmac_resume - resume callback
4532 * @dev: device pointer
4533 * Description: when resume this function is invoked to setup the DMA and CORE
4534 * in a usable state.
4536 int stmmac_resume(struct device *dev)
4538 struct net_device *ndev = dev_get_drvdata(dev);
4539 struct stmmac_priv *priv = netdev_priv(ndev);
4541 if (!netif_running(ndev))
4542 return 0;
4544 /* Power Down bit, into the PM register, is cleared
4545 * automatically as soon as a magic packet or a Wake-up frame
4546 * is received. Anyway, it's better to manually clear
4547 * this bit because it can generate problems while resuming
4548 * from another devices (e.g. serial console).
4550 if (device_may_wakeup(priv->device)) {
4551 mutex_lock(&priv->lock);
4552 stmmac_pmt(priv, priv->hw, 0);
4553 mutex_unlock(&priv->lock);
4554 priv->irq_wake = 0;
4555 } else {
4556 pinctrl_pm_select_default_state(priv->device);
4557 /* enable the clk previously disabled */
4558 clk_enable(priv->plat->stmmac_clk);
4559 clk_enable(priv->plat->pclk);
4560 /* reset the phy so that it's ready */
4561 if (priv->mii)
4562 stmmac_mdio_reset(priv->mii);
4565 netif_device_attach(ndev);
4567 mutex_lock(&priv->lock);
4569 stmmac_reset_queues_param(priv);
4571 stmmac_clear_descriptors(priv);
4573 stmmac_hw_setup(ndev, false);
4574 stmmac_init_tx_coalesce(priv);
4575 stmmac_set_rx_mode(ndev);
4577 stmmac_enable_all_queues(priv);
4579 stmmac_start_all_queues(priv);
4581 mutex_unlock(&priv->lock);
4583 if (ndev->phydev)
4584 phy_start(ndev->phydev);
4586 return 0;
4588 EXPORT_SYMBOL_GPL(stmmac_resume);
4590 #ifndef MODULE
4591 static int __init stmmac_cmdline_opt(char *str)
4593 char *opt;
4595 if (!str || !*str)
4596 return -EINVAL;
4597 while ((opt = strsep(&str, ",")) != NULL) {
4598 if (!strncmp(opt, "debug:", 6)) {
4599 if (kstrtoint(opt + 6, 0, &debug))
4600 goto err;
4601 } else if (!strncmp(opt, "phyaddr:", 8)) {
4602 if (kstrtoint(opt + 8, 0, &phyaddr))
4603 goto err;
4604 } else if (!strncmp(opt, "buf_sz:", 7)) {
4605 if (kstrtoint(opt + 7, 0, &buf_sz))
4606 goto err;
4607 } else if (!strncmp(opt, "tc:", 3)) {
4608 if (kstrtoint(opt + 3, 0, &tc))
4609 goto err;
4610 } else if (!strncmp(opt, "watchdog:", 9)) {
4611 if (kstrtoint(opt + 9, 0, &watchdog))
4612 goto err;
4613 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4614 if (kstrtoint(opt + 10, 0, &flow_ctrl))
4615 goto err;
4616 } else if (!strncmp(opt, "pause:", 6)) {
4617 if (kstrtoint(opt + 6, 0, &pause))
4618 goto err;
4619 } else if (!strncmp(opt, "eee_timer:", 10)) {
4620 if (kstrtoint(opt + 10, 0, &eee_timer))
4621 goto err;
4622 } else if (!strncmp(opt, "chain_mode:", 11)) {
4623 if (kstrtoint(opt + 11, 0, &chain_mode))
4624 goto err;
4627 return 0;
4629 err:
4630 pr_err("%s: ERROR broken module parameter conversion", __func__);
4631 return -EINVAL;
4634 __setup("stmmaceth=", stmmac_cmdline_opt);
4635 #endif /* MODULE */
4637 static int __init stmmac_init(void)
4639 #ifdef CONFIG_DEBUG_FS
4640 /* Create debugfs main directory if it doesn't exist yet */
4641 if (!stmmac_fs_dir) {
4642 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4644 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4645 pr_err("ERROR %s, debugfs create directory failed\n",
4646 STMMAC_RESOURCE_NAME);
4648 return -ENOMEM;
4651 #endif
4653 return 0;
4656 static void __exit stmmac_exit(void)
4658 #ifdef CONFIG_DEBUG_FS
4659 debugfs_remove_recursive(stmmac_fs_dir);
4660 #endif
4663 module_init(stmmac_init)
4664 module_exit(stmmac_exit)
4666 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4667 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4668 MODULE_LICENSE("GPL");