2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
41 #include <net/route.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
47 #include "hyperv_net.h"
49 #define RING_SIZE_MIN 64
50 #define RETRY_US_LO 5000
51 #define RETRY_US_HI 10000
52 #define RETRY_MAX 2000 /* >10 sec */
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
57 static unsigned int ring_size __ro_after_init
= 128;
58 module_param(ring_size
, uint
, 0444);
59 MODULE_PARM_DESC(ring_size
, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init
;
62 static const u32 default_msg
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
63 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
64 NETIF_MSG_IFDOWN
| NETIF_MSG_RX_ERR
|
67 static int debug
= -1;
68 module_param(debug
, int, 0444);
69 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
71 static LIST_HEAD(netvsc_dev_list
);
73 static void netvsc_change_rx_flags(struct net_device
*net
, int change
)
75 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
76 struct net_device
*vf_netdev
= rtnl_dereference(ndev_ctx
->vf_netdev
);
82 if (change
& IFF_PROMISC
) {
83 inc
= (net
->flags
& IFF_PROMISC
) ? 1 : -1;
84 dev_set_promiscuity(vf_netdev
, inc
);
87 if (change
& IFF_ALLMULTI
) {
88 inc
= (net
->flags
& IFF_ALLMULTI
) ? 1 : -1;
89 dev_set_allmulti(vf_netdev
, inc
);
93 static void netvsc_set_rx_mode(struct net_device
*net
)
95 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
96 struct net_device
*vf_netdev
;
97 struct netvsc_device
*nvdev
;
100 vf_netdev
= rcu_dereference(ndev_ctx
->vf_netdev
);
102 dev_uc_sync(vf_netdev
, net
);
103 dev_mc_sync(vf_netdev
, net
);
106 nvdev
= rcu_dereference(ndev_ctx
->nvdev
);
108 rndis_filter_update(nvdev
);
112 static int netvsc_open(struct net_device
*net
)
114 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
115 struct net_device
*vf_netdev
= rtnl_dereference(ndev_ctx
->vf_netdev
);
116 struct netvsc_device
*nvdev
= rtnl_dereference(ndev_ctx
->nvdev
);
117 struct rndis_device
*rdev
;
120 netif_carrier_off(net
);
122 /* Open up the device */
123 ret
= rndis_filter_open(nvdev
);
125 netdev_err(net
, "unable to open device (ret %d).\n", ret
);
129 rdev
= nvdev
->extension
;
130 if (!rdev
->link_state
) {
131 netif_carrier_on(net
);
132 netif_tx_wake_all_queues(net
);
136 /* Setting synthetic device up transparently sets
137 * slave as up. If open fails, then slave will be
138 * still be offline (and not used).
140 ret
= dev_open(vf_netdev
);
143 "unable to open slave: %s: %d\n",
144 vf_netdev
->name
, ret
);
149 static int netvsc_wait_until_empty(struct netvsc_device
*nvdev
)
151 unsigned int retry
= 0;
154 /* Ensure pending bytes in ring are read */
158 for (i
= 0; i
< nvdev
->num_chn
; i
++) {
159 struct vmbus_channel
*chn
160 = nvdev
->chan_table
[i
].channel
;
165 /* make sure receive not running now */
166 napi_synchronize(&nvdev
->chan_table
[i
].napi
);
168 aread
= hv_get_bytes_to_read(&chn
->inbound
);
172 aread
= hv_get_bytes_to_read(&chn
->outbound
);
180 if (++retry
> RETRY_MAX
)
183 usleep_range(RETRY_US_LO
, RETRY_US_HI
);
187 static int netvsc_close(struct net_device
*net
)
189 struct net_device_context
*net_device_ctx
= netdev_priv(net
);
190 struct net_device
*vf_netdev
191 = rtnl_dereference(net_device_ctx
->vf_netdev
);
192 struct netvsc_device
*nvdev
= rtnl_dereference(net_device_ctx
->nvdev
);
195 netif_tx_disable(net
);
197 /* No need to close rndis filter if it is removed already */
201 ret
= rndis_filter_close(nvdev
);
203 netdev_err(net
, "unable to close device (ret %d).\n", ret
);
207 ret
= netvsc_wait_until_empty(nvdev
);
209 netdev_err(net
, "Ring buffer not empty after closing rndis\n");
212 dev_close(vf_netdev
);
217 static inline void *init_ppi_data(struct rndis_message
*msg
,
218 u32 ppi_size
, u32 pkt_type
)
220 struct rndis_packet
*rndis_pkt
= &msg
->msg
.pkt
;
221 struct rndis_per_packet_info
*ppi
;
223 rndis_pkt
->data_offset
+= ppi_size
;
224 ppi
= (void *)rndis_pkt
+ rndis_pkt
->per_pkt_info_offset
225 + rndis_pkt
->per_pkt_info_len
;
227 ppi
->size
= ppi_size
;
228 ppi
->type
= pkt_type
;
230 ppi
->ppi_offset
= sizeof(struct rndis_per_packet_info
);
232 rndis_pkt
->per_pkt_info_len
+= ppi_size
;
237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
238 * packets. We can use ethtool to change UDP hash level when necessary.
240 static inline u32
netvsc_get_hash(
242 const struct net_device_context
*ndc
)
244 struct flow_keys flow
;
245 u32 hash
, pkt_proto
= 0;
246 static u32 hashrnd __read_mostly
;
248 net_get_random_once(&hashrnd
, sizeof(hashrnd
));
250 if (!skb_flow_dissect_flow_keys(skb
, &flow
, 0))
253 switch (flow
.basic
.ip_proto
) {
255 if (flow
.basic
.n_proto
== htons(ETH_P_IP
))
256 pkt_proto
= HV_TCP4_L4HASH
;
257 else if (flow
.basic
.n_proto
== htons(ETH_P_IPV6
))
258 pkt_proto
= HV_TCP6_L4HASH
;
263 if (flow
.basic
.n_proto
== htons(ETH_P_IP
))
264 pkt_proto
= HV_UDP4_L4HASH
;
265 else if (flow
.basic
.n_proto
== htons(ETH_P_IPV6
))
266 pkt_proto
= HV_UDP6_L4HASH
;
271 if (pkt_proto
& ndc
->l4_hash
) {
272 return skb_get_hash(skb
);
274 if (flow
.basic
.n_proto
== htons(ETH_P_IP
))
275 hash
= jhash2((u32
*)&flow
.addrs
.v4addrs
, 2, hashrnd
);
276 else if (flow
.basic
.n_proto
== htons(ETH_P_IPV6
))
277 hash
= jhash2((u32
*)&flow
.addrs
.v6addrs
, 8, hashrnd
);
281 skb_set_hash(skb
, hash
, PKT_HASH_TYPE_L3
);
287 static inline int netvsc_get_tx_queue(struct net_device
*ndev
,
288 struct sk_buff
*skb
, int old_idx
)
290 const struct net_device_context
*ndc
= netdev_priv(ndev
);
291 struct sock
*sk
= skb
->sk
;
294 q_idx
= ndc
->tx_table
[netvsc_get_hash(skb
, ndc
) &
295 (VRSS_SEND_TAB_SIZE
- 1)];
297 /* If queue index changed record the new value */
298 if (q_idx
!= old_idx
&&
299 sk
&& sk_fullsock(sk
) && rcu_access_pointer(sk
->sk_dst_cache
))
300 sk_tx_queue_set(sk
, q_idx
);
306 * Select queue for transmit.
308 * If a valid queue has already been assigned, then use that.
309 * Otherwise compute tx queue based on hash and the send table.
311 * This is basically similar to default (__netdev_pick_tx) with the added step
312 * of using the host send_table when no other queue has been assigned.
314 * TODO support XPS - but get_xps_queue not exported
316 static u16
netvsc_pick_tx(struct net_device
*ndev
, struct sk_buff
*skb
)
318 int q_idx
= sk_tx_queue_get(skb
->sk
);
320 if (q_idx
< 0 || skb
->ooo_okay
|| q_idx
>= ndev
->real_num_tx_queues
) {
321 /* If forwarding a packet, we use the recorded queue when
322 * available for better cache locality.
324 if (skb_rx_queue_recorded(skb
))
325 q_idx
= skb_get_rx_queue(skb
);
327 q_idx
= netvsc_get_tx_queue(ndev
, skb
, q_idx
);
333 static u16
netvsc_select_queue(struct net_device
*ndev
, struct sk_buff
*skb
,
334 struct net_device
*sb_dev
,
335 select_queue_fallback_t fallback
)
337 struct net_device_context
*ndc
= netdev_priv(ndev
);
338 struct net_device
*vf_netdev
;
342 vf_netdev
= rcu_dereference(ndc
->vf_netdev
);
344 const struct net_device_ops
*vf_ops
= vf_netdev
->netdev_ops
;
346 if (vf_ops
->ndo_select_queue
)
347 txq
= vf_ops
->ndo_select_queue(vf_netdev
, skb
,
350 txq
= fallback(vf_netdev
, skb
, NULL
);
352 /* Record the queue selected by VF so that it can be
353 * used for common case where VF has more queues than
354 * the synthetic device.
356 qdisc_skb_cb(skb
)->slave_dev_queue_mapping
= txq
;
358 txq
= netvsc_pick_tx(ndev
, skb
);
362 while (unlikely(txq
>= ndev
->real_num_tx_queues
))
363 txq
-= ndev
->real_num_tx_queues
;
368 static u32
fill_pg_buf(struct page
*page
, u32 offset
, u32 len
,
369 struct hv_page_buffer
*pb
)
373 /* Deal with compund pages by ignoring unused part
376 page
+= (offset
>> PAGE_SHIFT
);
377 offset
&= ~PAGE_MASK
;
382 bytes
= PAGE_SIZE
- offset
;
385 pb
[j
].pfn
= page_to_pfn(page
);
386 pb
[j
].offset
= offset
;
392 if (offset
== PAGE_SIZE
&& len
) {
402 static u32
init_page_array(void *hdr
, u32 len
, struct sk_buff
*skb
,
403 struct hv_netvsc_packet
*packet
,
404 struct hv_page_buffer
*pb
)
407 char *data
= skb
->data
;
408 int frags
= skb_shinfo(skb
)->nr_frags
;
411 /* The packet is laid out thus:
412 * 1. hdr: RNDIS header and PPI
414 * 3. skb fragment data
416 slots_used
+= fill_pg_buf(virt_to_page(hdr
),
418 len
, &pb
[slots_used
]);
420 packet
->rmsg_size
= len
;
421 packet
->rmsg_pgcnt
= slots_used
;
423 slots_used
+= fill_pg_buf(virt_to_page(data
),
424 offset_in_page(data
),
425 skb_headlen(skb
), &pb
[slots_used
]);
427 for (i
= 0; i
< frags
; i
++) {
428 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
+ i
;
430 slots_used
+= fill_pg_buf(skb_frag_page(frag
),
432 skb_frag_size(frag
), &pb
[slots_used
]);
437 static int count_skb_frag_slots(struct sk_buff
*skb
)
439 int i
, frags
= skb_shinfo(skb
)->nr_frags
;
442 for (i
= 0; i
< frags
; i
++) {
443 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
+ i
;
444 unsigned long size
= skb_frag_size(frag
);
445 unsigned long offset
= frag
->page_offset
;
447 /* Skip unused frames from start of page */
448 offset
&= ~PAGE_MASK
;
449 pages
+= PFN_UP(offset
+ size
);
454 static int netvsc_get_slots(struct sk_buff
*skb
)
456 char *data
= skb
->data
;
457 unsigned int offset
= offset_in_page(data
);
458 unsigned int len
= skb_headlen(skb
);
462 slots
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
463 frag_slots
= count_skb_frag_slots(skb
);
464 return slots
+ frag_slots
;
467 static u32
net_checksum_info(struct sk_buff
*skb
)
469 if (skb
->protocol
== htons(ETH_P_IP
)) {
470 struct iphdr
*ip
= ip_hdr(skb
);
472 if (ip
->protocol
== IPPROTO_TCP
)
473 return TRANSPORT_INFO_IPV4_TCP
;
474 else if (ip
->protocol
== IPPROTO_UDP
)
475 return TRANSPORT_INFO_IPV4_UDP
;
477 struct ipv6hdr
*ip6
= ipv6_hdr(skb
);
479 if (ip6
->nexthdr
== IPPROTO_TCP
)
480 return TRANSPORT_INFO_IPV6_TCP
;
481 else if (ip6
->nexthdr
== IPPROTO_UDP
)
482 return TRANSPORT_INFO_IPV6_UDP
;
485 return TRANSPORT_INFO_NOT_IP
;
488 /* Send skb on the slave VF device. */
489 static int netvsc_vf_xmit(struct net_device
*net
, struct net_device
*vf_netdev
,
492 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
493 unsigned int len
= skb
->len
;
496 skb
->dev
= vf_netdev
;
497 skb
->queue_mapping
= qdisc_skb_cb(skb
)->slave_dev_queue_mapping
;
499 rc
= dev_queue_xmit(skb
);
500 if (likely(rc
== NET_XMIT_SUCCESS
|| rc
== NET_XMIT_CN
)) {
501 struct netvsc_vf_pcpu_stats
*pcpu_stats
502 = this_cpu_ptr(ndev_ctx
->vf_stats
);
504 u64_stats_update_begin(&pcpu_stats
->syncp
);
505 pcpu_stats
->tx_packets
++;
506 pcpu_stats
->tx_bytes
+= len
;
507 u64_stats_update_end(&pcpu_stats
->syncp
);
509 this_cpu_inc(ndev_ctx
->vf_stats
->tx_dropped
);
515 static int netvsc_start_xmit(struct sk_buff
*skb
, struct net_device
*net
)
517 struct net_device_context
*net_device_ctx
= netdev_priv(net
);
518 struct hv_netvsc_packet
*packet
= NULL
;
520 unsigned int num_data_pgs
;
521 struct rndis_message
*rndis_msg
;
522 struct net_device
*vf_netdev
;
525 struct hv_page_buffer pb
[MAX_PAGE_BUFFER_COUNT
];
527 /* if VF is present and up then redirect packets
528 * already called with rcu_read_lock_bh
530 vf_netdev
= rcu_dereference_bh(net_device_ctx
->vf_netdev
);
531 if (vf_netdev
&& netif_running(vf_netdev
) &&
532 !netpoll_tx_running(net
))
533 return netvsc_vf_xmit(net
, vf_netdev
, skb
);
535 /* We will atmost need two pages to describe the rndis
536 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
537 * of pages in a single packet. If skb is scattered around
538 * more pages we try linearizing it.
541 num_data_pgs
= netvsc_get_slots(skb
) + 2;
543 if (unlikely(num_data_pgs
> MAX_PAGE_BUFFER_COUNT
)) {
544 ++net_device_ctx
->eth_stats
.tx_scattered
;
546 if (skb_linearize(skb
))
549 num_data_pgs
= netvsc_get_slots(skb
) + 2;
550 if (num_data_pgs
> MAX_PAGE_BUFFER_COUNT
) {
551 ++net_device_ctx
->eth_stats
.tx_too_big
;
557 * Place the rndis header in the skb head room and
558 * the skb->cb will be used for hv_netvsc_packet
561 ret
= skb_cow_head(skb
, RNDIS_AND_PPI_SIZE
);
565 /* Use the skb control buffer for building up the packet */
566 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet
) >
567 FIELD_SIZEOF(struct sk_buff
, cb
));
568 packet
= (struct hv_netvsc_packet
*)skb
->cb
;
570 packet
->q_idx
= skb_get_queue_mapping(skb
);
572 packet
->total_data_buflen
= skb
->len
;
573 packet
->total_bytes
= skb
->len
;
574 packet
->total_packets
= 1;
576 rndis_msg
= (struct rndis_message
*)skb
->head
;
578 /* Add the rndis header */
579 rndis_msg
->ndis_msg_type
= RNDIS_MSG_PACKET
;
580 rndis_msg
->msg_len
= packet
->total_data_buflen
;
582 rndis_msg
->msg
.pkt
= (struct rndis_packet
) {
583 .data_offset
= sizeof(struct rndis_packet
),
584 .data_len
= packet
->total_data_buflen
,
585 .per_pkt_info_offset
= sizeof(struct rndis_packet
),
588 rndis_msg_size
= RNDIS_MESSAGE_SIZE(struct rndis_packet
);
590 hash
= skb_get_hash_raw(skb
);
591 if (hash
!= 0 && net
->real_num_tx_queues
> 1) {
594 rndis_msg_size
+= NDIS_HASH_PPI_SIZE
;
595 hash_info
= init_ppi_data(rndis_msg
, NDIS_HASH_PPI_SIZE
,
600 if (skb_vlan_tag_present(skb
)) {
601 struct ndis_pkt_8021q_info
*vlan
;
603 rndis_msg_size
+= NDIS_VLAN_PPI_SIZE
;
604 vlan
= init_ppi_data(rndis_msg
, NDIS_VLAN_PPI_SIZE
,
608 vlan
->vlanid
= skb
->vlan_tci
& VLAN_VID_MASK
;
609 vlan
->pri
= (skb
->vlan_tci
& VLAN_PRIO_MASK
) >>
613 if (skb_is_gso(skb
)) {
614 struct ndis_tcp_lso_info
*lso_info
;
616 rndis_msg_size
+= NDIS_LSO_PPI_SIZE
;
617 lso_info
= init_ppi_data(rndis_msg
, NDIS_LSO_PPI_SIZE
,
618 TCP_LARGESEND_PKTINFO
);
621 lso_info
->lso_v2_transmit
.type
= NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE
;
622 if (skb
->protocol
== htons(ETH_P_IP
)) {
623 lso_info
->lso_v2_transmit
.ip_version
=
624 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4
;
625 ip_hdr(skb
)->tot_len
= 0;
626 ip_hdr(skb
)->check
= 0;
627 tcp_hdr(skb
)->check
=
628 ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
629 ip_hdr(skb
)->daddr
, 0, IPPROTO_TCP
, 0);
631 lso_info
->lso_v2_transmit
.ip_version
=
632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6
;
633 ipv6_hdr(skb
)->payload_len
= 0;
634 tcp_hdr(skb
)->check
=
635 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
636 &ipv6_hdr(skb
)->daddr
, 0, IPPROTO_TCP
, 0);
638 lso_info
->lso_v2_transmit
.tcp_header_offset
= skb_transport_offset(skb
);
639 lso_info
->lso_v2_transmit
.mss
= skb_shinfo(skb
)->gso_size
;
640 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
641 if (net_checksum_info(skb
) & net_device_ctx
->tx_checksum_mask
) {
642 struct ndis_tcp_ip_checksum_info
*csum_info
;
644 rndis_msg_size
+= NDIS_CSUM_PPI_SIZE
;
645 csum_info
= init_ppi_data(rndis_msg
, NDIS_CSUM_PPI_SIZE
,
646 TCPIP_CHKSUM_PKTINFO
);
648 csum_info
->value
= 0;
649 csum_info
->transmit
.tcp_header_offset
= skb_transport_offset(skb
);
651 if (skb
->protocol
== htons(ETH_P_IP
)) {
652 csum_info
->transmit
.is_ipv4
= 1;
654 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
655 csum_info
->transmit
.tcp_checksum
= 1;
657 csum_info
->transmit
.udp_checksum
= 1;
659 csum_info
->transmit
.is_ipv6
= 1;
661 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
662 csum_info
->transmit
.tcp_checksum
= 1;
664 csum_info
->transmit
.udp_checksum
= 1;
667 /* Can't do offload of this type of checksum */
668 if (skb_checksum_help(skb
))
673 /* Start filling in the page buffers with the rndis hdr */
674 rndis_msg
->msg_len
+= rndis_msg_size
;
675 packet
->total_data_buflen
= rndis_msg
->msg_len
;
676 packet
->page_buf_cnt
= init_page_array(rndis_msg
, rndis_msg_size
,
679 /* timestamp packet in software */
680 skb_tx_timestamp(skb
);
682 ret
= netvsc_send(net
, packet
, rndis_msg
, pb
, skb
);
683 if (likely(ret
== 0))
686 if (ret
== -EAGAIN
) {
687 ++net_device_ctx
->eth_stats
.tx_busy
;
688 return NETDEV_TX_BUSY
;
692 ++net_device_ctx
->eth_stats
.tx_no_space
;
695 dev_kfree_skb_any(skb
);
696 net
->stats
.tx_dropped
++;
701 ++net_device_ctx
->eth_stats
.tx_no_memory
;
706 * netvsc_linkstatus_callback - Link up/down notification
708 void netvsc_linkstatus_callback(struct net_device
*net
,
709 struct rndis_message
*resp
)
711 struct rndis_indicate_status
*indicate
= &resp
->msg
.indicate_status
;
712 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
713 struct netvsc_reconfig
*event
;
716 /* Update the physical link speed when changing to another vSwitch */
717 if (indicate
->status
== RNDIS_STATUS_LINK_SPEED_CHANGE
) {
720 speed
= *(u32
*)((void *)indicate
721 + indicate
->status_buf_offset
) / 10000;
722 ndev_ctx
->speed
= speed
;
726 /* Handle these link change statuses below */
727 if (indicate
->status
!= RNDIS_STATUS_NETWORK_CHANGE
&&
728 indicate
->status
!= RNDIS_STATUS_MEDIA_CONNECT
&&
729 indicate
->status
!= RNDIS_STATUS_MEDIA_DISCONNECT
)
732 if (net
->reg_state
!= NETREG_REGISTERED
)
735 event
= kzalloc(sizeof(*event
), GFP_ATOMIC
);
738 event
->event
= indicate
->status
;
740 spin_lock_irqsave(&ndev_ctx
->lock
, flags
);
741 list_add_tail(&event
->list
, &ndev_ctx
->reconfig_events
);
742 spin_unlock_irqrestore(&ndev_ctx
->lock
, flags
);
744 schedule_delayed_work(&ndev_ctx
->dwork
, 0);
747 static struct sk_buff
*netvsc_alloc_recv_skb(struct net_device
*net
,
748 struct netvsc_channel
*nvchan
)
750 struct napi_struct
*napi
= &nvchan
->napi
;
751 const struct ndis_pkt_8021q_info
*vlan
= nvchan
->rsc
.vlan
;
752 const struct ndis_tcp_ip_checksum_info
*csum_info
=
753 nvchan
->rsc
.csum_info
;
757 skb
= napi_alloc_skb(napi
, nvchan
->rsc
.pktlen
);
762 * Copy to skb. This copy is needed here since the memory pointed by
763 * hv_netvsc_packet cannot be deallocated
765 for (i
= 0; i
< nvchan
->rsc
.cnt
; i
++)
766 skb_put_data(skb
, nvchan
->rsc
.data
[i
], nvchan
->rsc
.len
[i
]);
768 skb
->protocol
= eth_type_trans(skb
, net
);
770 /* skb is already created with CHECKSUM_NONE */
771 skb_checksum_none_assert(skb
);
774 * In Linux, the IP checksum is always checked.
775 * Do L4 checksum offload if enabled and present.
777 if (csum_info
&& (net
->features
& NETIF_F_RXCSUM
)) {
778 if (csum_info
->receive
.tcp_checksum_succeeded
||
779 csum_info
->receive
.udp_checksum_succeeded
)
780 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
784 u16 vlan_tci
= vlan
->vlanid
| (vlan
->pri
<< VLAN_PRIO_SHIFT
);
786 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
794 * netvsc_recv_callback - Callback when we receive a packet from the
795 * "wire" on the specified device.
797 int netvsc_recv_callback(struct net_device
*net
,
798 struct netvsc_device
*net_device
,
799 struct netvsc_channel
*nvchan
)
801 struct net_device_context
*net_device_ctx
= netdev_priv(net
);
802 struct vmbus_channel
*channel
= nvchan
->channel
;
803 u16 q_idx
= channel
->offermsg
.offer
.sub_channel_index
;
805 struct netvsc_stats
*rx_stats
;
807 if (net
->reg_state
!= NETREG_REGISTERED
)
808 return NVSP_STAT_FAIL
;
810 /* Allocate a skb - TODO direct I/O to pages? */
811 skb
= netvsc_alloc_recv_skb(net
, nvchan
);
813 if (unlikely(!skb
)) {
814 ++net_device_ctx
->eth_stats
.rx_no_memory
;
816 return NVSP_STAT_FAIL
;
819 skb_record_rx_queue(skb
, q_idx
);
822 * Even if injecting the packet, record the statistics
823 * on the synthetic device because modifying the VF device
824 * statistics will not work correctly.
826 rx_stats
= &nvchan
->rx_stats
;
827 u64_stats_update_begin(&rx_stats
->syncp
);
829 rx_stats
->bytes
+= nvchan
->rsc
.pktlen
;
831 if (skb
->pkt_type
== PACKET_BROADCAST
)
832 ++rx_stats
->broadcast
;
833 else if (skb
->pkt_type
== PACKET_MULTICAST
)
834 ++rx_stats
->multicast
;
835 u64_stats_update_end(&rx_stats
->syncp
);
837 napi_gro_receive(&nvchan
->napi
, skb
);
838 return NVSP_STAT_SUCCESS
;
841 static void netvsc_get_drvinfo(struct net_device
*net
,
842 struct ethtool_drvinfo
*info
)
844 strlcpy(info
->driver
, KBUILD_MODNAME
, sizeof(info
->driver
));
845 strlcpy(info
->fw_version
, "N/A", sizeof(info
->fw_version
));
848 static void netvsc_get_channels(struct net_device
*net
,
849 struct ethtool_channels
*channel
)
851 struct net_device_context
*net_device_ctx
= netdev_priv(net
);
852 struct netvsc_device
*nvdev
= rtnl_dereference(net_device_ctx
->nvdev
);
855 channel
->max_combined
= nvdev
->max_chn
;
856 channel
->combined_count
= nvdev
->num_chn
;
860 static int netvsc_detach(struct net_device
*ndev
,
861 struct netvsc_device
*nvdev
)
863 struct net_device_context
*ndev_ctx
= netdev_priv(ndev
);
864 struct hv_device
*hdev
= ndev_ctx
->device_ctx
;
867 /* Don't try continuing to try and setup sub channels */
868 if (cancel_work_sync(&nvdev
->subchan_work
))
871 /* If device was up (receiving) then shutdown */
872 if (netif_running(ndev
)) {
873 netif_tx_disable(ndev
);
875 ret
= rndis_filter_close(nvdev
);
878 "unable to close device (ret %d).\n", ret
);
882 ret
= netvsc_wait_until_empty(nvdev
);
885 "Ring buffer not empty after closing rndis\n");
890 netif_device_detach(ndev
);
892 rndis_filter_device_remove(hdev
, nvdev
);
897 static int netvsc_attach(struct net_device
*ndev
,
898 struct netvsc_device_info
*dev_info
)
900 struct net_device_context
*ndev_ctx
= netdev_priv(ndev
);
901 struct hv_device
*hdev
= ndev_ctx
->device_ctx
;
902 struct netvsc_device
*nvdev
;
903 struct rndis_device
*rdev
;
906 nvdev
= rndis_filter_device_add(hdev
, dev_info
);
908 return PTR_ERR(nvdev
);
910 if (nvdev
->num_chn
> 1) {
911 ret
= rndis_set_subchannel(ndev
, nvdev
);
913 /* if unavailable, just proceed with one queue */
920 /* In any case device is now ready */
921 netif_device_attach(ndev
);
923 /* Note: enable and attach happen when sub-channels setup */
924 netif_carrier_off(ndev
);
926 if (netif_running(ndev
)) {
927 ret
= rndis_filter_open(nvdev
);
931 rdev
= nvdev
->extension
;
932 if (!rdev
->link_state
)
933 netif_carrier_on(ndev
);
939 static int netvsc_set_channels(struct net_device
*net
,
940 struct ethtool_channels
*channels
)
942 struct net_device_context
*net_device_ctx
= netdev_priv(net
);
943 struct netvsc_device
*nvdev
= rtnl_dereference(net_device_ctx
->nvdev
);
944 unsigned int orig
, count
= channels
->combined_count
;
945 struct netvsc_device_info device_info
;
948 /* We do not support separate count for rx, tx, or other */
950 channels
->rx_count
|| channels
->tx_count
|| channels
->other_count
)
953 if (!nvdev
|| nvdev
->destroy
)
956 if (nvdev
->nvsp_version
< NVSP_PROTOCOL_VERSION_5
)
959 if (count
> nvdev
->max_chn
)
962 orig
= nvdev
->num_chn
;
964 memset(&device_info
, 0, sizeof(device_info
));
965 device_info
.num_chn
= count
;
966 device_info
.send_sections
= nvdev
->send_section_cnt
;
967 device_info
.send_section_size
= nvdev
->send_section_size
;
968 device_info
.recv_sections
= nvdev
->recv_section_cnt
;
969 device_info
.recv_section_size
= nvdev
->recv_section_size
;
971 ret
= netvsc_detach(net
, nvdev
);
975 ret
= netvsc_attach(net
, &device_info
);
977 device_info
.num_chn
= orig
;
978 if (netvsc_attach(net
, &device_info
))
979 netdev_err(net
, "restoring channel setting failed\n");
986 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings
*cmd
)
988 struct ethtool_link_ksettings diff1
= *cmd
;
989 struct ethtool_link_ksettings diff2
= {};
991 diff1
.base
.speed
= 0;
992 diff1
.base
.duplex
= 0;
993 /* advertising and cmd are usually set */
994 ethtool_link_ksettings_zero_link_mode(&diff1
, advertising
);
996 /* We set port to PORT_OTHER */
997 diff2
.base
.port
= PORT_OTHER
;
999 return !memcmp(&diff1
, &diff2
, sizeof(diff1
));
1002 static void netvsc_init_settings(struct net_device
*dev
)
1004 struct net_device_context
*ndc
= netdev_priv(dev
);
1006 ndc
->l4_hash
= HV_DEFAULT_L4HASH
;
1008 ndc
->speed
= SPEED_UNKNOWN
;
1009 ndc
->duplex
= DUPLEX_FULL
;
1011 dev
->features
= NETIF_F_LRO
;
1014 static int netvsc_get_link_ksettings(struct net_device
*dev
,
1015 struct ethtool_link_ksettings
*cmd
)
1017 struct net_device_context
*ndc
= netdev_priv(dev
);
1019 cmd
->base
.speed
= ndc
->speed
;
1020 cmd
->base
.duplex
= ndc
->duplex
;
1021 cmd
->base
.port
= PORT_OTHER
;
1026 static int netvsc_set_link_ksettings(struct net_device
*dev
,
1027 const struct ethtool_link_ksettings
*cmd
)
1029 struct net_device_context
*ndc
= netdev_priv(dev
);
1032 speed
= cmd
->base
.speed
;
1033 if (!ethtool_validate_speed(speed
) ||
1034 !ethtool_validate_duplex(cmd
->base
.duplex
) ||
1035 !netvsc_validate_ethtool_ss_cmd(cmd
))
1039 ndc
->duplex
= cmd
->base
.duplex
;
1044 static int netvsc_change_mtu(struct net_device
*ndev
, int mtu
)
1046 struct net_device_context
*ndevctx
= netdev_priv(ndev
);
1047 struct net_device
*vf_netdev
= rtnl_dereference(ndevctx
->vf_netdev
);
1048 struct netvsc_device
*nvdev
= rtnl_dereference(ndevctx
->nvdev
);
1049 int orig_mtu
= ndev
->mtu
;
1050 struct netvsc_device_info device_info
;
1053 if (!nvdev
|| nvdev
->destroy
)
1056 /* Change MTU of underlying VF netdev first. */
1058 ret
= dev_set_mtu(vf_netdev
, mtu
);
1063 memset(&device_info
, 0, sizeof(device_info
));
1064 device_info
.num_chn
= nvdev
->num_chn
;
1065 device_info
.send_sections
= nvdev
->send_section_cnt
;
1066 device_info
.send_section_size
= nvdev
->send_section_size
;
1067 device_info
.recv_sections
= nvdev
->recv_section_cnt
;
1068 device_info
.recv_section_size
= nvdev
->recv_section_size
;
1070 ret
= netvsc_detach(ndev
, nvdev
);
1076 ret
= netvsc_attach(ndev
, &device_info
);
1083 /* Attempt rollback to original MTU */
1084 ndev
->mtu
= orig_mtu
;
1086 if (netvsc_attach(ndev
, &device_info
))
1087 netdev_err(ndev
, "restoring mtu failed\n");
1090 dev_set_mtu(vf_netdev
, orig_mtu
);
1095 static void netvsc_get_vf_stats(struct net_device
*net
,
1096 struct netvsc_vf_pcpu_stats
*tot
)
1098 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
1101 memset(tot
, 0, sizeof(*tot
));
1103 for_each_possible_cpu(i
) {
1104 const struct netvsc_vf_pcpu_stats
*stats
1105 = per_cpu_ptr(ndev_ctx
->vf_stats
, i
);
1106 u64 rx_packets
, rx_bytes
, tx_packets
, tx_bytes
;
1110 start
= u64_stats_fetch_begin_irq(&stats
->syncp
);
1111 rx_packets
= stats
->rx_packets
;
1112 tx_packets
= stats
->tx_packets
;
1113 rx_bytes
= stats
->rx_bytes
;
1114 tx_bytes
= stats
->tx_bytes
;
1115 } while (u64_stats_fetch_retry_irq(&stats
->syncp
, start
));
1117 tot
->rx_packets
+= rx_packets
;
1118 tot
->tx_packets
+= tx_packets
;
1119 tot
->rx_bytes
+= rx_bytes
;
1120 tot
->tx_bytes
+= tx_bytes
;
1121 tot
->tx_dropped
+= stats
->tx_dropped
;
1125 static void netvsc_get_pcpu_stats(struct net_device
*net
,
1126 struct netvsc_ethtool_pcpu_stats
*pcpu_tot
)
1128 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
1129 struct netvsc_device
*nvdev
= rcu_dereference_rtnl(ndev_ctx
->nvdev
);
1132 /* fetch percpu stats of vf */
1133 for_each_possible_cpu(i
) {
1134 const struct netvsc_vf_pcpu_stats
*stats
=
1135 per_cpu_ptr(ndev_ctx
->vf_stats
, i
);
1136 struct netvsc_ethtool_pcpu_stats
*this_tot
= &pcpu_tot
[i
];
1140 start
= u64_stats_fetch_begin_irq(&stats
->syncp
);
1141 this_tot
->vf_rx_packets
= stats
->rx_packets
;
1142 this_tot
->vf_tx_packets
= stats
->tx_packets
;
1143 this_tot
->vf_rx_bytes
= stats
->rx_bytes
;
1144 this_tot
->vf_tx_bytes
= stats
->tx_bytes
;
1145 } while (u64_stats_fetch_retry_irq(&stats
->syncp
, start
));
1146 this_tot
->rx_packets
= this_tot
->vf_rx_packets
;
1147 this_tot
->tx_packets
= this_tot
->vf_tx_packets
;
1148 this_tot
->rx_bytes
= this_tot
->vf_rx_bytes
;
1149 this_tot
->tx_bytes
= this_tot
->vf_tx_bytes
;
1152 /* fetch percpu stats of netvsc */
1153 for (i
= 0; i
< nvdev
->num_chn
; i
++) {
1154 const struct netvsc_channel
*nvchan
= &nvdev
->chan_table
[i
];
1155 const struct netvsc_stats
*stats
;
1156 struct netvsc_ethtool_pcpu_stats
*this_tot
=
1157 &pcpu_tot
[nvchan
->channel
->target_cpu
];
1161 stats
= &nvchan
->tx_stats
;
1163 start
= u64_stats_fetch_begin_irq(&stats
->syncp
);
1164 packets
= stats
->packets
;
1165 bytes
= stats
->bytes
;
1166 } while (u64_stats_fetch_retry_irq(&stats
->syncp
, start
));
1168 this_tot
->tx_bytes
+= bytes
;
1169 this_tot
->tx_packets
+= packets
;
1171 stats
= &nvchan
->rx_stats
;
1173 start
= u64_stats_fetch_begin_irq(&stats
->syncp
);
1174 packets
= stats
->packets
;
1175 bytes
= stats
->bytes
;
1176 } while (u64_stats_fetch_retry_irq(&stats
->syncp
, start
));
1178 this_tot
->rx_bytes
+= bytes
;
1179 this_tot
->rx_packets
+= packets
;
1183 static void netvsc_get_stats64(struct net_device
*net
,
1184 struct rtnl_link_stats64
*t
)
1186 struct net_device_context
*ndev_ctx
= netdev_priv(net
);
1187 struct netvsc_device
*nvdev
= rcu_dereference_rtnl(ndev_ctx
->nvdev
);
1188 struct netvsc_vf_pcpu_stats vf_tot
;
1194 netdev_stats_to_stats64(t
, &net
->stats
);
1196 netvsc_get_vf_stats(net
, &vf_tot
);
1197 t
->rx_packets
+= vf_tot
.rx_packets
;
1198 t
->tx_packets
+= vf_tot
.tx_packets
;
1199 t
->rx_bytes
+= vf_tot
.rx_bytes
;
1200 t
->tx_bytes
+= vf_tot
.tx_bytes
;
1201 t
->tx_dropped
+= vf_tot
.tx_dropped
;
1203 for (i
= 0; i
< nvdev
->num_chn
; i
++) {
1204 const struct netvsc_channel
*nvchan
= &nvdev
->chan_table
[i
];
1205 const struct netvsc_stats
*stats
;
1206 u64 packets
, bytes
, multicast
;
1209 stats
= &nvchan
->tx_stats
;
1211 start
= u64_stats_fetch_begin_irq(&stats
->syncp
);
1212 packets
= stats
->packets
;
1213 bytes
= stats
->bytes
;
1214 } while (u64_stats_fetch_retry_irq(&stats
->syncp
, start
));
1216 t
->tx_bytes
+= bytes
;
1217 t
->tx_packets
+= packets
;
1219 stats
= &nvchan
->rx_stats
;
1221 start
= u64_stats_fetch_begin_irq(&stats
->syncp
);
1222 packets
= stats
->packets
;
1223 bytes
= stats
->bytes
;
1224 multicast
= stats
->multicast
+ stats
->broadcast
;
1225 } while (u64_stats_fetch_retry_irq(&stats
->syncp
, start
));
1227 t
->rx_bytes
+= bytes
;
1228 t
->rx_packets
+= packets
;
1229 t
->multicast
+= multicast
;
1233 static int netvsc_set_mac_addr(struct net_device
*ndev
, void *p
)
1235 struct net_device_context
*ndc
= netdev_priv(ndev
);
1236 struct net_device
*vf_netdev
= rtnl_dereference(ndc
->vf_netdev
);
1237 struct netvsc_device
*nvdev
= rtnl_dereference(ndc
->nvdev
);
1238 struct sockaddr
*addr
= p
;
1241 err
= eth_prepare_mac_addr_change(ndev
, p
);
1249 err
= dev_set_mac_address(vf_netdev
, addr
);
1254 err
= rndis_filter_set_device_mac(nvdev
, addr
->sa_data
);
1256 eth_commit_mac_addr_change(ndev
, p
);
1257 } else if (vf_netdev
) {
1258 /* rollback change on VF */
1259 memcpy(addr
->sa_data
, ndev
->dev_addr
, ETH_ALEN
);
1260 dev_set_mac_address(vf_netdev
, addr
);
1266 static const struct {
1267 char name
[ETH_GSTRING_LEN
];
1269 } netvsc_stats
[] = {
1270 { "tx_scattered", offsetof(struct netvsc_ethtool_stats
, tx_scattered
) },
1271 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats
, tx_no_memory
) },
1272 { "tx_no_space", offsetof(struct netvsc_ethtool_stats
, tx_no_space
) },
1273 { "tx_too_big", offsetof(struct netvsc_ethtool_stats
, tx_too_big
) },
1274 { "tx_busy", offsetof(struct netvsc_ethtool_stats
, tx_busy
) },
1275 { "tx_send_full", offsetof(struct netvsc_ethtool_stats
, tx_send_full
) },
1276 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats
, rx_comp_busy
) },
1277 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats
, rx_no_memory
) },
1278 { "stop_queue", offsetof(struct netvsc_ethtool_stats
, stop_queue
) },
1279 { "wake_queue", offsetof(struct netvsc_ethtool_stats
, wake_queue
) },
1281 { "cpu%u_rx_packets",
1282 offsetof(struct netvsc_ethtool_pcpu_stats
, rx_packets
) },
1284 offsetof(struct netvsc_ethtool_pcpu_stats
, rx_bytes
) },
1285 { "cpu%u_tx_packets",
1286 offsetof(struct netvsc_ethtool_pcpu_stats
, tx_packets
) },
1288 offsetof(struct netvsc_ethtool_pcpu_stats
, tx_bytes
) },
1289 { "cpu%u_vf_rx_packets",
1290 offsetof(struct netvsc_ethtool_pcpu_stats
, vf_rx_packets
) },
1291 { "cpu%u_vf_rx_bytes",
1292 offsetof(struct netvsc_ethtool_pcpu_stats
, vf_rx_bytes
) },
1293 { "cpu%u_vf_tx_packets",
1294 offsetof(struct netvsc_ethtool_pcpu_stats
, vf_tx_packets
) },
1295 { "cpu%u_vf_tx_bytes",
1296 offsetof(struct netvsc_ethtool_pcpu_stats
, vf_tx_bytes
) },
1298 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats
, rx_packets
) },
1299 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats
, rx_bytes
) },
1300 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats
, tx_packets
) },
1301 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats
, tx_bytes
) },
1302 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats
, tx_dropped
) },
1305 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1306 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1308 /* statistics per queue (rx/tx packets/bytes) */
1309 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1311 /* 4 statistics per queue (rx/tx packets/bytes) */
1312 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1314 static int netvsc_get_sset_count(struct net_device
*dev
, int string_set
)
1316 struct net_device_context
*ndc
= netdev_priv(dev
);
1317 struct netvsc_device
*nvdev
= rtnl_dereference(ndc
->nvdev
);
1322 switch (string_set
) {
1324 return NETVSC_GLOBAL_STATS_LEN
1325 + NETVSC_VF_STATS_LEN
1326 + NETVSC_QUEUE_STATS_LEN(nvdev
)
1327 + NETVSC_PCPU_STATS_LEN
;
1333 static void netvsc_get_ethtool_stats(struct net_device
*dev
,
1334 struct ethtool_stats
*stats
, u64
*data
)
1336 struct net_device_context
*ndc
= netdev_priv(dev
);
1337 struct netvsc_device
*nvdev
= rtnl_dereference(ndc
->nvdev
);
1338 const void *nds
= &ndc
->eth_stats
;
1339 const struct netvsc_stats
*qstats
;
1340 struct netvsc_vf_pcpu_stats sum
;
1341 struct netvsc_ethtool_pcpu_stats
*pcpu_sum
;
1349 for (i
= 0; i
< NETVSC_GLOBAL_STATS_LEN
; i
++)
1350 data
[i
] = *(unsigned long *)(nds
+ netvsc_stats
[i
].offset
);
1352 netvsc_get_vf_stats(dev
, &sum
);
1353 for (j
= 0; j
< NETVSC_VF_STATS_LEN
; j
++)
1354 data
[i
++] = *(u64
*)((void *)&sum
+ vf_stats
[j
].offset
);
1356 for (j
= 0; j
< nvdev
->num_chn
; j
++) {
1357 qstats
= &nvdev
->chan_table
[j
].tx_stats
;
1360 start
= u64_stats_fetch_begin_irq(&qstats
->syncp
);
1361 packets
= qstats
->packets
;
1362 bytes
= qstats
->bytes
;
1363 } while (u64_stats_fetch_retry_irq(&qstats
->syncp
, start
));
1364 data
[i
++] = packets
;
1367 qstats
= &nvdev
->chan_table
[j
].rx_stats
;
1369 start
= u64_stats_fetch_begin_irq(&qstats
->syncp
);
1370 packets
= qstats
->packets
;
1371 bytes
= qstats
->bytes
;
1372 } while (u64_stats_fetch_retry_irq(&qstats
->syncp
, start
));
1373 data
[i
++] = packets
;
1377 pcpu_sum
= kvmalloc_array(num_possible_cpus(),
1378 sizeof(struct netvsc_ethtool_pcpu_stats
),
1380 netvsc_get_pcpu_stats(dev
, pcpu_sum
);
1381 for_each_present_cpu(cpu
) {
1382 struct netvsc_ethtool_pcpu_stats
*this_sum
= &pcpu_sum
[cpu
];
1384 for (j
= 0; j
< ARRAY_SIZE(pcpu_stats
); j
++)
1385 data
[i
++] = *(u64
*)((void *)this_sum
1386 + pcpu_stats
[j
].offset
);
1391 static void netvsc_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
1393 struct net_device_context
*ndc
= netdev_priv(dev
);
1394 struct netvsc_device
*nvdev
= rtnl_dereference(ndc
->nvdev
);
1401 switch (stringset
) {
1403 for (i
= 0; i
< ARRAY_SIZE(netvsc_stats
); i
++) {
1404 memcpy(p
, netvsc_stats
[i
].name
, ETH_GSTRING_LEN
);
1405 p
+= ETH_GSTRING_LEN
;
1408 for (i
= 0; i
< ARRAY_SIZE(vf_stats
); i
++) {
1409 memcpy(p
, vf_stats
[i
].name
, ETH_GSTRING_LEN
);
1410 p
+= ETH_GSTRING_LEN
;
1413 for (i
= 0; i
< nvdev
->num_chn
; i
++) {
1414 sprintf(p
, "tx_queue_%u_packets", i
);
1415 p
+= ETH_GSTRING_LEN
;
1416 sprintf(p
, "tx_queue_%u_bytes", i
);
1417 p
+= ETH_GSTRING_LEN
;
1418 sprintf(p
, "rx_queue_%u_packets", i
);
1419 p
+= ETH_GSTRING_LEN
;
1420 sprintf(p
, "rx_queue_%u_bytes", i
);
1421 p
+= ETH_GSTRING_LEN
;
1424 for_each_present_cpu(cpu
) {
1425 for (i
= 0; i
< ARRAY_SIZE(pcpu_stats
); i
++) {
1426 sprintf(p
, pcpu_stats
[i
].name
, cpu
);
1427 p
+= ETH_GSTRING_LEN
;
1436 netvsc_get_rss_hash_opts(struct net_device_context
*ndc
,
1437 struct ethtool_rxnfc
*info
)
1439 const u32 l4_flag
= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
1441 info
->data
= RXH_IP_SRC
| RXH_IP_DST
;
1443 switch (info
->flow_type
) {
1445 if (ndc
->l4_hash
& HV_TCP4_L4HASH
)
1446 info
->data
|= l4_flag
;
1451 if (ndc
->l4_hash
& HV_TCP6_L4HASH
)
1452 info
->data
|= l4_flag
;
1457 if (ndc
->l4_hash
& HV_UDP4_L4HASH
)
1458 info
->data
|= l4_flag
;
1463 if (ndc
->l4_hash
& HV_UDP6_L4HASH
)
1464 info
->data
|= l4_flag
;
1480 netvsc_get_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*info
,
1483 struct net_device_context
*ndc
= netdev_priv(dev
);
1484 struct netvsc_device
*nvdev
= rtnl_dereference(ndc
->nvdev
);
1489 switch (info
->cmd
) {
1490 case ETHTOOL_GRXRINGS
:
1491 info
->data
= nvdev
->num_chn
;
1495 return netvsc_get_rss_hash_opts(ndc
, info
);
1500 static int netvsc_set_rss_hash_opts(struct net_device_context
*ndc
,
1501 struct ethtool_rxnfc
*info
)
1503 if (info
->data
== (RXH_IP_SRC
| RXH_IP_DST
|
1504 RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
1505 switch (info
->flow_type
) {
1507 ndc
->l4_hash
|= HV_TCP4_L4HASH
;
1511 ndc
->l4_hash
|= HV_TCP6_L4HASH
;
1515 ndc
->l4_hash
|= HV_UDP4_L4HASH
;
1519 ndc
->l4_hash
|= HV_UDP6_L4HASH
;
1529 if (info
->data
== (RXH_IP_SRC
| RXH_IP_DST
)) {
1530 switch (info
->flow_type
) {
1532 ndc
->l4_hash
&= ~HV_TCP4_L4HASH
;
1536 ndc
->l4_hash
&= ~HV_TCP6_L4HASH
;
1540 ndc
->l4_hash
&= ~HV_UDP4_L4HASH
;
1544 ndc
->l4_hash
&= ~HV_UDP6_L4HASH
;
1558 netvsc_set_rxnfc(struct net_device
*ndev
, struct ethtool_rxnfc
*info
)
1560 struct net_device_context
*ndc
= netdev_priv(ndev
);
1562 if (info
->cmd
== ETHTOOL_SRXFH
)
1563 return netvsc_set_rss_hash_opts(ndc
, info
);
1568 static u32
netvsc_get_rxfh_key_size(struct net_device
*dev
)
1570 return NETVSC_HASH_KEYLEN
;
1573 static u32
netvsc_rss_indir_size(struct net_device
*dev
)
1578 static int netvsc_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
1581 struct net_device_context
*ndc
= netdev_priv(dev
);
1582 struct netvsc_device
*ndev
= rtnl_dereference(ndc
->nvdev
);
1583 struct rndis_device
*rndis_dev
;
1590 *hfunc
= ETH_RSS_HASH_TOP
; /* Toeplitz */
1592 rndis_dev
= ndev
->extension
;
1594 for (i
= 0; i
< ITAB_NUM
; i
++)
1595 indir
[i
] = rndis_dev
->rx_table
[i
];
1599 memcpy(key
, rndis_dev
->rss_key
, NETVSC_HASH_KEYLEN
);
1604 static int netvsc_set_rxfh(struct net_device
*dev
, const u32
*indir
,
1605 const u8
*key
, const u8 hfunc
)
1607 struct net_device_context
*ndc
= netdev_priv(dev
);
1608 struct netvsc_device
*ndev
= rtnl_dereference(ndc
->nvdev
);
1609 struct rndis_device
*rndis_dev
;
1615 if (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
)
1618 rndis_dev
= ndev
->extension
;
1620 for (i
= 0; i
< ITAB_NUM
; i
++)
1621 if (indir
[i
] >= ndev
->num_chn
)
1624 for (i
= 0; i
< ITAB_NUM
; i
++)
1625 rndis_dev
->rx_table
[i
] = indir
[i
];
1632 key
= rndis_dev
->rss_key
;
1635 return rndis_filter_set_rss_param(rndis_dev
, key
);
1638 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1639 * It does have pre-allocated receive area which is divided into sections.
1641 static void __netvsc_get_ringparam(struct netvsc_device
*nvdev
,
1642 struct ethtool_ringparam
*ring
)
1646 ring
->rx_pending
= nvdev
->recv_section_cnt
;
1647 ring
->tx_pending
= nvdev
->send_section_cnt
;
1649 if (nvdev
->nvsp_version
<= NVSP_PROTOCOL_VERSION_2
)
1650 max_buf_size
= NETVSC_RECEIVE_BUFFER_SIZE_LEGACY
;
1652 max_buf_size
= NETVSC_RECEIVE_BUFFER_SIZE
;
1654 ring
->rx_max_pending
= max_buf_size
/ nvdev
->recv_section_size
;
1655 ring
->tx_max_pending
= NETVSC_SEND_BUFFER_SIZE
1656 / nvdev
->send_section_size
;
1659 static void netvsc_get_ringparam(struct net_device
*ndev
,
1660 struct ethtool_ringparam
*ring
)
1662 struct net_device_context
*ndevctx
= netdev_priv(ndev
);
1663 struct netvsc_device
*nvdev
= rtnl_dereference(ndevctx
->nvdev
);
1668 __netvsc_get_ringparam(nvdev
, ring
);
1671 static int netvsc_set_ringparam(struct net_device
*ndev
,
1672 struct ethtool_ringparam
*ring
)
1674 struct net_device_context
*ndevctx
= netdev_priv(ndev
);
1675 struct netvsc_device
*nvdev
= rtnl_dereference(ndevctx
->nvdev
);
1676 struct netvsc_device_info device_info
;
1677 struct ethtool_ringparam orig
;
1681 if (!nvdev
|| nvdev
->destroy
)
1684 memset(&orig
, 0, sizeof(orig
));
1685 __netvsc_get_ringparam(nvdev
, &orig
);
1687 new_tx
= clamp_t(u32
, ring
->tx_pending
,
1688 NETVSC_MIN_TX_SECTIONS
, orig
.tx_max_pending
);
1689 new_rx
= clamp_t(u32
, ring
->rx_pending
,
1690 NETVSC_MIN_RX_SECTIONS
, orig
.rx_max_pending
);
1692 if (new_tx
== orig
.tx_pending
&&
1693 new_rx
== orig
.rx_pending
)
1694 return 0; /* no change */
1696 memset(&device_info
, 0, sizeof(device_info
));
1697 device_info
.num_chn
= nvdev
->num_chn
;
1698 device_info
.send_sections
= new_tx
;
1699 device_info
.send_section_size
= nvdev
->send_section_size
;
1700 device_info
.recv_sections
= new_rx
;
1701 device_info
.recv_section_size
= nvdev
->recv_section_size
;
1703 ret
= netvsc_detach(ndev
, nvdev
);
1707 ret
= netvsc_attach(ndev
, &device_info
);
1709 device_info
.send_sections
= orig
.tx_pending
;
1710 device_info
.recv_sections
= orig
.rx_pending
;
1712 if (netvsc_attach(ndev
, &device_info
))
1713 netdev_err(ndev
, "restoring ringparam failed");
1719 static int netvsc_set_features(struct net_device
*ndev
,
1720 netdev_features_t features
)
1722 netdev_features_t change
= features
^ ndev
->features
;
1723 struct net_device_context
*ndevctx
= netdev_priv(ndev
);
1724 struct netvsc_device
*nvdev
= rtnl_dereference(ndevctx
->nvdev
);
1725 struct ndis_offload_params offloads
;
1727 if (!nvdev
|| nvdev
->destroy
)
1730 if (!(change
& NETIF_F_LRO
))
1733 memset(&offloads
, 0, sizeof(struct ndis_offload_params
));
1735 if (features
& NETIF_F_LRO
) {
1736 offloads
.rsc_ip_v4
= NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED
;
1737 offloads
.rsc_ip_v6
= NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED
;
1739 offloads
.rsc_ip_v4
= NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED
;
1740 offloads
.rsc_ip_v6
= NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED
;
1743 return rndis_filter_set_offload_params(ndev
, nvdev
, &offloads
);
1746 static u32
netvsc_get_msglevel(struct net_device
*ndev
)
1748 struct net_device_context
*ndev_ctx
= netdev_priv(ndev
);
1750 return ndev_ctx
->msg_enable
;
1753 static void netvsc_set_msglevel(struct net_device
*ndev
, u32 val
)
1755 struct net_device_context
*ndev_ctx
= netdev_priv(ndev
);
1757 ndev_ctx
->msg_enable
= val
;
1760 static const struct ethtool_ops ethtool_ops
= {
1761 .get_drvinfo
= netvsc_get_drvinfo
,
1762 .get_msglevel
= netvsc_get_msglevel
,
1763 .set_msglevel
= netvsc_set_msglevel
,
1764 .get_link
= ethtool_op_get_link
,
1765 .get_ethtool_stats
= netvsc_get_ethtool_stats
,
1766 .get_sset_count
= netvsc_get_sset_count
,
1767 .get_strings
= netvsc_get_strings
,
1768 .get_channels
= netvsc_get_channels
,
1769 .set_channels
= netvsc_set_channels
,
1770 .get_ts_info
= ethtool_op_get_ts_info
,
1771 .get_rxnfc
= netvsc_get_rxnfc
,
1772 .set_rxnfc
= netvsc_set_rxnfc
,
1773 .get_rxfh_key_size
= netvsc_get_rxfh_key_size
,
1774 .get_rxfh_indir_size
= netvsc_rss_indir_size
,
1775 .get_rxfh
= netvsc_get_rxfh
,
1776 .set_rxfh
= netvsc_set_rxfh
,
1777 .get_link_ksettings
= netvsc_get_link_ksettings
,
1778 .set_link_ksettings
= netvsc_set_link_ksettings
,
1779 .get_ringparam
= netvsc_get_ringparam
,
1780 .set_ringparam
= netvsc_set_ringparam
,
1783 static const struct net_device_ops device_ops
= {
1784 .ndo_open
= netvsc_open
,
1785 .ndo_stop
= netvsc_close
,
1786 .ndo_start_xmit
= netvsc_start_xmit
,
1787 .ndo_change_rx_flags
= netvsc_change_rx_flags
,
1788 .ndo_set_rx_mode
= netvsc_set_rx_mode
,
1789 .ndo_set_features
= netvsc_set_features
,
1790 .ndo_change_mtu
= netvsc_change_mtu
,
1791 .ndo_validate_addr
= eth_validate_addr
,
1792 .ndo_set_mac_address
= netvsc_set_mac_addr
,
1793 .ndo_select_queue
= netvsc_select_queue
,
1794 .ndo_get_stats64
= netvsc_get_stats64
,
1798 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1799 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1800 * present send GARP packet to network peers with netif_notify_peers().
1802 static void netvsc_link_change(struct work_struct
*w
)
1804 struct net_device_context
*ndev_ctx
=
1805 container_of(w
, struct net_device_context
, dwork
.work
);
1806 struct hv_device
*device_obj
= ndev_ctx
->device_ctx
;
1807 struct net_device
*net
= hv_get_drvdata(device_obj
);
1808 struct netvsc_device
*net_device
;
1809 struct rndis_device
*rdev
;
1810 struct netvsc_reconfig
*event
= NULL
;
1811 bool notify
= false, reschedule
= false;
1812 unsigned long flags
, next_reconfig
, delay
;
1814 /* if changes are happening, comeback later */
1815 if (!rtnl_trylock()) {
1816 schedule_delayed_work(&ndev_ctx
->dwork
, LINKCHANGE_INT
);
1820 net_device
= rtnl_dereference(ndev_ctx
->nvdev
);
1824 rdev
= net_device
->extension
;
1826 next_reconfig
= ndev_ctx
->last_reconfig
+ LINKCHANGE_INT
;
1827 if (time_is_after_jiffies(next_reconfig
)) {
1828 /* link_watch only sends one notification with current state
1829 * per second, avoid doing reconfig more frequently. Handle
1832 delay
= next_reconfig
- jiffies
;
1833 delay
= delay
< LINKCHANGE_INT
? delay
: LINKCHANGE_INT
;
1834 schedule_delayed_work(&ndev_ctx
->dwork
, delay
);
1837 ndev_ctx
->last_reconfig
= jiffies
;
1839 spin_lock_irqsave(&ndev_ctx
->lock
, flags
);
1840 if (!list_empty(&ndev_ctx
->reconfig_events
)) {
1841 event
= list_first_entry(&ndev_ctx
->reconfig_events
,
1842 struct netvsc_reconfig
, list
);
1843 list_del(&event
->list
);
1844 reschedule
= !list_empty(&ndev_ctx
->reconfig_events
);
1846 spin_unlock_irqrestore(&ndev_ctx
->lock
, flags
);
1851 switch (event
->event
) {
1852 /* Only the following events are possible due to the check in
1853 * netvsc_linkstatus_callback()
1855 case RNDIS_STATUS_MEDIA_CONNECT
:
1856 if (rdev
->link_state
) {
1857 rdev
->link_state
= false;
1858 netif_carrier_on(net
);
1859 netif_tx_wake_all_queues(net
);
1865 case RNDIS_STATUS_MEDIA_DISCONNECT
:
1866 if (!rdev
->link_state
) {
1867 rdev
->link_state
= true;
1868 netif_carrier_off(net
);
1869 netif_tx_stop_all_queues(net
);
1873 case RNDIS_STATUS_NETWORK_CHANGE
:
1874 /* Only makes sense if carrier is present */
1875 if (!rdev
->link_state
) {
1876 rdev
->link_state
= true;
1877 netif_carrier_off(net
);
1878 netif_tx_stop_all_queues(net
);
1879 event
->event
= RNDIS_STATUS_MEDIA_CONNECT
;
1880 spin_lock_irqsave(&ndev_ctx
->lock
, flags
);
1881 list_add(&event
->list
, &ndev_ctx
->reconfig_events
);
1882 spin_unlock_irqrestore(&ndev_ctx
->lock
, flags
);
1891 netdev_notify_peers(net
);
1893 /* link_watch only sends one notification with current state per
1894 * second, handle next reconfig event in 2 seconds.
1897 schedule_delayed_work(&ndev_ctx
->dwork
, LINKCHANGE_INT
);
1905 static struct net_device
*get_netvsc_byref(struct net_device
*vf_netdev
)
1907 struct net_device_context
*net_device_ctx
;
1908 struct net_device
*dev
;
1910 dev
= netdev_master_upper_dev_get(vf_netdev
);
1911 if (!dev
|| dev
->netdev_ops
!= &device_ops
)
1912 return NULL
; /* not a netvsc device */
1914 net_device_ctx
= netdev_priv(dev
);
1915 if (!rtnl_dereference(net_device_ctx
->nvdev
))
1916 return NULL
; /* device is removed */
1921 /* Called when VF is injecting data into network stack.
1922 * Change the associated network device from VF to netvsc.
1923 * note: already called with rcu_read_lock
1925 static rx_handler_result_t
netvsc_vf_handle_frame(struct sk_buff
**pskb
)
1927 struct sk_buff
*skb
= *pskb
;
1928 struct net_device
*ndev
= rcu_dereference(skb
->dev
->rx_handler_data
);
1929 struct net_device_context
*ndev_ctx
= netdev_priv(ndev
);
1930 struct netvsc_vf_pcpu_stats
*pcpu_stats
1931 = this_cpu_ptr(ndev_ctx
->vf_stats
);
1935 u64_stats_update_begin(&pcpu_stats
->syncp
);
1936 pcpu_stats
->rx_packets
++;
1937 pcpu_stats
->rx_bytes
+= skb
->len
;
1938 u64_stats_update_end(&pcpu_stats
->syncp
);
1940 return RX_HANDLER_ANOTHER
;
1943 static int netvsc_vf_join(struct net_device
*vf_netdev
,
1944 struct net_device
*ndev
)
1946 struct net_device_context
*ndev_ctx
= netdev_priv(ndev
);
1949 ret
= netdev_rx_handler_register(vf_netdev
,
1950 netvsc_vf_handle_frame
, ndev
);
1952 netdev_err(vf_netdev
,
1953 "can not register netvsc VF receive handler (err = %d)\n",
1955 goto rx_handler_failed
;
1958 ret
= netdev_master_upper_dev_link(vf_netdev
, ndev
,
1961 netdev_err(vf_netdev
,
1962 "can not set master device %s (err = %d)\n",
1964 goto upper_link_failed
;
1967 /* set slave flag before open to prevent IPv6 addrconf */
1968 vf_netdev
->flags
|= IFF_SLAVE
;
1970 schedule_delayed_work(&ndev_ctx
->vf_takeover
, VF_TAKEOVER_INT
);
1972 call_netdevice_notifiers(NETDEV_JOIN
, vf_netdev
);
1974 netdev_info(vf_netdev
, "joined to %s\n", ndev
->name
);
1978 netdev_rx_handler_unregister(vf_netdev
);
1983 static void __netvsc_vf_setup(struct net_device
*ndev
,
1984 struct net_device
*vf_netdev
)
1988 /* Align MTU of VF with master */
1989 ret
= dev_set_mtu(vf_netdev
, ndev
->mtu
);
1991 netdev_warn(vf_netdev
,
1992 "unable to change mtu to %u\n", ndev
->mtu
);
1994 /* set multicast etc flags on VF */
1995 dev_change_flags(vf_netdev
, ndev
->flags
| IFF_SLAVE
);
1997 /* sync address list from ndev to VF */
1998 netif_addr_lock_bh(ndev
);
1999 dev_uc_sync(vf_netdev
, ndev
);
2000 dev_mc_sync(vf_netdev
, ndev
);
2001 netif_addr_unlock_bh(ndev
);
2003 if (netif_running(ndev
)) {
2004 ret
= dev_open(vf_netdev
);
2006 netdev_warn(vf_netdev
,
2007 "unable to open: %d\n", ret
);
2011 /* Setup VF as slave of the synthetic device.
2012 * Runs in workqueue to avoid recursion in netlink callbacks.
2014 static void netvsc_vf_setup(struct work_struct
*w
)
2016 struct net_device_context
*ndev_ctx
2017 = container_of(w
, struct net_device_context
, vf_takeover
.work
);
2018 struct net_device
*ndev
= hv_get_drvdata(ndev_ctx
->device_ctx
);
2019 struct net_device
*vf_netdev
;
2021 if (!rtnl_trylock()) {
2022 schedule_delayed_work(&ndev_ctx
->vf_takeover
, 0);
2026 vf_netdev
= rtnl_dereference(ndev_ctx
->vf_netdev
);
2028 __netvsc_vf_setup(ndev
, vf_netdev
);
2033 /* Find netvsc by VF serial number.
2034 * The PCI hyperv controller records the serial number as the slot kobj name.
2036 static struct net_device
*get_netvsc_byslot(const struct net_device
*vf_netdev
)
2038 struct device
*parent
= vf_netdev
->dev
.parent
;
2039 struct net_device_context
*ndev_ctx
;
2040 struct pci_dev
*pdev
;
2043 if (!parent
|| !dev_is_pci(parent
))
2044 return NULL
; /* not a PCI device */
2046 pdev
= to_pci_dev(parent
);
2048 netdev_notice(vf_netdev
, "no PCI slot information\n");
2052 if (kstrtou32(pci_slot_name(pdev
->slot
), 10, &serial
)) {
2053 netdev_notice(vf_netdev
, "Invalid vf serial:%s\n",
2054 pci_slot_name(pdev
->slot
));
2058 list_for_each_entry(ndev_ctx
, &netvsc_dev_list
, list
) {
2059 if (!ndev_ctx
->vf_alloc
)
2062 if (ndev_ctx
->vf_serial
== serial
)
2063 return hv_get_drvdata(ndev_ctx
->device_ctx
);
2066 netdev_notice(vf_netdev
,
2067 "no netdev found for vf serial:%u\n", serial
);
2071 static int netvsc_register_vf(struct net_device
*vf_netdev
)
2073 struct net_device_context
*net_device_ctx
;
2074 struct netvsc_device
*netvsc_dev
;
2075 struct net_device
*ndev
;
2078 if (vf_netdev
->addr_len
!= ETH_ALEN
)
2081 ndev
= get_netvsc_byslot(vf_netdev
);
2085 net_device_ctx
= netdev_priv(ndev
);
2086 netvsc_dev
= rtnl_dereference(net_device_ctx
->nvdev
);
2087 if (!netvsc_dev
|| rtnl_dereference(net_device_ctx
->vf_netdev
))
2090 /* if syntihetic interface is a different namespace,
2091 * then move the VF to that namespace; join will be
2092 * done again in that context.
2094 if (!net_eq(dev_net(ndev
), dev_net(vf_netdev
))) {
2095 ret
= dev_change_net_namespace(vf_netdev
,
2096 dev_net(ndev
), "eth%d");
2098 netdev_err(vf_netdev
,
2099 "could not move to same namespace as %s: %d\n",
2102 netdev_info(vf_netdev
,
2103 "VF moved to namespace with: %s\n",
2108 netdev_info(ndev
, "VF registering: %s\n", vf_netdev
->name
);
2110 if (netvsc_vf_join(vf_netdev
, ndev
) != 0)
2113 dev_hold(vf_netdev
);
2114 rcu_assign_pointer(net_device_ctx
->vf_netdev
, vf_netdev
);
2118 /* VF up/down change detected, schedule to change data path */
2119 static int netvsc_vf_changed(struct net_device
*vf_netdev
)
2121 struct net_device_context
*net_device_ctx
;
2122 struct netvsc_device
*netvsc_dev
;
2123 struct net_device
*ndev
;
2124 bool vf_is_up
= netif_running(vf_netdev
);
2126 ndev
= get_netvsc_byref(vf_netdev
);
2130 net_device_ctx
= netdev_priv(ndev
);
2131 netvsc_dev
= rtnl_dereference(net_device_ctx
->nvdev
);
2135 netvsc_switch_datapath(ndev
, vf_is_up
);
2136 netdev_info(ndev
, "Data path switched %s VF: %s\n",
2137 vf_is_up
? "to" : "from", vf_netdev
->name
);
2142 static int netvsc_unregister_vf(struct net_device
*vf_netdev
)
2144 struct net_device
*ndev
;
2145 struct net_device_context
*net_device_ctx
;
2147 ndev
= get_netvsc_byref(vf_netdev
);
2151 net_device_ctx
= netdev_priv(ndev
);
2152 cancel_delayed_work_sync(&net_device_ctx
->vf_takeover
);
2154 netdev_info(ndev
, "VF unregistering: %s\n", vf_netdev
->name
);
2156 netdev_rx_handler_unregister(vf_netdev
);
2157 netdev_upper_dev_unlink(vf_netdev
, ndev
);
2158 RCU_INIT_POINTER(net_device_ctx
->vf_netdev
, NULL
);
2164 static int netvsc_probe(struct hv_device
*dev
,
2165 const struct hv_vmbus_device_id
*dev_id
)
2167 struct net_device
*net
= NULL
;
2168 struct net_device_context
*net_device_ctx
;
2169 struct netvsc_device_info device_info
;
2170 struct netvsc_device
*nvdev
;
2173 net
= alloc_etherdev_mq(sizeof(struct net_device_context
),
2178 netif_carrier_off(net
);
2180 netvsc_init_settings(net
);
2182 net_device_ctx
= netdev_priv(net
);
2183 net_device_ctx
->device_ctx
= dev
;
2184 net_device_ctx
->msg_enable
= netif_msg_init(debug
, default_msg
);
2185 if (netif_msg_probe(net_device_ctx
))
2186 netdev_dbg(net
, "netvsc msg_enable: %d\n",
2187 net_device_ctx
->msg_enable
);
2189 hv_set_drvdata(dev
, net
);
2191 INIT_DELAYED_WORK(&net_device_ctx
->dwork
, netvsc_link_change
);
2193 spin_lock_init(&net_device_ctx
->lock
);
2194 INIT_LIST_HEAD(&net_device_ctx
->reconfig_events
);
2195 INIT_DELAYED_WORK(&net_device_ctx
->vf_takeover
, netvsc_vf_setup
);
2197 net_device_ctx
->vf_stats
2198 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats
);
2199 if (!net_device_ctx
->vf_stats
)
2202 net
->netdev_ops
= &device_ops
;
2203 net
->ethtool_ops
= ðtool_ops
;
2204 SET_NETDEV_DEV(net
, &dev
->device
);
2206 /* We always need headroom for rndis header */
2207 net
->needed_headroom
= RNDIS_AND_PPI_SIZE
;
2209 /* Initialize the number of queues to be 1, we may change it if more
2210 * channels are offered later.
2212 netif_set_real_num_tx_queues(net
, 1);
2213 netif_set_real_num_rx_queues(net
, 1);
2215 /* Notify the netvsc driver of the new device */
2216 memset(&device_info
, 0, sizeof(device_info
));
2217 device_info
.num_chn
= VRSS_CHANNEL_DEFAULT
;
2218 device_info
.send_sections
= NETVSC_DEFAULT_TX
;
2219 device_info
.send_section_size
= NETVSC_SEND_SECTION_SIZE
;
2220 device_info
.recv_sections
= NETVSC_DEFAULT_RX
;
2221 device_info
.recv_section_size
= NETVSC_RECV_SECTION_SIZE
;
2223 nvdev
= rndis_filter_device_add(dev
, &device_info
);
2224 if (IS_ERR(nvdev
)) {
2225 ret
= PTR_ERR(nvdev
);
2226 netdev_err(net
, "unable to add netvsc device (ret %d)\n", ret
);
2230 memcpy(net
->dev_addr
, device_info
.mac_adr
, ETH_ALEN
);
2232 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2233 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2234 * all subchannels to show up, but that may not happen because
2235 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2236 * -> ... -> device_add() -> ... -> __device_attach() can't get
2237 * the device lock, so all the subchannels can't be processed --
2238 * finally netvsc_subchan_work() hangs for ever.
2242 if (nvdev
->num_chn
> 1)
2243 schedule_work(&nvdev
->subchan_work
);
2245 /* hw_features computed in rndis_netdev_set_hwcaps() */
2246 net
->features
= net
->hw_features
|
2247 NETIF_F_HIGHDMA
| NETIF_F_SG
|
2248 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
2249 net
->vlan_features
= net
->features
;
2251 netdev_lockdep_set_classes(net
);
2253 /* MTU range: 68 - 1500 or 65521 */
2254 net
->min_mtu
= NETVSC_MTU_MIN
;
2255 if (nvdev
->nvsp_version
>= NVSP_PROTOCOL_VERSION_2
)
2256 net
->max_mtu
= NETVSC_MTU
- ETH_HLEN
;
2258 net
->max_mtu
= ETH_DATA_LEN
;
2260 ret
= register_netdevice(net
);
2262 pr_err("Unable to register netdev.\n");
2263 goto register_failed
;
2266 list_add(&net_device_ctx
->list
, &netvsc_dev_list
);
2272 rndis_filter_device_remove(dev
, nvdev
);
2274 free_percpu(net_device_ctx
->vf_stats
);
2276 hv_set_drvdata(dev
, NULL
);
2282 static int netvsc_remove(struct hv_device
*dev
)
2284 struct net_device_context
*ndev_ctx
;
2285 struct net_device
*vf_netdev
, *net
;
2286 struct netvsc_device
*nvdev
;
2288 net
= hv_get_drvdata(dev
);
2290 dev_err(&dev
->device
, "No net device to remove\n");
2294 ndev_ctx
= netdev_priv(net
);
2296 cancel_delayed_work_sync(&ndev_ctx
->dwork
);
2299 nvdev
= rtnl_dereference(ndev_ctx
->nvdev
);
2301 cancel_work_sync(&nvdev
->subchan_work
);
2304 * Call to the vsc driver to let it know that the device is being
2305 * removed. Also blocks mtu and channel changes.
2307 vf_netdev
= rtnl_dereference(ndev_ctx
->vf_netdev
);
2309 netvsc_unregister_vf(vf_netdev
);
2312 rndis_filter_device_remove(dev
, nvdev
);
2314 unregister_netdevice(net
);
2315 list_del(&ndev_ctx
->list
);
2319 hv_set_drvdata(dev
, NULL
);
2321 free_percpu(ndev_ctx
->vf_stats
);
2326 static const struct hv_vmbus_device_id id_table
[] = {
2332 MODULE_DEVICE_TABLE(vmbus
, id_table
);
2334 /* The one and only one */
2335 static struct hv_driver netvsc_drv
= {
2336 .name
= KBUILD_MODNAME
,
2337 .id_table
= id_table
,
2338 .probe
= netvsc_probe
,
2339 .remove
= netvsc_remove
,
2341 .probe_type
= PROBE_PREFER_ASYNCHRONOUS
,
2346 * On Hyper-V, every VF interface is matched with a corresponding
2347 * synthetic interface. The synthetic interface is presented first
2348 * to the guest. When the corresponding VF instance is registered,
2349 * we will take care of switching the data path.
2351 static int netvsc_netdev_event(struct notifier_block
*this,
2352 unsigned long event
, void *ptr
)
2354 struct net_device
*event_dev
= netdev_notifier_info_to_dev(ptr
);
2356 /* Skip our own events */
2357 if (event_dev
->netdev_ops
== &device_ops
)
2360 /* Avoid non-Ethernet type devices */
2361 if (event_dev
->type
!= ARPHRD_ETHER
)
2364 /* Avoid Vlan dev with same MAC registering as VF */
2365 if (is_vlan_dev(event_dev
))
2368 /* Avoid Bonding master dev with same MAC registering as VF */
2369 if ((event_dev
->priv_flags
& IFF_BONDING
) &&
2370 (event_dev
->flags
& IFF_MASTER
))
2374 case NETDEV_REGISTER
:
2375 return netvsc_register_vf(event_dev
);
2376 case NETDEV_UNREGISTER
:
2377 return netvsc_unregister_vf(event_dev
);
2380 return netvsc_vf_changed(event_dev
);
2386 static struct notifier_block netvsc_netdev_notifier
= {
2387 .notifier_call
= netvsc_netdev_event
,
2390 static void __exit
netvsc_drv_exit(void)
2392 unregister_netdevice_notifier(&netvsc_netdev_notifier
);
2393 vmbus_driver_unregister(&netvsc_drv
);
2396 static int __init
netvsc_drv_init(void)
2400 if (ring_size
< RING_SIZE_MIN
) {
2401 ring_size
= RING_SIZE_MIN
;
2402 pr_info("Increased ring_size to %u (min allowed)\n",
2405 netvsc_ring_bytes
= ring_size
* PAGE_SIZE
;
2407 ret
= vmbus_driver_register(&netvsc_drv
);
2411 register_netdevice_notifier(&netvsc_netdev_notifier
);
2415 MODULE_LICENSE("GPL");
2416 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2418 module_init(netvsc_drv_init
);
2419 module_exit(netvsc_drv_exit
);